1
|
Alizadeh M, Ghasemi H, Bazhan D, Mohammadi Bolbanabad N, Rahdan F, Arianfar N, Vahedi F, Khatami SH, Taheri-Anganeh M, Aiiashi S, Armand N. MicroRNAs in disease States. Clin Chim Acta 2025; 569:120187. [PMID: 39938625 DOI: 10.1016/j.cca.2025.120187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/08/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
This review highlights the role of miRNAs in various diseases affecting major organ systems. miRNAs are small, non-coding RNA molecules that regulate numerous genes. Dysregulation of miRNAs is linked to many pathological conditions due to their involvement in gene silencing and cellular pathways. We discuss miRNA expression patterns, their physiological and pathological roles, and how changes in miRNA levels contribute to disease. Notably, miRNAs like miR-499 and miR-21 are implicated in heart failure and atherosclerosis. miRNA dysregulation is also associated with colorectal and gastric cancers, influencing tumorigenesis and chemoresistance. In neurological diseases, miRNAs exhibit diverse profiles that affect neurodevelopment and degeneration. Additionally, miRNAs modulate cell function in reproductive organs, impacting fertility and cancer progression. miRNAs such as miR-192 and miR-204 serve as biomarkers for nephropathy and acute kidney injury. These miRNAs are involved in skeletal muscle diseases, contributing to conditions like osteoporosis and sarcopenia. miRNAs function as oncogenes or tumor suppressors in cancer, highlighting their potential in diagnostics and therapy. Further research is needed to develop miRNA-based diagnostics and treatments.
Collapse
Affiliation(s)
- Mehdi Alizadeh
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Ghasemi
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran
| | - Donya Bazhan
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Fereshteh Rahdan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Arianfar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Vahedi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Saleh Aiiashi
- Abadan University of Medical Sciences, Abadan, Iran.
| | - Nezam Armand
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
2
|
Jia H, Kaster N, Khan R, Ayari-Akkari A. The Roles of myomiRs in the Pathogenesis of Sarcopenia: From Literature to In Silico Analysis. Mol Biotechnol 2025:10.1007/s12033-025-01373-0. [PMID: 40025274 DOI: 10.1007/s12033-025-01373-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/30/2024] [Indexed: 03/04/2025]
Abstract
Senile sarcopenia is a condition of age-associated muscular disorder and is a significant health issue around the world. In the current review, we curated the information from the NCBI, PubMed, and Google Scholar literature and explored the non-genetic and genetic causes of senile sarcopenia. Interestingly, the myomiRs such as miR-1, miR-206, miR-133a, miR-133b, miR-208b, and miR-499 are skeletal muscle's critical structural and functional regulators. However, very scattered information is available regarding the roles of myomiRs in different skeletal muscle phenotypes through a diverse list of known target genes. Therefore, these pieces of information must be organized to focus on the conserved target genes and comparable effects of the myomiRs in regulating senile sarcopenia. Hence, in the present review, the roles of pathogenetic factors in regulating senile sarcopenia were highlighted. The literature was further curated for the roles of myomiRs such as hsa-miR-1-3p/206, hsa-miR-27-3p, hsa-miR-146-5p, and hsa-miR-499-5p and their target genes. Additionally, we used different bioinformatics tools and predicted target genes of the myomiRs and found the most critical target genes, shared pathways, and their standard functions in regulating muscle structure and functions. The information gathered in the current review will help the researchers to explore their possible therapeutic potential, especially the use of the myomiRs for the treatment of senile sarcopenia.
Collapse
Affiliation(s)
- Huanxia Jia
- Medical College of Xuchang University, No.1389, Xufan Road, Xuchang, 461000, Henan, People's Republic of China
| | - Nurgulsim Kaster
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, People's Republic of China.
- Faculty of Veterinary and Livestock Technology, S. Seifullin Kazakh Agro Technical University, Astana, Kazakhstan.
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, People's Republic of China.
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan.
| | - Amel Ayari-Akkari
- Biology Department, College of Science, King Khalid University, P.O. Box 960, Abha, Saudi Arabia
| |
Collapse
|
3
|
Qiu D, Zhang Y, Ni P, Wang Z, Yang L, Li F. Muscle-enriched microRNA-486-mediated regulation of muscular atrophy and exercise. J Physiol Biochem 2024; 80:795-809. [PMID: 39222208 DOI: 10.1007/s13105-024-01043-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
The objectives of this review were to understand the impact of microRNA-486 on myogenesis and muscle atrophy, and the change of microRNA-486 following exercise, and provide valuable information for improving muscle atrophy based on exercise intervention targeting microRNA-486. Muscle-enriched microRNAs (miRNAs), also referred to as myomiRs, control various processes in skeletal muscles, from myogenesis and muscle homeostasis to different responses to environmental stimuli such as exercise. MicroRNA-486 is a miRNA in which a stem-loop sequence is embedded within the ANKYRIN1 (ANK1) locus and is strictly conserved across mammals. MicroRNA-486 is involved in the development of muscle atrophy caused by aging, immobility, prolonged exposure to microgravity, or muscular and neuromuscular disorders. PI3K/AKT signaling is a positive pathway, as it increases muscle mass by increasing protein synthesis and decreasing protein degradation. MicroRNA-486 can activate this pathway by inhibiting phosphatase and tensin homolog (PTEN), it may also indirectly inhibit the HIPPO signaling pathway to promote cell growth. Exercises regulate microRNA-486 expression both in blood and muscle. This review focused on the recent elucidation of sarcopenia regulation by microRNA-486 and its effects on pathological states, including primary muscular disease, secondary muscular disorders, and age-related sarcopenia. Additionally, the role of exercise in regulating skeletal muscle-enriched microRNA-486 was highlighted, along with its physiological significance. Growing evidence indicates that microRNA-486 significantly impacts the development of muscle atrophy. MicroRNA-486 has great potential to become a therapeutic target for improving muscle atrophy through exercise intervention.
Collapse
Affiliation(s)
- Dayong Qiu
- School of Physical and Health Education, Nanjing Normal University Taizhou College, No. 96, Jichuan East Road, Hailing District, Taizhou, 225300, P.R. China
| | - Yan Zhang
- School of Sport Sciences, Nanjing Normal University, No. 1 Wenyuan Road, Qixia District, Nanjing, 210046, P.R. China
| | - Pinshi Ni
- School of Sport Sciences, Nanjing Normal University, No. 1 Wenyuan Road, Qixia District, Nanjing, 210046, P.R. China
| | - Zhuangzhi Wang
- School of Sport Sciences, Nanjing Normal University, No. 1 Wenyuan Road, Qixia District, Nanjing, 210046, P.R. China
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, College of Physical Education and Sports Science, South China Normal University, University Town, Guangzhou, 510006, P.R. China
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Fanghui Li
- Zhaoqing University, 526061, Guangdong, Zhaoqing, P.R. China.
| |
Collapse
|
4
|
Obuchowicz R, Obuchowicz B, Nurzynska K, Urbanik A, Pihut M. Population Analysis of Masseter Muscle Tension Using Shear Wave Ultrasonography across Different Disease States. J Clin Med 2024; 13:5259. [PMID: 39274477 PMCID: PMC11396082 DOI: 10.3390/jcm13175259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
Objective: This study aimed to evaluate the distribution and trends of masseter muscle tension in patients with temporomandibular joint (TMJ) pain, examining gender-specific differences and the impact of various TMJ disorders. Methods: From January 2020 to June 2024, a total of 734 patients presenting with facial pain radiating to the head and neck, localized around and extending from the TMJ, were referred for ultrasonographic examination. After applying exclusion criteria, 535 patients (72.9%) were included in the study. The patient cohort consisted of 343 females (64.1%) and 192 males (35.9%), with muscle tension measured using the Aixplorer ultrasound system equipped with a shear wave device. Data were collected and analyzed across different age groups and TMJ conditions, including "no changes", "exudate", "arthrosis", and "disc displacement". Results: The study found that males exhibited higher muscle tension across all conditions, particularly in the "no changes" (40.4 kPa vs. 32.1 kPa, 25.9% higher) and "exudate" (38.5 kPa vs. 29.7 kPa, 29.6% higher) categories, indicating increased muscle strain and inflammation during middle age. In females, a trend of decreasing muscle tension with age was observed, with a significant reduction from 36.2 kPa in the 20-30 age group to 24.3 kPa in the 60-70 age group (32.9% reduction), suggesting a reduction in muscle mass or strength due to aging. Both genders showed high muscle tension in the presence of exudate, with females peaking in the 40-50 age group at 37.1 kPa and males peaking earlier in the 20-30 age group at 41.2 kPa (10.9% higher in males), highlighting potential gender differences in inflammatory response. In the arthrosis group, males displayed a consistent increase in muscle tension with age, peaking at 37.5 kPa in the 50-60 age group (50.7% increase from the 20-30 age group), while females showed high tension, particularly in the 40-50 age group at 31.0 kPa (82.4% higher compared to the 20-30 age group), indicating the need for targeted joint health interventions in middle-aged women. Conclusions: This study reveals significant gender-specific differences in masseter muscle tension among patients with TMJ pain. Males were found to be more affected by muscle strain and inflammation during middle age, whereas females showed a significant decrease in muscle tension with age. The presence of exudate significantly impacted muscle tension across all age groups for both genders. These findings underscore the importance of tailored clinical interventions and preventive strategies to manage TMJ disorders effectively.
Collapse
Affiliation(s)
- Rafal Obuchowicz
- Department of Diagnostic Imaging, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Barbara Obuchowicz
- Department of Conservative Dentistry with Endodontics, Jagiellonian University Collegium Medicum, Montelupich 4, 31-155 Cracow, Poland
| | - Karolina Nurzynska
- Institute of Informatics, Faculty of Automata Control, Electronics, and Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Andrzej Urbanik
- Department of Diagnostic Imaging, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Malgorzata Pihut
- Prosthodontic and Orthodontic Department, Dental Institute, Jagiellonian University Medical College, 31-155 Krakow, Poland
| |
Collapse
|
5
|
Pigoń-Zając D, Mazurek M, Maziarz M, Ochieng’ Otieno M, Martinez-Useros J, Małecka-Massalska T, Powrózek T. Characterization of Undiscovered miRNA Involved in Tumor Necrosis Factor Alpha-Induced Atrophy in Mouse Skeletal Muscle Cell Line. Int J Mol Sci 2024; 25:6064. [PMID: 38892252 PMCID: PMC11172509 DOI: 10.3390/ijms25116064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Muscular atrophy is a complex catabolic condition that develops due to several inflammatory-related disorders, resulting in muscle loss. Tumor necrosis factor alpha (TNF-α) is believed to be one of the leading factors that drive inflammatory response and its progression. Until now, the link between inflammation and muscle wasting has been thoroughly investigated, and the non-coding RNA machinery is a potential connection between the candidates. This study aimed to identify specific miRNAs for muscular atrophy induced by TNF-α in the C2C12 murine myotube model. The difference in expression of fourteen known miRNAs and two newly identified miRNAs was recorded by next-generation sequencing between normal muscle cells and treated myotubes. After validation, we confirmed the difference in the expression of one novel murine miRNA (nov-mmu-miRNA-1) under different TNF-α-inducing conditions. Functional bioinformatic analyses of nov-mmu-miRNA-1 revealed the potential association with inflammation and muscle atrophy. Our results suggest that nov-mmu-miRNA-1 may trigger inflammation and muscle wasting by the downregulation of LIN28A/B, an anti-inflammatory factor in the let-7 family. Therefore, TNF-α is involved in muscle atrophy through the modulation of the miRNA cellular machinery. Here, we describe for the first time and propose a mechanism for the newly discovered miRNA, nov-mmu-miRNA-1, which may regulate inflammation and promote muscle atrophy.
Collapse
Affiliation(s)
- Dominika Pigoń-Zając
- Department of Human Physiology of the Chair of Preclinical Sciences, Medical University in Lublin, 20-080 Lublin, Poland; (D.P.-Z.); (M.M.); (M.M.); (T.M.-M.)
| | - Marcin Mazurek
- Department of Human Physiology of the Chair of Preclinical Sciences, Medical University in Lublin, 20-080 Lublin, Poland; (D.P.-Z.); (M.M.); (M.M.); (T.M.-M.)
| | - Mirosław Maziarz
- Department of Human Physiology of the Chair of Preclinical Sciences, Medical University in Lublin, 20-080 Lublin, Poland; (D.P.-Z.); (M.M.); (M.M.); (T.M.-M.)
| | - Michael Ochieng’ Otieno
- Translational Oncology Division, Oncohealth Institute, Fundacion Jiménez Díaz University Hospital, 28040 Madrid, Spain; (M.O.O.); (J.M.-U.)
| | - Javier Martinez-Useros
- Translational Oncology Division, Oncohealth Institute, Fundacion Jiménez Díaz University Hospital, 28040 Madrid, Spain; (M.O.O.); (J.M.-U.)
