1
|
Hong X, Chen T, Liu Y, Li J, Huang D, Ye K, Liao W, Wang Y, Liu M, Luan P. Design, current states, and challenges of nanomaterials in anti-neuroinflammation: A perspective on Alzheimer's disease. Ageing Res Rev 2025; 105:102669. [PMID: 39864562 DOI: 10.1016/j.arr.2025.102669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/08/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
Alzheimer's disease (AD), an age-related neurodegenerative disease, brings huge damage to the society, to the whole family and even to the patient himself. However, until now, the etiological factor of AD is still unknown and there is no effective treatment for it. Massive deposition of amyloid-beta peptide(Aβ) and hyperphosphorylation of Tau proteins are acknowledged pathological features of AD. Recent studies have revealed that neuroinflammation plays a pivotal role in the pathology of AD. With the rise of nanomaterials in the biomedical field, researchers are exploring how the unique properties of these materials can be leveraged to develop effective treatments for AD. This article has summarized the influence of neuroinflammation in AD, the design of nanoplatforms, and the current research status and inadequacy of nanomaterials in improving neuroinflammation in AD.
Collapse
Affiliation(s)
- Xinyang Hong
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Yunyun Liu
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Neurology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Jun Li
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Dongqing Huang
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Kaiyu Ye
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Wanchen Liao
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Yulin Wang
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Mengling Liu
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| | - Ping Luan
- Department of Alzheimer's Disease Clinical Research Center, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China; School of Basic Medical Sciences, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
2
|
Smail SW. Targeting Neuroinflammation and Apoptosis: Cardamonin's Cognitive Benefits in Alzheimer's 5XFAD Mice. Neurochem Res 2024; 50:57. [PMID: 39673650 DOI: 10.1007/s11064-024-04308-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024]
Abstract
This study aimed to evaluate the cognitive-enhancing and neuroprotective effects of cardamonin in the 5XFAD transgenic mouse model of Alzheimer's disease (AD). We treated six-month-old female 5XFAD mice with cardamonin at 5 mg/kg, 10 mg/kg, and 20 mg/kg. Cognitive function was assessed using the Morris Water Maze (MWM) and Novel Object Recognition (NOR) tests. ELISA, western blot, and PCR analyses evaluated amyloid-beta (Aβ) levels, neuroinflammation markers, and apoptosis-related factor expression. All animals survived without toxicity. Cardamonin treatment significantly improved spatial learning and memory retention in MWM and NOR tests, with the 20 mg/kg dose showing the most pronounced effects. Additionally, cardamonin reduced soluble and insoluble Aβ levels in the frontal cortex and hippocampus. The treatment also significantly decreased neuroinflammatory markers, with IL-1β, IL-6, and TNF-α levels dropping substantially at higher doses. Cardamom treatment also normalizes cleaved caspase 3, GFAP, Iba-1, PSD-95, and synaptophysin, which aids in restoring synaptic integrity. Furthermore, cardamonin led to a marked reduction in apoptosis-related gene expression, indicating its potential to mitigate neurodegeneration. Cardamonin demonstrates significant cognitive-enhancing and neuroprotective properties in the 5XFAD mouse model, suggesting its potential as a therapeutic agent for AD. These findings support further investigation into cardamonin's mechanisms and applicability in treating neurodegenerative disorders.
Collapse
Affiliation(s)
- Shukur Wasman Smail
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq.
- College of Pharmacy, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq.
| |
Collapse
|
3
|
Kim MJ, Kim MH, Kim S, Lee JJ, Kim HJ. Near-infrared laser diode mitigates Aβ 1-42-induced neurodegeneration in cortical neurons. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 259:113021. [PMID: 39222549 DOI: 10.1016/j.jphotobiol.2024.113021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/31/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Alzheimer's disease, a prevalent neurodegenerative condition primarily affecting older adults, remains incurable. Its principle pathological hallmark is the accelerated accumulation of amyloid β (Aβ) protein. This study investigates the potential of photobiomodulation using near infrared light to counteract Aβ1-42-induced synaptic degeneration and neurotoxicity. We focused on the effect of 808 nm near-infrared laser diode (LD) on Aβ1-42 cytotoxicity in primary cultured cortical neurons. We assessed cell survival using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, observing substantial benefits from LD irradiation with a power of 10 mW and a dose of 30 J. Cells exposed to Aβ1-42 exhibited morphological changes indicative of synaptic damage and a significant decrease in the number of postsynaptic density protein-95 (PSD-95) contacts, which were significantly improved with near-infrared LD therapy. Furthermore, this therapy reduced Aβ and phosphorylated tau (P-tau) protein accumulation. Additionally, near-infrared LD irradiation substantially lessened the Aβ1-42-induced rise in glial fibrillary acid protein (GFAP) and ionized calcium-binding adaptor molecule 1 (IBA1) in astrocytes and microglia. Remarkably, near-infrared LD irradiation effectively inhibited phosphorylation of key proteins involved in Aβ1-42-induced necroptosis, namely Receptor-interacting protein kinase-3 (RIP3) and Mixed Lineage Kinase domain-Like protein (MLKL). Our findings suggest that near-infrared LD treatment significantly reduces neurodegeneration by reducing glial overactivation and neuronal necroptosis triggered by Aβ1-42. Thus, near-infrared LD treatment emerges as a promising approach for slowing or treating Alzheimer's disease, offering new avenues in its management.
Collapse
Affiliation(s)
- Min Ji Kim
- Department of Physiology, College of Medicine, Center for Human Risk Assessment, Dankook University, Cheonan 31116, Republic of Korea; Department of Medical Laser, Graduate School, Dankook University, Cheonan 31116, Republic of Korea
| | - Mi-Hye Kim
- Department of Physiology, College of Medicine, Center for Human Risk Assessment, Dankook University, Cheonan 31116, Republic of Korea; Department of Medical Laser, Graduate School, Dankook University, Cheonan 31116, Republic of Korea
| | - Sehwan Kim
- Department of Biomedical Engineering, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea.
| | - Jung Jae Lee
- Department of Psychiatry, Dankook University Hospital, Cheonan 31116, Republic of Korea; Department of Psychiatry, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea.
| | - Hee Jung Kim
- Department of Physiology, College of Medicine, Center for Human Risk Assessment, Dankook University, Cheonan 31116, Republic of Korea.
