1
|
Wang M, Li M, Jiang Y, Wang S, Yang X, Naseem A, Algradi AM, Hao Z, Guan W, Chen Q, Zhang L, Kuang H, Yang B, Liu Y. Saponins from Astragalus membranaceus (Fisch.) Bge Alleviated Neuronal Ferroptosis in Alzheimer's Disease by Regulating the NOX4/Nrf2 Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7725-7740. [PMID: 40119801 DOI: 10.1021/acs.jafc.4c10497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2025]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease of the central nervous system caused by loss of neuronal or myelin function, accompanied by ferroptosis. Astragalus membranaceus (Fisch.) Bge. (A. membranaceus) is one of China's homologous lists of medicines and food, and its active component saponins have neuroprotective effects. This study examines the mechanism of saponins from A. membranaceus (AS) in treating AD. UPLC-Q-TOF-MS analyzed the composition of AS. Ferroptosis models were established to evaluate the anti-AD efficacy. As a result, AS treatment inhibited ferroptosis in SAMP8 mice by restoring iron homeostasis and lipid peroxidation (LPO) balance in the brain, thereby improving cognitive impairment and pathological damage. Mechanistically, AS treatment reduced Fe2+, MDA, and ROS levels and enhanced protein levels of SLC7A11, GPX4, FTH1, and FPN1. NADPH oxidase 4 (NOX4) overexpression revealed that AS treatment inhibited NOX4, thereby reducing NOX4 stability and regulating the NOX4/Nrf2 pathway in erastin-injured HT22 cells and significantly alleviating ferroptosis. Therefore, AS inhibited ferroptosis and improved AD by rebuilding iron homeostasis and LPO balance in the brain. AS has the potential to be a promising candidate medicine for AD.
Collapse
Affiliation(s)
- Min Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Mengmeng Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Yikai Jiang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Siyi Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Xu Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Anam Naseem
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Adnan Mohammed Algradi
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Zhichao Hao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Wei Guan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Qingshan Chen
- Construction of traditional Chinese medicine biogenetics, College of Agriculture, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Lili Zhang
- Construction of traditional Chinese medicine biogenetics, College of Agriculture, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| |
Collapse
|
2
|
Wang SY, Huang ZH, Duan R, Fu XX, Qi JW, Luo ZJ, Zhang YD, Jiang T. IL-34/TREM2 modulates microglia-mediated inflammation and provides neuroprotection in a mouse model of sporadic Alzheimer's disease. J Alzheimers Dis 2025; 104:875-885. [PMID: 40025720 DOI: 10.1177/13872877251320418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
BackgroundAs a recently identified cytokine, interleukin-34 (IL-34) is predominantly produced by neurons and functions as a modulator for glial functions. Emerging evidence indicates that IL-34 exerted neuroprotective effects in Alzheimer's disease (AD), but the underlying mechanism remained elusive.ObjectiveTo uncover the mechanisms by which IL-34 provides neuroprotection in AD.MethodsUsing senescence-accelerated mouse prone substrain 8 (SAMP8) mice, a well-established model for sporadic AD, we investigated the dynamic changes in brain IL-34 concentrations during AD progression. Afterwards, SAMP8 mice received a 4-week continuous intracerebroventricular infusion of IL-34. Morris water maze test was employed to assess the spatial cognitive functions. Neuronal and synaptic markers, oxidative stress makers, pro-inflammatory cytokines and glial activation markers in the brains of SAMP8 mice were measured. Finally, amyloid-β (Aβ)42-stimulated primary microglia, lentivirus-mediated gene knockdown strategy and co-immunoprecipitation assay were utilized to uncover the possible mechanisms by which IL-34 exerted neuroprotection in AD.ResultsIn SAMP8 mice, we revealed that brain IL-34 concentrations gradually decreased during AD progression. A 4-week continuous intracerebroventricular infusion of IL-34 rescued spatial cognitive impairments, ameliorated neuronal and synaptic damage, and suppressed oxidative stress and microglia-mediated inflammation in the brains of SAMP8 mice. Using Aβ42-stimulated primary microglia, we demonstrated for the first time that IL-34 suppressed microglial NLRP3 inflammasome activation and pro-inflammatory cytokines release by interacting with triggering receptor expressed on myeloid cells 2 (TREM2), a key regulator of microglial functions.ConclusionsThese findings uncover the mechanisms by which IL-34 provides neuroprotection in AD, indicating that IL-34/TREM2 signaling may represent a novel therapeutic strategy for this devastating disease.
Collapse
Affiliation(s)
- Shi-Yao Wang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Zhi-Hang Huang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Rui Duan
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Xin-Xin Fu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Jing-Wen Qi
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Zi-Jian Luo
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Ying-Dong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| |
Collapse
|
3
|
Hernández-Rodríguez M, Vega López JM, Martínez-Rosas M, Nicolás-Vázquez MI, Mera Jiménez E. Murine Non-Transgenic Models of Alzheimer's Disease Pathology: Focus on Risk Factors. Brain Sci 2025; 15:322. [PMID: 40149843 PMCID: PMC11940003 DOI: 10.3390/brainsci15030322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
Alzheimer's disease (AD) represents a significant challenge among neurodegenerative disorders, as effective treatments and therapies remain largely undeveloped. Despite extensive research efforts employing various methodologies and diverse genetic models focused on amyloid-β (Aβ) pathology, the research for effective therapeutic strategies remains inconclusive. The key pathological features of AD include Aβ senile plaques, neurofibrillary tangles (NFTs), and the activation of neuroinflammatory pathways. Presently, investigations into AD and assessing potential treatments predominantly utilize Aβ transgenic models. Conversely, non-transgenic models may provide valuable insights into the multifaceted pathological states associated with AD. Thus, these models may serve as practical complementary tools for evaluating therapeutic and intervention strategies, since the primary AD risk factors are most frequently modeled. This review aims to critically assess the existing literature on AD non-transgenic models induced by streptozotocin, scopolamine, aging, mechanical stress, metals, and dietary patterns to enhance their application in AD research.
Collapse
Affiliation(s)
- Maricarmen Hernández-Rodríguez
- Laboratorio de Cultivo Celular, Neurofarmacología y Conducta, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Mexico City 11340, Mexico;
| | - Juan Manuel Vega López
- Departamento de Química Inórgánica, Escuela Nacional de Ciencias Biológicas, Prolongación de Carpio y Plan de Ayala s/n, Mexico City 11340, Mexico;
| | - Martín Martínez-Rosas
- Departamento de Fisiología, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Mexico City 14080, Mexico;
| | - María Inés Nicolás-Vázquez
- Departamento de Ciencias Químicas, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54740, Mexico;
| | - Elvia Mera Jiménez
- Laboratorio de Cultivo Celular, Neurofarmacología y Conducta, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Mexico City 11340, Mexico;
| |
Collapse
|
4
|
Zeng Y, Yang S, Xie Z, Li Q, Wang Y, Xiong Q, Liang X, Lu H, Cheng W. Tianqi Yizhi Granule alleviates cognitive dysfunction and neurodegeneration in SAMP8 mice via the PKC/ERK pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156542. [PMID: 39986222 DOI: 10.1016/j.phymed.2025.156542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/02/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND Given the lack of satisfactory clinical treatments for Alzheimer's disease (AD), a neurodegenerative condition detrimental to health, developing alternative therapies is critical. Tianqi Yizhi Granule (TQYZ) is a preparation used to treat AD based on traditional Chinese medicine theory, the latent mechanisms of which await elucidation. PURPOSE This study sought to investigate the neuroprotective properties of TQYZ while exploring its potential therapeutic mechanisms using network pharmacology analyses and experimental validation. METHODS Network pharmacology analyses were performed. Cognitive and neurodegenerative alterations were evaluated through behavioral tests and histological staining. For in vivo and in vitro experiments, short hairpin RNA sequences were transfected via adeno-associated virus vectors to verify the predicted mechanism. RESULTS A total of 159 potential therapeutic targets of TQYZ overlapped with AD-related targets. In senescence-accelerated mouse prone 8 (SAMP8) mice, treatment with TQYZ significantly improved cognitive function, ameliorated neuronal damage and apoptosis, and upregulated the protein expression of PKC/ERK pathway members. TQYZ maintained the mitochondrial membrane potential, reduced the generation of reactive oxygen species, and inhibited neuronal apoptosis in Aβ25-35-induced HT22 cells. However, these neuroprotective effects were notably reduced in shRNA PRKCB-transfected HT22 cells and SAMP8 mice. CONCLUSIONS TQYZ mitigates the pathological degeneration process and cognitive impairment in SAMP8 mice and suppresses mitochondrial dysfunction and apoptosis in HT22 cells treated with Aβ25-35. Its neuroprotective mechanism is linked to PKC/ERK pathway activation. This study highlights a promising strategy for AD therapy.
Collapse
Affiliation(s)
- Yi Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, PR China; Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510315, Guangdong, PR China
| | - Sixia Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, PR China
| | - Zeping Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, PR China
| | - Qitian Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, PR China
| | - Yuhua Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, PR China
| | - Qiaowu Xiong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, PR China
| | - Xiaotong Liang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, PR China
| | - Hui Lu
- Department of Geriatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, PR China.
| | - Weidong Cheng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, PR China.
| |
Collapse
|
5
|
Ong J, Sasaki K, Ferdousi F, Suresh M, Isoda H, Szele FG. Senescence accelerated mouse-prone 8: a model of neuroinflammation and aging with features of sporadic Alzheimer's disease. Stem Cells 2025; 43:sxae091. [PMID: 39813151 PMCID: PMC11816274 DOI: 10.1093/stmcls/sxae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/14/2024] [Indexed: 01/18/2025]
Abstract
The large majority of Alzheimer's disease (AD) cases are sporadic with unknown genetic causes. In contrast, only a small percentage of AD cases are familial, with known genetic causes. Paradoxically, there are only few validated mouse models of sporadic AD but many of familial AD. Senescence accelerated mouse-prone 8 (SAMP8) mice are a model of accelerated aging with features of sporadic AD. They exhibit a more complete suite of human AD-relevant pathologies than most familial models. SAMP8 brains are characterized by inflammation, glial activation, b-amyloid deposits, and hyperphosphorylated Tau. The excess amyloid deposits congregate around blood vessels leading to vascular impairment and leaky BBBs in these mice. SAMP8 mice also exhibit neuronal cell death, a feature not typically seen in models of familial AD. Additionally, adult hippocampal neurogenesis is decreased in SAMP8 mice and correspondingly, they have reduced cognitive ability. In line with this, hippocampal LTP is significantly compromised in SAMP8 mice. No model is perfect and SAMP8 mice are limited by the lack of clarity about their genomic differences from control Senescence Accelerated Mouse-Resistant 1 (SAMR1) mice although their transcriptomics changes are being revealed. To further complicate matters, multiple substrains of SAMP8 mice have emerged over the years, sometimes making comparisons of studies difficult. Despite these challenges, we argue that SAMP8 mice can be useful for studying AD-relevant symptoms and propose important experiments to strengthen this already useful model.
Collapse
Affiliation(s)
- Jun Ong
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX13QX, United Kingdom
| | - Kazunori Sasaki
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Farhana Ferdousi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Institute of Life and Environmental Sciences, University of Tsukuba, Japan1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Megalakshmi Suresh
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX13QX, United Kingdom
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Institute of Life and Environmental Sciences, University of Tsukuba, Japan1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX13QX, United Kingdom
| |
Collapse
|
6
|
Meng X, Zhao W, Yang R, Xu SQ, Wang SY, Li MM, Jiang YK, Hao ZC, Guan W, Kuang HX, Chen QS, Yao HY, Yan JJ, Yang BY, Liu Y. Lignans from Schisandra chinensis (Turcz.) Baill ameliorates cognitive impairment in Alzheimer's disease and alleviates ferroptosis by activating the Nrf2/FPN1 signaling pathway and regulating iron levels. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119335. [PMID: 39798677 DOI: 10.1016/j.jep.2025.119335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/27/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schisandra chinensis (Turcz.) Baill (S. chinensis), first recorded in Shennong's Classic of the Materia Medica, is described as a "top grade medicine". As a traditional Chinese medicine of tonifying the kidneys and the brain, S. chinensis is widely used to treat diseases such as amnesia and dementia. Alzheimer's disease (AD) is a neurodegenerative disease, and ferroptosis is one of the essential causes of AD. Although previous studies have suggested that the lignans of S. chinensis (SCL) have neuroprotective effects, it is unclear whether SCL can alleviate AD pathology by inhibiting ferroptosis. AIM OF THE STUDY To investigate the effect of SCL on AD caused by ferroptosis and its possible molecular mechanism. MATERIALS AND METHODS This study was based on SAMR1/SAMP8 mouse models along with Erastin-induced HT22 cell lines to examine the influence of SCL on ferroptosis in AD. The S. chinensis was extracted via 75% EtOH-H2O and identified by HPLC/UPLC-QTOF-MS. MWM assessed spatial learning, while HE staining, biochemical detection, IHC, and WB analyzed AD pathology and iron metabolism. Mitochondrial changes were evaluated by TEM, and confocal imaging post-SCL treatment analyzed ROS, MMP, and Fe2+ levels in HT22 cells. IF determined the expression levels and localization of Nrf2 and FPN1. CETSA was deployed to study the interaction between SCL and Nrf2. RESULTS Treatment with SCL mitigated cognitive dysfunction and reduced p-Tau as well as neuronal loss in AD model mice. Additionally, the administration of SCL alleviated oxidative stress and maintained relatively intact mitochondrial ridges and membranes, decreased TFR and DMT1 protein expression, and upregulated FTH1. Consistent with the in vivo results, SCL inhibited Erastin-induced ferroptosis in HT22 cells. SCL promoted Nrf2 nuclear translocation and upregulated FPN1, SLC7A11, and GPX4 protein expressions while decreasing FACL4. The improvement of ferroptosis by SCL was associated with the regulation of the Nrf2/FPN1 signaling pathway. CONCLUSION The novel discoveries of this study suggest that SCL can suppress ferroptosis in the brains of AD model mice and exerts a partial protective effect against Erastin-induced ferroptosis in HT22 cells, in which the Nrf2/FPN1 signaling pathway plays a crucial role.