- Area of Physiology, Department of Basic Health Sciences, Faculty of Health Sciences, Rey Juan Carlos University, 28922 Madrid, Spain
| | - Teresa Małecka-Massalska
- Department of Human Physiology of the Chair of Preclinical Sciences, Medical University in Lublin, 20-080 Lublin, Poland; (D.P.-Z.); (M.M.); (M.M.); (T.M.-M.)
| | - Tomasz Powrózek
- Department of Human Physiology of the Chair of Preclinical Sciences, Medical University in Lublin, 20-080 Lublin, Poland; (D.P.-Z.); (M.M.); (M.M.); (T.M.-M.)
| |
Collapse
|
6
|
Millet M, Auroux M, Beaudart C, Demonceau C, Ladang A, Cavalier E, Reginster JY, Bruyère O, Chapurlat R, Rousseau JC. Association of circulating hsa-miRNAs with sarcopenia: the SarcoPhAge study. Aging Clin Exp Res 2024; 36:70. [PMID: 38485856 PMCID: PMC10940485 DOI: 10.1007/s40520-024-02711-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/23/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVE To identify a microRNA signature associated to sarcopenia in community-dwelling older adults form the SarcoPhAge cohort. METHODS In a screening phase by next generation sequencing (NGS), we compared the hsa-miRome expression of 18 subjects with sarcopenia (79.6 ± 6.8 years, 9 men) and 19 healthy subjects without sarcopenia (77.1 ± 6 years, 9 men) at baseline. Thereafter, we have selected eight candidate hsa-miRNAs according to the NGS results and after a critical assessment of previous literature. In a validation phase and by real-time qPCR, we then analyzed the expression levels of these 8 hsa-miRNAs at baseline selecting 92 healthy subjects (74.2 ± 10 years) and 92 subjects with sarcopenia (75.3 ± 6.8 years). For both steps, the groups were matched for age and sex. RESULTS In the validation phase, serum has-miRNA-133a-3p and has-miRNA-200a-3p were significantly decreased in the group with sarcopenia vs controls [RQ: relative quantification; median (interquartile range)]: -0.16 (-1.26/+0.90) vs +0.34 (-0.73/+1.33) (p < 0.01) and -0.26 (-1.07/+0.68) vs +0.27 (-0.55/+1.10) (p < 0.01) respectively. Has-miRNA-744-5p was decreased and has-miRNA-151a-3p was increased in the group with sarcopenia vs controls, but this barely reached significance: +0.16 (-1.34/+0.79) vs +0.44 (-0.31/+1.00) (p = 0.050) and +0.35 (-0.22/+0.90) vs +0.03 (-0.68/+0.75) (p = 0.054). CONCLUSION In subjects with sarcopenia, serum hsa-miRNA-133a-3p and hsa-miRNA-200a-3p expression were downregulated, consistent with their potential targets inhibiting muscle cells proliferation and differentiation.
Collapse
Affiliation(s)
| | - Maxime Auroux
- INSERM 1033, Lyon, France
- Hôpital E. Herriot, Hospices Civils de Lyon, Lyon, France
| | - Charlotte Beaudart
- Clinical Pharmacology and Toxicology Research Unit (URPC), NARILIS, Department of Biomedical Sciences, Faculty of Medicine, University of Namur, Namur, Belgium
- WHO Collaborating Center for Epidemiology of Musculoskeletal Health and Aging, Division of Public Health, Epidemiology and Health Economics, University of Liège, Liege, Belgium
| | - Céline Demonceau
- WHO Collaborating Center for Epidemiology of Musculoskeletal Health and Aging, Division of Public Health, Epidemiology and Health Economics, University of Liège, Liege, Belgium
| | - Aurélie Ladang
- Department of Clinical Chemistry, CHU de Liège, University of Liège, Liege, Belgium
| | - Etienne Cavalier
- Department of Clinical Chemistry, CHU de Liège, University of Liège, Liege, Belgium
| | - Jean-Yves Reginster
- WHO Collaborating Center for Epidemiology of Musculoskeletal Health and Aging, Division of Public Health, Epidemiology and Health Economics, University of Liège, Liege, Belgium
| | - Olivier Bruyère
- WHO Collaborating Center for Epidemiology of Musculoskeletal Health and Aging, Division of Public Health, Epidemiology and Health Economics, University of Liège, Liege, Belgium
| | - Roland Chapurlat
- INSERM 1033, Lyon, France
- PMO, Lyon, France
- Hôpital E. Herriot, Hospices Civils de Lyon, Lyon, France
- University of Lyon, Lyon, France
| | | |
Collapse
|
7
|
Kataoka R, Hammert WB, Yamada Y, Song JS, Seffrin A, Kang A, Spitz RW, Wong V, Loenneke JP. The Plateau in Muscle Growth with Resistance Training: An Exploration of Possible Mechanisms. Sports Med 2024; 54:31-48. [PMID: 37787845 DOI: 10.1007/s40279-023-01932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2023] [Indexed: 10/04/2023]
Abstract
It is hypothesized that there is likely a finite ability for muscular adaptation. While it is difficult to distinguish between a true plateau following a long-term training period and short-term stalling in muscle growth, a plateau in muscle growth has been attributed to reaching a genetic potential, with limited discussion on what might physiologically contribute to this muscle growth plateau. The present paper explores potential physiological factors that may drive the decline in muscle growth after prolonged resistance training. Overall, with chronic training, the anabolic signaling pathways may become more refractory to loading. While measures of anabolic markers may have some predictive capabilities regarding muscle growth adaptation, they do not always demonstrate a clear connection. Catabolic processes may also constrain the ability to achieve further muscle growth, which is influenced by energy balance. Although speculative, muscle cells may also possess cell scaling mechanisms that sense and regulate their own size, along with molecular brakes that hinder growth rate over time. When considering muscle growth over the lifespan, there comes a point when the anabolic response is attenuated by aging, regardless of whether or not individuals approach their muscle growth potential. Our goal is that the current review opens avenues for future experimental studies to further elucidate potential mechanisms to explain why muscle growth may plateau.
Collapse
Affiliation(s)
- Ryo Kataoka
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - William B Hammert
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Yujiro Yamada
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Jun Seob Song
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Aldo Seffrin
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Anna Kang
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Robert W Spitz
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Vickie Wong
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA
| | - Jeremy P Loenneke
- Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, P.O. Box 1848, University, MS, 38677, USA.
| |
Collapse
|
8
|
Xu JQ, Pan YK, Zhang JX, Dai SX, Xu LS. Sarcopenia in liver cirrhosis: perspectives from epigenetics and microbiota. Front Med (Lausanne) 2023; 10:1264205. [PMID: 37881635 PMCID: PMC10595017 DOI: 10.3389/fmed.2023.1264205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023] Open
Abstract
Sarcopenia is characterized by the loss of muscle mass and function. It is well known that sarcopenia is often associated with aging, while in recent years, sarcopenia comorbid with chronic diseases such as cirrhosis has attracted widespread attention, whose underlying molecular mechanisms remain unclear. Since cirrhosis and sarcopenia are assumed to be closely interrelated in terms of pathogenesis, this review innovatively discussed the role of epigenetic modifications and microecological dysregulation in sarcopenia in the context of liver cirrhosis. Here we illustrated the relationship between sarcopenia and cirrhosis in the aspect of epigenetics, dysbiosis, and the crosstalk between gene modifications and intestinal microecology. Furthermore, the alterations in cirrhosis patients with sarcopenia, such as inflammatory response and oxidative stress, are found to present synergistic effects in the pathways of epigenetics and dysbiosis leading to sarcopenia. This review proposes that microbiome-based therapies are promising to break the vicious cycle between epigenetic modification and dysbiosis, providing strong support for the use of intestinal microecological interventions to prevent sarcopenia in cirrhotic patients.
Collapse
Affiliation(s)
- Jia-qi Xu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yu-ke Pan
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jie-xin Zhang
- Department of Joint Surgery, Orthopedic Hospital of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Shi-xue Dai
- Department of Gastroenterology, Guangdong Provincial Geriatrics Institute, National Key Clinical Specialty, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Gastroenterology, Geriatric Center, National Regional Medical Center, Ganzhou Hospital Affiliated to Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Ganzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Li-shu Xu
- Department of Gastroenterology, Guangdong Provincial Geriatrics Institute, National Key Clinical Specialty, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Ni PS, Ma S, Wang ZZ, He JH, Zhang CK, Li BM, Yu XM, Li FH. Indirect regulation of HIPPO pathway by miRNA mediates high-intensity intermittent exercise to ameliorate aging skeletal muscle function. Scand J Med Sci Sports 2023; 33:834-847. [PMID: 36789636 DOI: 10.1111/sms.14338] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/16/2023]
Abstract
Exercise-induced microRNA (miRNA) and HIPPO pathways participate in the regulation of skeletal muscle plasticity but their underlying mechanisms remain unclear. We aimed to investigate the effect of high-intensity interval training (HIIT) on miRNA expression and the HIPPO pathway in the skeletal muscle of aging rats to determine its role in the amelioration of muscle aging. Thirty-six 18-month-old female rats were randomly divided into sedentary control (SED, n = 12), moderate-intensity continuous training (MICT, n = 12), and HIIT (n = 12) groups, with continuous exercise for 8 months. Quantitative reverse transcription-polymerase chain reaction, immunoblotting, KEGG enrichment, and dual-luciferase assays were performed on the target skeletal muscle. Compared with the SED group, the MICT and HIIT groups showed a significant trend of improvement in Lee's index and grip strength and a marked increase in skeletal muscle mitochondrial function, apoptosis, antioxidant, and lipolysis-related protein expression. They also exhibited PI3K/AKT pathway activation and a decrease in expression of HIPPO pathway-related proteins; 20 miRNAs were differentially expressed and enriched in the exercise group compared with the SED group, including the HIPPO pathway and metabolic pathways. Further analysis of L6 cells confirmed that miR-182 may target PTEN, which indirectly regulates HIPPO signaling, but not Mob1. the combined application of HIIT and MICT increased the antioxidant and lipolytic capacities of skeletal muscle and improved atrophy of aging skeletal muscle; HIIT was more effective than MICT. This may be related to HIIT-mediated AKT pathway activation and HIPPO pathway inhibition by miRNAs (miR-486 and miR-182).
Collapse
Affiliation(s)
- Pin-Shi Ni
- School of Sport Sciences, Nanjing Normal University, Nanjing, China
| | - Song Ma
- School of Sport Sciences, Nanjing Normal University, Nanjing, China
| | - Zhuang-Zhi Wang
- School of Sport Sciences, Nanjing Normal University, Nanjing, China
| | - Jia-Han He
- School of Sport Sciences, Nanjing Normal University, Nanjing, China
| | - Chen-Kai Zhang
- School of Sport Sciences, Nanjing Normal University, Nanjing, China
| | - Bo-Ming Li
- School of Sport Sciences, Nanjing Normal University, Nanjing, China
| | - Xiao-Ming Yu
- Shanghai Seventh People's Hospital, Shanghai, China
| | - Fang-Hui Li
- School of Sport Sciences, Nanjing Normal University, Nanjing, China.,School of Sport Sciences, Zhaoqing University, Zhaoqing, China
| |
Collapse
|
10
|
Hu Z, Tian Y, Song X, Zeng F, Yang A. Associations between sarcopenia with asthmatic prevalence, lung function and comorbidity. BMC Geriatr 2022; 22:703. [PMID: 36002808 PMCID: PMC9404581 DOI: 10.1186/s12877-022-03394-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Sarcopenia is listed as a treatment trait in behavioral/risk factors for severe asthma, but studies on asthma and sarcopenia are lacking. This study aimed to determine the associations between sarcopenia with asthmatic prevalence, symptoms, lung function and comorbidities. METHODS Fifteen thousand four hundred four individuals from the China Health and Retirement Longitudinal Study(CHARLS) and 10,263 individuals from the Study on global AGEing and adult health(SAGE) in China were included in this study. Four components of this study were used to assess the bidirectional association in the prevalence between sarcopenia with asthma, and estimate the relationships between sarcopenia with asthmatic symptoms, lung function and comorbidities via generalized additive models. The 10-item Center for Epidemiological Studies-Depression Scale ≥ 12 scores was classified as depression. RESULTS In the CHARLS and SAGE, the prevalence of sarcopenia in asthmatics was higher than those without asthma. Asthmatics with sarcopenia had a significantly increased prevalence of severe shortness of breath(sarcopenia yes vs. no, adjusted OR = 3.71, 95%CI: 1.43-9.60) and airway obstruction in the SAGE(sarcopenia yes vs. no, adjusted OR = 6.82, 95%CI: 2.54-18.34) and an obvious reduction of PEF in the CHARLS and SAGE(sarcopenia yes vs. no, adjusted RR = 0.86, 95%CI: 0.82-0.91) compared to asthmatics without sarcopenia. The presence of sarcopenia was positively associated with the prevalence of chronic obstructive pulmonary disease(sarcopenia yes vs no, adjusted OR = 5.76, 95%CI:2.01-16.5) and depression(sarcopenia yes vs no, adjusted OR = 1.87, 95%CI:1.11-3.14) in asthmatics. CONCLUSIONS Our findings indicated that sarcopenia partakes in the development of asthma by affecting lung function and comorbidities and maybe considered a treatable trait of asthma management.