| |
Collapse
|
4
|
Gao L, Wang D, Ren J, Tan X, Chen J, Kong Z, Nie Y, Yan M. Acteoside ameliorates learning and memory impairment in APP/PS1 transgenic mice by increasing Aβ degradation and inhibiting tau hyperphosphorylation. Phytother Res 2024; 38:1735-1744. [PMID: 37661763 DOI: 10.1002/ptr.8006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 06/27/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease. Senile plaques and intracellular neurofibrillary tangles are pathological hallmarks of AD. Recent studies have described the improved cognitive and neuroprotective functions of acteoside (AS). This study aimed to investigate whether the improved cognition of AS was mediated by Aβ degradation and tau phosphorylation in APP/PS1 mice. The open field, Y maze, and novel object recognition tests were used to assess cognitive behavioral changes. We evaluated the levels of Aβ40 and Aβ42 in serum, cortex, and hippocampus, and Aβ-related scavenging enzymes, phosphorylated GSK3β and hyperphosphorylated tau in the cortex and hippocampus of APP/PS1 mice by western blotting. Our results revealed that AS treatment ameliorated anxious behaviors, spatial learning, and memory impairment in APP/PS1 mice and significantly reduced Aβ deposition in their serum, cortex, and hippocampus. AS significantly increased Aβ degradation, inhibited the hyperphosphorylation of tau, and significantly decreased the activity of GSK3β, which is involved in tau phosphorylation. Altogether, these findings indicated that the beneficial effects of AS on AD-associated anxious behaviors and cognitive impairments could be attributed to promoting Aβ degradation and inhibiting tau hyperphosphorylation, which might be partly mediated by GSK3β.
Collapse
Affiliation(s)
- Li Gao
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urumqi, China
| | - Dongqing Wang
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urumqi, China
| | - Jia Ren
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urumqi, China
| | - Xue Tan
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urumqi, China
| | - Jiayuan Chen
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urumqi, China
| | - Zheng Kong
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urumqi, China
| | - Yunan Nie
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urumqi, China
| | - Ming Yan
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urumqi, China
| |
Collapse
|
5
|
Li Z, Fan Z, Zhang Q. The Associations of Phosphorylated Tau 181 and Tau 231 Levels in Plasma and Cerebrospinal Fluid with Cognitive Function in Alzheimer's Disease: A Systematic Review and Meta-Analysis. J Alzheimers Dis 2024; 98:13-32. [PMID: 38339929 DOI: 10.3233/jad-230799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Background Cerebrospinal fluid (CSF) or blood biomarkers like phosphorylated tau proteins (p-tau) are used to detect Alzheimer's disease (AD) early. Increasing studies on cognitive function and blood or CSF p-tau levels are controversial. Objective Our study examined the potential of p-tau as a biomarker of cognitive status in normal control (NC), mild cognitive impairment (MCI), and AD patients. Methods We searched PubMed, Cochrane, Embase, and Web of Science for relevant material through 12 January 2023. 5,017 participants from 20 studies-1,033 AD, 2,077 MCI, and 1,907 NC-were evaluated. Quantitative analysis provided continuous outcomes as SMDs with 95% CIs. Begg tested publication bias. Results MCI patients had lower CSF p-tau181 levels than AD patients (SMD =-0.60, 95% CI (-0.85, -0.36)) but higher than healthy controls (SMD = 0.67). AD/MCI patients had greater plasma p-tau181 levels than healthy people (SMD =-0.73, 95% CI (-1.04, -0.43)). MCI patients had significantly lower p-tau231 levels than AD patients in plasma and CSF (SMD =-0.90, 95% CI (-0.82, -0.45)). MCI patients showed greater CSF and plasma p-tau231 than healthy controls (SMD = 1.34, 95% CI (0.89, 1.79) and 0.43, (0.23, 0.64)). Plasma p-tau181/231 levels also distinguished the three categories. MCI patients had higher levels than healthy people, while AD patients had higher levels than MCI patients. Conclusions CSF p-tau181 and p-tau231 biomarkers distinguished AD, MCI, and healthy populations. Plasma-based p-tau181 and p-tau231 biomarkers for AD and MCI need further study.
Collapse
Affiliation(s)
- Zhirui Li
- Department of Disease Control and Prevention, Sichuan Provincial Center for Disease Control and Prevention, Sichuan Chengdu, China
| | - Zixuan Fan
- School of Health Policy and Management, Peking Union Medical College, Beijing, China
| | - Qian Zhang
- Department of Oncology, Xiamen Fifth Hospital, Fujian Xiamen, China
| |
Collapse
|
6
|
Thakral S, Yadav A, Singh V, Kumar M, Kumar P, Narang R, Sudhakar K, Verma A, Khalilullah H, Jaremko M, Emwas AH. Alzheimer's disease: Molecular aspects and treatment opportunities using herbal drugs. Ageing Res Rev 2023; 88:101960. [PMID: 37224884 DOI: 10.1016/j.arr.2023.101960] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 05/26/2023]
Abstract
Alzheimer's disease (AD), also called senile dementia, is the most common neurological disorder. Around 50 million people, mostly of advanced age, are suffering from dementia worldwide and this is expected to reach 100-130 million between 2040 and 2050. AD is characterized by impaired glutamatergic and cholinergic neurotransmission, which is associated with clinical and pathological symptoms. AD is characterized clinically by loss of cognition and memory impairment and pathologically by senile plaques formed by Amyloid β deposits or neurofibrillary tangles (NFT) consisting of aggregated tau proteins. Amyloid β deposits are responsible for glutamatergic dysfunction that develops NMDA dependent Ca2+ influx into postsynaptic neurons generating slow excitotoxicity process leading to oxidative stress and finally impaired cognition and neuronal loss. Amyloid decreases acetylcholine release, synthesis and neuronal transport. The decreased levels of neurotransmitter acetylcholine, neuronal loss, tau aggregation, amyloid β plaques, increased oxidative stress, neuroinflammation, bio-metal dyshomeostasis, autophagy, cell cycle dysregulation, mitochondrial dysfunction, and endoplasmic reticulum dysfunction are the factors responsible for the pathogenesis of AD. Acetylcholinesterase, NMDA, Glutamate, BACE1, 5HT6, and RAGE (Receptors for Advanced Glycation End products) are receptors targeted in treatment of AD. The FDA approved acetylcholinesterase inhibitors Donepezil, Galantamine and Rivastigmine and N-methyl-D-aspartate antagonist Memantine provide symptomatic relief. Different therapies such as amyloid β therapies, tau-based therapies, neurotransmitter-based therapies, autophagy-based therapies, multi-target therapeutic strategies, and gene therapy modify the natural course of the disease. Herbal and food intake is also important as preventive strategy and recently focus has also been placed on herbal drugs for treatment. This review focuses on the molecular aspects, pathogenesis and recent studies that signifies the potential of medicinal plants and their extracts or chemical constituents for the treatment of degenerative symptoms related to AD.