Collapse
Affiliation(s)
- Xin Meng
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Wei Zhao
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Rui Yang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Shi-Qi Xu
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Si-Yi Wang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Meng-Meng Li
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Yi-Kai Jiang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Zhi-Chao Hao
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Wei Guan
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Hai-Xue Kuang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Qing-Shan Chen
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Hong-Yan Yao
- Heilongjiang Jiren Pharmaceutical Co., LTD, Harbin, 150040, People's Republic of China.
| | - Jiu-Jiang Yan
- Heilongjiang Zbd Pharmaceutical Co., LTD, Harbin, 150060, People's Republic of China.
| | - Bing-You Yang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| | - Yan Liu
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Harbin, 150040, People's Republic of China.
| |
Collapse
|
7
|
Zhu C, Zhang Z, Zhu Y, Du Y, Han C, Zhao Q, Li Q, Hou J, Zhang J, He W, Qin Y. Study on the role of Dihuang Yinzi in regulating the AMPK/SIRT1/PGC-1α pathway to promote mitochondrial biogenesis and improve Alzheimer's disease. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118859. [PMID: 39341266 DOI: 10.1016/j.jep.2024.118859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 09/30/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dihuang Yinzi (DHYZ) is a classic prescription in traditional Chinese medicine. Its therapeutic effect on Alzheimer's disease (AD) has been widely validated. However, the underlying molecular mechanisms of DHYZ in AD treatment remain unclear and require further research. AIM OF THE STUDY Elucidating DHYZ's promotion of mitochondrial biogenesis through the AMPK/SIRT1/PGC-1α pathway improves neuronal loss, mitochondrial damage, and memory deficits in AD. MATERIALS AND METHODS Administering DHYZ by gavage to SAMP8 mice, after completing behavioral tests, the effects of DHYZ on hippocampal neuron loss and mitochondrial structural damage in AD model mice were assessed using Nissl staining and transmission electron microscopy. Western blot was used to detect the expression of mitochondrial biogenesis-related proteins PGC-1α, CREB, mitochondrial fusion protein MFN2, and mitochondrial fission proteins DRP1 and FIS1. At the same time, immunofluorescence (IF) was employed to measure the relative fluorescence intensity of mitochondrial fusion protein MFN1. After determining the optimal dose of DYHZ for treating AD, we conducted mechanistic studies. By intraperitoneally injecting SAMP8 mice with the AMPK inhibitor (Compound C) to inhibit AMPK protein expression and subsequently treating them with DHYZ, the impact of DHYZ on hippocampal neurons in AD model mice was evaluated using Nissl and hematoxylin-eosin staining. Western blot was used to detect the protein expression of AMPK, p-AMPK, SIRT1, PGC-1α, NRF1, and TFAM. In contrast, IF was used to measure the relative fluorescence intensity of PGC-1α, NRF1, and TFAM proteins in the hippocampal CA1 region. RESULTS DHYZ significantly improved AD model mice's cognitive impairment and memory deficits and mitigated hippocampal neuron loss and degeneration. Additionally, it ameliorated mitochondrial morphological structures. DHYZ upregulated the protein expression of mitochondrial biogenesis-related proteins PGC-1α, CREB, and mitochondrial fusion proteins MFN1 and MFN2 while inhibiting the expression of mitochondrial fission proteins DRP1 and FIS1. Further studies revealed that DHYZ could upregulate the expression of the AMPK/SIRT1/PGC-1α pathway proteins and their downstream proteins NRF1 and TFAM. CONCLUSION DHYZ promotes mitochondrial biogenesis by activating the AMPK/SIRT1/PGC-1α signaling pathway, thereby improving memory deficits, neuronal loss, and mitochondrial dysfunction in AD.
Collapse
Affiliation(s)
- Chao Zhu
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, Shanxi, 030619, China; National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, Shanxi, 030619, China; Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China; Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China
| | - Zheng Zhang
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, Shanxi, 030619, China; National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, Shanxi, 030619, China; Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China; Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China
| | - Yousong Zhu
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, Shanxi, 030619, China; National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, Shanxi, 030619, China; Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China; Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China
| | - Yuzhong Du
- School of Pharmaceutical Sciences, Shanxi Medical University, Jinzhong, Shanxi, 030607, China
| | - Cheng Han
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, Shanxi, 030619, China; National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, Shanxi, 030619, China; Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China; Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China
| | - Qiong Zhao
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, Shanxi, 030619, China; National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, Shanxi, 030619, China; Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China; Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China
| | - Qinqing Li
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, Shanxi, 030619, China; National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, Shanxi, 030619, China; Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China
| | - Jiangqi Hou
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, Shanxi, 030619, China; National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, Shanxi, 030619, China; Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China
| | - Junlong Zhang
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, Shanxi, 030619, China; National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, Shanxi, 030619, China; Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China.
| | - Wenbin He
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, Shanxi, 030619, China; National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, Shanxi, 030619, China; Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China.
| | - Yali Qin
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, Shanxi, 030619, China; National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, Shanxi, 030619, China; Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China; Shanxi University of Chinese Medicine, Jinzhong, Shanxi, 030619, China.
| |
Collapse
|
8
|
Dai L, Wang X, Li M, Li J, Liu Y, Wu N, Meng X, Lu J, Zhang J, Chen B. Ameliorative effect and underlying mechanism of the Xiaxue Kaiqiao formula on age-related dementia in Samp8 mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:155801. [PMID: 39536424 DOI: 10.1016/j.phymed.2024.155801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/07/2024] [Accepted: 06/02/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Dementia, a major symptom of several neurodegenerative diseases, can be improved by acetylcholinesterase inhibitors (AChE); however, due to the complex etiology and long course of dementia, the efficacy of these drugs remains limited. Significant empirical evidence shows that traditional Chinese medicine (TCM) markedly ameliorates intractable disease; nevertheless, a suitable regimen has yet to be widely accepted, which is likely the result of gaps in the understanding of its causality. We propose that taking advantage of the TCM theory of collateral activation and prevention of accumulation by purgation may improve dementia treatment; thus, we designed the Xiaxue Kaiqiao formula (XKF) accordingly. PURPOSE To explore the ameliorative effect and underlying mechanism of XKF on dementia in a Samp8 mouse model. METHODS Samp8 mice were treated with XKF for eight weeks, and the amelioration of dementia was subsequently assessed using the novel object recognition, Barnes maze, and open-field behavioral tests. Neuropathological alterations were observed by immunofluorescence (IF) and Golgi staining of brain tissue. Drug safety was evaluated by blood biochemical tests, organ coefficients, and hematoxylin-eosin (H&E) staining. Proteomics analysis was performed on frozen brain tissue using liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS Behavioral testing revealed that the administration of XKF had significant ameliorative effects on memory discrimination, spatial learning memory, and anxiety in Samp8 mice. IF staining showed that XKF reduced the loss of postsynaptic density protein 95 (PSD95), myelin, neurons, and axons, as well as decreased the proliferation of astrocytes and microglia in the hippocampal and temporal lobe regions. Evaluation of drug safety demonstrated no abnormal organ morphology following XKF treatment. CONCLUSION XKF treatment improved the symptoms of dementia in Samp8 mice, indicating the potential for clinical application. The mechanism underlying the ameliorative effect of XKF on dementia is likely increased synaptic transmission between neurons. Our data provide reliable evidence for the TCM theory of collateral activation and prevention of accumulation by purgation.
Collapse
Affiliation(s)
- Lu Dai
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair; Department of Laboratory Animal Sciences, Capital Medical University, Beijing 100069, PR China
| | - Xiaoxu Wang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair; Department of Laboratory Animal Sciences, Capital Medical University, Beijing 100069, PR China
| | - Meng Li
- Laboratory Animal Resource Center, Capital Medical University, Beijing 100069, PR China
| | - Jiaying Li
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair; Department of Laboratory Animal Sciences, Capital Medical University, Beijing 100069, PR China
| | - Yifei Liu
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair; Department of Laboratory Animal Sciences, Capital Medical University, Beijing 100069, PR China
| | - Na Wu
- Laboratory Animal Resource Center, Capital Medical University, Beijing 100069, PR China
| | - Xia Meng
- Laboratory Animal Resource Center, Capital Medical University, Beijing 100069, PR China
| | - Jing Lu
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair; Department of Laboratory Animal Sciences, Capital Medical University, Beijing 100069, PR China; Laboratory Animal Resource Center, Capital Medical University, Beijing 100069, PR China
| | - Jing Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair; Department of Laboratory Animal Sciences, Capital Medical University, Beijing 100069, PR China; Laboratory Animal Resource Center, Capital Medical University, Beijing 100069, PR China.
| | - Baian Chen
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair; Department of Laboratory Animal Sciences, Capital Medical University, Beijing 100069, PR China; Laboratory Animal Resource Center, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
9
|
Kumar S, Song K, Wang J, Baghel MS, Wong P, Cao X, Wan M. Serum Amyloid P Secreted by Bone Marrow Adipocytes Drives Skeletal Amyloidosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608092. [PMID: 39211279 PMCID: PMC11361041 DOI: 10.1101/2024.08.15.608092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The accumulation of amyloid fibrils has been identified in tissues outside the brain, yet little is understood about the formation of extracerebral amyloidosis and its impact on the aging process of these organs. Here, we demonstrate that both transgenic mice modeling Alzheimer's disease (AD) and naturally aging mice exhibit accumulated senescent bone marrow adipocytes (BMAds), accompanied by amyloid deposits surrounding the BMAds. Senescent BMAds acquire a secretory phenotype, resulting in a marked increase in the secretion of serum amyloid P component (SAP), also known as pentraxin 2 (PTX2). SAP/PTX2 colocalizes with amyloid deposits around senescent BMAds in vivo and is sufficient to promote the formation of insoluble amyloid deposits from soluble Aβ peptides in in vitro and ex vivo 3D BMAd-based culture experiments. Additionally, Combined treatment with SAP/PTX2 and Aβ peptides promotes osteoclastogenesis but inhibits osteoblastogenesis of the precursor cells. Transplantation of senescent BMAds into the bone marrow cavity of healthy young mice is sufficient to induce bone loss. Finally, pharmacological depletion of SAP/PTX2 from aged mice abolishes bone marrow amyloid deposition and effectively rescues the low bone mass phenotype. Thus, senescent BMAds, through the secretion of SAP/PTX2, contribute to the age-associated development of skeletal amyloidosis and resultant bone deficits.
Collapse
|
10
|
Deng YT, Wu BS, Yang L, He XY, Kang JJ, Liu WS, Li ZY, Wu XR, Zhang YR, Chen SD, Ge YJ, Huang YY, Feng JF, Zhu Y, Dong Q, Mao Y, Cheng W, Yu JT. Large-scale whole-exome sequencing of neuropsychiatric diseases and traits in 350,770 adults. Nat Hum Behav 2024; 8:1194-1208. [PMID: 38589703 DOI: 10.1038/s41562-024-01861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/11/2024] [Indexed: 04/10/2024]
Abstract
While numerous genomic loci have been identified for neuropsychiatric conditions, the contribution of protein-coding variants has yet to be determined. Here we conducted a large-scale whole-exome-sequencing study to interrogate the impact of protein-coding variants on 46 neuropsychiatric diseases and 23 traits in 350,770 adults from the UK Biobank. Twenty new genes were associated with neuropsychiatric diseases through coding variants, among which 16 genes had impacts on the longitudinal risks of diseases. Thirty new genes were associated with neuropsychiatric traits, with SYNGAP1 showing pleiotropic effects across cognitive function domains. Pairwise estimation of genetic correlations at the coding-variant level highlighted shared genetic associations among pairs of neurodegenerative diseases and mental disorders. Lastly, a comprehensive multi-omics analysis suggested that alterations in brain structures, blood proteins and inflammation potentially contribute to the gene-phenotype linkages. Overall, our findings characterized a compendium of protein-coding variants for future research on the biology and therapeutics of neuropsychiatric phenotypes.
Collapse
Affiliation(s)
- Yue-Ting Deng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bang-Sheng Wu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liu Yang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-Yu He
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ju-Jiao Kang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Wei-Shi Liu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ze-Yu Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Xin-Rui Wu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Ru Zhang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shi-Dong Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Jun Ge
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu-Yuan Huang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
- Department of Computer Science, University of Warwick, Coventry, UK
| | - Ying Zhu
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital Fudan University, Shanghai, China
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China.
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Zhejiang, China.
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Sun X, Lu Y, Pang Q, Luo B, Jiang Q. Tooth loss impairs cognitive function in SAMP8 mice via the NLRP3/Caspase-1 pathway. Oral Dis 2024; 30:2746-2755. [PMID: 37357357 DOI: 10.1111/odi.14646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/13/2023] [Accepted: 06/05/2023] [Indexed: 06/27/2023]
Abstract
OBJECTIVE Loss of occlusal support due to tooth loss has been indicated as one of the risk factors for Alzheimer's disease. This study aimed to investigate the relationship between tooth loss and cognitive dysfunction and illustrate the role of neuroinflammation in advancing Alzheimer's disease. MATERIALS AND METHODS Male 5-month-old senescence-accelerated mouse strain P8 (SAMP8) mice were divided into three groups (n = 7): the C (control), S (sham-operated), and TL (tooth loss) groups. The Morris water maze (MWM) test was performed to assess spatial memory. Additionally, histopathological and molecular assessments of hippocampal tissues were performed. RESULTS The TL groups exhibited impaired spatial memory in the water maze. Tooth loss induced higher protein expression levels of the neuroinflammation cytokine interleukin-1β (IL-1β) in the hippocampus than in the S and C groups. Tooth loss activated the NLRP3 inflammasome and increased the expression of Caspase-1 in the hippocampus. CONCLUSIONS The findings indicated that tooth loss impairs cognitive function in SAMP8 mice and is closely related to the activation of NLRP3/Caspase-1 in the hippocampus.