Collapse
Affiliation(s)
- Zhigang Hu
- Department of Respiratory and Critical Care Medicine, The First College of Clinical Medicine Science, China Three Gorges University, Yichang, 443003 People’s Republic of China
- Department of Respiratory and Critical Care Medicine, Yichang Central People’s Hospital at Zhijiang, NO. 183 Yiling Road, Zhijiang, 443003 People’s Republic of China
- Department of Respiratory and Critical Care Medicine, Yichang Central People’s Hospital, Yichang, 443003 People’s Republic of China
| | - Yufeng Tian
- Department of Academic Management, Clinical Research Center, China Three Gorges University, NO. 183 Yiling Road, Yichang, 443003 People’s Republic of China
| | - Xinyu Song
- Department of Respiratory and Critical Care Medicine, The First College of Clinical Medicine Science, China Three Gorges University, Yichang, 443003 People’s Republic of China
- Department of Respiratory and Critical Care Medicine, Yichang Central People’s Hospital, Yichang, 443003 People’s Republic of China
| | - Fanjun Zeng
- Department of Respiratory and Critical Care Medicine, The First College of Clinical Medicine Science, China Three Gorges University, Yichang, 443003 People’s Republic of China
- Department of Respiratory and Critical Care Medicine, Yichang Central People’s Hospital, Yichang, 443003 People’s Republic of China
| | - Ailan Yang
- Department of Respiratory and Critical Care Medicine, Yichang Central People’s Hospital at Zhijiang, NO. 183 Yiling Road, Zhijiang, 443003 People’s Republic of China
| |
Collapse
|
11
|
Dato S, Crocco P, Iannone F, Passarino G, Rose G. Biomarkers of Frailty: miRNAs as Common Signatures of Impairment in Cognitive and Physical Domains. BIOLOGY 2022; 11:1151. [PMID: 36009778 PMCID: PMC9405439 DOI: 10.3390/biology11081151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
The past years have seen an increasing concern about frailty, owing to the growing number of elderly people and the major impact of this syndrome on health and social care. The identification of frail people passes through the use of different tests and biomarkers, whose concerted analysis helps to stratify the populations of patients according to their risk profile. However, their efficiency in prognosis and their capability to reflect the multisystemic impairment of frailty is discussed. Recent works propose the use of miRNAs as biological hallmarks of physiological impairment in different organismal districts. Changes in miRNAs expression have been described in biological processes associated with phenotypic outcomes of frailty, opening intriguing possibilities for their use as biomarkers of fragility. Here, with the aim of finding reliable biomarkers of frailty, while considering its complex nature, we revised the current literature on the field, for uncovering miRNAs shared across physical and cognitive frailty domains. By applying in silico analyses, we retrieved the top-ranked shared miRNAs and their targets, finally prioritizing the most significant ones. From this analysis, ten miRNAs emerged which converge into two main biological processes: inflammation and energy homeostasis. Such markers, if validated, may offer promising capabilities for early diagnosis of frailty in the elderly population.
Collapse
Affiliation(s)
- Serena Dato
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.C.); (F.I.); (G.P.); (G.R.)
| | | | | | | | | |
Collapse
|
12
|
Long DE, Peck BD, Lavin KM, Dungan CM, Kosmac K, Tuggle SC, Bamman MM, Kern PA, Peterson CA. Skeletal muscle properties show collagen organization and immune cell content are associated with resistance exercise response heterogeneity in older persons. J Appl Physiol (1985) 2022; 132:1432-1447. [PMID: 35482328 DOI: 10.1152/japplphysiol.00025.2022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In older individuals, hypertrophy from progressive resistance training (PRT) is compromised in approximately one- third of participants in exercise trials. The objective of this study was to establish novel relationships between baseline muscle features and/or their PRT-induced change in vastus lateralis muscle biopsies with hypertrophy outcomes. Multiple linear regression analyses adjusted for sex were performed on phenotypic data from older adults (n=48, 70.8±4.5 years) completing 14 weeks of PRT. Results show that baseline muscle size associates with growth regardless of hypertrophy outcome measure (fiber cross-sectional area (fCSA), β=-0.76, Adj. p<0.01; thigh muscle area by CT, β=-0.75, Adj. p<0.01; DXA thigh lean mass, β=-0.47, Adj. p<0.05). Furthermore, loosely packed collagen organization (β=-0.44, Adj. p<0.05) and abundance of CD11b+/CD206- immune cells (β=-0.36, Adj. p=0.10) were negatively associated with whole muscle hypertrophy, with a significant sex interaction on the latter. Additionally, a composite hypertrophy score generated using all three measures reinforces significant fiber level findings that changes in myonuclei (β=0.67, Adj. p<0.01), changes in immune cells (β=0.48, Adj. p<0.05; both CD11b+/CD206+ and CD11b+/CD206- cells), and capillary density (β=0.56, Adj. p<0.01) are significantly associated with growth. Exploratory single cell RNA-sequencing of CD11b+ cells in muscle in response to resistance exercise showed that macrophages have a mixed phenotype. Collagen associations with macrophages may be an important aspect in muscle response heterogeneity. Detailed histological phenotyping of muscle combined with multiple measures of growth response to resistance training in older persons identify potential new mechanisms underlying response heterogeneity and possible sex differences.
Collapse
Affiliation(s)
- Douglas E Long
- Department of Physical Therapy and Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| | - Bailey D Peck
- Department of Physical Therapy and Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| | - Kaleen M Lavin
- Florida Institute for Human and Machine Cognition, Pensacola, FL, United States
| | - Cory M Dungan
- Department of Physical Therapy and Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| | - Kate Kosmac
- Department of Physical Therapy and Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| | - Steven Craig Tuggle
- Florida Institute for Human and Machine Cognition, Pensacola, FL, United States.,Center for Exercise Medicine and Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Marcas M Bamman
- Florida Institute for Human and Machine Cognition, Pensacola, FL, United States.,Center for Exercise Medicine and Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Philip A Kern
- Department of Internal Medicine, Division of Endocrinology, and Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, United States
| | - Charlotte A Peterson
- Department of Physical Therapy and Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
13
|
Lavin KM, Coen PM, Baptista LC, Bell MB, Drummer D, Harper SA, Lixandrão ME, McAdam JS, O’Bryan SM, Ramos S, Roberts LM, Vega RB, Goodpaster BH, Bamman MM, Buford TW. State of Knowledge on Molecular Adaptations to Exercise in Humans: Historical Perspectives and Future Directions. Compr Physiol 2022; 12:3193-3279. [PMID: 35578962 PMCID: PMC9186317 DOI: 10.1002/cphy.c200033] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
For centuries, regular exercise has been acknowledged as a potent stimulus to promote, maintain, and restore healthy functioning of nearly every physiological system of the human body. With advancing understanding of the complexity of human physiology, continually evolving methodological possibilities, and an increasingly dire public health situation, the study of exercise as a preventative or therapeutic treatment has never been more interdisciplinary, or more impactful. During the early stages of the NIH Common Fund Molecular Transducers of Physical Activity Consortium (MoTrPAC) Initiative, the field is well-positioned to build substantially upon the existing understanding of the mechanisms underlying benefits associated with exercise. Thus, we present a comprehensive body of the knowledge detailing the current literature basis surrounding the molecular adaptations to exercise in humans to provide a view of the state of the field at this critical juncture, as well as a resource for scientists bringing external expertise to the field of exercise physiology. In reviewing current literature related to molecular and cellular processes underlying exercise-induced benefits and adaptations, we also draw attention to existing knowledge gaps warranting continued research effort. © 2021 American Physiological Society. Compr Physiol 12:3193-3279, 2022.
Collapse
Affiliation(s)
- Kaleen M. Lavin
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Paul M. Coen
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Liliana C. Baptista
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Margaret B. Bell
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Devin Drummer
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sara A. Harper
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Manoel E. Lixandrão
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeremy S. McAdam
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Samia M. O’Bryan
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sofhia Ramos
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Lisa M. Roberts
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rick B. Vega
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Bret H. Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Advent Health, Orlando, Florida, USA
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida, USA
| | - Marcas M. Bamman
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for Human Health, Resilience, and Performance, Institute for Human and Machine Cognition, Pensacola, Florida, USA
| | - Thomas W. Buford
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Medicine, Division of Gerontology, Geriatrics and Palliative Care, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
14
|
Chen GQ, Wang GP, Lian Y. Relationships Between Depressive Symptoms, Dietary Inflammatory Potential, and Sarcopenia: Mediation Analyses. Front Nutr 2022; 9:844917. [PMID: 35252313 PMCID: PMC8891449 DOI: 10.3389/fnut.2022.844917] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/14/2022] [Indexed: 12/25/2022] Open
Abstract
Background Sarcopenia is a major public health problem. Depressive symptoms and dietary inflammatory potential play important roles in the development of sarcopenia. We aimed to disentangle the relationships between depressive symptoms, dietary inflammatory potential, and sarcopenia. Methods A total of 6,082 participants from the National Health and Nutrition Examination Survey (NHANES) were included in the analyses. Sarcopenia was defined according to the Foundation for the National Institutes for Health (FNIH) criteria. The Depressive symptoms were assessed using the nine-item Patient Health Questionnaire (PHQ-9). Dietary Inflammatory Index (DII) was calculated based on 24-h dietary recall interview. Two sets of mediation models were constructed separately. Results Depressive symptoms and DII were associated with sarcopenia, with odds ratios [ORs] (95% CIs) 2.54 (1.27, 5.13) and 1.17 (1.00, 1.37), respectively. DII score mediated the association of depressive symptoms with low muscle mass, explaining a total of 10.53% of the association (indirect effect = 0.004). Depressive symptoms had a significant mediating effects on the association between DII with low muscle mass, explaining a total of 12.50% of the association (indirect effect = 0.001). Conclusions Our findings suggested that both depressive symptoms and dietary inflammatory potential had direct effects, and indirect effects on low muscle mass, handgrip strength, muscle mass, through each other. It provides important insights into integrated nutritional and psychological intervention strategies in preventing sarcopenia.
Collapse
Affiliation(s)
- Guo-Qiang Chen
- Department of Health Management and Shandong Engineering Laboratory for Health Management, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Medical Record Management and Statistics, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Gang-Pu Wang
- Department of General Surgery, The Fourth People's Hospital of Jinan City, Jinan, China
| | - Ying Lian
- Department of Health Management and Shandong Engineering Laboratory for Health Management, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Department of Medical Record Management and Statistics, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
- *Correspondence: Ying Lian
| |
Collapse
|
15
|
Noncoding RNAs-associated ceRNA networks involved in the amelioration of skeletal muscle aging after whey protein supplementation. J Nutr Biochem 2022; 104:108968. [DOI: 10.1016/j.jnutbio.2022.108968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 01/06/2022] [Accepted: 01/19/2022] [Indexed: 11/23/2022]
|
16
|
Buchanan SR, Miller RM, Nguyen M, Black CD, Kellawan JM, Bemben MG, Bemben DA. Circulating microRNA responses to acute whole-body vibration and resistance exercise in postmenopausal women. Front Endocrinol (Lausanne) 2022; 13:1038371. [PMID: 36440217 PMCID: PMC9692005 DOI: 10.3389/fendo.2022.1038371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
Evaluating alterations in circulating microRNA (c-miRNA) expression may provide deeper insight into the role of exercise in the attenuation of the negative effects of aging on musculoskeletal health. Currently, there are sparse data on c-miRNA responses to acute exercise in postmenopausal women. The purpose of this study was to characterize the effects of acute bouts of resistance exercise and whole-body vibration on expression of selected c-miRNAs in postmenopausal women aged 65-76 years (n=10). We also examined relationships between c-miRNAs and muscle strength and bone characteristics. This randomized crossover design study compared c-miRNA responses to a bout of resistance exercise (RE) (3 sets 10 reps 70% 1 repetition maximum (1RM), 5 exercises) and a bout of whole-body vibration (WBV) (5 sets 1 min bouts 20Hz 3.38mm peak to peak displacement, Vibraflex vibration platform). DXA was used to measure body composition and areal bone mineral density (aBMD) of the total body, AP lumbar spine, and dual proximal femur. pQCT was used to measure tibia bone characteristics (4%, 38%, 66% sites). Blood samples were collected before exercise (Pre), immediately-post (IP), 60 minutes post (60P), 24 hours (24H), and 48 hours (48H) after exercise to measure serum miR-21-5p, -23a-3p, -133a-3p, -148a-3p (qPCR) and TRAP5b (ELISA). There was a significant modality × time interaction for c-miR-21-5p expression (p=0.019), which decreased from 60P to 24H after WBV only. TRAP5b serum concentrations significantly increased IP then decreased below Pre at 24H for both WBV and RE (p<0.01). Absolute changes in TRAP5b were negatively correlated with c-miR-21-5p fold changes (r= -0.642 to -0.724, p<0.05) for both exercise modalities. There were significant negative correlations between baseline c-miRNAs and bone status variables (r= -0.639 to -0.877, p<0.05). Our findings suggest that whole-body vibration is a sufficient mechanical stimulus for altering c-miR-21-5p expression, whereas a high intensity resistance exercise protocol did not elicit any c-miRNA responses in postmenopausal women. Increases in the bone resorption marker, TRAP5b, were associated with greater downregulation of c-miR-21-5p expression.
Collapse
Affiliation(s)
- Samuel R. Buchanan
- Department of Health and Human Performance, University of Texas Rio Grande Valley, Edinburg, TX, United States
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
- *Correspondence: Samuel R. Buchanan,
| | - Ryan M. Miller
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
| | - Michelle Nguyen
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
| | - Christopher D. Black
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
| | - J. Mikhail Kellawan
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
| | - Michael G. Bemben
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
| | - Debra A. Bemben
- Department of Health and Exercise Science, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
17
|
Valášková S, Gažová A, Vrbová P, Koller T, Šalingová B, Adamičková A, Chomaničová N, Hulajová N, Payer J, Kyselovič J. The Severity of Muscle Performance Deterioration in Sarcopenia Correlates With Circulating Muscle Tissue-Specific miRNAs. Physiol Res 2021. [DOI: 10.33549//physiolres.934778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Sarcopenia is defined as an age-associated loss of skeletal muscle function and muscle mass and is common in older adults. Sarcopenia as a disease is currently of interest not only to orthopedists and surgeons but also to internists, endocrinologists, rheumatologists, cardiologists, diabetologists, gynaecologists, geriatricians and paediatricians. In cooperation with the 5th Internal Medicine Clinic, we, as a unit of clinical research, aimed to describe a sarcopenic specific miRNA expression profile for disease diagnostics and classification of the severity of muscle performance deterioration. This study included a total of 80 patients (age 55-86 years) hospitalized at the V. Internal medicine clinic of LFUK and UNB with different severity of muscle performance deterioration. The study participants were evaluated and classified according to short physical performance battery score (SPPB). In this study, we investigated the role of circulating miRNAs in sarcopenia in the elderly. We hypothesized that sarcopenia effects the expression of muscle tissue-specific miRNAs (MyomiRNAs), which could be potentially reflected in the blood plasma miRNA expression profile. The expression of specific circulating miRNAs in patients with different muscle performances was analyzed. Patients’ blood plasma was evaluated for the expression of myomiRNAs: miRNA-29a, miRNA-29b, miRNA-1, miRNA-133a, miRNA-133b, miRNA-206, miRNA-208b and miRNA-499, and the data were correlated with diagnostic indicators of the disease. We showed a specific sarcopenia miRNA profile that could be considered a possible biomarker for the disease. Patients with low muscle performance showed increased miRNA-1, miRNA-29a and miRNA-29b expression and decreased for the miRNA-206, miRNA-133a, miRNA-133b, miRNA-208b and miRNA-499 expression. We show that the severity of muscle performance deterioration in sarcopenia correlates with specific miRNA expression. We also propose the profile of miRNAs expression in blood plasma as a specific biomarker for sarcopenia diagnostics. Future clinical studies will be necessary to eventually naturally have to elucidate the underlined molecular mechanism responsible for specific miRNAs expression in sarcopenia pathology and progression of the disease.