Collapse
Affiliation(s)
- Samridhi Thakral
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Alka Yadav
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Vikramjeet Singh
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India.
| | - Manoj Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Rakesh Narang
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Kalvatala Sudhakar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India.
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unayzah 51911, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
7
|
Mei Z, Hong Y, Yang H, Cai S, Hu Y, Chen Q, Yuan Z, Liu X. Ferulic acid alleviates high fat diet-induced cognitive impairment by inhibiting oxidative stress and apoptosis. Eur J Pharmacol 2023; 946:175642. [PMID: 36871664 DOI: 10.1016/j.ejphar.2023.175642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
Cognitive impairment has become a major public health problem. Growing evidence suggests that high-fat diet (HFD) can cause cognitive dysfunction and increase the risk of dementia. However, effective treatment for cognitive impairment is not available. Ferulic acid (FA) is a single phenolic compound with anti-inflammatory and antioxidant properties. Nevertheless, its role in regulating learning and memory in HFD-fed mice and the underlying mechanism remains unclear. In this study, we aimed to identify the neuroprotective mechanisms of FA in HFD induced cognitive impairment. We found that FA improved the survival rate of HT22 cells treated with palmitic acid (PA), inhibited cell apoptosis, and reduced oxidative stress via the IRS1/PI3K/AKT/GSK3β signaling pathway; Furthermore, FA treatment for 24 weeks improved the learning and memory of HFD-fed mice and decreased hyperlipidemia. Moreover, the expression of Nrf2 and Gpx4 proteins were decreased in HFD-fed mice. After FA treatment, the decline of these proteins was reversed. Our study showed that the neuroprotective effect of FA on cognitive impairment was related to the inhibition of oxidative stress and apoptosis and regulation of glucose and lipid metabolism. These findings suggested that FA can be developed as a potential agent for the treatment of HFD-induced cognitive impairment.
Collapse
Affiliation(s)
- Zhengrong Mei
- Department of Pharmacy, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, 510150, PR China
| | - Ye Hong
- Department of Pharmacy, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, 510440, PR China
| | - Haiyi Yang
- Department of Pharmacy, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, 510150, PR China
| | - Shihong Cai
- Department of Pharmacy, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, 510150, PR China
| | - Yujun Hu
- Department of Rehabilitation, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
| | - Qibo Chen
- Department of Rehabilitation, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
| | - Zhongwen Yuan
- Department of Pharmacy, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, 510150, PR China.
| | - Xixia Liu
- Department of Human Anatomy, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China; Department of Rehabilitation, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China.
| |
Collapse
|
8
|
TRPV1 Modulator Ameliorates Alzheimer-Like Amyloid- β Neuropathology via Akt/Gsk3 β-Mediated Nrf2 Activation in the Neuro-2a/APP Cell Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1544244. [PMID: 36065437 PMCID: PMC9440841 DOI: 10.1155/2022/1544244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/01/2022] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disorder for which there is no effective therapeutic strategy. PcActx peptide from the transcriptome of zoantharian Palythoa caribaeorum has recently been identified and verified as a novel antagonist of transient receptor potential cation channel subfamily V member 1 (TRPV1). In the present study, we further investigated the neuroprotective potential of PcActx peptide and its underlying mechanism of action, in an N2a/APP cell model of AD. Both Western blot and RT-PCR analysis revealed that PcActx peptide markedly inhibited the production of amyloid-related proteins and the expression of BACE1, PSEN1, and PSEN2. Moreover, PcActx peptide notably attenuated the capsaicin-stimulated calcium response and prevented the phosphorylation of CaMKII and CaMKIV (calcium-mediated proteins) in N2a/APP cells. Further investigation indicated that PcActx peptide significantly suppressed ROS generation through Nrf2 activation, followed by enhanced NQO1 and HO-1 levels. In addition, PcActx peptide remarkably improved Akt phosphorylation at Ser 473 (active) and Gsk3β phosphorylation at Ser 9 (inactive), while pharmacological inhibition of the Akt/Gsk3β pathway significantly attenuated PcActx-induced Nrf2 activation and amyloid downregulation. In conclusion, PcActx peptide functions as a TRPV1 modulator of intercellular calcium homeostasis, prevents AD-like amyloid neuropathology via Akt/Gsk3β-mediated Nrf2 activation, and shows promise as an alternative therapeutic agent for AD.
Collapse
|
9
|
Ribarič S. Physical Exercise, a Potential Non-Pharmacological Intervention for Attenuating Neuroinflammation and Cognitive Decline in Alzheimer's Disease Patients. Int J Mol Sci 2022; 23:ijms23063245. [PMID: 35328666 PMCID: PMC8952567 DOI: 10.3390/ijms23063245] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/14/2022] Open
Abstract
This narrative review summarises the evidence for considering physical exercise (PE) as a non-pharmacological intervention for delaying cognitive decline in patients with Alzheimer’s disease (AD) not only by improving cardiovascular fitness but also by attenuating neuroinflammation. Ageing is the most important risk factor for AD. A hallmark of the ageing process is a systemic low-grade chronic inflammation that also contributes to neuroinflammation. Neuroinflammation is associated with AD, Parkinson’s disease, late-onset epilepsy, amyotrophic lateral sclerosis and anxiety disorders. Pharmacological treatment of AD is currently limited to mitigating the symptoms and attenuating progression of the disease. AD animal model studies and human studies on patients with a clinical diagnosis of different stages of AD have concluded that PE attenuates cognitive decline not only by improving cardiovascular fitness but possibly also by attenuating neuroinflammation. Therefore, low-grade chronic inflammation and neuroinflammation should be considered potential modifiable risk factors for AD that can be attenuated by PE. This opens the possibility for personalised attenuation of neuroinflammation that could also have important health benefits for patients with other inflammation associated brain disorders (i.e., Parkinson’s disease, late-onset epilepsy, amyotrophic lateral sclerosis and anxiety disorders). In summary, life-long, regular, structured PE should be considered as a supplemental intervention for attenuating the progression of AD in human. Further studies in human are necessary to develop optimal, personalised protocols, adapted to the progression of AD and the individual’s mental and physical limitations, to take full advantage of the beneficial effects of PE that include improved cardiovascular fitness, attenuated systemic inflammation and neuroinflammation, stimulated brain Aβ peptides brain catabolism and brain clearance.