Collapse
Affiliation(s)
- Xu Sun
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yunping Lu
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Qian Pang
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Bin Luo
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Qingsong Jiang
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Ahmed S, Ma N, Kawanokuchi J, Matsuoka K, Oikawa S, Kobayashi H, Hiraku Y, Murata M. Taurine reduces microglia activation in the brain of aged senescence-accelerated mice by increasing the level of TREM2. Sci Rep 2024; 14:7427. [PMID: 38548872 PMCID: PMC10978912 DOI: 10.1038/s41598-024-57973-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/23/2024] [Indexed: 04/01/2024] Open
Abstract
Alzheimer's disease (AD), a chronic neurodegenerative disorder, is the leading cause of dementia. Over-activated microglia is related to amyloid-beta (Aβ) and phosphorylated tau (phospho-tau) accumulation in the AD brain. Taurine is an amino acid with multiple physiological functions including anti-inflammatory effects, and has been reported to be neuroprotective in AD. However, the role of taurine in microglia-mediated AD remains unclear. Here, we examined the effects of taurine on the brains of senescence-accelerated mouse prone 8 (SAMP8) mice by comparing those administered 1% taurine water with those administered distilled water (DW). We observed increased levels of taurine and taurine transporter (TAUT) in the brains of the taurine-treated mice compared with those of control mice. Immunohistochemical and Western blot analyses revealed that taurine significantly reduced the number of activated microglia, levels of phospho-tau and Aβ deposit in the hippocampus and cortex. Triggering receptors expressed on myeloid cells-2 (TREM2) are known to protect against AD pathogenesis. Taurine upregulated TREM2 expression in the hippocampus and cortex. In conclusion, the present study suggests that taurine treatment may upregulate TREM2 to protect against microglia over-activation by decreasing the accumulation of phospho-tau and Aβ; providing an insight into a novel preventive strategy in AD.
Collapse
Affiliation(s)
- Sharif Ahmed
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
- Department of Environmental Health, University of Fukui School of Medical Sciences, Eiheiji, Fukui, Japan
| | - Ning Ma
- Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
- Institute of Traditional Chinese Medicine, Suzuka University of Medical Science, Suzuka, Mie, Japan
- Department of Acupuncture and Moxibution Science, Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Jun Kawanokuchi
- Graduate School of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
- Institute of Traditional Chinese Medicine, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Keiya Matsuoka
- Department of Acupuncture and Moxibution Science, Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Mie, Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hatasu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yusuke Hiraku
- Department of Environmental Health, University of Fukui School of Medical Sciences, Eiheiji, Fukui, Japan
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
13
|
Zhang S, Li M, Chang L, Mao X, Jiang Y, Shen X, Niu K, Lu X, Zhang R, Song Y, Ma K, Li H, Wei C, Hou Y, Wu Y. Bazi Bushen capsule improves the deterioration of the intestinal barrier function by inhibiting NLRP3 inflammasome-mediated pyroptosis through microbiota-gut-brain axis. Front Microbiol 2024; 14:1320202. [PMID: 38260869 PMCID: PMC10801200 DOI: 10.3389/fmicb.2023.1320202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Purpose The senescence-accelerated prone mouse 8 (SAMP8) is a widely used model for accelerating aging, especially in central aging. Mounting evidence indicates that the microbiota-gut-brain axis may be involved in the pathogenesis and progression of central aging-related diseases. This study aims to investigate whether Bazi Bushen capsule (BZBS) attenuates the deterioration of the intestinal function in the central aging animal model. Methods In our study, the SAMP8 mice were randomly divided into the model group, the BZ-low group (0.5 g/kg/d BZBS), the BZ-high group (1 g/kg/d BZBS) and the RAPA group (2 mg/kg/d rapamycin). Age-matched SAMR1 mice were used as the control group. Next, cognitive function was detected through Nissl staining and two-photon microscopy. The gut microbiota composition of fecal samples was analyzed by 16S rRNA gene sequencing. The Ileum tissue morphology was observed by hematoxylin and eosin staining, and the intestinal barrier function was observed by immunofluorescence. The expression of senescence-associated secretory phenotype (SASP) factors, including P53, TNF-α, NF-κB, IL-4, IL-6, and IL-10 was measured by real-time quantitative PCR. Macrophage infiltration and the proliferation and differentiation of intestinal cells were assessed by immunohistochemistry. We also detected the inflammasome and pyroptosis levels in ileum tissue by western blotting. Results BZBS improved the cognitive function and neuronal density of SAMP8 mice. BZBS also restored the intestinal villus structure and barrier function, which were damaged in SAMP8 mice. BZBS reduced the expression of SASP factors and the infiltration of macrophages in the ileum tissues, indicating a lower level of inflammation. BZBS enhanced the proliferation and differentiation of intestinal cells, which are essential for maintaining intestinal homeostasis. BZBS modulated the gut microbiota composition, by which BZBS inhibited the activation of inflammasomes and pyroptosis in the intestine. Conclusion BZBS could restore the dysbiosis of the gut microbiota and prevent the deterioration of intestinal barrier function by inhibiting NLRP3 inflammasome-mediated pyroptosis. These results suggested that BZBS attenuated the cognitive aging of SAMP8 mice, at least partially, by targeting the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Shixiong Zhang
- College of Traditional Chinese Medicine, College of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
| | - Mengnan Li
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, China
| | - Liping Chang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, China
| | - Xinjing Mao
- College of Traditional Chinese Medicine, College of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
| | - Yuning Jiang
- College of Traditional Chinese Medicine, College of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
| | - Xiaogang Shen
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, China
- High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine—Luobing Theory, Shijiazhuang, China
| | - Kunxu Niu
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, China
- High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine—Luobing Theory, Shijiazhuang, China
| | - Xuan Lu
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
- High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine—Luobing Theory, Shijiazhuang, China
| | - Runtao Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
- High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine—Luobing Theory, Shijiazhuang, China
| | - Yahui Song
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, China
- High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine—Luobing Theory, Shijiazhuang, China
| | - Kun Ma
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, China
- High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine—Luobing Theory, Shijiazhuang, China
| | - Hongrong Li
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, China
| | - Cong Wei
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, China
| | - Yunlong Hou
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
| | - Yiling Wu
- College of Traditional Chinese Medicine, College of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
| |
Collapse
|
14
|
Currais A, Raschke W, Maher P. CMS121, a Novel Drug Candidate for the Treatment of Alzheimer's Disease and Age-Related Dementia. J Alzheimers Dis 2024; 101:S179-S192. [PMID: 39422940 DOI: 10.3233/jad-231062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Old age is the major risk factor for sporadic Alzheimer's disease (AD). However, old age-related changes in brain physiology have generally not been taken into consideration in developing drug candidates for the treatment of AD. This is at least partly because the role of these age-related processes in the development and progression of AD are still not well understood. Nevertheless, we and others have described an association between the oxytosis/ferroptosis non-apoptotic regulated cell death pathway and aging. Based on this association, we incorporated protection against this pathway as part of a cell-based phenotypic screening approach to identify novel drug candidates for the treatment of AD. Using this approach, we identified the fisetin derivative CMS121 as a potent neuroprotective molecule that is able to maintain cognitive function in multiple pre-clinical models of AD. Furthermore, we identified a key target of CMS121 as fatty acid synthase, a protein which had not been previously considered in the context of AD. Herein, we provide a comprehensive description of the development of CMS121, its preclinical activities, and the results of the toxicology testing that led to its IND approval.
Collapse
Affiliation(s)
| | | | - Pamela Maher
- Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
15
|
Tian S, Ye T, Cheng X. The behavioral, pathological and therapeutic features of the triple transgenic Alzheimer's disease (3 × Tg-AD) mouse model strain. Exp Neurol 2023; 368:114505. [PMID: 37597764 DOI: 10.1016/j.expneurol.2023.114505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
As a classic animal model of Alzheimer's disease (AD), the 3 × Tg-AD mouse not only recapitulates most of anatomical hallmarks observed in AD pathology but also displays cognitive alterations in memory and learning tasks. The 3 × Tg-AD can better show the two characteristics of AD, amyloid β (Aβ) and neurofibrillary tangles (NFT). Therefore, 3 × Tg-AD strain is widely used in AD pathogenesis research and new drug development of AD. In this paper, the construction methods, pathological changes, and treatment characteristics of 3 × Tg-AD mouse models commonly used in AD research are summarized and commented, hoping to provide reference for researchers to choose and establish experimental patterns.
Collapse
Affiliation(s)
- Sheng Tian
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, PR China; Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Tianyuan Ye
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Xiaorui Cheng
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao 999078, PR China; Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250300, China.
| |
Collapse
|
16
|
Zhu JJ. Architectural organization of ∼1,500-neuron modular minicolumnar disinhibitory circuits in healthy and Alzheimer's cortices. Cell Rep 2023; 42:112904. [PMID: 37531251 DOI: 10.1016/j.celrep.2023.112904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/21/2023] [Accepted: 07/13/2023] [Indexed: 08/04/2023] Open
Abstract
Acquisition of neuronal circuit architectures, central to understanding brain function and dysfunction, remains prohibitively challenging. Here I report the development of a simultaneous and sequential octuple-sexdecuple whole-cell patch-clamp recording system that enables architectural reconstruction of complex cortical circuits. The method unveils the canonical layer 1 single bouquet cell (SBC)-led disinhibitory neuronal circuits across the mouse somatosensory, motor, prefrontal, and medial entorhinal cortices. The ∼1,500-neuron modular circuits feature the translaminar, unidirectional, minicolumnar, and independent disinhibition and optimize cortical complexity, subtlety, plasticity, variation, and redundancy. Moreover, architectural reconstruction uncovers age-dependent deficits at SBC-disinhibited synapses in the senescence-accelerated mouse prone 8, an animal model of Alzheimer's disease. The deficits exhibit the characteristic Alzheimer's-like cortical spread and correlation with cognitive impairments. These findings decrypt operations of the elementary processing units in healthy and Alzheimer's mouse cortices and validate the efficacy of octuple-sexdecuple patch-clamp recordings for architectural reconstruction of complex neuronal circuits.
Collapse
Affiliation(s)
- J Julius Zhu
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, 7491 Trondheim, Norway; Department of Neurophysiology, Donders Institute for Brain, Cognition and Behavior, Radboud University, 6500 GL Nijmegen, the Netherlands; Departments of Pharmacology and Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
17
|
Ravanelli F, Musazzi L, Barbieri SS, Rovati G, Popoli M, Barbon A, Ieraci A. Differential Epigenetic Changes in the Dorsal Hippocampus of Male and Female SAMP8 Mice: A Preliminary Study. Int J Mol Sci 2023; 24:13084. [PMID: 37685895 PMCID: PMC10488283 DOI: 10.3390/ijms241713084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Alzheimer's disease (AD) is the most common age-related neurodegenerative disease characterized by memory loss and cognitive impairment. The causes of the disease are not well understood, as it involves a complex interaction between genetic, environmental, and epigenetic factors. SAMP8 mice have been proposed as a model for studying late-onset AD, since they show age-related learning and memory deficits as well as several features of AD pathogenesis. Epigenetic changes have been described in SAMP8 mice, although sex differences have never been evaluated. Here we used western blot and qPCR analyses to investigate whether epigenetic markers are differentially altered in the dorsal hippocampus, a region important for the regulation of learning and memory, of 9-month-old male and female SAMP8 mice. We found that H3Ac was selectively reduced in male SAMP8 mice compared to male SAMR1 control mice, but not in female mice, whereas H3K27me3 was reduced overall in SAMP8 mice. Moreover, the levels of HDAC2 and JmjD3 were increased, whereas the levels of HDAC4 and Dnmt3a were reduced in SAMP8 mice compared to SAMR1. In addition, levels of HDAC1 were reduced, whereas Utx and Jmjd3 were selectively increased in females compared to males. Although our results are preliminary, they suggest that epigenetic mechanisms in the dorsal hippocampus are differentially regulated in male and female SAMP8 mice.
Collapse
Affiliation(s)
- Federico Ravanelli
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (F.R.); (G.R.); (M.P.)
| | - Laura Musazzi
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Silvia Stella Barbieri
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy;
| | - Gianenrico Rovati
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (F.R.); (G.R.); (M.P.)
| | - Maurizio Popoli
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy; (F.R.); (G.R.); (M.P.)
| | - Alessandro Barbon
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy;
| | - Alessandro Ieraci
- Department of Theoretical and Applied Sciences, eCampus University, 22060 Novedrate, Italy
| |
Collapse
|
18
|
Guo L, Li S, Zhang Y, Yang X, Zhang Y, Cui H, Li Y. Effects of exercise intensity on spatial memory performance and hippocampal synaptic function in SAMP8 mice. Neurobiol Learn Mem 2023:107791. [PMID: 37380098 DOI: 10.1016/j.nlm.2023.107791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 06/30/2023]
Abstract
Learning and memory impairment is commonly noted in Alzheimer's disease (AD), which is regarded as a progressive synaptic failure disease. Exercise is a nonpharmacological strategy that may help prevent cognitive decline and reduce the risk of AD, which is usually thought to be related to synaptic damage in the hippocampus. However, the effects of exercise intensity on hippocampal memory and synaptic function in AD remain unclear. In this study, senescence-accelerated mouse prone-8 (SAMP8) mice were randomly assigned to the control group (Con), low-intensity exercise group (Low), and moderate-intensity exercise group (Mid). Here, we showed that eight weeks of treadmill exercise beginning in four-month-old mice improved spatial memory and recognition memory in six-month-old SAMP8 mice, while the Con group exhibited impaired spatial memory and recognition memory. Treadmill exercise also improved hippocampal neuron morphology in SAMP8 mice. Furthermore, dendritic spine density and the levels of postsynaptic density protein-95 (PSD95) and Synaptophysin (SYN) increased significantly in the Low and Mid groups as compared with the Con group. We further showed that moderate-intensity exercise (60% of maximum speed) was more efficacious in increasing dendritic spine density、PSD95 and SYN, than low-intensity exercise (40% of maximum speed). In conclusion, the positive effect of treadmill exercise is closely related to exercise intensity, with moderate-intensity exercise showing the most optimal effects.