Collapse
Affiliation(s)
| | - A. Gažová
- Institute of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Comenius University Bratislava, Slovak Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Vrbová P, Valášková S, Gažová A, Smaha J, Kužma M, Kyselovič J, Payer J, Koller T. Biomarkers of the Physical Function Mobility Domains Among
Patients Hospitalized in Internal Medicine. Physiol Res 2021. [DOI: 10.33549//physiolres.934777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Hospitalized patients in internal medicine have an increased risk of low physical reserve which further declines during the hospital stay. The diagnosis requires bed-side testing of functional domains or more complex investigations of the muscle mass. Clinically useful biomarkers of functional status are needed, thus we aimed to explore the potential of microRNAs. Among hospitalized patients, we recorded the basic demographics, anthropometrics, nutritional status, and physical function domains: hand-grip strength (HGS, abnormal values M<30 kg, W<20 kg), balance (<30 s), chair-stands speed (CHSS<0.5/s) and gait speed (GS<0.8 m/s). A panel of five micro-RNAs (miRNA 1, miRNA 133a, miRNA 133b, miRNA 29a, miRNA 29b) and basic blood biochemistry and vitamin D values were recorded. We enrolled 80 patients (M40, W40), with a mean age of 68.8±8.4 years. Obesity was observed in 27.5 % and 30 %, low HGS and low CHSS in 65.0, 77.5 %, and 80, 90 % of men and women respectively. The median hospital stay was 6.5 days. MiRNA29a and miRNA29b have the strongest correlation with the triceps skinfold (miRNA 29b, r=0.377, p=0.0006) and CHSS (miRNA 29a, r=0.262, p=0.02). MiRNA 29a, miRNA 29b and 133a levels were significantly higher in patients with CHSS<0.5/s. Other anthropometric parameters, mobility domains, or vitamin D did not correlate. All miRNAs except of miRNA 1, could predict low CHSS (miRNA29b, AUROC=0.736 CI 0.56-0.91, p=0.01), particularly in patients with low HGS (miRNA 29b, AUROC=0.928 CI 0.83-0.98). Among hospitalized patients in internal medicine, low functional status was frequent. MicroRNAs were fair biomarkers of the antigravity domain, but not other domains. Larger studies with clinical endpoints are needed.
Collapse
Affiliation(s)
- P. Vrbová
- 5th Department of Internal Medicine, Comenius University Faculty of Medicine, University Hospital Bratislava, Bratislava, Slovakia.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Vrbová P, Valášková S, Gažová A, Smaha J, Kužma M, Kyselovič J, Payer J, Koller T. Biomarkers of the Physical Function Mobility Domains Among Patients Hospitalized in Internal Medicine. Physiol Res 2021; 70:S79-S89. [PMID: 34918532 PMCID: PMC8884383 DOI: 10.33549/physiolres.934777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/13/2021] [Indexed: 11/25/2022] Open
Abstract
Hospitalized patients in internal medicine have an increased risk of low physical reserve which further declines during the hospital stay. The diagnosis requires bed-side testing of functional domains or more complex investigations of the muscle mass. Clinically useful biomarkers of functional status are needed, thus we aimed to explore the potential of microRNAs. Among hospitalized patients, we recorded the basic demographics, anthropometrics, nutritional status, and physical function domains: hand-grip strength (HGS, abnormal values M<30 kg, W<20 kg), balance (<30 s), chair-stands speed (CHSS<0.5/s) and gait speed (GS<0.8 m/s). A panel of five micro-RNAs (miRNA 1, miRNA 133a, miRNA 133b, miRNA 29a, miRNA 29b) and basic blood biochemistry and vitamin D values were recorded. We enrolled 80 patients (M40, W40), with a mean age of 68.8±8.4 years. Obesity was observed in 27.5 % and 30 %, low HGS and low CHSS in 65.0, 77.5 %, and 80, 90 % of men and women respectively. The median hospital stay was 6.5 days. MiRNA29a and miRNA29b have the strongest correlation with the triceps skinfold (miRNA 29b, r=0.377, p=0.0006) and CHSS (miRNA 29a, r=0.262, p=0.02). MiRNA 29a, miRNA 29b and 133a levels were significantly higher in patients with CHSS<0.5/s. Other anthropometric parameters, mobility domains, or vitamin D did not correlate. All miRNAs except of miRNA 1, could predict low CHSS (miRNA29b, AUROC=0.736 CI 0.56-0.91, p=0.01), particularly in patients with low HGS (miRNA 29b, AUROC=0.928 CI 0.83-0.98). Among hospitalized patients in internal medicine, low functional status was frequent. MicroRNAs were fair biomarkers of the antigravity domain, but not other domains. Larger studies with clinical endpoints are needed.
Collapse
Affiliation(s)
- P Vrbová
- 5th Department of Internal Medicine, Comenius University Faculty of Medicine, University Hospital Bratislava, Slovak Republic.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Valášková S, Gažová A, Vrbová P, Koller T, Šalingova B, Adamičková A, Chomaničová N, Hulajová N, Payer J, Kyselovič J. The Severity of Muscle Performance Deterioration in Sarcopenia Correlates With Circulating Muscle Tissue-Specific miRNAs. Physiol Res 2021; 70:S91-S98. [PMID: 35503054 PMCID: PMC8884374 DOI: 10.33549/physiolres.934778] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/27/2021] [Indexed: 11/25/2022] Open
Abstract
Sarcopenia is defined as an age-associated loss of skeletal muscle function and muscle mass and is common in older adults. Sarcopenia as a disease is currently of interest not only to orthopedists and surgeons but also to internists, endocrinologists, rheumatologists, cardiologists, diabetologists, gynaecologists, geriatricians and paediatricians. In cooperation with the 5th Internal Medicine Clinic, we, as a unit of clinical research, aimed to describe a sarcopenic specific miRNA expression profile for disease diagnostics and classification of the severity of muscle performance deterioration. This study included a total of 80 patients (age 55-86 years) hospitalized at the V. Internal medicine clinic of LFUK and UNB with different severity of muscle performance deterioration. The study participants were evaluated and classified according to short physical performance battery score (SPPB). In this study, we investigated the role of circulating miRNAs in sarcopenia in the elderly. We hypothesized that sarcopenia effects the expression of muscle tissue-specific miRNAs (MyomiRNAs), which could be potentially reflected in the blood plasma miRNA expression profile. The expression of specific circulating miRNAs in patients with different muscle performances was analyzed. Patients' blood plasma was evaluated for the expression of myomiRNAs: miRNA-29a, miRNA-29b, miRNA-1, miRNA-133a, miRNA-133b, miRNA-206, miRNA-208b and miRNA-499, and the data were correlated with diagnostic indicators of the disease. We showed a specific sarcopenia miRNA profile that could be considered a possible biomarker for the disease. Patients with low muscle performance showed increased miRNA-1, miRNA-29a and miRNA-29b expression and decreased for the miRNA-206, miRNA-133a, miRNA-133b, miRNA-208b and miRNA-499 expression. We show that the severity of muscle performance deterioration in sarcopenia correlates with specific miRNA expression. We also propose the profile of miRNAs expression in blood plasma as a specific biomarker for sarcopenia diagnostics. Future clinical studies will be necessary to eventually naturally have to elucidate the underlined molecular mechanism responsible for specific miRNAs expression in sarcopenia pathology and progression of the disease.
Collapse
Affiliation(s)
- S Valášková
- Institute of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Comenius University Bratislava, Slovak Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Cannataro R, Carbone L, Petro JL, Cione E, Vargas S, Angulo H, Forero DA, Odriozola-Martínez A, Kreider RB, Bonilla DA. Sarcopenia: Etiology, Nutritional Approaches, and miRNAs. Int J Mol Sci 2021; 22:9724. [PMID: 34575884 PMCID: PMC8466275 DOI: 10.3390/ijms22189724] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023] Open
Abstract
Sarcopenia, an age-related decline in skeletal muscle mass and function, dramatically affects the quality of life. Although there is a consensus that sarcopenia is a multifactorial syndrome, the etiology and underlying mechanisms are not yet delineated. Moreover, research about nutritional interventions to prevent the development of sarcopenia is mainly focused on the amount and quality of protein intake. The impact of several nutrition strategies that consider timing of food intake, anti-inflammatory nutrients, metabolic control, and the role of mitochondrial function on the progression of sarcopenia is not fully understood. This narrative review summarizes the metabolic background of this phenomenon and proposes an integral nutritional approach (including dietary supplements such as creatine monohydrate) to target potential molecular pathways that may affect reduce or ameliorate the adverse effects of sarcopenia. Lastly, miRNAs, in particular those produced by skeletal muscle (MyomiR), might represent a valid tool to evaluate sarcopenia progression as a potential rapid and early biomarker for diagnosis and characterization.
Collapse
Affiliation(s)
- Roberto Cannataro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy
- Research Division, Dynamical Business & Science Society, DBSS International SAS, Bogotá 110311, Colombia; (J.L.P.); (S.V.); (D.A.B.)
| | - Leandro Carbone
- Research Division, Dynamical Business & Science Society, DBSS International SAS, Bogotá 110311, Colombia; (J.L.P.); (S.V.); (D.A.B.)
- Faculty of Medicine, University of Salvador, Buenos Aires 1020, Argentina
| | - Jorge L. Petro
- Research Division, Dynamical Business & Science Society, DBSS International SAS, Bogotá 110311, Colombia; (J.L.P.); (S.V.); (D.A.B.)
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy
| | - Salvador Vargas
- Research Division, Dynamical Business & Science Society, DBSS International SAS, Bogotá 110311, Colombia; (J.L.P.); (S.V.); (D.A.B.)
- Faculty of Sport Sciences, EADE-University of Wales Trinity Saint David, 29018 Málaga, Spain
| | - Heidy Angulo
- Grupo de Investigación Programa de Medicina (GINUMED), Corporación Universitaria Rafael Núñez, Cartagena 130001, Colombia;
| | - Diego A. Forero
- Health and Sport Sciences Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 111221, Colombia;
| | - Adrián Odriozola-Martínez
- Sport Genomics Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain;
- kDNA Genomics, Joxe Mari Korta Research Center, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Texas A&M University, College Station, TX 77843, USA;
| | - Diego A. Bonilla
- Research Division, Dynamical Business & Science Society, DBSS International SAS, Bogotá 110311, Colombia; (J.L.P.); (S.V.); (D.A.B.)
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
- kDNA Genomics, Joxe Mari Korta Research Center, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
- Research Group in Biochemistry and Molecular Biology, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia
| |
Collapse
|
22
|
GAO HAOEN, LI FANGHUI, XIE TIAN, MA SONG, QIAO YIBO, WU DASHUAI, SUN LEI. Lifelong Exercise in Age Rats Improves Skeletal Muscle Function and MicroRNA Profile. Med Sci Sports Exerc 2021; 53:1873-1882. [PMID: 34398060 PMCID: PMC8360668 DOI: 10.1249/mss.0000000000002661] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE Lifelong exercise is known to attenuate sarcopenia (age-associated reduction in muscle mass and function); however, the underlying molecular mechanisms remain unclear. As microRNAs are widely involved in the regulation of skeletal muscle growth and development, we aimed to evaluate the effects of lifelong regular exercise on age-related alterations in muscle microRNA expression profiles as well as on skeletal muscle atrophy, apoptosis, and mitochondria and autophagy dysfunction. METHODS Female 8-month-old Sprague-Dawley rats were divided into four groups; 1) 18 months of moderate-intensity continuous training (MICT) initiated at 8 months (adult-MICT, n = 12), 2) 8 months of MICT initiated at 18 months (presarcopenia-MICT, n = 12), 3) 8-month-old adult sedentary controls (adult-SED), and 4) 26-month-old aging sedentary controls (old-SED). Age skeletal muscles were then subjected to quantitative reverse transcription-polymerase chain reaction, Kyoto Encyclopedia of Genes and Genomes, immunoblotting, and miR-486 3' untranslated region luciferase reporter gene analyses. RESULTS Age-related loss of miR-486 expression was improved, skeletal muscle atrophy and apoptosis were downregulated, and mitochondrial activity and autophagy were upregulated in the adult-MICT group. Kyoto Encyclopedia of Genes and Genomes analysis revealed that the PI3K/Akt pathway was upregulated in adult-MICT rats compared with that in old-SED. In vitro analyses in rat skeletal muscle L6 cells further confirmed that miR-486 targets PTEN, not SAV1, thereby activating the PI3K/Akt pathway and indirectly inhibiting HIPPO signaling. CONCLUSIONS Compared with presarcopenia-MICT rats, adult-MICT rats experienced greater beneficial effects regarding ameliorated age-related alterations in muscle miRNA expression profile, skeletal muscle atrophy, apoptosis, and mitochondria and autophagy dysfunction, which is potentially associated with the increased miR-486 expression and concomitant targeting of the PTEN/Akt signaling pathway.