Collapse
Affiliation(s)
- Samo Ribarič
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
10
|
Nisa FY, Rahman MA, Hossen MA, Khan MF, Khan MAN, Majid M, Sultana F, Haque MA. Role of neurotoxicants in the pathogenesis of Alzheimer's disease: a mechanistic insight. Ann Med 2021; 53:1476-1501. [PMID: 34433343 PMCID: PMC8405119 DOI: 10.1080/07853890.2021.1966088] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/04/2021] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most conspicuous chronic neurodegenerative syndrome, which has become a significant challenge for the global healthcare system. Multiple studies have corroborated a clear association of neurotoxicants with AD pathogenicity, such as Amyloid beta (Aβ) proteins and neurofibrillary tangles (NFTs), signalling pathway modifications, cellular stress, cognitive dysfunctions, neuronal apoptosis, neuroinflammation, epigenetic modification, and so on. This review, therefore, aimed to address several essential mechanisms and signalling cascades, including Wnt (wingless and int.) signalling pathway, autophagy, mammalian target of rapamycin (mTOR), protein kinase C (PKC) signalling cascades, cellular redox status, energy metabolism, glutamatergic neurotransmissions, immune cell stimulations (e.g. microglia, astrocytes) as well as an amyloid precursor protein (APP), presenilin-1 (PSEN1), presenilin-2 (PSEN2) and other AD-related gene expressions that have been pretentious and modulated by the various neurotoxicants. This review concluded that neurotoxicants play a momentous role in developing AD through modulating various signalling cascades. Nevertheless, comprehension of this risk agent-induced neurotoxicity is far too little. More in-depth epidemiological and systematic investigations are needed to understand the potential mechanisms better to address these neurotoxicants and improve approaches to their risk exposure that aid in AD pathogenesis.Key messagesInevitable cascade mechanisms of how Alzheimer's Disease-related (AD-related) gene expressions are modulated by neurotoxicants have been discussed.Involvement of the neurotoxicants-induced pathways caused an extended risk of AD is explicited.Integration of cell culture, animals and population-based analysis on the clinical severity of AD is addressed.
Collapse
Affiliation(s)
- Fatema Yasmin Nisa
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Md. Atiar Rahman
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Md. Amjad Hossen
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Mohammad Forhad Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Md. Asif Nadim Khan
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Mumtahina Majid
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Farjana Sultana
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Md. Areeful Haque
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
- Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Analyzing the Effect of Weak External Transcranial Magnetic Stimulation on the Primary Dominant Frequencies of Alzheimer Patients Brain by Using MEG Recordings. Medicina (B Aires) 2021; 57:medicina57111164. [PMID: 34833381 PMCID: PMC8622009 DOI: 10.3390/medicina57111164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Backround and Objectives: Alternative, non-invasive, and non-pharmaceutical options are gaining place in the battle of Alzheimer’s Disease treatment control. Lately, the magnetic stimulation of the brain is the most prevalent technique with encouraging results. The aim of this study is to establish any possible change on the Primary Dominant Frequencies (PDF) (range 2–7 Hz) of the affected brain regions in Alzheimer Disease (AD) patients after applying extremely weak Transcranial Magnetic Stimulation. Materials and Methods: For this purpose, all AD patients were scanned with the use of MagnetoEncephaloGraphy (MEG) recordings through a whole-head 122–channel MEG system. Results: Our results exerted statistically significant PDF changes due to weak TMS accompanied by rabid attenuation of clinical symptoms. Conclusion: Thus, this is the first time that a positive therapeutic effect is being demonstrated even at pico-Tesla range magnetic fields in a small clinical group of studies for AD.
Collapse
|
12
|
Singh YP, Rai H, Singh G, Singh GK, Mishra S, Kumar S, Srikrishna S, Modi G. A review on ferulic acid and analogs based scaffolds for the management of Alzheimer's disease. Eur J Med Chem 2021; 215:113278. [PMID: 33662757 DOI: 10.1016/j.ejmech.2021.113278] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/30/2021] [Accepted: 01/30/2021] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is an age-related multifactorial neurodegenerative disorder characterized by severe central cholinergic neuronal loss, gradually contributing to cognitive dysfunction and impaired motor activity, resulting in the brain's cell death at the later stages of AD. Although the etiology of AD is not well understood, however, several factors such as oxidative stress, deposition of amyloid-β (Aβ) peptides to form Aβ plaques, intraneuronal accumulation of hyperphosphorylated tau protein, and low level of acetylcholine are thought to play a major role in the pathogenesis of AD. There is practically no drug for AD treatment that can address the basic factors responsible for the neurodegeneration and slow down the disease progression. The currently available therapies for AD in the market focus on providing only symptomatic relief without addressing the aforesaid basic factors responsible for the neurodegeneration. Ferulic acid (FA) is a phenol derivative from natural sources and serves as a potential pharmacophore that exerts multiple pharmacological properties such as antioxidant, neuroprotection, Aβ aggregation modulation, and anti-inflammatory. Several FA based hybrid analogs are under investigation as a multi-target directed ligand (MTDLs) to develop novel hybrid compounds for the treatment of AD. In the present review article, we are focused on the critical pathogenic factors responsible for the onset of AD followed by the developments of FA pharmacophore-based hybrids compounds as a novel multifunctional therapeutic agent to address the limitations associated with available treatment for AD. The rationale behind the development of these compounds and their pharmacological activities in particular to their ChE inhibition (ChEI), neuroprotection, antioxidant property, Aβ aggregation modulation, and metal chelation ability, are discussed in detail. We have also discussed the discovery of caffeic and cinnamic acids based MTDLs for AD. This review paper provides an in-depth insight into the research progress and current status of these novel therapeutics in AD and prospects for developing a druggable molecule with desired pharmacological affinity and reduced toxicity for the management of AD.