Collapse
Affiliation(s)
- Linlin Guo
- College of Nursing, Hebei Medical University, Shijiazhuang, China
| | - Sha Li
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| | - Yizhou Zhang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Xinxin Yang
- College of Nursing, Hebei Medical University, Shijiazhuang, China
| | - Yuanyuan Zhang
- College of Nursing, Hebei Medical University, Shijiazhuang, China
| | - Huixian Cui
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China.
| | - Yan Li
- College of Nursing, Hebei Medical University, Shijiazhuang, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China.
| |
Collapse
|
19
|
Yang S, Wang L, Zeng Y, Wang Y, Pei T, Xie Z, Xiong Q, Wei H, Li W, Li J, Su Q, Wei D, Cheng W. Salidroside alleviates cognitive impairment by inhibiting ferroptosis via activation of the Nrf2/GPX4 axis in SAMP8 mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154762. [PMID: 36965372 DOI: 10.1016/j.phymed.2023.154762] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/03/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurogenerative disease and remains no effective method for stopping its progress. Ferroptosis and adaptive immunity have been proven to contribute to AD pathogenesis. Salidroside exhibits neuroprotective and immunomodulatory effects. However, the underlying mechanisms linking salidroside, ferroptosis, and adaptive immunity in AD remain uncertain. PURPOSE The objective of this study is to explore the neuroprotective effects and the potential molecular mechanisms of salidroside against neuronal ferroptosis and CD8+ T cell infiltration in senescence-accelerated mouse prone 8 (SAMP8) mice. STUDY DESIGN AND METHODS SAMP8 mice were employed as an AD model and were treated with salidroside for 12 weeks. Behavioral tests, immunohistochemistry, HE and Nissl staining, immunofluorescence, transmission electron microscopy, quantitative proteomics, bioinformatic analysis, flow cytometry, iron staining, western blotting, and molecular docking were performed. RESULTS Treatment with salidroside dose-dependently attenuated cognitive impairment, reduced the accumulation of Aβ plaques and restored neuronal damage. Salidroside also suppressed the infiltration of CD8+T cells, oxidative stress, and inflammatory cytokines, and improved mitochondrial metabolism, iron metabolism, lipid metabolism, and redox in the SAMP8 mice brain. The administration of salidroside decreased iron deposition, reduced TFR1, and ACSL4 protein expression, upregulated SLC7A11, and GPX4 protein expression, and promoted the Nrf2/GPX4 axis activation. CONCLUSION In conclusion, neuronal ferroptosis and CD8+T cells are involved in the process of cognitive impairment in SAMP8 mice. Salidroside alleviates cognitive impairment and inhibits neuronal ferroptosis. The underlying mechanisms may involve the Nrf2/GPX4 axis activation and reduction in CD8+T cells infiltration. This study provides some evidence for the roles of salidroside in adaptive immunity and neuronal ferroptosis in SAMP8 mice.
Collapse
Affiliation(s)
- Sixia Yang
- Department of Pharmacy, Zhu Jiang Hospital, Southern Medical University, Guangzhou 510260, China; School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China
| | - Linshuang Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16, Nanxiao Street, Dongzhimen Nei, Dongcheng District, Beijing 100700, China
| | - Yi Zeng
- School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China
| | - Yong Wang
- Department of Pharmacy, Zhu Jiang Hospital, Southern Medical University, Guangzhou 510260, China
| | - Tingting Pei
- School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China
| | - Zeping Xie
- School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China
| | - Qiaowu Xiong
- School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China
| | - Hui Wei
- School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China
| | - Wenxu Li
- School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China
| | - Jiaqi Li
- School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China
| | - Qian Su
- School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China
| | - Dongfeng Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16, Nanxiao Street, Dongzhimen Nei, Dongcheng District, Beijing 100700, China.
| | - Weidong Cheng
- Department of Pharmacy, Zhu Jiang Hospital, Southern Medical University, Guangzhou 510260, China; School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China.
| |
Collapse
|
20
|
Liu B, Lv LL, Liu P, Xu YY, Guo M, Liu J, Shi JS. Proteomic analysis of anti-aging effects of Dendrobium nobile Lindl. alkaloids in aging-accelerated SAMP8 mice. Exp Gerontol 2023; 177:112198. [PMID: 37150330 DOI: 10.1016/j.exger.2023.112198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Senescence-accelerated mouse prone 8 (SAMP8) mice exhibit cognitive defects and neuron loss with aging, and were used to study anti-aging effects of Dendrobium nobile alkaloids (DNLA). DNLA (20 and 40 mg/kg) were orally administered to SAMP8 mice from 6 to 10 months of age. At 10-month of age, behavioral tests via Y-maze and Open-field and neuron damage via Nissl staining were evaluated. Protein was extracted and subjected to phosphorylated proteomic analysis followed by bioinformatic analysis. The cognitive deficits and neuron loss in hippocampus and cortex of aged SAMP8 mice were improved by DNLA. Hippocampal proteomic analysis revealed 196 differentially expressed protein/genes in SAMP8 compared to age-matched senescence-accelerated resistant SAMR1 mice. Gene Oncology enriched the tubulin binding, microtubule binding, and other activities. Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed endocytosis, mRNA surveillance, tight junction, protein processing in endoplasmic reticulum, aldosterone synthesis and secretion, and glucagon signaling pathway changes. Upregulated protein/genes in the hippocampus of SAMP8 mice, such as Lmtk3, Usp10, Dzip1, Csnk2b, and Rtn1, were attenuated by DNLA; whereas downregulated protein/genes, such as Kctd16, Psd3, Bsn, Atxn2l, and Kif1a, were rescued by DNLA. The aberrant protein/gene expressions of SAMP8 mice were correlated with transcriptome changes of Alzheimer's disease in the Gene Expression Omnibus (GEO) database, and the scores were attenuated by DNLA. Thus, DNLA improved cognitive dysfunction and ameliorated neuronal injury in aged SAMP8 mice, and attenuated aberrant protein/gene expressions.
Collapse
Affiliation(s)
- Bo Liu
- Key Lab for Basic Pharmacology and Joint International Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China.
| | - Ling-Li Lv
- Key Lab for Basic Pharmacology and Joint International Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China; Guizhou Health Vocational College, China
| | - Ping Liu
- Key Lab for Basic Pharmacology and Joint International Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China; Department of Clinical Pharmacology, Zunyi Medical University, China
| | - Yun-Yan Xu
- Key Lab for Basic Pharmacology and Joint International Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Mian Guo
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, China
| | - Jie Liu
- Key Lab for Basic Pharmacology and Joint International Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China.
| | - Jing-Shan Shi
- Key Lab for Basic Pharmacology and Joint International Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
21
|
Effects of Scrophularia buergeriana Extract (Brainon ®) on Aging-Induced Memory Impairment in SAMP8 Mice. Curr Issues Mol Biol 2023; 45:1287-1305. [PMID: 36826029 PMCID: PMC9955813 DOI: 10.3390/cimb45020084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Alzheimer's disease (AD) is a worldwide problem. Currently, there are no effective drugs for AD treatment. Scrophularia buergeriana Miquel (SB) is a traditional herbal medicine used in Korea to treat various diseases. Our previous studies have shown that ethanol extract of SB roots (SBE, Brainon®) exhibits potent anti-amnesic effects in Aβ1-42- or scopolamine-treated memory impairment mice model and neuroprotective effects in a glutamate-induced SH-SY5Y cell model. In this study, we evaluated the therapeutic effects of Brainon® and its mechanism of action in senescence-accelerated mouse prone 8 (SAMP8) mice. Brainon® (30 or 100 mg/kg/day) was orally treated to six-month-old SAMP8 mice for 12 weeks. Results revealed that Brainon® administration effectually ameliorated cognitive deficits in Y-maze and passive avoidance tests. Following the completion of behavioral testing, western blotting was performed using the cerebral cortex. Results revealed that Brainon® suppressed Aβ1-42 accumulation, Tau hyperphosphorylation, oxidative stress, and inflammation and alleviated apoptosis in SAMP8 mice. Brainon® also promoted synaptic function by downregulating the expression of AChE and upregulating the expression of p-CREB/CREB and BDNF. Furthermore, Brainon® restored SAMP8-reduced expression of ChAT and -dephosphorylated of ERK and also decreased AChE expression in the hippocampus. Furthermore, Brainon® alleviated AD progression by promoting mitophagy/autophagy to maintain normal cellular function as a novel finding of this study. Our data suggest that Brainon® can remarkably improve cognitive deficiency with the potential to be utilized in functional food for improving brain health.
Collapse
|
22
|
A Review on Phyto-Therapeutic Approaches in Alzheimer's Disease. J Funct Biomater 2023; 14:jfb14010050. [PMID: 36662097 PMCID: PMC9861153 DOI: 10.3390/jfb14010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/29/2022] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
Neurodegenerative diseases occur due to progressive and sometimes irreversible loss of function and death of nerve cells. A great deal of effort is being made to understand the pathogenesis of neurodegenerative diseases. In particular, the prevalence of Alzheimer's disease (AD) is quite high, and only symptomatic therapy is available due to the absence of radical treatment. The aim of this review is to try to elucidate the general pathogenesis of AD, to provide information about the limit points of symptomatic treatment approaches, and to emphasize the potential neurologic effects of phytocompounds as new tools as therapeutic agents for disease prevention, retardation, and therapy. This survey also covers the notable properties of herbal compounds such as their effects on the inhibition of an enzyme called acetylcholinesterase, which has significant value in the treatment of AD. It has been proven that phytopharmaceuticals have long-term effects that could protect nervous system health, eliminate inflammatory responses, improve cognitive damage, provide anti-aging effects in the natural aging process, and alleviate dementia sequelae. Herbal-based therapeutic agents can afford many advantages and can be used as potentially as new-generation therapeutics or complementary agents with high compliance, fewer adverse effects, and lower cost in comparison to the traditional pharmaceutical agents in the fight against AD.
Collapse
|
23
|
Kan B, Dong Z, Tang Z, Zhao L, Li Z. Acupuncture Improves Synaptic Plasticity of SAMP8 Mice through the RhoA/ROCK Pathway. Curr Alzheimer Res 2023; 20:420-430. [PMID: 37723951 DOI: 10.2174/1567205020666230828095826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 06/07/2023] [Accepted: 06/30/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND Studies have found synaptic plasticity damage to be an early marker of Alzheimer's disease (AD). RhoA/ROCK pathway is involved in the regulation of synaptic plasticity. Acupuncture can significantly improve the cognitive state of AD. OBJECTIVE We aimed to use modern biological technology to detect the changes in synaptic plasticity and RhoA/ROCK pathway in SAMP8 mice, as well as the intervention effect of acupuncture. METHODS Morris water maze and electrophysiological techniques were used in vivo to detect the changes in spatial memory and LTP of mice. Golgi Cox staining and CASEVIEWER2.1 software were used to quantitatively analyze the changes in the morphology and number of dendritic spines in the hippocampus of mice. The activity of RhoA and ROCK2 in the hippocampus of mice was detected, respectively, by pull-down technique and ELISA. WB technique was used to detect the protein expression of ROCK2 and phosphorylation level of MLC2, LIMK2, and CRMP2 in the hippocampus of mice. RESULTS The neurobehavior and synaptic plasticity of 8-month-old SAMP8 mice were found to be significantly impaired. Acupuncture could improve the spatial learning and memory ability of SAMP8 mice, and partially prevent the reduction in the number of spines on the secondary branches of the apical dendrites in the hippocampus and the attenuation of LTP. The RhoA/ROCK pathway was significantly activated in the hippocampus of 8-month-old SAMP8 mice, and acupuncture had an inhibitory effect on it. CONCLUSION Acupuncture can improve synaptic plasticity by inhibiting the abnormal activation of the RhoA/ROCK pathway, and improve the spatial learning and memory ability of AD, so as to achieve the purpose of treating AD.
Collapse
Affiliation(s)
- Bohong Kan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Acupuncture and Moxibustion, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhengjia Dong
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhenyu Tang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Acupuncture and Moxibustion, Tianjin, China
| | - Lan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Acupuncture and Moxibustion, Tianjin, China
| | - Zhen Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
24
|
Bergamini G, Massinet H, Hart A, Durkin S, Pierlot G, Steiner MA. Probing the relevance of the accelerated aging mouse line SAMP8 as a model for certain types of neuropsychiatric symptoms in dementia. Front Psychiatry 2023; 14:1054163. [PMID: 36896346 PMCID: PMC9989166 DOI: 10.3389/fpsyt.2023.1054163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/06/2023] [Indexed: 02/23/2023] Open
Abstract
INTRODUCTION People with dementia (PwD) often present with neuropsychiatric symptoms (NPS). NPS are of substantial burden to the patients, and current treatment options are unsatisfactory. Investigators searching for novel medications need animal models that present disease-relevant phenotypes and can be used for drug screening. The Senescence Accelerated Mouse-Prone 8 (SAMP8) strain shows an accelerated aging phenotype associated with neurodegeneration and cognitive decline. Its behavioural phenotype in relation to NPS has not yet been thoroughly investigated. Physical and verbal aggression in reaction to the external environment (e.g., interaction with the caregiver) is one of the most prevalent and debilitating NPS occurring in PwD. Reactive aggression can be studied in male mice using the Resident-Intruder (R-I) test. SAMP8 mice are known to be more aggressive than the Senescence Accelerated Mouse-Resistant 1 (SAMR1) control strain at specific ages, but the development of the aggressive phenotype over time, is still unknown. METHODS In our study, we performed a longitudinal, within-subject, assessment of aggressive behaviour of male SAMP8 and SAMR1 mice at 4, 5, 6 and 7 months of age. Aggressive behaviour from video recordings of the R-I sessions was analysed using an in-house developed behaviour recognition software. RESULTS SAMP8 mice were more aggressive relative to SAMR1 mice starting at 5 months of age, and the phenotype was still present at 7 months of age. Treatment with risperidone (an antipsychotic frequently used to treat agitation in clinical practice) reduced aggression in both strains. In a three-chamber social interaction test, SAMP8 mice also interacted more fervently with male mice than SAMR1, possibly because of their aggression-seeking phenotype. They did not show any social withdrawal. DISCUSSION Our data support the notion that SAMP8 mice might be a useful preclinical tool to identify novel treatment options for CNS disorders associated with raised levels of reactive aggression such as dementia.