Collapse
|
23
|
Kanakis I, Alameddine M, Folkes L, Moxon S, Myrtziou I, Ozanne SE, Peffers MJ, Goljanek-Whysall K, Vasilaki A. Small-RNA Sequencing Reveals Altered Skeletal Muscle microRNAs and snoRNAs Signatures in Weanling Male Offspring from Mouse Dams Fed a Low Protein Diet during Lactation. Cells 2021; 10:cells10051166. [PMID: 34064819 PMCID: PMC8150574 DOI: 10.3390/cells10051166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 12/18/2022] Open
Abstract
Maternal diet during gestation and lactation affects the development of skeletal muscles in offspring and determines muscle health in later life. In this paper, we describe the association between maternal low protein diet-induced changes in offspring skeletal muscle and the differential expression (DE) of small non-coding RNAs (sncRNAs). We used a mouse model of maternal protein restriction, where dams were fed either a normal (N, 20%) or a low protein (L, 8%) diet during gestation and newborns were cross-fostered to N or L lactating dams, resulting in the generation of NN, NL and LN offspring groups. Total body and tibialis anterior (TA) weights were decreased in weanling NL male offspring but were not different in the LN group, as compared to NN. However, histological evaluation of TA muscle revealed reduced muscle fibre size in both groups at weaning. Small RNA-sequencing demonstrated DE of multiple miRs, snoRNAs and snRNAs. Bioinformatic analyses of miRs-15a, -34a, -122 and -199a, in combination with known myomiRs, confirmed their implication in key muscle-specific biological processes. This is the first comprehensive report for the DE of sncRNAs in nutrition-associated programming of skeletal muscle development, highlighting the need for further research to unravel the detailed molecular mechanisms.
Collapse
Affiliation(s)
- Ioannis Kanakis
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
- Chester Medical School, Faculty of Medicine and Life Sciences, University of Chester, Chester CH2 1BR, UK;
- Correspondence: or
| | - Moussira Alameddine
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
| | - Leighton Folkes
- School of Biological Sciences, Faculty of Science, University of East Anglia, Norwich NR4 7TJ, UK; (L.F.); (S.M.)
| | - Simon Moxon
- School of Biological Sciences, Faculty of Science, University of East Anglia, Norwich NR4 7TJ, UK; (L.F.); (S.M.)
| | - Ioanna Myrtziou
- Chester Medical School, Faculty of Medicine and Life Sciences, University of Chester, Chester CH2 1BR, UK;
| | - Susan E. Ozanne
- Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK;
| | - Mandy J. Peffers
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
| | - Katarzyna Goljanek-Whysall
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
- Department of Physiology, School of Medicine and REMEDI, CMNHS, NUI Galway, Galway H91 TK33, Ireland
| | - Aphrodite Vasilaki
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK; (M.A.); (M.J.P.); (K.G.-W.); (A.V.)
| |
Collapse
|
24
|
Wilhelmsen A, Tsintzas K, Jones SW. Recent advances and future avenues in understanding the role of adipose tissue cross talk in mediating skeletal muscle mass and function with ageing. GeroScience 2021; 43:85-110. [PMID: 33528828 PMCID: PMC8050140 DOI: 10.1007/s11357-021-00322-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/01/2021] [Indexed: 12/15/2022] Open
Abstract
Sarcopenia, broadly defined as the age-related decline in skeletal muscle mass, quality, and function, is associated with chronic low-grade inflammation and an increased likelihood of adverse health outcomes. The regulation of skeletal muscle mass with ageing is complex and necessitates a delicate balance between muscle protein synthesis and degradation. The secretion and transfer of cytokines, long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), both discretely and within extracellular vesicles, have emerged as important communication channels between tissues. Some of these factors have been implicated in regulating skeletal muscle mass, function, and pathologies and may be perturbed by excessive adiposity. Indeed, adipose tissue participates in a broad spectrum of inter-organ communication and obesity promotes the accumulation of macrophages, cellular senescence, and the production and secretion of pro-inflammatory factors. Pertinently, age-related sarcopenia has been reported to be more prevalent in obesity; however, such effects are confounded by comorbidities and physical activity level. In this review, we provide evidence that adiposity may exacerbate age-related sarcopenia and outline some emerging concepts of adipose-skeletal muscle communication including the secretion and processing of novel myokines and adipokines and the role of extracellular vesicles in mediating inter-tissue cross talk via lncRNAs and miRNAs in the context of sarcopenia, ageing, and obesity. Further research using advances in proteomics, transcriptomics, and techniques to investigate extracellular vesicles, with an emphasis on translational, longitudinal human studies, is required to better understand the physiological significance of these factors, the impact of obesity upon them, and their potential as therapeutic targets in combating muscle wasting.
Collapse
Affiliation(s)
- Andrew Wilhelmsen
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Kostas Tsintzas
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK.
| | - Simon W Jones
- Institute of Inflammation and Ageing, MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, Queen Elizabeth Hospital, The University of Birmingham, Birmingham, UK
| |
Collapse
|
25
|
Wiedmer P, Jung T, Castro JP, Pomatto LC, Sun PY, Davies KJ, Grune T. Sarcopenia - Molecular mechanisms and open questions. Ageing Res Rev 2021; 65:101200. [PMID: 33130247 DOI: 10.1016/j.arr.2020.101200] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022]
Abstract
Sarcopenia represents a muscle-wasting syndrome characterized by progressive and generalized degenerative loss of skeletal muscle mass, quality, and strength occurring during normal aging. Sarcopenia patients are mainly suffering from the loss in muscle strength and are faced with mobility disorders reducing their quality of life and are, therefore, at higher risk for morbidity (falls, bone fracture, metabolic diseases) and mortality. Several molecular mechanisms have been described as causes for sarcopenia that refer to very different levels of muscle physiology. These mechanisms cover e. g. function of hormones (e. g. IGF-1 and Insulin), muscle fiber composition and neuromuscular drive, myo-satellite cell potential to differentiate and proliferate, inflammatory pathways as well as intracellular mechanisms in the processes of proteostasis and mitochondrial function. In this review, we describe sarcopenia as a muscle-wasting syndrome distinct from other atrophic diseases and summarize the current view on molecular causes of sarcopenia development as well as open questions provoking further research efforts for establishing efficient lifestyle and therapeutic interventions.
Collapse
|
26
|
Nutrition and microRNAs: Novel Insights to Fight Sarcopenia. Antioxidants (Basel) 2020; 9:antiox9100951. [PMID: 33023202 PMCID: PMC7601022 DOI: 10.3390/antiox9100951] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
Sarcopenia is a progressive age-related loss of skeletal muscle mass and strength, which may result in increased physical frailty and a higher risk of adverse events. Low-grade systemic inflammation, loss of muscle protein homeostasis, mitochondrial dysfunction, and reduced number and function of satellite cells seem to be the key points for the induction of muscle wasting, contributing to the pathophysiological mechanisms of sarcopenia. While a range of genetic, hormonal, and environmental factors has been reported to contribute to the onset of sarcopenia, dietary interventions targeting protein or antioxidant intake may have a positive effect in increasing muscle mass and strength, regulating protein homeostasis, oxidative reaction, and cell autophagy, thus providing a cellular lifespan extension. MicroRNAs (miRNAs) are endogenous small non-coding RNAs, which control gene expression in different tissues. In skeletal muscle, a range of miRNAs, named myomiRNAs, are involved in many physiological processes, such as growth, development, and maintenance of muscle mass and function. This review aims to present and to discuss some of the most relevant molecular mechanisms related to the pathophysiological effect of sarcopenia. Besides, we explored the role of nutrition as a possible way to counteract the loss of muscle mass and function associated with ageing, with special attention paid to nutrient-dependent miRNAs regulation. This review will provide important information to better understand sarcopenia and, thus, to facilitate research and therapeutic strategies to counteract the pathophysiological effect of ageing.
Collapse
|
27
|
Borja-Gonzalez M, Casas-Martinez JC, McDonagh B, Goljanek-Whysall K. Aging Science Talks: The role of miR-181a in age-related loss of muscle mass and function. TRANSLATIONAL MEDICINE OF AGING 2020; 4:81-85. [PMID: 32835152 PMCID: PMC7341035 DOI: 10.1016/j.tma.2020.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023] Open
Affiliation(s)
- Maria Borja-Gonzalez
- School of Medicine, Physiology, National University of Ireland Galway, Galway, H91 W5P7, Ireland
| | - Jose C Casas-Martinez
- School of Medicine, Physiology, National University of Ireland Galway, Galway, H91 W5P7, Ireland
| | - Brian McDonagh
- School of Medicine, Physiology, National University of Ireland Galway, Galway, H91 W5P7, Ireland
| | - Katarzyna Goljanek-Whysall
- School of Medicine, Physiology, National University of Ireland Galway, Galway, H91 W5P7, Ireland
- Institute of Aging and Chronic Disease & The Medical Research Council Versus Arthritis Centre for Integrated Research Into Musculoskeletal Aging, CIMA, University of Liverpool, Liverpool, L7 8TJ, UK
| |
Collapse
|
28
|
Yanai K, Kaneko S, Ishii H, Aomatsu A, Ito K, Hirai K, Ookawara S, Ishibashi K, Morishita Y. MicroRNAs in Sarcopenia: A Systematic Review. Front Med (Lausanne) 2020; 7:180. [PMID: 32549041 PMCID: PMC7270169 DOI: 10.3389/fmed.2020.00180] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022] Open
Abstract
Sarcopenia, which is characterized by the loss of skeletal muscle, has been reported to contribute to development of physical disabilities, various illnesses, and increasing mortality. MicroRNAs (miRNAs) are small non-coding RNAs that inhibit translation of target messenger RNAs. Previous studies have shown that miRNAs play pivotal roles in the development of sarcopenia. Therefore, this systematic review focuses on miRNAs that regulate sarcopenia.
Collapse
Affiliation(s)
- Katsunori Yanai
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Shohei Kaneko
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Hiroki Ishii
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Akinori Aomatsu
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan.,Division of Intensive Care Unit, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Kiyonori Ito
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Keiji Hirai
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Susumu Ookawara
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Kenichi Ishibashi
- Department of Medical Physiology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Yoshiyuki Morishita
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| |
Collapse
|
29
|
Inflamma-miR-21 Negatively Regulates Myogenesis during Ageing. Antioxidants (Basel) 2020; 9:antiox9040345. [PMID: 32340146 PMCID: PMC7222422 DOI: 10.3390/antiox9040345] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/10/2020] [Accepted: 04/18/2020] [Indexed: 12/20/2022] Open
Abstract
Ageing is associated with disrupted redox signalling and increased circulating inflammatory cytokines. Skeletal muscle homeostasis depends on the balance between muscle hypertrophy, atrophy and regeneration, however during ageing this balance is disrupted. The molecular pathways underlying the age-related decline in muscle regenerative potential remain elusive. microRNAs are conserved robust gene expression regulators in all tissues including skeletal muscle. Here, we studied satellite cells from adult and old mice to demonstrate that inhibition of miR-21 in satellite cells from old mice improves myogenesis. We determined that increased levels of proinflammatory cytokines, TNFα and IL6, as well as H2O2, increased miR-21 expression in primary myoblasts, which in turn resulted in their decreased viability and myogenic potential. Inhibition of miR-21 function rescued the decreased size of myotubes following TNFα or IL6 treatment. Moreover, we demonstrated that miR-21 could inhibit myogenesis in vitro via regulating IL6R, PTEN and FOXO3 signalling. In summary, upregulation of miR-21 in satellite cells and muscle during ageing may occur in response to elevated levels of TNFα and IL6, within satellite cells or myofibrillar environment contributing to skeletal muscle ageing and potentially a disease-related decline in potential for muscle regeneration.
Collapse
|
30
|
He N, Zhang YL, Zhang Y, Feng B, Zheng Z, Wang D, Zhang S, Guo Q, Ye H. Circulating MicroRNAs in Plasma Decrease in Response to Sarcopenia in the Elderly. Front Genet 2020; 11:167. [PMID: 32194634 PMCID: PMC7066121 DOI: 10.3389/fgene.2020.00167] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/12/2020] [Indexed: 12/25/2022] Open
Abstract
sarcopenia has been defined as the aging-related disease with the declined mass, strength, and function of skeletal muscle, which is a major cause of morbidity and mortality in elders. Current diagnostic criteria of sarcopenia have not been agreed internationally, and the clinical diagnostic biomarkers for sarcopenia have not been identified. Circulating miRNAs (miRNAs, miRs) have recently been characterized as novel biomarkers for sarcopenia. However, the change of circulating miRNAs in response to sarcopenia are still not fully understood. Here, we enrolled a total of 93 elderly patients clinically diagnosed with sarcopenia and matching 93 non-sarcopenia elderly in this study. Specifically, levels of candidate circulating miRNAs which were involved in angiogenesis, inflammation and enriched in muscle and/or cardiac tissues were detected in these two groups. In small-sample screening experiments, plasma miR-155, miR-208b, miR-222, miR-210, miR-328, and miR-499 levels were significantly down-regulated in sarcopenia compared to those who non-sarcopenia. In contrast, miR-1, mir-133a, miR-133b, miR-21, miR-146a, miR-126, miR-221, and miR-20a were not changed significantly. Subsequently, we expanded the sample size to further detection and verification, and found that plasma miR-155, miR-208b, miR-222, miR-210, miR-328, and miR-499 levels in the sarcopenia group were significantly reduced compared to the non-sarcoma group, which is consistent with the results of the small-sample screening experiment. In addition, we showed that ASM/Height2, handgrip strength, knee extension and 4-meter velocity in sarcopenia group were significantly lower than those in non-sarcopenia group. Here we correlated the decrease of miR-208b, miR-499, miR-155, miR-222, miR-328, and miR-210 in sarcopenia group and non-sarcopenia group with diagnostic indexes of sarcopenia (ASM/Height2, Handgrip strength and 4-meter velocity) after adjusting sex. The results showed that miR-208b and miR-155 changes were significantly correlated with handgrip strength in woman, miR-208b, miR-499, and miR-222 changes were significantly correlated with ASM/Height2 in man, while other miRNAs changes did not show a strong correlation with these diagnostic indexes. In conclusion, plasma miR-208b, miR-499, miR-155, miR-222, miR-328, and miR-210 decrease in response to sarcopenia in the elderly. Although further studies are needed to clarify the potential use of circulating miRNAs as biomarkers of sarcopenia, present findings set the stage for defining circulating miRNAs as biomarkers and suggesting their physiological roles in elderly with sarcopenia.