Collapse
Affiliation(s)
- Yash Pal Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Himanshu Rai
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Gourav Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Gireesh Kumar Singh
- Department of Pharmacy, School of Health Science, Central University of South Bihar Gaya, 824236, India
| | - Sunil Mishra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - S Srikrishna
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Gyan Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
13
|
Jellinger KA. Neuropathological assessment of the Alzheimer spectrum. J Neural Transm (Vienna) 2020; 127:1229-1256. [PMID: 32740684 DOI: 10.1007/s00702-020-02232-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer disease (AD), the most common form of dementia globally, classically defined a clinicopathological entity, is a heterogenous disorder with various pathobiological subtypes, currently referred to as Alzheimer continuum. Its morphological hallmarks are extracellular parenchymal β-amyloid (amyloid plaques) and intraneuronal (tau aggregates forming neurofibrillary tangles) lesions accompanied by synaptic loss and vascular amyloid deposits, that are essential for the pathological diagnosis of AD. In addition to "classical" AD, several subtypes with characteristic regional patterns of tau pathology have been described that show distinct clinical features, differences in age, sex distribution, biomarker levels, and patterns of key network destructions responsible for cognitive decline. AD is a mixed proteinopathy (amyloid and tau), frequently associated with other age-related co-pathologies, such as cerebrovascular lesions, Lewy and TDP-43 pathologies, hippocampal sclerosis, or argyrophilic grain disease. These and other co-pathologies essentially influence the clinical picture of AD and may accelerate disease progression. The purpose of this review is to provide a critical overview of AD pathology, its defining pathological substrates, and the heterogeneity among the Alzheimer spectrum entities that may provide a broader diagnostic coverage of this devastating disorder as a basis for implementing precision medicine approaches and for ultimate development of successful disease-modifying drugs for AD.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
14
|
He W, Chi S, Jin X, Lu J, Zheng W, Yan J, Zhang D. Long Non-Coding RNA BACE1-AS Modulates Isoflurane-Induced Neurotoxicity to Alzheimer's Disease Through Sponging miR-214-3p. Neurochem Res 2020; 45:2324-2335. [PMID: 32681443 DOI: 10.1007/s11064-020-03091-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 01/27/2023]
Abstract
Isoflurane, an anesthetic, can aggravate the progression of Alzheimer's disease (AD). Long non-coding RNA β-secretase 1 (BACE1)-antisense transcript (BACE1-AS) and miR-214-3p are related to AD progression. Nevertheless, it is unclear whether BACE1-AS is involved in the development of isoflurane-mediated AD via miR-214-3p. Amyloid beta peptide (Aβ) was employed to construct the AD cell model. The expression of BACE1-AS and miR-214-3p in the plasma of AD patients and SK-N-SH and SK-N-AS cells treated with Aβ and isoflurane was assessed through quantitative reverse transcription polymerase chain reaction (qRT-PCR). The proliferation and apoptosis of Aβ-treated SK-N-SH and SK-N-AS cells were determined via 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) or flow cytometry assays, respectively. Protein levels of B cell lymphoma 2 (Bcl-2), Bcl-2-associated X (Bax), CyclinD1, microtubule-associated protein A1/1B-light chain3 (LC3 I/LC3 II), p62 and Beclin1 were detected via western blot analysis. The relationship between BACE1-AS and miR-214-3p was verified by dual-luciferase reporter assay. We found that BACE1-AS was upregulated and miR-214-3p was downregulated in the plasma of AD patients and SK-N-SH and SK-N-AS cells treated with Aβ and isoflurane. Both BACE1-AS depletion and miR-214-3p augmentation restored the suppression of proliferation and the facilitation of apoptosis and autophagy of Aβ-treated SK-N-SH and SK-N-AS cells induced by isoflurane. Importantly, BACE1-AS acted as a sponge for miR-214-3p. Additionally, miR-214-3p silencing reversed the influence of BACE1-AS knockdown on isoflurane-mediated proliferation, apoptosis and autophagy in Aβ-induced SK-N-SH and SK-N-AS cells. In conclusion, BACE1-AS aggravated isoflurane-induced neurotoxicity to AD via sponging miR-214-3p.
Collapse
Affiliation(s)
- Wei He
- Department of Anesthesiology, The Affiliated Hospital of Beihua University, No. 12 Jiefang Middle Road, Chuanying District, Jilin City, 132001, Jilin Province, China
| | - Songyuan Chi
- Department of Anesthesiology, The Affiliated Hospital of Beihua University, No. 12 Jiefang Middle Road, Chuanying District, Jilin City, 132001, Jilin Province, China
| | - Xing Jin
- Department of Anesthesiology, The Affiliated Hospital of Beihua University, No. 12 Jiefang Middle Road, Chuanying District, Jilin City, 132001, Jilin Province, China
| | - Jieyu Lu
- Department of Anesthesiology, The Affiliated Hospital of Beihua University, No. 12 Jiefang Middle Road, Chuanying District, Jilin City, 132001, Jilin Province, China
| | - Wei Zheng
- Department of Anesthesiology, The Affiliated Hospital of Beihua University, No. 12 Jiefang Middle Road, Chuanying District, Jilin City, 132001, Jilin Province, China
| | - Jie Yan
- Department of Anesthesiology, The Affiliated Hospital of Beihua University, No. 12 Jiefang Middle Road, Chuanying District, Jilin City, 132001, Jilin Province, China
| | - Duo Zhang
- Department of Anesthesiology, The Affiliated Hospital of Beihua University, No. 12 Jiefang Middle Road, Chuanying District, Jilin City, 132001, Jilin Province, China.
| |
Collapse
|
15
|
Uddin MS, Kabir MT, Tewari D, Mamun AA, Mathew B, Aleya L, Barreto GE, Bin-Jumah MN, Abdel-Daim MM, Ashraf GM. Revisiting the role of brain and peripheral Aβ in the pathogenesis of Alzheimer's disease. J Neurol Sci 2020; 416:116974. [PMID: 32559516 DOI: 10.1016/j.jns.2020.116974] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/15/2020] [Accepted: 06/01/2020] [Indexed: 12/12/2022]
Abstract
Amyloid beta (Aβ) is an intricate molecule that interacts with several biomolecules and/or produces insoluble assemblies and eventually the nonphysiological depositions of its alternate with normal neuronal conditions leading to Alzheimer's disease (AD). Aβ is formed through the proteolytic cleavage of the amyloid precursor protein (APP). Significant efforts are being made to explore the exact role of Aβ in AD pathogenesis. It is believed that the deposition of Aβ in the brain takes place from Aβ components which are derived from the brain itself. However, recent evidence suggests that Aβ derived also from the periphery and hence the Aβ circulating in the blood is capable of penetrating the blood-brain barrier (BBB) and the role of Aβ derived from the periphery is largely unknown so far. Therefore, Aβ origin determination and the underlying mechanisms of its pathological effects are of considerable interest in exploring effective therapeutic strategies. The purpose of this review is to provide a novel insight into AD pathogenesis based on Aβ in both the brain and periphery and highlight new therapeutic avenues to combat AD pathogenesis.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh.
| | | | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Abdullah Al Mamun
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh; Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland
| | - May N Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
16
|
Jahanshahi M, Nikmahzar E, Sayyahi A. Vitamin E therapy prevents the accumulation of congophilic amyloid plaques and neurofibrillary tangles in the hippocampus in a rat model of Alzheimer's disease. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:86-92. [PMID: 32395206 PMCID: PMC7206846 DOI: 10.22038/ijbms.2019.38165.9067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 07/21/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Vitamin E may have beneficial effects on oxidative stress and Aβ-associated reactive oxygen species production in Alzheimer's disease. But, the exact role of vitamin E as a treatment for Alzheimer's disease pathogenesis still needs to be studied. Hence, we examined the therapeutic effects of vitamin E on the density of congophilic amyloid plaques and neurofibrillary tangles in rats' hippocampi. MATERIALS AND METHODS Wistar rats were randomly assigned to control (no drug treatment), sham scopolamine (3 mg/kg)+saline and Sham scopolamine+sesame oil groups, and three experimental groups that received scopolamine+vitamin E (25, 50, and 100 mg/kg/day) daily for 14 days after scopolamine injection. The rats' brains were collected immediately following transcardial perfusion and fixed in 4% paraformaldehyde. Pathological brain alterations were monitored through Congo red and bielschowsky silver staining. RESULTS Scopolamine treatment led to a significant increase in the density of congophilic amyloid plaques and neurofibrillary tangles in the hippocampus. IP injection of vitamin E in three doses (25, 50, and 100 mg/kg/day) significantly reversed the scopolamine-induced increase of the congophilic amyloid plaque density and density of neurofibrillary tangles in the hippocampus. Although vitamin E (25 and 50 mg/kg/day) doses were also effective, but a 100 mg/kg/day dose of vitamin E was more effective in the reduction of congophilic amyloid plaque and neurofibrillary tangle density. CONCLUSION Vitamin E could exert a therapeutic effect in the reduction of congophilic amyloid plaque and neurofibrillary tangle density in the hippocampus of scopolamine-treated rats and it is useful for Alzheimer's disease.
Collapse
Affiliation(s)
- Mehrdad Jahanshahi
- Neuroscience Research Center, Department of Anatomy, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Emsehgol Nikmahzar
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Sayyahi
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
17
|
The effect of crocin on apoptotic, inflammatory, BDNF, Pt, and Aβ40 indicators and neuronal density of CA1, CA2, and CA3 regions of hippocampus in the model of Alzheimer suffering rats induced with trimethyltin chloride. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s00580-019-02981-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Dehelean L, Sarbu M, Petrut A, Zamfir AD. Trends in Glycolipid Biomarker Discovery in Neurodegenerative Disorders by Mass Spectrometry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:703-729. [DOI: 10.1007/978-3-030-15950-4_42] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Liu L, Zhang C, Kalionis B, Wan W, Murthi P, Chen C, Li Y, Xia S. EGb761 protects against Aβ1-42 oligomer-induced cell damage via endoplasmic reticulum stress activation andHsp70 protein expression increase in SH-SY5Y cells. Exp Gerontol 2016; 75:56-63. [DOI: 10.1016/j.exger.2016.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/31/2015] [Accepted: 01/04/2016] [Indexed: 01/08/2023]
|
20
|
Sadigh-Eteghad S, Talebi M, Mahmoudi J, Babri S, Shanehbandi D. Selective activation of α7 nicotinic acetylcholine receptor by PHA-543613 improves Aβ25–35-mediated cognitive deficits in mice. Neuroscience 2015; 298:81-93. [DOI: 10.1016/j.neuroscience.2015.04.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 12/22/2022]
|
21
|
Daulatzai MA. “Boomerang Neuropathology” of Late-Onset Alzheimer’s Disease is Shrouded in Harmful “BDDS”: Breathing, Diet, Drinking, and Sleep During Aging. Neurotox Res 2015; 28:55-93. [PMID: 25911292 DOI: 10.1007/s12640-015-9528-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 04/03/2015] [Accepted: 04/03/2015] [Indexed: 12/12/2022]
|
22
|
Regulation of nicotinic acetylcholine receptors in Alzheimer׳s disease: a possible role of chaperones. Eur J Pharmacol 2015; 755:34-41. [PMID: 25771456 DOI: 10.1016/j.ejphar.2015.02.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/15/2015] [Accepted: 02/22/2015] [Indexed: 12/25/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) seem to play an integral role in the progress and/or prevention of Alzheimer׳s diseases (AD). Functional abnormalities and problems in biogenesis and trafficking of nAChRs are two major culprits in AD; on the other hand, chaperones modulate post-translational changes in nAChRs. Moreover, they indirectly regulate nAChRs by controlling AD-related proteins such as tau and amyloid beta (Aβ). In this review, we go through recent studies which are showing that chaperones modulate the expression of nAChRs in a subtype-specific manner and explain how AD progress is affected by nAChRs chaperoning.
Collapse
|
23
|
Kuznetsov IA, Kuznetsov AV. Can numerical modeling help understand the fate of tau protein in the axon terminal? Comput Methods Biomech Biomed Engin 2015; 19:115-25. [PMID: 25563412 DOI: 10.1080/10255842.2014.994119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In this paper, we used mathematical modeling to investigate the fate of tau protein in the axon terminal. We developed a comprehensive model of tau transport that accounts for transport of cytosolic tau by diffusion, diffusion transport of microtubule (MT)-bound tau along the MT lattice, active motor-driven transport of MT-bound tau via slow axonal transport mechanism, and degradation of tau in the axon due to tau's finite half-life. We investigated the effect of different assumptions concerning the fate of tau in the terminal on steady-state transport of tau in the axon. In particular, we studied two possible scenarios: (i) tau is destroyed in the terminal and (ii) there is no tau destruction in the terminal, and to avoid tau accumulation we postulated zero flux of tau at the terminal. We found that the tau concentration and percentage of MT-bound tau are not very sensitive to the assumption concerning the fate of tau in the terminal, but the tau's flux and average velocity of tau transport are very sensitive to this assumption. This suggests that measuring the velocity of tau transport and comparing it with the results of mathematical modeling for different assumptions concerning tau's fate in the terminal can provide information concerning what happens to tau in the terminal.