Collapse
Affiliation(s)
- Giorgio Bergamini
- CNS Pharmacology and Drug Discovery, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Helene Massinet
- CNS Pharmacology and Drug Discovery, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Aaron Hart
- Scientific Computing Drug Discovery, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Sean Durkin
- CNS Pharmacology and Drug Discovery, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Gabin Pierlot
- Scientific Computing Drug Discovery, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | | |
Collapse
|
25
|
Wu QJ, Zhang TN, Chen HH, Yu XF, Lv JL, Liu YY, Liu YS, Zheng G, Zhao JQ, Wei YF, Guo JY, Liu FH, Chang Q, Zhang YX, Liu CG, Zhao YH. The sirtuin family in health and disease. Signal Transduct Target Ther 2022; 7:402. [PMID: 36581622 PMCID: PMC9797940 DOI: 10.1038/s41392-022-01257-8] [Citation(s) in RCA: 336] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/10/2022] [Accepted: 11/18/2022] [Indexed: 12/30/2022] Open
Abstract
Sirtuins (SIRTs) are nicotine adenine dinucleotide(+)-dependent histone deacetylases regulating critical signaling pathways in prokaryotes and eukaryotes, and are involved in numerous biological processes. Currently, seven mammalian homologs of yeast Sir2 named SIRT1 to SIRT7 have been identified. Increasing evidence has suggested the vital roles of seven members of the SIRT family in health and disease conditions. Notably, this protein family plays a variety of important roles in cellular biology such as inflammation, metabolism, oxidative stress, and apoptosis, etc., thus, it is considered a potential therapeutic target for different kinds of pathologies including cancer, cardiovascular disease, respiratory disease, and other conditions. Moreover, identification of SIRT modulators and exploring the functions of these different modulators have prompted increased efforts to discover new small molecules, which can modify SIRT activity. Furthermore, several randomized controlled trials have indicated that different interventions might affect the expression of SIRT protein in human samples, and supplementation of SIRT modulators might have diverse impact on physiological function in different participants. In this review, we introduce the history and structure of the SIRT protein family, discuss the molecular mechanisms and biological functions of seven members of the SIRT protein family, elaborate on the regulatory roles of SIRTs in human disease, summarize SIRT inhibitors and activators, and review related clinical studies.
Collapse
Affiliation(s)
- Qi-Jun Wu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie-Ning Zhang
- grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huan-Huan Chen
- grid.412467.20000 0004 1806 3501Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xue-Fei Yu
- grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia-Le Lv
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Yang Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ya-Shu Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Gang Zheng
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun-Qi Zhao
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Fan Wei
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing-Yi Guo
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fang-Hua Liu
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Chang
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Xiao Zhang
- grid.412467.20000 0004 1806 3501Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cai-Gang Liu
- grid.412467.20000 0004 1806 3501Department of Cancer, Breast Cancer Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Hong Zhao
- grid.412467.20000 0004 1806 3501Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China ,grid.412467.20000 0004 1806 3501Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
26
|
Shimada Y, Sato Y, Kumazoe M, Kitamura R, Fujimura Y, Tachibana H. Myricetin improves cognitive function in SAMP8 mice and upregulates brain-derived neurotrophic factor and nerve growth factor. Biochem Biophys Res Commun 2022; 616:33-40. [DOI: 10.1016/j.bbrc.2022.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/11/2022] [Indexed: 11/02/2022]
|
27
|
Neuroprotective Effects of Resveratrol by Modifying Cholesterol Metabolism and Aβ Processing in SAMP8 Mice. Int J Mol Sci 2022; 23:ijms23147580. [PMID: 35886936 PMCID: PMC9324102 DOI: 10.3390/ijms23147580] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Cholesterol metabolism seems dysregulated and linked to amyloid-β (Aβ) formation in neurodegeneration, but the underlying mechanisms are poorly known. Resveratrol (RSV) is a polyphenol with antioxidant activity and neuroprotective properties. Here, we analyzed the effect of age and RSV supplementation on cholesterol metabolism in the brain and blood serum, and its potential link to Aβ processing, in SAMP8 mice—an animal model of aging and Alzheimer’s disease. In the brain, our results revealed an age-related increase in ApoE and unesterified cholesterol in the plasma membrane whereas LDL receptor, HMG-CoA reductase, HMG-CoA-C1 synthase, and ABCA1 transporter remained unaltered. Furthermore, BACE-1 and APP gene expression was decreased. This dysregulation could be involved in the amyloidogenic processing pathway of APP towards Aβ formation. In turn, RSV exhibited an age-dependent effect. While levels of unesterified cholesterol in the plasma membrane were not affected by RSV, several participants in cholesterol uptake, release, and de novo synthesis differed, depending on age. Thus, RSV supplementation exhibited a different neuroprotective effect acting on Aβ processing or cholesterol metabolism in the brain at earlier or later ages, respectively. In blood serum, HDL lipoprotein and free cholesterol were increased by age, whereas VLDL and LDL lipoproteins remained unaltered. Again, the protective effect of RSV by decreasing the LDL or increasing the HDL levels also seems to depend on the intervention’s moment. In conclusion, age is a prominent factor for cholesterol metabolism dysregulation in the brain of SAMP8 mice and influences the protective effects of RSV through cholesterol metabolism and Aβ processing.
Collapse
|
28
|
Ravula AR, Teegala SB, Kalakotla S, Pasangulapati JP, Perumal V, Boyina HK. Fisetin, potential flavonoid with multifarious targets for treating neurological disorders: An updated review. Eur J Pharmacol 2021; 910:174492. [PMID: 34516952 DOI: 10.1016/j.ejphar.2021.174492] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/04/2021] [Accepted: 09/06/2021] [Indexed: 01/06/2023]
Abstract
Neurodegenerative disorders pose a significant health burden and imprint a debilitative impact on the quality of life. Importantly, aging is intricately intertwined with the progression of these disorders, and their prevalence increases with a rise in the aging population worldwide. In recent times, fisetin emerged as one of the potential miracle molecules to address neurobehavioral and cognitive abnormalities. These effects were attributed to its actions on several macromolecules and multiple molecular mechanisms. Fisetin belongs to a class of flavonoids, which is found abundantly in several fruits and vegetables. Fisetin has manifested several health benefits in preclinical models of neurodegenerative diseases such as Alzheimer's disease, Vascular dementia, and Schizophrenia. Parkinson's disease, Amyotrophic Lateral Sclerosis, Huntington's disease, Stroke, Traumatic Brain Injury (TBI), and age-associated changes. This review aimed to evaluate the potential mechanisms and pharmacological effects of fisetin in treating several neurological diseases. This review also provides comprehensive data on up-to-date recent literature and highlights the various mechanistic pathways pertaining to fisetin's neuroprotective role.
Collapse
Affiliation(s)
- Arun Reddy Ravula
- Department of Pharmacology, School of Pharmacy, Anurag Group of Institutions (formerly Lalitha College of Pharmacy), Ghatkesar, Medchal, Hyderabad, Telangana, 500088, India; Rowan University, Graduate School of Biomedical Sciences, Stratford, New Jersey, USA
| | - Suraj Benerji Teegala
- Department of Pharmacology, School of Pharmacy, Anurag Group of Institutions (formerly Lalitha College of Pharmacy), Ghatkesar, Medchal, Hyderabad, Telangana, 500088, India
| | - Shanker Kalakotla
- Department of Pharmacognosy & Phyto-Pharmacy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Jagadeesh Prasad Pasangulapati
- Department of Pharmacology, School of Pharmacy, Anurag Group of Institutions (formerly Lalitha College of Pharmacy), Ghatkesar, Medchal, Hyderabad, Telangana, 500088, India; Treventis Corporation, Department of Pharmacology, Krembil Discovery Tower, 4th Floor, Suite 4KD472, 60 Leonard Avenue, Toronto, ON, M5T 0S8, Canada
| | - Venkatesan Perumal
- Irma Lerma Rangel College of Pharmacy, Health Science Centre, Texas A&M University (TAMU), Texas, 77843, USA
| | - Hemanth Kumar Boyina
- Department of Pharmacology, School of Pharmacy, Anurag University (formerly Anurag Group of Institutions), Ghatkesar, Medchal, Hyderabad, Telangana, 500088, India.
| |
Collapse
|
29
|
Li JZ, Hao XH, Wu HP, Li M, Liu XM, Wu ZB. An enriched environment delays the progression from mild cognitive impairment to Alzheimer's disease in senescence-accelerated mouse prone 8 mice. Exp Ther Med 2021; 22:1320. [PMID: 34630674 PMCID: PMC8495563 DOI: 10.3892/etm.2021.10755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/16/2020] [Indexed: 12/19/2022] Open
Abstract
A previous study demonstrated that middle-aged (5-6 months of age) senescence-accelerated mouse prone 8 (SAMP8) mice can be used as animal models of mild cognitive impairment (MCI). An enriched environment (EE) can mitigate cognitive decline and decrease the pathological changes associated with various neurodegenerative diseases. In the present study, the learning-memory abilities of SAMP8 mice during the MCI phase (5 months of age) was evaluated and neuropathological changes in the hippocampus were examined after the mice were exposed to an EE for 60 days. In the Morris water maze test, EE-exposed mice demonstrated significantly decreased escape latency and increased time spent in the target quadrant and number of platform crossings compared with control mice. Terminal deoxynucleotidyl transferase dUTP nick end labeling and Nissl staining showed that EE-exposed mice had reduced neuronal apoptosis and increased number of surviving neurons compared with control mice. Golgi staining, transmission electron microscopy, and immunohistochemical staining demonstrated that EE-exposed mice exhibited increased dendritic spine densities among secondary and tertiary apical dendrites; increases in synaptic numerical density, synaptic surface density, and expression of synaptophysin; and reduced deposition of amyloid-β (Aβ) and expression of amyloid-precursor protein (APP) in the hippocampal CA1 region compared with control mice. These results demonstrate that EE exposure effectively decreases neuronal loss and regulates neuronal synaptic plasticity by reducing the expression of APP and the deposition of Aβ in the hippocampal CA1 region, thereby mitigating cognitive decline in SAMP8 mice during the MCI phase and delaying the progression from MCI to Alzheimer's disease.
Collapse
Affiliation(s)
- Jian-Zhong Li
- Department of Human Anatomy, Changzhi Medical College, Changzhi, Shangxi 046000, P.R. China
| | - Xing-Hua Hao
- Department of Clinical Psychology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shangxi 046000, P.R. China
| | - Hai-Ping Wu
- Department of Human Anatomy, Changzhi Medical College, Changzhi, Shangxi 046000, P.R. China
| | - Ming Li
- Department of Human Anatomy, Changzhi Medical College, Changzhi, Shangxi 046000, P.R. China
| | - Xue-Min Liu
- Department of Human Anatomy, Changzhi Medical College, Changzhi, Shangxi 046000, P.R. China
| | - Zhi-Bing Wu
- Department of Human Anatomy, Changzhi Medical College, Changzhi, Shangxi 046000, P.R. China
| |
Collapse
|
30
|
Memudu AE, Adewumi AE. Alpha lipoic acid ameliorates scopolamine induced memory deficit and neurodegeneration in the cerebello-hippocampal cortex. Metab Brain Dis 2021; 36:1729-1745. [PMID: 34021876 DOI: 10.1007/s11011-021-00720-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
Scopolamine- induced memory loss is used to study new drug discovery in Alzheimer's disease (AD) pathogenesis. This study was aimed at evaluating the role of an antioxidant supplement alpha-lipoic acid (AHA), in ameliorating the oxidative damaging effects of scopolamine on cognition, memory, and the neurohistology of the cerebello-hippocampal cortex. Twenty adult male Wistar rats used were categorized into four (4) groups (n = 5): Group A- Control, Group B- 200 mg/kg of AHA, Group C- Scopolamine (memory-impaired model), and Group D- Neurodegenerative repair model (Scopolamine + AHA). The treatment lasted for fourteen (14) days. Y-maze and hang-wire (limb use test) were used as behavioural index to assess memory and motor function while brain tissues were processed for histology (H and E stain), histochemistry using Cresyl Fast violet stain for Nissl bodies, and immunohistochemistry of astrocytes using glial fibrillary acidic protein (GFAP). Results showed that scopolamine led to a decline in brain weight, impaired memory and motor function, induced oxidative tissue damage cumulating in loss of neuronal cells, chromatolysis, the proliferation of reactive astrocytes (neuroinflammation biomarker) in the cerebello-hippocampal cortex; but upon administration of AHA these neuropathological characterizations were inhibited and reversed by AHA demonstrating its antioxidant and neuro- repair potential. In conclusion, AHA is a useful therapeutic agent against scopolamine-induced cognitive and memory deficit because it has the ability to ameliorate oxidative tissue damage by attenuating reactive astrocytes proliferation and neuron chromatolysis thereby improving memory and motor function.