Collapse
Affiliation(s)
- Nana He
- Department of Experimental Medical Science, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China.,Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | - Yue Lin Zhang
- Department of Cardiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Yue Zhang
- Department of Cardiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Beili Feng
- Department of Cardiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Zaixing Zheng
- Department of Cardiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Dongjuan Wang
- Department of Cardiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Shun Zhang
- Department of Experimental Medical Science, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China.,Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | - Qi Guo
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Honghua Ye
- Department of Cardiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
31
|
Chen FX, Shen Y, Liu Y, Wang HF, Liang CY, Luo M. Inflammation-dependent downregulation of miR-532-3p mediates apoptotic signaling in human sarcopenia through targeting BAK1. Int J Biol Sci 2020; 16:1481-1494. [PMID: 32226296 PMCID: PMC7097925 DOI: 10.7150/ijbs.41641] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/15/2020] [Indexed: 12/25/2022] Open
Abstract
Inflammation and apoptosis are considered as two major pathological causes of human sarcopenia. The current understanding based on different models recognizes that apoptosis does not trigger inflammation, while emerging evidence indicates that inflammation can induce apoptosis. Here, we provide solid evidence to suggest that the inflammation-dependent downregulation of miR-532 causes apoptosis through targeting a proapoptotic gene BAK1 (BCL2 antagonist/killer 1). To identify miRNAs and genes that are aberrantly expressed in the muscle tissues of sarcopenia patients, we conducted two independent microarray analyses. In total, we identified 53 miRNAs and 69 genes with differential expression levels. Of these aberrantly expressed miRNAs, miR-532-3p showed the most obvious changes in sarcopenia tissues, and more importantly, it can be repressed by the well-known inflammatory inducer lipopolysaccharide (LPS) in vitro. According to gene-based microarray results and the predicted targets of miR-532-3p, we presumed that BAK1 was a putative target of miR-532-3p. Further in vitro and in vivo analyses verified that miR-532-3p could directly bind to the three prime untranslated region (3'-UTR) of BAK1 through the seed sequence CUCCCAC. In addition, we found that NFKB1 (also known as p50), a subunit of the transcription factor NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells), could specifically bind to the promoter region of miR-532-3p and repress its expression. Further analysis revealed that the activation of TLR4 (Toll-like receptor 4) signaling led to the translocation of p50 from the cytoplasm to the nucleus, where it repressed miR-532-3p expression and thus led to an increase of BAK1. The accumulated BAK1 activated its downstream apoptotic signaling pathways and resulted in apoptosis, eventually causing the pathogenesis underlying sarcopenia. Overall, our results uncovered a new mechanism by which the inflammation-dependent downregulation of miR-532-3p contributed to the pathogenesis of sarcopenia through mediating BAK1 expression.
Collapse
Affiliation(s)
- Fa-Xiu Chen
- Department of Geriatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China.,Department of Geriatrics, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yi Shen
- Department of Geriatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Yang Liu
- Department of Geriatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Hai-Feng Wang
- Department of Geriatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Chen-Yu Liang
- Department of Geriatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Ming Luo
- Department of Geriatrics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| |
Collapse
|
32
|
Iannone F, Montesanto A, Cione E, Crocco P, Caroleo MC, Dato S, Rose G, Passarino G. Expression Patterns of Muscle-Specific miR-133b and miR-206 Correlate with Nutritional Status and Sarcopenia. Nutrients 2020; 12:E297. [PMID: 31979011 PMCID: PMC7071413 DOI: 10.3390/nu12020297] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 12/23/2022] Open
Abstract
Sarcopenia and malnutrition are commonly occurring conditions in the elderly that frequently coexist, leading to substantial effects on morbidity/mortality. Evidence established muscle-specific microRNAs (miRNAs) or myomiRs as essential regulators of skeletal muscle processes, from myogenesis to muscle homeostasis. This study aimed to evaluate the association between myomiRs and sarcopenia and explore the potential of nutrition in mediating this association. qPCR was employed to characterize the myomiR-1, -133a/b, -206, -208b, and -499 expression profiles of 109 non-sarcopenic and 109 sarcopenic subjects. In our sample, the proportion malnourished or at-risk subjects was higher in sarcopenia (p < 0.001). Among the detected myomiRs (miR-133a/b and miR-206), lower levels of miR-133b was significantly associated with the presence of sarcopenia (p = 0.006); however, this relationship was not independent from nutritional status in multivariate analysis, suggesting a mediating effect of nutrition on the relationship between miR-133b and sarcopenia. Correlation analyses showed that lower miR-133b levels were associated with poor nutritional status (Mini Nutritional Assessment Long Form (MNA-LF) score, p = 0.005); furthermore, correlations with albumin, ferritin, and iron were found. Similar results were obtained for miR-206. Statistically more significant correlations were observed in subjects with sarcopenia. In conclusion, our findings highlight a nutrient-miR-133b/miR-206 pathway having a potential role in the age-related muscle decline.
Collapse
Affiliation(s)
- Francesca Iannone
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (F.I.); (A.M.); (P.C.); (S.D.); (G.P.)
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (F.I.); (A.M.); (P.C.); (S.D.); (G.P.)
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (E.C.); (M.C.C.)
| | - Paolina Crocco
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (F.I.); (A.M.); (P.C.); (S.D.); (G.P.)
| | - Maria Cristina Caroleo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (E.C.); (M.C.C.)
| | - Serena Dato
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (F.I.); (A.M.); (P.C.); (S.D.); (G.P.)
| | - Giuseppina Rose
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (F.I.); (A.M.); (P.C.); (S.D.); (G.P.)
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (F.I.); (A.M.); (P.C.); (S.D.); (G.P.)
| |
Collapse
|
33
|
Seldeen KL, Pang M, Leiker MM, Bard JE, Rodríguez-Gonzalez M, Hernandez M, Sheridan Z, Nowak N, Troen BR. Chronic vitamin D insufficiency impairs physical performance in C57BL/6J mice. Aging (Albany NY) 2019; 10:1338-1355. [PMID: 29905532 PMCID: PMC6046224 DOI: 10.18632/aging.101471] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/04/2018] [Indexed: 12/31/2022]
Abstract
Vitamin D insufficiency (serum 25-OH vitamin D < 30 ng/ml) affects 70-80% of the general population, yet the long-term impacts on physical performance and the progression of sarcopenia are poorly understood. We therefore followed 6-month-old male C57BL/6J mice (n=6) consuming either sufficient (STD, 1000 IU) or insufficient (LOW, 125 IU) vitamin D3/kg chow for 12 months (equivalent to 20-30 human years). LOW supplemented mice exhibited a rapid decline of serum 25-OH vitamin D levels by two weeks that remained between 11-15 ng/mL for all time points thereafter. After 12 months LOW mice displayed worse grip endurance (34.6 ± 14.1 versus 147.5 ± 50.6 seconds, p=0.001), uphill sprint speed (16.0 ± 1.0 versus 21.8 ± 2.4 meters/min, p=0.0007), and stride length (4.4 ± 0.3 versus 5.1 ± 0.3, p=0.002). LOW mice also showed less lean body mass after 8 months (57.5% ± 5.1% versus 64.5% ± 4.0%, p=0.023), but not after 12 months of supplementation, as well as greater protein expression of atrophy pathway gene atrogin‑1. Additionally, microRNA sequencing revealed differential expression of mIR‑26a in muscle tissue of LOW mice. These data suggest chronic vitamin D insufficiency may be an important factor contributing to functional decline and sarcopenia.
Collapse
Affiliation(s)
- Kenneth L Seldeen
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY 14203, USA
| | - Manhui Pang
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY 14203, USA
| | - Merced M Leiker
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY 14203, USA
| | - Jonathan E Bard
- New York State Center of Excellence in Bioinformatics and Life Sciences and Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Maria Rodríguez-Gonzalez
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY 14203, USA
| | - Mireya Hernandez
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY 14203, USA
| | - Zachary Sheridan
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY 14203, USA
| | - Norma Nowak
- New York State Center of Excellence in Bioinformatics and Life Sciences and Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Bruce R Troen
- Division of Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo and Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY 14203, USA
| |
Collapse
|
34
|
Melouane A, Ghanemi A, Yoshioka M, St-Amand J. Functional genomics applications and therapeutic implications in sarcopenia. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 781:175-185. [PMID: 31416575 DOI: 10.1016/j.mrrev.2019.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 03/14/2019] [Accepted: 04/17/2019] [Indexed: 12/11/2022]
Abstract
The human genome contains around 20,000-25,000 genes coding for 30,000 proteins. Some proteins and genes represent therapeutic targets for human diseases. RNA and protein expression profiling tools allow the study of the molecular basis of aging and drug discovery validation. Throughout the life, there is an age-related and disease-related muscle decline. Sarcopenia is defined as a loss of muscle mass and a decrease in functional properties such as muscle strength and physical performance. Yet, there is still no consensus on the evaluation methods of sarcopenia prognosis. The main challenge of this complex biological phenomena is its multifactorial etiology. Thus, functional genomics methods attempt to shape the related scientific approaches via an innovative in-depth view on sarcopenia. Gene and drug high throughput screening combined with functional genomics allow the generation and the interpretation of a large amount of data related to sarcopenia and therapeutic progress. This review focuses on the application of selected functional genomics techniques such as RNA interference, RNA silencing, proteomics, transgenic mice, metabolomics, genomics, and epigenomics to better understand sarcopenia mechanisms.
Collapse
Affiliation(s)
- Aicha Melouane
- CREMI, CHU de Québec Research Center, Quebec, Quebec, G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, Quebec, G1V 4G2, Canada
| | - Abdelaziz Ghanemi
- CREMI, CHU de Québec Research Center, Quebec, Quebec, G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, Quebec, G1V 4G2, Canada
| | - Mayumi Yoshioka
- CREMI, CHU de Québec Research Center, Quebec, Quebec, G1V 4G2, Canada
| | - Jonny St-Amand
- CREMI, CHU de Québec Research Center, Quebec, Quebec, G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, Quebec, G1V 4G2, Canada.
| |
Collapse
|
35
|
Abstract
Sarcopenia is a progressive and generalised skeletal muscle disorder involving the accelerated loss of muscle mass and function that is associated with increased adverse outcomes including falls, functional decline, frailty, and mortality. It occurs commonly as an age-related process in older people, influenced not only by contemporaneous risk factors, but also by genetic and lifestyle factors operating across the life course. It can also occur in mid-life in association with a range of conditions. Sarcopenia has become the focus of intense research aiming to translate current knowledge about its pathophysiology into improved diagnosis and treatment, with particular interest in the development of biomarkers, nutritional interventions, and drugs to augment the beneficial effects of resistance exercise. Designing effective preventive strategies that people can apply during their lifetime is of primary concern. Diagnosis, treatment, and prevention of sarcopenia is likely to become part of routine clinical practice.
Collapse
Affiliation(s)
| | - Avan A Sayer
- AGE Research Group, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK; National Institute for Health Research, Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
36
|
Effect of adeno-associated virus (AAV)-mediated overexpression of PEPCK-M (Pck2) on Clenbuterol-induced muscle growth. PLoS One 2019; 14:e0218970. [PMID: 31237922 PMCID: PMC6592604 DOI: 10.1371/journal.pone.0218970] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/12/2019] [Indexed: 11/22/2022] Open
Abstract
We previously identified PEPCK-M (encoded by the Pck2 gene) to be highly up-regulated in skeletal muscle of pigs treated with Ractopamine, an anabolic beta-adrenergic receptor agonist. To determine whether PEPCK-M had a causative role in modulating the skeletal muscle growth response to Ractopamine, we used adeno-associated virus 1 (AAV1) to over-express Pck2 (AAV-Pck2) in murine skeletal muscle. A contralateral limb design was employed, such that each mouse served as its own control (injected with a GFP-only expressing AAV1, labelled AAV-GFP). Daily injections of Clenbuterol (1 mg/kg for 21 days) or vehicle control were also carried out to assess the effects of AAV-Pck2 overexpression on the anabolic response to a beta-adrenergic agonist. AAV-Pck2 overexpression in leg muscles of male C57BL6/J mice for 4 weeks (6–10 weeks of age) increased Pck2 mRNA (~100-fold), protein (not quantifiable) and enzyme activity (~3-fold). There was a trend (p = 0.0798) for AAV-Pck2 overexpression to reduce TA muscle weights, but there was no significant effect on muscle fibre diameters or myosin heavy chain isoform (MyHC) mRNA expression. When skeletal muscle growth was induced by daily administration of Clenbuterol (for 21 days), overexpression of AAV-Pck2 had no effect on the growth response, nor did it alter the expression of Phosphoserine Aminotransferase-1 (Psat1) or Asparagine Synthetase (Asns) mRNA or the Clenbuterol-induced decreases in MyHC IIa and IIx mRNA expression (p = 0.0065 and p = 0.0267 respectively). However AAV-Pck2 overexpression reduced TA muscle weights (p = 0.0434), particularly in the Control (vehicle treated) mice (p = 0.059 for AAV x Clenbuterol interaction) and increased the expression of Seryl-tRNA Synthetase (Sars) mRNA (p = 0.0477). Hence, contrary to the original hypothesis, AAV-Pck2 overexpression reduced TA muscle weights and did not mimic or alter the muscle hypertrophic effects of the beta-adrenergic agonist, Clenbuterol.