Collapse
Affiliation(s)
- I A Kuznetsov
- a Department of Biomedical Engineering , Johns Hopkins University , Baltimore , MD 21218-2694 , USA
| | - A V Kuznetsov
- b Department of Mechanical and Aerospace Engineering , North Carolina State University , Raleigh , NC 27695-7910 , USA
| |
Collapse
|
24
|
Sadigh-Eteghad S, Sabermarouf B, Majdi A, Talebi M, Farhoudi M, Mahmoudi J. Amyloid-beta: a crucial factor in Alzheimer's disease. Med Princ Pract 2014; 24:1-10. [PMID: 25471398 PMCID: PMC5588216 DOI: 10.1159/000369101] [Citation(s) in RCA: 330] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 10/15/2014] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia which affects people older than 60 years of age. In AD, the dysregulation of the amyloid-beta (Aβ) level leads to the appearance of senile plaques which contain Aβ depositions. Aβ is a complex biological molecule which interacts with many types of receptors and/or forms insoluble assemblies and, eventually, its nonphysiological depositions alternate with the normal neuronal conditions. In this situation, AD signs appear and the patients experience marked cognitional disabilities. In general, intellect, social skills, personality, and memory are influenced by this disease and, in the long run, it leads to a reduction in quality of life and life expectancy. Due to the pivotal role of Aβ in the pathobiology of AD, a great deal of effort has been made to reveal its exact role in neuronal dysfunctions and to finding efficacious therapeutic strategies against its adverse neuronal outcomes. Hence, the determination of its different molecular assemblies and the mechanisms underlying its pathological effects are of interest. In the present paper, some of the well-established structural forms of Aβ, its interactions with various receptors and possible molecular and cellular mechanisms underlying its neurotoxicity are discussed. In addition, several Aβ-based rodent models of AD are reviewed.
Collapse
Affiliation(s)
| | | | | | | | | | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
25
|
Durazzo TC, Mattsson N, Weiner MW. Smoking and increased Alzheimer's disease risk: a review of potential mechanisms. Alzheimers Dement 2014; 10:S122-45. [PMID: 24924665 PMCID: PMC4098701 DOI: 10.1016/j.jalz.2014.04.009] [Citation(s) in RCA: 282] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Cigarette smoking has been linked with both increased and decreased risk for Alzheimer's disease (AD). This is relevant for the US military because the prevalence of smoking in the military is approximately 11% higher than in civilians. METHODS A systematic review of published studies on the association between smoking and increased risk for AD and preclinical and human literature on the relationships between smoking, nicotine exposure, and AD-related neuropathology was conducted. Original data from comparisons of smoking and never-smoking cognitively normal elders on in vivo amyloid imaging are also presented. RESULTS Overall, literature indicates that former/active smoking is related to a significantly increased risk for AD. Cigarette smoke/smoking is associated with AD neuropathology in preclinical models and humans. Smoking-related cerebral oxidative stress is a potential mechanism promoting AD pathology and increased risk for AD. CONCLUSIONS A reduction in the incidence of smoking will likely reduce the future prevalence of AD.
Collapse
Affiliation(s)
- Timothy C Durazzo
- Center for Imaging of Neurodegenerative Diseases (CIND), San Francisco VA Medical Center, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA.
| | - Niklas Mattsson
- Center for Imaging of Neurodegenerative Diseases (CIND), San Francisco VA Medical Center, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA; Clinical Neurochemistry Laboratory, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Michael W Weiner
- Center for Imaging of Neurodegenerative Diseases (CIND), San Francisco VA Medical Center, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
26
|
Whitehouse PJ. The end of Alzheimer's disease--from biochemical pharmacology to ecopsychosociology: a personal perspective. Biochem Pharmacol 2014; 88:677-81. [PMID: 24304687 PMCID: PMC3972274 DOI: 10.1016/j.bcp.2013.11.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/19/2013] [Accepted: 11/20/2013] [Indexed: 12/19/2022]
Abstract
The future of the Alzheimer's disease (AD) field involves a more complete understanding not only the state of current scientific approaches, but also the linguistic and cultural context of preclinical and clinical research and policy activities. The challenges surrounding dementia are large and growing but are only part of broader social and health concerns. In this latter context, the current state of research in the AD area is reviewed together with necessary priorities in moving forward. Creating a more optimistic future will depend less on genetic and reductionist approaches and more on environmental and intergenerative approaches that will aid in recalibrating the study of AD from an almost exclusive focus on biochemical, molecular and genetic aspects to better encompass "real world" ecological and psychosocial models of health.
Collapse
Affiliation(s)
- Peter J Whitehouse
- Department of Neurology Case Western Reserve University, Cleveland, OH, USA; Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
27
|
He Y, Zhao H, Su G. Ginsenoside Rg1 decreases neurofibrillary tangles accumulation in retina by regulating activities of neprilysin and PKA in retinal cells of AD mice model. J Mol Neurosci 2013; 52:101-6. [PMID: 24287922 DOI: 10.1007/s12031-013-0173-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/04/2013] [Indexed: 10/26/2022]
Abstract
Neurofibrillary tangles (NFTs) are the major component of senile plaques in the brains of patients with Alzheimer's disease (AD). However, the mechanism causing NFTs accumulation in AD patients' retina is also elusive. Thus, we investigated the effects of ginsenoside Rg1 on NFTs accumulation in retinal pigment epithelial (RPE) cells isolated form double transgenic APP/PS1 mice model. NFTs amounts in culture supernatants were examined by enzyme-linked immunosorbent assay. Activity and mRNA transcription of enzymes and proteins that regulate NFTs accumulation were examined by activity assay and reverse transcription PCR. The expression of neprilysin (NEP) and neutral endopeptidase (PKA) were detected by western blot assay. Rg1 significantly decreased NFTs accumulation in isolated RPE cells. Activity of NEP was significantly increased, and activity of PKA was significantly decreased in cell lysates of Rg1-feeding APP/PS1 mice compared with non-Rg1-feeding mice. mRNA level of NEP was significantly higher and mRNA level of PKA was significantly lower in cells of Rg1-feeding mice than nonfeeding mice. The phosphorylation of tau at Thr231, Thr205, and Ser396 were significantly decreased in RPE of Rg1-feeding APP/PS1 mice compared with the non-Rg1-feeding mice. Rg1 decreased the NFTs production in RPE cell of APP/PS1 mice by modulating the expression and activity of NEP and PKA, which perform the function through downregulating the phosphorylation of tau protein.