Collapse
Affiliation(s)
- Adejoke Elizabeth Memudu
- Department of Anatomy Faculty of Basic Medical Science, College of Medical Sciences, Edo University, KM 7 Auchi-Abuja Road Iyamho-Uzairue, P.M.B 04, Auchi, Zip Code 312102, Nigeria.
| | - Abosede Esther Adewumi
- Department of Anatomy, Faculty of Basic Medical Sciences, College of Medicine, Bingham University, P.M.B 005, Karu, Nassarawa State, Nigeria
| |
Collapse
|
31
|
Ma D, Li Y, Zhu Y, Wei W, Zhang L, Li Y, Li L, Zhang L. Cornel Iridoid Glycoside Ameliorated Alzheimer's Disease-Like Pathologies and Necroptosis through RIPK1/MLKL Pathway in Young and Aged SAMP8 Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:9920962. [PMID: 34475966 PMCID: PMC8407981 DOI: 10.1155/2021/9920962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/17/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Aging is an important risk factor for sporadic Alzheimer's disease (AD) and other neurodegenerative diseases. Senescence-accelerated mouse-prone 8 (SAMP8) is used as an animal model for brain aging and sporadic AD research studies. The aim of the current study was to investigate the pharmacological effects of cornel iridoid glycoside (CIG), an active ingredient of Cornus officinalis, on AD-type pathological changes in young and aged SAMP8 mice. METHODS Locomotor activity test was used to detect the aging process of SAMP8 mice. Nissl staining and immunohistochemical staining were applied to detect neurons and myelin basic protein-labelled myelin sheath. Western blotting was used to detect the expression levels of related proteins of synapse, APP processing, and necroptosis. RESULTS The results showed that SAMP8 mice at the age of 6 and 14 months exhibited lower locomotor activity, age-related neuronal loss, demyelination, synaptic damage, and APP amyloidogenic processing. In addition, the increased levels of receptor-interacting protein kinase-1 (RIPK1), mixed lineage kinase domain-like protein (MLKL), and p-MLKL indicating necroptosis were found in the brain of SAMP8 mice. Intragastric administration of CIG for 2 months improved locomotor activity; alleviated neuronal loss and demyelination; increased the expression of synaptophysin, postsynaptic density protein 95, and AMPA receptor subunit 1; elevated the levels of soluble APPα fragment and disintegrin and metalloproteinase 10 (ADAM10); and decreased the levels of RIPK1, p-MLKL, and MLKL in the brain of young and aged SAMP8 mice. CONCLUSION This study denoted that CIG might be a potential drug for aging-related neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
- Denglei Ma
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Yanzheng Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
- Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Yanqiu Zhu
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Weipeng Wei
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Li Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Yali Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing 100053, China
| |
Collapse
|
32
|
Lian WW, Zhou W, Zhang BY, Jia H, Xu LJ, Liu AL, Du GH. DL0410 ameliorates cognitive disorder in SAMP8 mice by promoting mitochondrial dynamics and the NMDAR-CREB-BDNF pathway. Acta Pharmacol Sin 2021; 42:1055-1068. [PMID: 32868905 DOI: 10.1038/s41401-020-00506-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/06/2020] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is a worldwide problem and there are no effective drugs for AD treatment. Previous studies show that DL0410 is a multi-target, anti-AD agent. In this study, we investigated the therapeutic effect of DL0410 and its action mechanism in SAMP8 mice. DL0410 (1-10 mg·kg-1·d-1) was orally administered to 8-month-old SAMP mice (SAMP8) for 8 weeks. We showed that DL0410 administration effectively ameliorated the cognitive deficits in the Morris water maze test, novel object recognition test, and nest building test. We revealed that DL0410 dose-dependently increased the expression levels of the mitochondrial proteins (PGC-1α, Mitofusin 2, OPA1, and Drp1), and subsequently ameliorated the processes of mitochondrial biosynthesis, fusion, and fission in the cortex and hippocampus of SAMP8 mice. Furthermore, DL0410 administration promoted the expression of synaptic proteins (synaptophysin and PSD95) in the brain of SAMP8 mice, and upregulated the protein phosphorylation in NMDAR-CAMKII/CAMKIV-CREB pathway responsible for the synaptic plasticity. DL0410 administration dose-dependently increased the expression of BDNF and TrkB, and the neurotrophic effect was mediated via the ERK1/2 and PI3K-AKT-GSK-3β pathways. DL0410 administration upregulated Bcl-2, increased the Bcl-2/Bax ratio and the level of caspase 3 and PARP-1, alleviating neuronal apoptosis. We proposed that the NMDAR-CREB-BDNF pathway might establish a positive feedback loop between synaptic plasticity and neurotrophy, with CREB at the center. In summary, DL0410 promotes synaptic function and neuronal survival, thus ameliorating cognitive deficits in SAMP8 mice via improved mitochondrial dynamics and increased activity of the NMDAR-CREB-BDNF pathway. DL0410 is a promising candidate to treat aging-related AD, and deserves more research and development in future.
Collapse
|
33
|
Saunders AM, Burns DK, Gottschalk WK. Reassessment of Pioglitazone for Alzheimer's Disease. Front Neurosci 2021; 15:666958. [PMID: 34220427 PMCID: PMC8243371 DOI: 10.3389/fnins.2021.666958] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/18/2021] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease is a quintessential 'unmet medical need', accounting for ∼65% of progressive cognitive impairment among the elderly, and 700,000 deaths in the United States in 2020. In 2019, the cost of caring for Alzheimer's sufferers was $244B, not including the emotional and physical toll on caregivers. In spite of this dismal reality, no treatments are available that reduce the risk of developing AD or that offer prolonged mitiagation of its most devestating symptoms. This review summarizes key aspects of the biology and genetics of Alzheimer's disease, and we describe how pioglitazone improves many of the patholophysiological determinants of AD. We also summarize the results of pre-clinical experiments, longitudinal observational studies, and clinical trials. The results of animal testing suggest that pioglitazone can be corrective as well as protective, and that its efficacy is enhanced in a time- and dose-dependent manner, but the dose-effect relations are not monotonic or sigmoid. Longitudinal cohort studies suggests that it delays the onset of dementia in individuals with pre-existing type 2 diabetes mellitus, which small scale, unblinded pilot studies seem to confirm. However, the results of placebo-controlled, blinded clinical trials have not borne this out, and we discuss possible explanations for these discrepancies.
Collapse
Affiliation(s)
- Ann M. Saunders
- Zinfandel Pharmaceuticals, Inc., Chapel Hill, NC, United States
| | - Daniel K. Burns
- Zinfandel Pharmaceuticals, Inc., Chapel Hill, NC, United States
| | | |
Collapse
|
34
|
Gonçalves PB, Sodero ACR, Cordeiro Y. Green Tea Epigallocatechin-3-gallate (EGCG) Targeting Protein Misfolding in Drug Discovery for Neurodegenerative Diseases. Biomolecules 2021; 11:767. [PMID: 34065606 PMCID: PMC8160836 DOI: 10.3390/biom11050767] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 12/15/2022] Open
Abstract
The potential to treat neurodegenerative diseases (NDs) of the major bioactive compound of green tea, epigallocatechin-3-gallate (EGCG), is well documented. Numerous findings now suggest that EGCG targets protein misfolding and aggregation, a common cause and pathological mechanism in many NDs. Several studies have shown that EGCG interacts with misfolded proteins such as amyloid beta-peptide (Aβ), linked to Alzheimer's disease (AD), and α-synuclein, linked to Parkinson's disease (PD). To date, NDs constitute a serious public health problem, causing a financial burden for health care systems worldwide. Although current treatments provide symptomatic relief, they do not stop or even slow the progression of these devastating disorders. Therefore, there is an urgent need to develop effective drugs for these incurable ailments. It is expected that targeting protein misfolding can serve as a therapeutic strategy for many NDs since protein misfolding is a common cause of neurodegeneration. In this context, EGCG may offer great potential opportunities in drug discovery for NDs. Therefore, this review critically discusses the role of EGCG in NDs drug discovery and provides updated information on the scientific evidence that EGCG can potentially be used to treat many of these fatal brain disorders.
Collapse
Affiliation(s)
| | | | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21949-900, Brazil; (P.B.G.); (A.C.R.S.)
| |
Collapse
|
35
|
Liu B, Liu J, Shi JS. SAMP8 Mice as a Model of Age-Related Cognition Decline with Underlying Mechanisms in Alzheimer's Disease. J Alzheimers Dis 2021; 75:385-395. [PMID: 32310176 DOI: 10.3233/jad-200063] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a highly age-related cognitive decline frequently attacking the elderly. Senescence-accelerated mouse-prone 8 (SAMP8) is an ideal model to study AD, displaying age-related learning and memory disorders. SAMP8 mice exhibit most features of pathogenesis of AD, including an abnormal expression of anti-aging factors, oxidative stress, inflammation, amyloid-β (Aβ) deposits, tau hyperphosphorylation, endoplasmic reticulum stress, abnormal autophagy activity, and disruption of intestinal flora. SAMP8 mice, therefore, have visualized the understanding of AD, and also provided effective ways to find new therapeutic targets. This review focused on the age-related pathogenesis in SAMP8 mice, to advance the understanding of age-related learning and memory decline and clarify the mechanisms. Furthermore, this review will provide extensive foundations for SAMP8 mice used in therapeutics for AD.
Collapse
Affiliation(s)
- Bo Liu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Lab of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jie Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Lab of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jing-Shan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Lab of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
36
|
Sikora E, Bielak-Zmijewska A, Dudkowska M, Krzystyniak A, Mosieniak G, Wesierska M, Wlodarczyk J. Cellular Senescence in Brain Aging. Front Aging Neurosci 2021; 13:646924. [PMID: 33732142 PMCID: PMC7959760 DOI: 10.3389/fnagi.2021.646924] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/02/2021] [Indexed: 12/25/2022] Open
Abstract
Aging of the brain can manifest itself as a memory and cognitive decline, which has been shown to frequently coincide with changes in the structural plasticity of dendritic spines. Decreased number and maturity of spines in aged animals and humans, together with changes in synaptic transmission, may reflect aberrant neuronal plasticity directly associated with impaired brain functions. In extreme, a neurodegenerative disease, which completely devastates the basic functions of the brain, may develop. While cellular senescence in peripheral tissues has recently been linked to aging and a number of aging-related disorders, its involvement in brain aging is just beginning to be explored. However, accumulated evidence suggests that cell senescence may play a role in the aging of the brain, as it has been documented in other organs. Senescent cells stop dividing and shift their activity to strengthen the secretory function, which leads to the acquisition of the so called senescence-associated secretory phenotype (SASP). Senescent cells have also other characteristics, such as altered morphology and proteostasis, decreased propensity to undergo apoptosis, autophagy impairment, accumulation of lipid droplets, increased activity of senescence-associated-β-galactosidase (SA-β-gal), and epigenetic alterations, including DNA methylation, chromatin remodeling, and histone post-translational modifications that, in consequence, result in altered gene expression. Proliferation-competent glial cells can undergo senescence both in vitro and in vivo, and they likely participate in neuroinflammation, which is characteristic for the aging brain. However, apart from proliferation-competent glial cells, the brain consists of post-mitotic neurons. Interestingly, it has emerged recently, that non-proliferating neuronal cells present in the brain or cultivated in vitro can also have some hallmarks, including SASP, typical for senescent cells that ceased to divide. It has been documented that so called senolytics, which by definition, eliminate senescent cells, can improve cognitive ability in mice models. In this review, we ask questions about the role of senescent brain cells in brain plasticity and cognitive functions impairments and how senolytics can improve them. We will discuss whether neuronal plasticity, defined as morphological and functional changes at the level of neurons and dendritic spines, can be the hallmark of neuronal senescence susceptible to the effects of senolytics.
Collapse
Affiliation(s)
- Ewa Sikora
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Anna Bielak-Zmijewska
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Magdalena Dudkowska
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Adam Krzystyniak
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Grazyna Mosieniak
- Laboratory of Molecular Bases of Aging, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Malgorzata Wesierska
- Laboratory of Neuropsychology, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Jakub Wlodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| |
Collapse
|
37
|
Sasaki K, Geribaldi-Doldán N, Wu Q, Davies J, Szele FG, Isoda H. Microalgae Aurantiochytrium Sp. Increases Neurogenesis and Improves Spatial Learning and Memory in Senescence-Accelerated Mouse-Prone 8 Mice. Front Cell Dev Biol 2021; 8:600575. [PMID: 33634096 PMCID: PMC7900145 DOI: 10.3389/fcell.2020.600575] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022] Open
Abstract
Much attention has recently been focused on nutraceuticals, with minimal adverse effects, developed for preventing or treating neurological diseases such as Alzheimer's disease (AD). The present study was conducted to investigate the potential effect on neural development and function of the microalgae Aurantiochytrium sp. as a nutraceutical. To test neuroprotection by the ethanol extract of Aurantiochytrium (EEA) and a derivative, the n-Hexane layer of EEA (HEEA), amyloid-β-stimulated SH-SY5Y cells, was used as an in vitro AD model. We then assessed the potential enhancement of neurogenesis by EEA and HEEA using murine ex vivo neurospheres. We also administered EEA or HEEA to senescence-accelerated mouse-prone 8 (SAMP8) mice, a non-transgenic strain with accelerated aging and AD-like memory loss for evaluation of spatial learning and memory using the Morris water maze test. Finally, we performed immunohistochemical analysis for assessment of neurogenesis in mice administered EEA. Pretreatment of SH-SY5Y cells with EEA or the squalene-rich fraction of EEA, HEEA, ameliorated amyloid-β-induced cytotoxicity. Interestingly, only EEA-treated cells showed a significant increase in cell metabolism and intracellular adenosine triphosphate production. Moreover, EEA treatment significantly increased the number of neurospheres, whereas HEEA treatment significantly increased the number of β-III-tubulin+ young neurons and GFAP+ astrocytes. SAMP8 mice were given 50 mg/kg EEA or HEEA orally for 30 days. EEA and HEEA decreased escape latency in the Morris water maze in SAMP8 mice, indicating improved memory. To detect stem cells and newborn neurons, we administered BrdU for 9 days and measured BrdU+ cells in the dentate gyrus, a neurogenic stem cell niche of the hippocampus. In SAMP8 mice, EEA rapidly and significantly increased the number of BrdU+GFAP+ stem cells and their progeny, BrdU+NeuN+ mature neurons. In conclusion, our data in aggregate indicate that EEA and its constituents could be developed into a nutraceutical for promoting brain health and function against several age-related diseases, particularly AD.
Collapse
Affiliation(s)
- Kazunori Sasaki
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
- Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST), University of Tsukuba, Tsukuba, Japan
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | - Noelia Geribaldi-Doldán
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Qingqing Wu
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Julie Davies
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Francis G. Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
- Open Innovation Laboratory for Food and Medicinal Resource Engineering, National Institute of Advanced Industrial Science and Technology (AIST), University of Tsukuba, Tsukuba, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
38
|
Abstract
Neurological disorders, including neurodegenerative diseases, have a significant negative impact on both patients and society at large. Since the prevalence of most of these disorders increases with age, the consequences for our aging population are only going to grow. It is now acknowledged that neurological disorders are multi-factorial involving disruptions in multiple cellular systems. While each disorder has specific initiating mechanisms and pathologies, certain common pathways appear to be involved in most, if not all, neurological disorders. Thus, it is becoming increasingly important to identify compounds that can modulate the multiple pathways that contribute to disease development or progression. One of these compounds is the flavonol fisetin. Fisetin has now been shown in preclinical models to be effective at preventing the development and/or progression of multiple neurological disorders including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, stroke (both ischemic and hemorrhagic) and traumatic brain injury as well as to reduce age-associated changes in the brain. These beneficial effects stem from its actions on multiple pathways associated with the different neurological disorders. These actions include its well characterized anti-inflammatory and anti-oxidant effects as well as more recently described effects on the regulated cell death oxytosis/ferroptosis pathway, the gut microbiome and its senolytic activity. Therefore, the growing body of pre-clinical data, along with fisetin’s ability to modulate a large number of pathways associated with brain dysfunction, strongly suggest that it would be worthwhile to pursue its therapeutic effects in humans.