Collapse
|
37
|
Shorter E, Sannicandro AJ, Poulet B, Goljanek-Whysall K. Skeletal Muscle Wasting and Its Relationship With Osteoarthritis: a Mini-Review of Mechanisms and Current Interventions. Curr Rheumatol Rep 2019; 21:40. [PMID: 31203463 PMCID: PMC6571089 DOI: 10.1007/s11926-019-0839-4] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Osteoarthritis (OA) is a subset of joint disorders resulting in degeneration of synovial joints. This leads to pain, disability and loss of independence. Knee and hip OA are extremely prevalent, and their occurrence increases with ageing. Similarly, loss of muscle mass and function, sarcopenia, occurs during ageing. RECENT FINDINGS Little is known about the impact of muscle wasting on OA progression; nevertheless, it has been suggested that muscle wasting directly affects the stability of the joints and loss of mobility leads to gradual degeneration of articular cartilage. The molecular mechanisms underlying muscle wasting in OA are not well understood; however, these are probably related to changes in gene expression, as well as epigenetic modifications. It is becoming clear that skeletal muscle wasting plays an important role in OA development and/or progression. Here, we discuss mechanisms, current interventions, such as exercise, and potentially novel approaches, such as modulation of microRNAs, aiming at ameliorating OA symptoms through maintaining muscle mass and function.
Collapse
Affiliation(s)
- Emily Shorter
- Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, West Derby Road, Liverpool, L7 8TX UK
| | - Anthony J Sannicandro
- Department of Physiology, School of Medicine, REMEDI, NUI Galway, Human Biology Building, University Road, Galway, Ireland
| | - Blandine Poulet
- Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, West Derby Road, Liverpool, L7 8TX UK
| | - Katarzyna Goljanek-Whysall
- Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, West Derby Road, Liverpool, L7 8TX UK
- Department of Physiology, School of Medicine, REMEDI, NUI Galway, Human Biology Building, University Road, Galway, Ireland
| |
Collapse
|
38
|
Sannicandro AJ, Soriano-Arroquia A, Goljanek-Whysall K. Micro(RNA)-managing muscle wasting. J Appl Physiol (1985) 2019; 127:619-632. [PMID: 30991011 DOI: 10.1152/japplphysiol.00961.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Progressive skeletal muscle wasting is a natural consequence of aging and is common in chronic and acute diseases. Loss of skeletal muscle mass and function (strength) often leads to frailty, decreased independence, and increased risk of hospitalization. Despite progress made in our understanding of the mechanisms underlying muscle wasting, there is still no treatment available, with exercise training and dietary supplementation improving, but not restoring, muscle mass and/or function. There has been slow progress in developing novel therapies for muscle wasting, either during aging or disease, partially due to the complex nature of processes underlying muscle loss. The mechanisms of muscle wasting are multifactorial, with a combination of factors underlying age- and disease-related functional muscle decline. These factors include well-characterized changes in muscle such as changes in protein turnover and more recently described mechanisms such as autophagy or satellite cell senescence. Advances in transcriptomics and other high-throughput approaches have highlighted significant deregulation of skeletal muscle gene and protein levels during aging and disease. These changes are regulated at different levels, including posttranscriptional gene expression regulation by microRNAs. microRNAs, potent regulators of gene expression, modulate many processes in muscle, and microRNA-based interventions have been recently suggested as a promising new therapeutic strategy against alterations in muscle homeostasis. Here, we review recent developments in understanding the aging-associated mechanisms of muscle wasting and explore potential microRNA-based therapeutic avenues.
Collapse
Affiliation(s)
- Anthony J Sannicandro
- Department of Physiology, School of Medicine, National University of Ireland, Galway, Ireland
| | - Ana Soriano-Arroquia
- Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom
| | - Katarzyna Goljanek-Whysall
- Department of Physiology, School of Medicine, National University of Ireland, Galway, Ireland.,Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom
| |
Collapse
|
39
|
Chen Z, Bemben MG, Bemben DA. Bone and muscle specific circulating microRNAs in postmenopausal women based on osteoporosis and sarcopenia status. Bone 2019; 120:271-278. [PMID: 30408612 DOI: 10.1016/j.bone.2018.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 10/29/2018] [Accepted: 11/01/2018] [Indexed: 12/31/2022]
Abstract
MicroRNAs (miRNAs) are short, non-coding RNA molecules that fine tune posttranscriptional protein expression. Aging is accompanied by progressive declines in muscle mass and strength, and in bone mineral density (BMD). Although miRNAs in pathology have been extensively studied, the role of circulating miRNAs (c-miRNAs) in osteoporosis and sarcopenia has to date not been well understood. The purpose of this study was to examine the difference in bone and muscle specific c-miRNAs in postmenopausal women based on their bone and muscle status, and to determine the associations between these specific c-miRNAs and muscle and bone variables. Seventy-five postmenopausal women aged 60 to 85 years old participated in this study. Body composition and BMD, functional performance tests (grip strength, gait speed, and countermovement jumps) were assessed. Levels of c-miRNAs (miR-1-3p, -21-5p, -23a-3p, -24-3p, -100-5p, -125b-5p, -133a-3p, -206) and bone turnover markers were analyzed. Statistically, there were no significant differences in specific c-miRNAs based on sarcopenia and osteoporosis status. However, fold changes of miR-21-5p (FC = 2.59) and -23a-3p (FC = 2.09) indicated upregulation and miR-125b-5p (FC = 0.46) indicated downregulation in the osteoporotic group compared to the non-osteoporotic group. The relative expression level of miR-125b-5p was significantly positively correlated with age (p < 0.05). The relative expression level of miR-21-5p was significantly negatively correlated with trochanter BMC (p < 0.05). Furthermore, the relative expression level of miR-23a-3p was significantly positively correlated with TRAP5b levels (p < 0.05). Although no statistical differences were found in target c-miRNAs based on muscle and bone status, our results indicate that there are biological differential expressions in some c-miRNAs between osteoporotic and non-osteoporotic individuals. Other circulating miRNAs need to be studied in the future.
Collapse
Affiliation(s)
- Zhaojing Chen
- Department of Health and Exercise Science, University of Oklahoma, 1401 Asp Avenue, Norman, OK 73019, USA.
| | - Michael G Bemben
- Department of Health and Exercise Science, University of Oklahoma, 1401 Asp Avenue, Norman, OK 73019, USA
| | - Debra A Bemben
- Department of Health and Exercise Science, University of Oklahoma, 1401 Asp Avenue, Norman, OK 73019, USA
| |
Collapse
|
40
|
Fariyike B, Singleton Q, Hunter M, Hill WD, Isales CM, Hamrick MW, Fulzele S. Role of MicroRNA-141 in the Aging Musculoskeletal System: A Current Overview. Mech Ageing Dev 2019; 178:9-15. [PMID: 30528652 PMCID: PMC6998035 DOI: 10.1016/j.mad.2018.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/31/2018] [Accepted: 12/05/2018] [Indexed: 02/07/2023]
Abstract
MicroRNA's are small non-coding RNAs that regulate the expression of genes by targeting the 3' UTR's of mRNA. Studies reveal that miRNAs play a pivotal role in normal musculoskeletal function such as mesenchymal stem cell differentiation, survivability and apoptosis, osteogenesis, and chondrogenesis. Changes in normal miRNA expression have been linked to a number of pathological disease processes. Additionally, with aging, it is noted that there is dysregulation in the normal function of stem cell differentiation, bone formation/degradation, chondrocyte function, and muscle degeneration. Due to the change in expression of miRNA in degenerative musculoskeletal pathology, it is believed that these molecules may be at least partially responsible for cellular dysfunction. A number of miRNAs have already been identified to play a role in osteoarthritis, osteoporosis and sarcopenia. One miRNA that has become of interest recently is miRNA 141. The purpose of this article is to review the current literature available on miRNA 141 and how it could play a role in osteoporosis, osteoarthritis and musculoskeletal pathology overall.
Collapse
Affiliation(s)
- Babatunde Fariyike
- Department of Orthopedics, Augusta University, Augusta, GA, United States
| | - Quante Singleton
- Department of Orthopedics, Augusta University, Augusta, GA, United States
| | - Monte Hunter
- Department of Orthopedics, Augusta University, Augusta, GA, United States
| | - William D Hill
- Department of Orthopedics, Augusta University, Augusta, GA, United States; Department of Cell biology and Anatomy, Augusta University, Augusta, GA, United States; Institute of Regenerative and Reparative medicine, Augusta University, Augusta, GA, United States; Charlie Norwood VA Medical Center, Augusta, GA, United States
| | - Carlos M Isales
- Department of Orthopedics, Augusta University, Augusta, GA, United States; Department of Medicine, Augusta University, Augusta, GA, United States; Institute of Regenerative and Reparative medicine, Augusta University, Augusta, GA, United States; Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA, United States
| | - Mark W Hamrick
- Department of Orthopedics, Augusta University, Augusta, GA, United States; Department of Cell biology and Anatomy, Augusta University, Augusta, GA, United States; Institute of Regenerative and Reparative medicine, Augusta University, Augusta, GA, United States
| | - Sadanand Fulzele
- Department of Orthopedics, Augusta University, Augusta, GA, United States; Institute of Regenerative and Reparative medicine, Augusta University, Augusta, GA, United States.
| |
Collapse
|
41
|
Gomez-Verjan JC, Vazquez-Martinez ER, Rivero-Segura NA, Medina-Campos RH. The RNA world of human ageing. Hum Genet 2018; 137:865-879. [DOI: 10.1007/s00439-018-1955-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/29/2018] [Indexed: 12/15/2022]
|
42
|
Exploratory Profiling of Urine MicroRNAs in the dy2J/dy2J Mouse Model of LAMA2-CMD: Relation to Disease Progression. PLOS CURRENTS 2018; 10. [PMID: 30430039 PMCID: PMC6140833 DOI: 10.1371/currents.md.d0c203c018bc024f2f4c9791ecb05f88] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Circulating microRNAs (miRNAs) are being considered as non-invasive biomarkers for disease progression and clinical trials. Congenital muscular dystrophy with deficiency of laminin α2 chain (LAMA2-CMD) is a very severe form of muscular dystrophy, for which no treatment is available. In order to identify LAMA2-CMD biomarkers we have profiled miRNAs in urine from the dy2J /dy2J mouse model of LAMA2-CMD at three distinct time points (representing asymptomatic, initial and established disease). We demonstrate that unique groups of miRNAs are differentially expressed at each time point. We suggest that urine miRNAs can be sensitive biomarkers for different stages of LAMA2-CMD.
Collapse
|
43
|
Brown DM, Jones S, Daniel ZCTR, Brearley MC, Lewis JE, Ebling FJP, Parr T, Brameld JM. Effect of sodium 4-phenylbutyrate on Clenbuterol-mediated muscle growth. PLoS One 2018; 13:e0201481. [PMID: 30052661 PMCID: PMC6063449 DOI: 10.1371/journal.pone.0201481] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/16/2018] [Indexed: 12/25/2022] Open
Abstract
Previously, we highlighted induction of an integrated stress response (ISR) gene program in skeletal muscle of pigs treated with a beta-adrenergic agonist. Hence we tested the hypothesis that the ER-stress inhibitor, sodium 4-phenylbutyrate (PBA), would inhibit Clenbuterol-mediated muscle growth and reduce expression of genes that are known indicators of an ISR in mice. Clenbuterol (1mg/kg/day) administered to C57BL6/J mice for 21 days increased body weight (p<0.001), muscle weights (p<0.01), and muscle fibre diameters (p<0.05). Co-administration of PBA (100mg/kg/day) did not alter the Clenbuterol-mediated phenotype, nor did PBA alone have any effects compared to that of the vehicle treated mice. Clenbuterol increased skeletal muscle mRNA expression of phosphoserine amino transferase 1 (PSAT1, p<0.001) and cyclophillin A (p<0.01) at day 3, but not day 7. Clenbuterol decreased mRNA expression of activating transcription factor (ATF) 4 and ATF5 at day 3 (p<0.05) and day 7 (p<0.01), X-box binding protein 1 (XBP1) variant 2 mRNA at day 3 only (p<0.01) and DNA damage inducible transcript 3 (DDIT3/CHOP) mRNA at day 7 only (p<0.05). Co-administration of PBA had no effect on Clenbuterol-induced changes in skeletal muscle gene expression. In contrast, treatment of C2C12 myotubes with 5mM PBA (8hr) attenuated the thapsigargin-induced ISR gene program. Prolonged (24-48hr) treatment with PBA caused atrophy (p<0.01), reduced neoprotein synthesis (p<0.0001) and decreased expression of myogenin and fast myosin heavy chain genes (p<0.01), indicating an inhibition of myogenic differentiation. In summary, Clenbuterol did not induce an ISR gene program in mouse muscle. On the contrary, it reduced expression of a number of ISR genes, but it increased expression of PSAT1 mRNA. Co-administration of PBA had no effect on Clenbuterol-mediated muscle growth or gene expression in mice, whereas PBA did inhibit thapsigargin-induced ISR gene expression in cultured C2C12 cells and appeared to inhibit myogenic differentiation, independent of altering ISR gene expression.