Collapse
Affiliation(s)
- Yanhui He
- Department of Ophthalmology, Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, Jilin, 130041, China
| | | | | |
Collapse
|
28
|
Bao XQ, Li N, Wang T, Kong XC, Tai WJ, Sun H, Zhang D. FLZ alleviates the memory deficits in transgenic mouse model of Alzheimer's disease via decreasing beta-amyloid production and tau hyperphosphorylation. PLoS One 2013; 8:e78033. [PMID: 24223757 PMCID: PMC3817172 DOI: 10.1371/journal.pone.0078033] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 09/06/2013] [Indexed: 01/15/2023] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia worldwide and mainly characterized by the aggregated β-amyloid (Aβ) and hyperphosphorylated tau. FLZ is a novel synthetic derivative of natural squamosamide and has been proved to improve memory deficits in dementia animal models. In this study, we aimed to investigate the mechanisms of FLZ’s neuroprotective effect in APP/PS1 double transgenic mice and SH-SY5Y (APPwt/swe) cells. The results showed that treatment with FLZ significantly improved the memory deficits of APP/PS1 transgenic mice and decreased apoptosis of SH-SY5Y (APPwt/swe) cells. FLZ markedly attenuated Aβ accumulation and tau phosphorylation both in vivo and in vitro. Mechanistic study showed that FLZ interfered APP processing, i.e., FLZ decreased β-amyloid precursor protein (APP) phosphorylation, APP-carboxy-terminal fragment (APP-CTF) production and β-amyloid precursor protein cleaving enzyme 1 (BACE1) expression. These results indicated that FLZ reduced Aβ production through inhibiting amyloidogenic pathway. The mechanistic study about FLZ’s inhibitory effect on tau phosphorylation revealed t the involvement of Akt/glycogen synthase kinase 3β (GSK3β) pathway. FLZ treatment increased Akt activity and inhibited GSK3β activity both in vivo and in vitro. The inhibitory effect of FLZ on GSK3β activity and tau phosphorylation was suppressed by inhibiting Akt activity, indicating that Akt/GSK3β pathway might be the possible mechanism involved in the inhibitory effect of FLZ on tau hyperphosphorylation. These results suggested FLZ might be a potential anti-AD drug as it not only reduced Aβ production via inhibition amyloidogenic APP processing pathway, but also attenuated tau hyperphosphoylation mediated by Akt/GSK3β.
Collapse
Affiliation(s)
- Xiu-Qi Bao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Wang
- Beijing Municipal Corps Hospital of Chinese People’s Armed Police Force, Beijing, China
| | | | - Wen-Jiao Tai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hua Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail:
| |
Collapse
|
29
|
Long-term treadmill exercise inhibits the progression of Alzheimer's disease-like neuropathology in the hippocampus of APP/PS1 transgenic mice. Behav Brain Res 2013; 256:261-72. [DOI: 10.1016/j.bbr.2013.08.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/01/2013] [Accepted: 08/05/2013] [Indexed: 11/22/2022]
|
30
|
Glia maturation factor expression in hippocampus of human Alzheimer's disease. Neurochem Res 2013; 38:1580-9. [PMID: 23640177 DOI: 10.1007/s11064-013-1059-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 03/28/2013] [Accepted: 04/20/2013] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) is characterized by the presence of neuropathological lesions containing amyloid plaques (APs) and neurofibrillary tangles (NFTs) associated with neuroinflammation and neuronal degeneration. Hippocampus is one of the earliest and severely damaged areas in AD brain. Glia maturation factor (GMF), a known proinflammatory molecule is up-regulated in AD. Here, we have investigated the expression and distribution of GMF in relation to the distribution of APs and NFTs in the hippocampus of AD brains. Our immunohistochemical results showed GMF is expressed specifically in the vicinity of high density of APs and NFTs in the hippocampus of AD patients. Moreover, reactive astrocytes and activated microglia surrounds the APs and NFTs. We further demonstrate that GMF immunoreactive glial cells were increased at the sites of Tau containing NFTs and APs of hippocampus in AD brains. In conclusion, up-regulated expression of GMF in the hippocampus, and the co-localization of GMF and thioflavin-S stained NFTs and APs suggest that GMF may play important role in the pathogenesis of AD.
Collapse
|
31
|
Jeynes B, Provias J. P-Glycoprotein Altered Expression in Alzheimer's Disease: Regional Anatomic Variability. JOURNAL OF NEURODEGENERATIVE DISEASES 2013; 2013:257953. [PMID: 26316985 PMCID: PMC4437351 DOI: 10.1155/2013/257953] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 02/25/2013] [Accepted: 03/13/2013] [Indexed: 11/17/2022]
Abstract
We investigated the expression of P-glycoprotein (P-gp) in brain samples of Alzheimer disease (AD) and normative brains (NM). Superior temporal cortex hippocampal and brainstem samples from 15 AD and NM brains were selected from comparable sites. P-gp positive capillaries and β-amyloid (Aβ) senile plaques (SP) were counted. Statistical analysis of the data was performed using nonparametric data analysis with Mann-Whitney, Kruskal-Wallis, and Spearman's tests. There were no significant differences in P-gp expression between superior temporal and hippocampus samples. However, there were significant differences in P-gp expression, when comparing brainstem with both hippocampal and superior temporal samples in both conditions (P < 0.012; P < 0.002 in NM cases and P < 0.001; <0.001 in AD cases); the brainstem has greater P-gp expression in each case and condition. In addition, there was a notable inverse negative correlation (P < 0.01) between P-gp expression and the presence of SPs in the AD condition superior temporal cortex. The results of this study suggest that there were significant site-dependent differences in the expression of P-gp. There may be an increased protective role for P-gp expression against amyloid deposition in the brainstem and in the superior temporal cortex of AD brains.
Collapse
Affiliation(s)
- Brian Jeynes
- Department of Community Health Sciences, Faculty of Applied Health Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, ON, Canada L2S 3A1
| | - John Provias
- Department of Pathology & Molecular, Medicine [Neuropathology], Hamilton Health Sciences, McMaster University, Hamilton, 1280 Main Street West, Hamilton, ON, Canada L8S4L8
| |
Collapse
|
32
|
Lai W, Wu J, Zou X, Xie J, Zhang L, Zhao X, Zhao M, Wang Q, Ji J. Secretome Analyses of Aβ1–42 Stimulated Hippocampal Astrocytes Reveal that CXCL10 is Involved in Astrocyte Migration. J Proteome Res 2013; 12:832-43. [DOI: 10.1021/pr300895r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Wenjia Lai
- The National Laboratory of Protein
Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, P. R. China
| | - Jing Wu
- The National Laboratory of Protein
Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, P. R. China
| | - Xiao Zou
- The National Laboratory of Protein
Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, P. R. China
| | - Jian Xie
- Department of Neurosurgery, Beijing TianTan Hospital Affiliated to Capital Medical University, Beijing 100875, P. R. China
| | - Liwei Zhang
- Department of Neurosurgery, Beijing TianTan Hospital Affiliated to Capital Medical University, Beijing 100875, P. R. China
| | - Xuyang Zhao
- The National Laboratory of Protein
Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, P. R. China
| | - Minzhi Zhao
- The National Laboratory of Protein
Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, P. R. China
| | - Qingsong Wang
- The National Laboratory of Protein
Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, P. R. China
| | - Jianguo Ji
- The National Laboratory of Protein
Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
33
|
Non-coding RNA in Neurodegeneration. CURRENT GERIATRICS REPORTS 2012. [DOI: 10.1007/s13670-012-0023-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|