Collapse
Affiliation(s)
- Pamela Maher
- Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA
| |
Collapse
|
39
|
Kepchia D, Currais A, Dargusch R, Finley K, Schubert D, Maher P. Geroprotective effects of Alzheimer's disease drug candidates. Aging (Albany NY) 2021; 13:3269-3289. [PMID: 33550278 PMCID: PMC7906177 DOI: 10.18632/aging.202631] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/14/2021] [Indexed: 04/18/2023]
Abstract
Geroprotectors are compounds that slow the biological aging process in model organisms and may therefore extend healthy lifespan in humans. It is hypothesized that they do so by preserving the more youthful function of multiple organ systems. However, this hypothesis has rarely been tested in any organisms besides C. elegans and D. melanogaster. To determine if two life-extending compounds for Drosophila maintain a more youthful phenotype in old mice, we asked if they had anti-aging effects in both the brain and kidney. We utilized rapidly aging senescence-accelerated SAMP8 mice to investigate age-associated protein level alterations in these organs. The test compounds were two cognition-enhancing Alzheimer's disease drug candidates, J147 and CMS121. Mice were fed the compounds in the last quadrant of their lifespan, when they have cognitive deficits and are beginning to develop CKD. Both compounds improved physiological markers for brain and kidney function. However, these two organs had distinct, tissue-specific protein level alterations that occurred with age, but in both cases, drug treatments restored a more youthful level. These data show that geroprotective AD drug candidates J147 and CMS121 prevent age-associated disease in both brain and kidney, and that their apparent mode of action in each tissue is distinct.
Collapse
Affiliation(s)
- Devin Kepchia
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Antonio Currais
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Richard Dargusch
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Kim Finley
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, CA 92115, USA
| | - David Schubert
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Pamela Maher
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
40
|
Tahir MS, Almezgagi M, Zhang Y, Bashir A, Abdullah HM, Gamah M, Wang X, Zhu Q, Shen X, Ma Q, Ali M, Solangi ZA, Malik WS, Zhang W. Mechanistic new insights of flavonols on neurodegenerative diseases. Biomed Pharmacother 2021; 137:111253. [PMID: 33545661 DOI: 10.1016/j.biopha.2021.111253] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/22/2020] [Accepted: 01/03/2021] [Indexed: 02/06/2023] Open
Abstract
With a large and increasing elderly population, neurodegenerative diseases such as Parkinson's disease (PD), Huntington disease (HD), Alzheimer's disease (AD), Amyotrophic lateral sclerosis (ALS) and Multiple sclerosis (MS) have become a major and growing health problem. During the past few decades, the elderly population has grown 2.5 % every year. Unfortunately, there are no specific therapeutic remedies available to slow the onset or development of these diseases. An aging brain causes many pathophysiological changes and is the major risk factor for most of the neurodegenerative disorders. Polyphenolic compounds such as flavonols have shown therapeutic potential and can contribute to the treatment of these diseases. In this review, evidence for the beneficial neuroprotective effect of multiple flavonols is discussed and their multifactorial cellular pathways for the progressions of age-associated brain changes are identified. Moreover, the animal models of these diseases support the neuroprotective effect and target the potential of flavonols in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Muhammad Shoaib Tahir
- The Key Laboratory of High-Altitude Medical Application of Qinghai Province, Qinghai, Xining, 810001, China; Department of Basic Medicine, Medical College of Qinghai University, Qinghai, Xining, 810001, China
| | - Maged Almezgagi
- The Key Laboratory of High-Altitude Medical Application of Qinghai Province, Qinghai, Xining, 810001, China; Department of Basic Medicine, Medical College of Qinghai University, Qinghai, Xining, 810001, China
| | - Yu Zhang
- Department of Basic Medicine, Medical College of Qinghai University, Qinghai, Xining, 810001, China
| | - Adnan Bashir
- Department of Pharmacology, Fatima Memorial College of Medicine and Dentistry, Punjab Lahore, 54000, Pakistan
| | - Hasnat Mazhar Abdullah
- Department of Emergency Medicine, Milton Keynes University Hospital NHS Foundation Trust, Milton Keynes, MK6 5BY, United Kingdom
| | - Mohammed Gamah
- Department of Basic Medicine, Medical College of Qinghai University, Qinghai, Xining, 810001, China
| | - Xiaozhou Wang
- The Key Laboratory of High-Altitude Medical Application of Qinghai Province, Qinghai, Xining, 810001, China
| | - Qinfang Zhu
- The Key Laboratory of High-Altitude Medical Application of Qinghai Province, Qinghai, Xining, 810001, China
| | - Xiangqun Shen
- Department of Basic Medicine, Medical College of Qinghai University, Qinghai, Xining, 810001, China
| | - Qianqian Ma
- Department of Basic Medicine, Medical College of Qinghai University, Qinghai, Xining, 810001, China
| | - Muhammad Ali
- Department of Hepatobiliary Surgery, Qinghai University Affiliated Hospital, Qinghai, Xining, 810001, China
| | - Zeeshan Ahmed Solangi
- Department of Crop Genetics and Breeding, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, China
| | - Waseem Sami Malik
- Department of Hepatobiliary Surgery, Qinghai University Affiliated Hospital, Qinghai, Xining, 810001, China
| | - Wei Zhang
- The Key Laboratory of High-Altitude Medical Application of Qinghai Province, Qinghai, Xining, 810001, China; Department of Basic Medicine, Medical College of Qinghai University, Qinghai, Xining, 810001, China.
| |
Collapse
|
41
|
Molina-Martínez P, Corpas R, García-Lara E, Cosín-Tomás M, Cristòfol R, Kaliman P, Solà C, Molinuevo JL, Sánchez-Valle R, Antonell A, Lladó A, Sanfeliu C. Microglial Hyperreactivity Evolved to Immunosuppression in the Hippocampus of a Mouse Model of Accelerated Aging and Alzheimer's Disease Traits. Front Aging Neurosci 2021; 12:622360. [PMID: 33584248 PMCID: PMC7875867 DOI: 10.3389/fnagi.2020.622360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation is a risk factor for Alzheimer's disease (AD). We sought to study the glial derangement in AD using diverse experimental models and human brain tissue. Besides classical pro-inflammatory cytokines, we analyzed chitinase 3 like 1 (CHI3L1 or YKL40) and triggering receptor expressed on myeloid cells 2 (TREM2) that are increasingly being associated with astrogliosis and microgliosis in AD, respectively. The SAMP8 mouse model of accelerated aging and AD traits showed elevated pro-inflammatory cytokines and activated microglia phenotype. Furthermore, 6-month-old SAMP8 showed an exacerbated inflammatory response to peripheral lipopolysaccharide in the hippocampus and null responsiveness at the advanced age (for this strain) of 12 months. Gene expression of TREM2 was increased in the hippocampus of transgenic 5XFAD mice and in the cingulate cortex of autosomal dominant AD patients, and to a lesser extent in aged SAMP8 mice and sporadic early-onset AD patients. However, gene expression of CHI3L1 was increased in mice but not in human AD brain samples. The results support the relevance of microglia activation in the pathways leading to neurodegeneration and suggest diverse neuroinflammatory responses according to the AD process. Therefore, the SAMP8 mouse model with marked alterations in the dynamics of microglia activation and senescence may provide a complementary approach to transgenic mouse models for the study of the neuroinflammatory mechanisms underlying AD risk and progression.
Collapse
Affiliation(s)
- Patricia Molina-Martínez
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Rubén Corpas
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elisa García-Lara
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marta Cosín-Tomás
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Rosa Cristòfol
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Perla Kaliman
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Carme Solà
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - José Luis Molinuevo
- Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Alzheimer's Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clínic, Barcelona, Spain.,Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Raquel Sánchez-Valle
- Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Alzheimer's Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clínic, Barcelona, Spain.,Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona, Barcelona, Spain
| | - Anna Antonell
- Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Alzheimer's Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clínic, Barcelona, Spain.,Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona, Barcelona, Spain
| | - Albert Lladó
- Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Alzheimer's Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clínic, Barcelona, Spain.,Fundació Clínic per a la Recerca Biomèdica, Universitat de Barcelona, Barcelona, Spain
| | - Coral Sanfeliu
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
42
|
Xie Z, Lu H, Yang S, Zeng Y, Li W, Wang L, Luo G, Fang F, Zeng T, Cheng W. Salidroside Attenuates Cognitive Dysfunction in Senescence-Accelerated Mouse Prone 8 (SAMP8) Mice and Modulates Inflammation of the Gut-Brain Axis. Front Pharmacol 2020; 11:568423. [PMID: 33362539 PMCID: PMC7759146 DOI: 10.3389/fphar.2020.568423] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Alzheimer's disease (AD) is a fatal neurodegenerative disease characterized by progressive cognitive decline and memory loss. However, several therapeutic approaches have shown unsatisfactory outcomes in the clinical setting. Thus, developing alternative therapies for the prevention and treatment of AD is critical. Salidroside (SAL) is critical, an herb-derived phenylpropanoid glycoside compound, has been shown to attenuate lipopolysaccharide (LPS)-induced cognitive impairment. However, the mechanism underlying its neuroprotective effects remains unclear. Here, we show that SAL has a therapeutic effect in the senescence-accelerated mouse prone 8 (SAMP8) strain, a reliable and stable mouse model of AD. Methods: SAMP8 mice were treated with SAL, donepezil (DNP) or saline, and cognitive behavioral impairments were assessed using the Morris water maze (MWM), Y maze, and open field test (OFT). Fecal samples were collected and analyzed by 16S rRNA sequencing on an Illumina MiSeq system. Brain samples were analyzed to detect beta-amyloid (Aβ) 1-42 (Aβ1-42) deposition by immunohistochemistry (IHC) and western blotting. The activation of microglia and neuroinflammatory cytokines was detected by immunofluorescence (IF), western blotting and qPCR. Serum was analyzed by a Mouse High Sensitivity T Cell Magnetic Bead Panel on a Luminex-MAGPIX multiplex immunoassay system. Results: Our results suggest that SAL effectively alleviated hippocampus-dependent memory impairment in the SAMP8 mice. SAL significantly 1) reduced toxic Aβ1-42 deposition; 2) reduced microglial activation and attenuated the levels of the proinflammatory factors IL-1β, IL-6, and TNF-α in the brain; 3) improved the gut barrier integrity and modified the gut microbiota (reversed the ratio of Bacteroidetes to Firmicutes and eliminated Clostridiales and Streptococcaceae, which may be associated with cognitive deficits); and 4) decreased the levels of proinflammatory cytokines, particularly IL-1α, IL-6, IL-17A and IL-12, in the peripheral circulation, as determined by a multiplex immunoassay. Conclusion: In summary, SAL reversed AD-related changes in SAMP8 mice, potentially by regulating the microbiota-gut-brain axis and modulating inflammation in both the peripheral circulation and central nervous system. Our results strongly suggest that SAL has a preventive effect on cognition-related changes in SAMP8 mice and highlight its value as a potential agent for drug development.
Collapse
Affiliation(s)
- Zeping Xie
- Traditional Chinese Pharmacological Laboratory, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hui Lu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Sixia Yang
- Traditional Chinese Pharmacological Laboratory, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yi Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wei Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linlin Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Guanfeng Luo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Fang Fang
- Traditional Chinese Pharmacological Laboratory, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ting Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Weidong Cheng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
43
|
Goldberg J, Currais A, Ates G, Huang L, Shokhirev M, Maher P, Schubert D. Targeting of intracellular Ca 2+ stores as a therapeutic strategy against age-related neurotoxicities. NPJ Aging Mech Dis 2020; 6:10. [PMID: 32884834 PMCID: PMC7445274 DOI: 10.1038/s41514-020-00048-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/06/2020] [Indexed: 01/04/2023] Open
Abstract
Calcium dysregulation often underlies pathologies associated with aging and age-associated neurodegenerative diseases. Cells express a unique pattern of Ca2+ channels and pumps geared to fulfill specific physiological requirements and there is a decline in the fidelity of these processes with age and age-associated diseases. J147 is an Alzheimer’s disease (AD) drug candidate that was identified using a phenotypic screening platform based upon age-related brain toxicities that are mediated by changes in calcium metabolism. The molecular target for J147 is the α-F1-ATP synthase (ATP5A). J147 has therapeutic efficacy in multiple mouse models of AD and accelerated aging and extends life span in flies. A bioinformatics analysis of gene expression in rapidly aging SAMP8 mice during the last quadrant of their life span shows that J147 has a significant effect on ion transport pathways that are changed with aging, making their expression look more like that of younger animals. The molecular basis of these changes was then investigated in cell culture neurotoxicity assays that were the primary screen in the development of J147. Here we show that J147 and its molecular target, ATP synthase, regulate the maintenance of store-operated calcium entry (SOCE) and cell death during acute neurotoxicity.