Collapse
Affiliation(s)
- David M. Brown
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Sarah Jones
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Zoe C. T. R. Daniel
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Madelaine C. Brearley
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Jo E. Lewis
- School of Life Sciences, University of Nottingham, Medical School, Nottingham, United Kingdom
| | - Francis J. P. Ebling
- School of Life Sciences, University of Nottingham, Medical School, Nottingham, United Kingdom
| | - Tim Parr
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - John M. Brameld
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
- * E-mail:
| |
Collapse
|
44
|
Why do we age? Insights into biology and evolution of ageing. Biogerontology 2017; 18:855-857. [PMID: 29086101 DOI: 10.1007/s10522-017-9734-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 12/30/2022]
|
45
|
Proctor CJ, Goljanek-Whysall K. Using computer simulation models to investigate the most promising microRNAs to improve muscle regeneration during ageing. Sci Rep 2017; 7:12314. [PMID: 28951568 PMCID: PMC5614911 DOI: 10.1038/s41598-017-12538-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/05/2017] [Indexed: 01/17/2023] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression through interactions with target sites within mRNAs, leading to enhanced degradation of the mRNA or inhibition of translation. Skeletal muscle expresses many different miRNAs with important roles in adulthood myogenesis (regeneration) and myofibre hypertrophy and atrophy, processes associated with muscle ageing. However, the large number of miRNAs and their targets mean that a complex network of pathways exists, making it difficult to predict the effect of selected miRNAs on age-related muscle wasting. Computational modelling has the potential to aid this process as it is possible to combine models of individual miRNA:target interactions to form an integrated network. As yet, no models of these interactions in muscle exist. We created the first model of miRNA:target interactions in myogenesis based on experimental evidence of individual miRNAs which were next validated and used to make testable predictions. Our model confirms that miRNAs regulate key interactions during myogenesis and can act by promoting the switch between quiescent/proliferating/differentiating myoblasts and by maintaining the differentiation process. We propose that a threshold level of miR-1 acts in the initial switch to differentiation, with miR-181 keeping the switch on and miR-378 maintaining the differentiation and miR-143 inhibiting myogenesis.
Collapse
Affiliation(s)
- Carole J Proctor
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing (CIMA), Institute of Cellular Medicine and Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, UK.
| | - Katarzyna Goljanek-Whysall
- MRC/Arthritis Research UK Centre for Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| |
Collapse
|
46
|
Phillips BE, Williams JP, Greenhaff PL, Smith K, Atherton PJ. Physiological adaptations to resistance exercise as a function of age. JCI Insight 2017; 2:95581. [PMID: 28878131 PMCID: PMC5621901 DOI: 10.1172/jci.insight.95581] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/03/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The impact of resistance exercise training (RE-T) across the life span is poorly defined. METHODS To resolve this, we recruited three distinct age cohorts of young (18-28 years; n = 11), middle-aged (45-55 years; n = 20), and older (nonsarcopenic; 65-75 years; n = 17) individuals to a cross-sectional intervention study. All subjects participated in 20 weeks of fully supervised whole-body progressive RE-T, undergoing assessment of body composition, muscle and vascular function, and metabolic health biomarkers before and after RE-T. Individuals also received stable isotope tracer infusions to ascertain muscle protein synthesis (MPS). RESULTS There was an age-related increase in adiposity, but only young and middle-age groups demonstrated reductions following RE-T. Increases in blood pressure with age were attenuated by RE-T in middle-aged, but not older, individuals, while age-related increases in leg vascular conductance were unaffected by RE-T. The index of insulin sensitivity was reduced by RE-T in older age. Despite being matched at baseline, only younger individuals increased muscle mass in response to RE-T, and there existed a negative correlation between age and muscle growth; in contrast, increases in mechanical quality were preserved across ages. Acute increases in MPS (upon feeding plus acute RE-T) were enhanced only in younger individuals, perhaps explaining greater hypertrophy. CONCLUSION Our data indicate that RE-T offsets some, but not all, negative characteristics of ageing - some of which are apparent in midlife. FUNDING Biotechnology and Biological Sciences Research Council (BB/C516779/1).
Collapse
Affiliation(s)
| | | | - Paul L. Greenhaff
- School of Life Sciences, Medical Research Council Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham and Derby, United Kingdom
| | | | | |
Collapse
|
47
|
Murabito JM, Rong J, Lunetta KL, Huan T, Lin H, Zhao Q, Freedman JE, Tanriverdi K, Levy D, Larson MG. Cross-sectional relations of whole-blood miRNA expression levels and hand grip strength in a community sample. Aging Cell 2017; 16:888-894. [PMID: 28597569 PMCID: PMC5506437 DOI: 10.1111/acel.12622] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2017] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression with emerging data suggesting miRNAs play a role in skeletal muscle biology. We sought to examine the association of miRNAs with grip strength in a community-based sample. Framingham Heart Study Offspring and Generation 3 participants (n = 5668 54% women, mean age 55 years, range 24, 90 years) underwent grip strength measurement and miRNA profiling using whole blood from fasting morning samples. Linear mixed-effects regression modeling of grip strength (kg) versus continuous miRNA 'Cq' values and versus binary miRNA expression was performed. We conducted an integrative miRNA-mRNA coexpression analysis and examined the enrichment of biologic pathways for the top miRNAs associated with grip strength. Grip strength was lower in women than in men and declined with age with a mean 44.7 (10.0) kg in men and 26.5 (6.3) kg in women. Among 299 miRNAs interrogated for association with grip strength, 93 (31%) had FDR q value < 0.05, 54 (18%) had an FDR q value < 0.01, and 15 (5%) had FDR q value < 0.001. For almost all miRNA-grip strength associations, increasing miRNA concentration is associated with increasing grip strength. miR-20a-5p (FDR q 1.8 × 10-6 ) had the most significant association and several among the top 15 miRNAs had links to skeletal muscle including miR-126-3p, miR-30a-5p, and miR-30d-5p. The top associated biologic pathways included metabolism, chemokine signaling, and ubiquitin-mediated proteolysis. Our comprehensive assessment in a community-based sample of miRNAs in blood associated with grip strength provides a framework to further our understanding of the biology of muscle strength.
Collapse
Affiliation(s)
- Joanne M. Murabito
- The Framingham Heart StudyFraminghamMAUSA
- Department of Medicine, Section of General Internal MedicineBoston University School of MedicineBostonMAUSA
| | - Jian Rong
- Department of BiostatisticsBoston University School of Public HealthBostonMAUSA
| | - Kathryn L. Lunetta
- Department of BiostatisticsBoston University School of Public HealthBostonMAUSA
| | - Tianxiao Huan
- The Framingham Heart StudyFraminghamMAUSA
- The Population Sciences BranchDivision of Intramural Research, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| | - Honghuang Lin
- Section of Computational BiomedicineDepartment of MedicineBoston University School of MedicineBostonMAUSA
| | - Qiang Zhao
- Department of BiostatisticsBoston University School of Public HealthBostonMAUSA
| | - Jane E. Freedman
- Cardiology DivisionDepartment of MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Kahraman Tanriverdi
- Cardiology DivisionDepartment of MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Daniel Levy
- The Framingham Heart StudyFraminghamMAUSA
- The Population Sciences BranchDivision of Intramural Research, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| | - Martin G. Larson
- The Framingham Heart StudyFraminghamMAUSA
- Department of BiostatisticsBoston University School of Public HealthBostonMAUSA
| |
Collapse
|
48
|
Williams J, Smith F, Kumar S, Vijayan M, Reddy PH. Are microRNAs true sensors of ageing and cellular senescence? Ageing Res Rev 2017; 35:350-363. [PMID: 27903442 PMCID: PMC5357446 DOI: 10.1016/j.arr.2016.11.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/11/2016] [Accepted: 11/18/2016] [Indexed: 12/14/2022]
Abstract
All living beings are programmed to death due to aging and age-related processes. Aging is a normal process of every living species. While all cells are inevitably progressing towards death, many disease processes accelerate the aging process, leading to senescence. Pathologies such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, Huntington's disease, cardiovascular disease, cancer, and skin diseases have been associated with deregulated aging. Healthy aging can delay onset of all age-related diseases. Genetics and epigenetics are reported to play large roles in accelerating and/or delaying the onset of age-related diseases. Cellular mechanisms of aging and age-related diseases are not completely understood. However, recent molecular biology discoveries have revealed that microRNAs (miRNAs) are potential sensors of aging and cellular senescence. Due to miRNAs capability to bind to the 3' untranslated region (UTR) of mRNA of specific genes, miRNAs can prevent the translation of specific genes. The purpose of our article is to highlight recent advancements in miRNAs and their involvement in cellular changes in aging and senescence. Our article discusses the current understanding of cellular senescence, its interplay with miRNAs regulation, and how they both contribute to disease processes.
Collapse
Affiliation(s)
- Justin Williams
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - Flint Smith
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - Subodh Kumar
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - Murali Vijayan
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States
| | - P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Neuroscience & Pharmacology Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Neurology Department, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, 3601 4th Street, MS 9424, Lubbock, TX 79430, United States; Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, 6630 S. Quaker Suite E, MS 7495, Lubbock, TX 79413, United States.
| |
Collapse
|
49
|
Abstract
MicroRNAs are small, noncoding single-stranded RNAs that have emerged as important posttranscriptional regulators of gene expression, with an essential role in vertebrate development and different biological processes. This review highlights the recent advances in the function of miRNAs and their roles in bone remodeling and bone diseases. MicroRNAs (miRNAs) are a class of small (∼22 nt), noncoding single-stranded RNAs that have emerged as important posttranscriptional regulators of gene expression. They are essential for vertebrate development and play critical roles in different biological processes related to cell differentiation, activity, metabolism, and apoptosis. A rising number of experimental reports now indicate that miRNAs contribute to every step of osteogenesis and bone homeostasis, from embryonic skeletal development to maintenance of adult bone tissue, by regulating the growth, differentiation, and activity of different cell systems inside and outside the skeleton. Importantly, emerging information from animal studies suggests that targeting miRNAs might become an attractive and new therapeutic approach for osteoporosis or other skeletal diseases, even though there are still major concerns related to potential off target effects and the need of efficient delivery methods in vivo. Moreover, besides their recognized effects at the cellular level, evidence is also gathering that miRNAs are excreted and can circulate in the blood or other body fluids with potential paracrine or endocrine functions. Thus, they could represent suitable candidates for becoming sensitive disease biomarkers in different pathologic conditions, including skeletal disorders. Despite these promising perspectives more work remains to be done until miRNAs can serve as robust therapeutic targets or established diagnostic tools for precision medicine in skeletal disorders.
Collapse
Affiliation(s)
- L Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Santa Maria alle Scotte, Viale Bracci, 53100, Siena, Italy.
| | - S Bianciardi
- Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Santa Maria alle Scotte, Viale Bracci, 53100, Siena, Italy
| | - D Merlotti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Santa Maria alle Scotte, Viale Bracci, 53100, Siena, Italy
- Division of Genetics and Cell Biology, Age Related Diseases, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
50
|
Soriano-Arroquia A, Clegg PD, Molloy AP, Goljanek-Whysall K. Preparation and Culture of Myogenic Precursor Cells/Primary Myoblasts from Skeletal Muscle of Adult and Aged Humans. J Vis Exp 2017. [PMID: 28287512 PMCID: PMC5408649 DOI: 10.3791/55047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Skeletal muscle homeostasis depends on muscle growth (hypertrophy), atrophy and regeneration. During ageing and in several diseases, muscle wasting occurs. Loss of muscle mass and function is associated with muscle fiber type atrophy, fiber type switching, defective muscle regeneration associated with dysfunction of satellite cells, muscle stem cells, and other pathophysiological processes. These changes are associated with changes in intracellular as well as local and systemic niches. In addition to most commonly used rodent models of muscle ageing, there is a need to study muscle homeostasis and wasting using human models, which due to ethical implications, consist predominantly of in vitro cultures. Despite the wide use of human Myogenic Progenitor Cells (MPCs) and primary myoblasts in myogenesis, there is limited data on using human primary myoblast and myotube cultures to study molecular mechanisms regulating different aspects of age-associated muscle wasting, aiding in the validation of mechanisms of ageing proposed in rodent muscle. The use of human MPCs, primary myoblasts and myotubes isolated from adult and aged people, provides a physiologically relevant model of molecular mechanisms of processes associated with muscle growth, atrophy and regeneration. Here we describe in detail a robust, inexpensive, reproducible and efficient protocol for the isolation and maintenance of human MPCs and their progeny — myoblasts and myotubes from human muscle samples using enzymatic digestion. Furthermore, we have determined the passage number at which primary myoblasts from adult and aged people undergo senescence in an in vitro culture. Finally, we show the ability to transfect these myoblasts and the ability to characterize their proliferative and differentiation capacity and propose their suitability for performing functional studies of molecular mechanisms of myogenesis and muscle wasting in vitro.
Collapse
Affiliation(s)
| | - Peter D Clegg
- Institute of Ageing and Chronic Disease, University of Liverpool
| | - Andrew P Molloy
- Institute of Ageing and Chronic Disease, University of Liverpool; Aintree University Hospital
| | | |
Collapse
|