Collapse
Affiliation(s)
- Joshua Goldberg
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037 USA
| | - Antonio Currais
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037 USA
| | - Gamze Ates
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037 USA
| | - Ling Huang
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037 USA
| | - Maxim Shokhirev
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037 USA
| | - Pamela Maher
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037 USA
| | - David Schubert
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037 USA
| |
Collapse
|
44
|
Currais A, Huang L, Petrascheck M, Maher P, Schubert D. A chemical biology approach to identifying molecular pathways associated with aging. GeroScience 2020; 43:353-365. [PMID: 32705410 DOI: 10.1007/s11357-020-00238-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/19/2020] [Indexed: 12/26/2022] Open
Abstract
The understanding of how aging contributes to dementia remains obscure. To address this problem, a chemical biology approach was used employing CAD031, an Alzheimer's disease (AD) drug candidate identified using a discovery platform based upon phenotypic screens that mimic toxicities associated with the aging brain. Since CAD031 has therapeutic efficacy when fed to old symptomatic transgenic AD mice, the chemical biology hypothesis is that it can be used to determine the molecular pathways associated with age-related disease by identifying those that are modified by the compound. Here we show that when CAD031 was fed to rapidly aging SAMP8 mice starting in the last quadrant of their lifespan, it reduced many of the changes in gene, protein, and small molecule expression associated with mitochondrial aging, maintaining mitochondria at the younger molecular phenotype. Network analysis integrating the metabolomics and transcription data followed by mechanistic validation showed that CAD031 targets acetyl-CoA and fatty acid metabolism via the AMPK/ACC1 pathway. Importantly, CAD031 extended the median lifespan of SAMP8 mice by about 30%. These data show that specific alterations in mitochondrial composition and metabolism highly correlate with aging, supporting the use AD drug candidates that limit physiological aging in the brain.
Collapse
Affiliation(s)
- Antonio Currais
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA, 92037, USA.
| | - Ling Huang
- The Razavi Newman Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA, 92037, USA
| | - Michael Petrascheck
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Pamela Maher
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA, 92037, USA
| | - David Schubert
- Cellular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA, 92037, USA.
| |
Collapse
|
45
|
Pistollato F, Bernasconi C, McCarthy J, Campia I, Desaintes C, Wittwehr C, Deceuninck P, Whelan M. Alzheimer's Disease, and Breast and Prostate Cancer Research: Translational Failures and the Importance to Monitor Outputs and Impact of Funded Research. Animals (Basel) 2020; 10:E1194. [PMID: 32674379 PMCID: PMC7401638 DOI: 10.3390/ani10071194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 12/24/2022] Open
Abstract
Dementia and cancer are becoming increasingly prevalent in Western countries. In the last two decades, research focused on Alzheimer's disease (AD) and cancer, in particular, breast cancer (BC) and prostate cancer (PC), has been substantially funded both in Europe and worldwide. While scientific research outcomes have contributed to increase our understanding of the disease etiopathology, still the prevalence of these chronic degenerative conditions remains very high across the globe. By definition, no model is perfect. In particular, animal models of AD, BC, and PC have been and still are traditionally used in basic/fundamental, translational, and preclinical research to study human disease mechanisms, identify new therapeutic targets, and develop new drugs. However, animals do not adequately model some essential features of human disease; therefore, they are often unable to pave the way to the development of drugs effective in human patients. The rise of new technological tools and models in life science, and the increasing need for multidisciplinary approaches have encouraged many interdisciplinary research initiatives. With considerable funds being invested in biomedical research, it is becoming pivotal to define and apply indicators to monitor the contribution to innovation and impact of funded research. Here, we discuss some of the issues underlying translational failure in AD, BC, and PC research, and describe how indicators could be applied to retrospectively measure outputs and impact of funded biomedical research.
Collapse
Affiliation(s)
- Francesca Pistollato
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (C.B.); (I.C.); (C.W.); (P.D.); (M.W.)
| | - Camilla Bernasconi
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (C.B.); (I.C.); (C.W.); (P.D.); (M.W.)
| | - Janine McCarthy
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (C.B.); (I.C.); (C.W.); (P.D.); (M.W.)
- Physicians Committee for Responsible Medicine (PCRM), Washington, DC 20016, USA;
| | - Ivana Campia
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (C.B.); (I.C.); (C.W.); (P.D.); (M.W.)
| | - Christian Desaintes
- European Commission, Directorate General for Research and Innovation (RTD), 1000 Brussels, Belgium;
| | - Clemens Wittwehr
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (C.B.); (I.C.); (C.W.); (P.D.); (M.W.)
| | - Pierre Deceuninck
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (C.B.); (I.C.); (C.W.); (P.D.); (M.W.)
| | - Maurice Whelan
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (C.B.); (I.C.); (C.W.); (P.D.); (M.W.)
| |
Collapse
|
46
|
Wang J, Lei X, Xie Z, Zhang X, Cheng X, Zhou W, Zhang Y. CA-30, an oligosaccharide fraction derived from Liuwei Dihuang decoction, ameliorates cognitive deterioration via the intestinal microbiome in the senescence-accelerated mouse prone 8 strain. Aging (Albany NY) 2020; 11:3463-3486. [PMID: 31160541 PMCID: PMC6594795 DOI: 10.18632/aging.101990] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022]
Abstract
Mounting evidence points to alterations in the gut microbiota-neuroendocrine immunomodulation (NIM) network that might drive Alzheimer’s Disease (AD) pathology. In previous studies, we found that Liuwei Dihuang decoction (LW) had beneficial effects on the cognitive impairments and gastrointestinal microbiota dysbiosis in an AD mouse model. In particular, CA-30 is an oligosaccharide fraction derived from LW. We sought to determine the effects of CA-30 on the composition and function of the intestinal microbiome in the senescence-accelerated mouse prone 8 (SAMP8) mouse strain, an AD mouse model. Treatment with CA-30 delayed aging processes, ameliorated cognition in SAMP8 mice. Moreover, CA-30 ameliorated abnormal NIM network in SAMP8 mice. In addition, we found that CA-30 mainly altered the abundance of four genera and 10 newborn genera. Advantageous changes in carbohydrate-active enzymes of SAMP8 mice following CA-30 treatment, especially GH85, were also noted. We further found that seven genera were significantly correlated with the NIM network and cognitive performance. CA-30 influenced the relative abundance of these intestinal microbiomes in SAMP8 mice and restored them to SAMR1 mouse levels. CA-30 ameliorated the intestinal microbiome, rebalanced the NIM network, improved the AD-like cognitive impairments in SAMP8 mice, and can thus be a potential therapeutic agent for AD.
Collapse
Affiliation(s)
- Jianhui Wang
- , Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.,, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Xi Lei
- , Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.,, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Zongjie Xie
- , Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.,, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Xiaorui Zhang
- , Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.,, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Xiaorui Cheng
- , Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.,, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Wenxia Zhou
- , Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.,, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Yongxiang Zhang
- , Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.,, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| |
Collapse
|
47
|
Mitochondrial Dysfunction: a Potential Therapeutic Target to Treat Alzheimer’s Disease. Mol Neurobiol 2020; 57:3075-3088. [DOI: 10.1007/s12035-020-01945-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/13/2020] [Indexed: 01/10/2023]
|
48
|
Liu B, Huang B, Liu J, Shi JS. Dendrobium nobile Lindl alkaloid and metformin ameliorate cognitive dysfunction in senescence-accelerated mice via suppression of endoplasmic reticulum stress. Brain Res 2020; 1741:146871. [PMID: 32380088 DOI: 10.1016/j.brainres.2020.146871] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/06/2020] [Accepted: 04/28/2020] [Indexed: 12/25/2022]
Abstract
The senescence-accelerated mouse prone 8 (SAMP8) mice have many pathological features of Alzheimer's disease (AD) with aging. We previously reported that Dendrobium nobile Lindl alkaloid (DNLA) effectively improved cognitive deficits in multiple Alzheimer's disease (AD) models. This study further used SAMP8 mice to study the anti-aging effects of DNLA, focusing on endoplasmic reticulum (ER) stress. DNLA and metformin were orally administered to SAMP8 mice starting at 4-month of age for 6 months. Behavioral tests were performed in 10-month-old SAMP8 mice and age-matched SAMR1 control mice. At the end of experiment, neuron damage was evaluated by histology and transmission electron microscopy. ER stress-related proteins were analyzed with Western-blot. DNLA improved learning and memory impairments, reduced the loss of neurons and Nissl bodies in the hippocampus and cortex. DNLA ameliorated ER dilation and swelling in the hippocampal neurons. DNLA down-regulated the protein kinase RNA-like endoplasmic reticulum kinase (PERK) signaling pathway, decreased calpain 1, GSK-3β and Cdk5 activities and the Tau hyper-phosphorylation. The effects of DNLA were comparable to metformin. In summary, DNLA was effective in improving cognitive deficits in aged SAMP8 mice, possibly via suppression of ER stress-related PERK signaling pathway, sequential inhibition of calpain 1, GSK-3β and Cdk5 activities, and eventually reducing the hyper-phosphorylation of Tau.
Collapse
Affiliation(s)
- Bo Liu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Lab of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Bo Huang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Lab of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Jie Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Lab of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Jing-Shan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Lab of Ethnomedicine of Ministry of Education, Zunyi Medical University, China.
| |
Collapse
|
49
|
Sasaki K, Davies J, Doldán NG, Arao S, Ferdousi F, Szele FG, Isoda H. 3,4,5-Tricaffeoylquinic acid induces adult neurogenesis and improves deficit of learning and memory in aging model senescence-accelerated prone 8 mice. Aging (Albany NY) 2020; 11:401-422. [PMID: 30654329 PMCID: PMC6366991 DOI: 10.18632/aging.101748] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/26/2018] [Indexed: 12/11/2022]
Abstract
Caffeoylquinic acid (CQA) is a natural polyphenol with evidence of antioxidant and neuroprotective effects and prevention of deficits in spatial learning and memory. We studied the cognitive-enhancing effect of 3,4,5-tricaffeoylquinic acid (TCQA) and explored its cellular and molecular mechanism in the senescence-accelerated mouse prone 8 (SAMP8) model of aging and Alzheimer's disease as well as in human neural stem cells (hNSCs). Mice were fed with 5 mg/kg of TCQA for 30 days and were tested in the Morris water maze (MWM). Brain tissues were collected for immunohistochemical detection of bromodeoxyuridine (BrdU) to detect activated stem cells and newborn neurons. TCQA-treated SAMP8 exhibited significantly improved cognitive performance in MWM compared to water-treated SAMP8. TCQA-treated SAMP8 mice also had significantly higher numbers of BrdU+/glial fibrillary acidic protein (GFAP+) and BrdU+/Neuronal nuclei (NeuN+) cells in the dentate gyrus (DG) neurogenic niche compared with untreated SAMP8. In hNSCs, TCQA induced cell cycle arrest at G0/G1, actin cytoskeleton organization, chromatin remodeling, neuronal differentiation, and bone morphogenetic protein signaling. The neurogenesis promoting effect of TCQA in the DG of SAMP8 mice might explain the cognition-enhancing influence of TCQA observed in our study, and our hNSCs in aggregate suggest a therapeutic potential for TCQA in aging-associated diseases.
Collapse
Affiliation(s)
- Kazunori Sasaki
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba City, Ibaraki 305-8572, Japan.,Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5-2, Tsukuba City, Ibaraki 305-8565, Japan.,Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba City, Ibaraki 305-8571, Japan
| | - Julie Davies
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX13QX, UK
| | - Noelia Geribaldi Doldán
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba City, Ibaraki 305-8572, Japan.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX13QX, UK
| | - Sayo Arao
- Faculty of Life and Environmental Sciences, University of Tsukuba, Japan1-1-1 Tennodai, Tsukuba City, Ibaraki 305-8572, Japan
| | - Farhana Ferdousi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba City, Ibaraki 305-8572, Japan
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX13QX, UK
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba City, Ibaraki 305-8572, Japan.,Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5-2, Tsukuba City, Ibaraki 305-8565, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Japan1-1-1 Tennodai, Tsukuba City, Ibaraki 305-8572, Japan
| |
Collapse
|
50
|
Ding N, Jiang J, Tian H, Wang S, Li Z. Benign Regulation of the Astrocytic Phospholipase A 2-Arachidonic Acid Pathway: The Underlying Mechanism of the Beneficial Effects of Manual Acupuncture on CBF. Front Neurosci 2020; 13:1354. [PMID: 32174802 PMCID: PMC7054756 DOI: 10.3389/fnins.2019.01354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 12/02/2019] [Indexed: 12/19/2022] Open
Abstract
Background The astrocytic phospholipase A2 (PLA2)-arachidonic acid (AA) pathway is crucial in understanding the reduction of cerebral blood flow (CBF) prior to cognitive deterioration. In complementary and alternative medicine, manual acupuncture (MA) is used as one of the most important therapies for Alzheimer’s disease (AD). The beneficial effects of MA on CBF were reported in our previous study. However, the underlying molecular mechanism remains largely elusive. Objective To investigate the effect of MA on the astrocytic PLA2-AA pathway in SAMP8 mice hippocampi. Methods SAMP8 mice were divided into the SAMP8 control (Pc) group, the SAMP8 MA (Pm) group and the SAMP8 donepezil (Pd) group. SAMR1 mice were used as the SAMRl control (Rc) group. Mice in the Pd group were treated with donepezil hydrochloride at 0.65 μg/g. In the Pm group, MA was applied at Baihui (GV20) and Yintang (GV29) for 20 min. The above treatments were administered once a day for 26 consecutive days. The Morris water maze was applied to assess spatial learning and memory. Immunofluorescence staining, western blot and liquid chromatography-tandem mass spectrometry were used to investigate the expression of related proteins and measure the contents of the metabolic intermediates of the PLA2-AA pathway. Results Compared with that in the Rc group, the escape latency in the Pc group significantly increased (p < 0.01); whereas, the platform crossover number and percentage of time and swimming distance in the platform quadrant decreased (p < 0.01). The hippocampal expression of PLA2, cyclooxygenase-1, cytochrome P450 proteins 2C23 and the levels of AA, prostaglandin E2 and epoxyeicosatrienoic acids of the Pc group was drastically higher than that in the Rc group (p < 0.01). These changes were reversed by MA and donepezil (p < 0.01 or p < 0.05). Conclusion MA can effectively improve the learning and memory abilities of SAMP8 mice and has a negative regulatory effect on the PLA2-AA pathway. We propose that the increase of the arterial tone, which is induced by the inhibition of vasodilatory pathway, may be a reason for the beneficial effect of MA on CBF.
Collapse
Affiliation(s)
- Ning Ding
- Department of Acupuncture, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Jiang
- School of Nursing, Beijing University of Chinese Medicine, Beijing, China
| | - Huiling Tian
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Shun Wang
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Zhigang Li
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|