1
|
Bian Z, Zhai Y, Zhang Y, Wang T, Li H, Ouyang J, Liu C, Wang S, Hu Z, Chang X, Zhang C, Liu M, Li C. Senescent cartilage endplate stem cells-derived exosomes induce oxidative stress injury in nucleus pulposus cells and aggravate intervertebral disc degeneration by regulating FOXO3. Free Radic Biol Med 2025; 233:39-54. [PMID: 40118349 DOI: 10.1016/j.freeradbiomed.2025.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/15/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Intervertebral disc degeneration (IVDD) is the leading cause of low back pain and associated disability worldwide. The cartilage endplate (CEP) is a critical structure in maintaining the homeostasis of the intervertebral disc, by exosomes (Exos)-mediated intracellular communication between cartilage endplate stem cells (CESCs) and nucleus pulposus cells (NPCs). However, whether the senescence of CESCs influences the functionality of CESCs-derived Exos (CESCs-Exos) and participates in the progress of IVDD remains unclear. In this study, we explored the role and mechanism of the Exos-based intracellular communication between senescent CESCs and NPCs in IVDD. CESCs isolated from aged individuals (S-CESCs) exhibited high levels of senescence compared with CESCs isolated from young individuals (Y-CESCs). Exos from Y-CESCs (Y-Exos) and from S-CESCs (S-Exos) were extracted and identified. Surprisingly, we found that S-Exos lost the therapeutic effects as the Y-Exos exhibited in mitigating IVDD, and even aggravated IVDD by inducing oxidative stress injury in NPCs. MicroRNA-sequencing revealed significant upregulation of miR-29b-3p expression in S-Exos. Through microRNA target prediction, dual luciferase assays, RNA-sequencing, lentivirus-mediated overexpression and suppression, we demonstrated that miR-29b-3p regulates the expression of FOXO3 and downstream antioxidant enzymes to induce oxidative stress injury in NPCs. In vivo experiments further verified that countering miR-29b-3p by antagomir reversed the detrimental effects of S-Exos in exacerbating IVDD. This work elucidates the role and mechanism of senescent CESCs in disrupting redox homeostasis in the nucleus pulposus and exacerbating IVDD by Exos-mediated intracellular communication and offers an experimental foundation for the selection of proper CESCs-Exos to obtain better therapeutic effects in IVDD.
Collapse
Affiliation(s)
- Zhiqun Bian
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China
| | - Yu Zhai
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China.
| | - Yuyao Zhang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China
| | - Tianling Wang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China
| | - Hao Li
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China
| | - Jian Ouyang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China
| | - Chao Liu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China
| | - Siya Wang
- College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Zhilei Hu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China
| | - Xian Chang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China
| | - Chao Zhang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China.
| | - Minghan Liu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China; State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400038, China.
| | - Changqing Li
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; Chongqing Municipal Health Commission Key Laboratory of Precise Orthopedics, Chongqing, 400038, China; State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400038, China.
| |
Collapse
|
2
|
Li H, Zheng F, Tao A, Wu T, Zhan X, Tang H, Cui X, Ma Z, Li C, Jiang J, Wang Y. LncRNA H19 promotes osteoclast differentiation by sponging miR-29c-3p to increase expression of cathepsin K. Bone 2025; 192:117340. [PMID: 39615642 DOI: 10.1016/j.bone.2024.117340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 11/12/2024] [Accepted: 11/23/2024] [Indexed: 01/26/2025]
Abstract
BACKGROUND Osteoporosis is a prevalent metabolic bone disease. Osteoporotic fractures can lead to severe functional impairment and increased mortality. Long noncoding RNA H19 has emerged as a pivotal player in bone remodeling, serving both as a biomarker and a regulator. While previous research has elucidated H19's role in promoting osteogenic differentiation through diverse mechanisms, its involvement in osteoclast differentiation remains largely unknown. METHODS In this study, we used lentiviral vectors to stably overexpress or knockdown H19 in RAW264.7 cell lines. Quantitative reverse polymerase chain reaction, Western blot, tartrate resistant acid phosphatase staining and bone resorption assay were performed to assess the level of osteoclast differentiation and bone resorption capacity. And fluorescence in situ hybridization, dual-luciferase reporter and RNA immunoprecipitation were used to explore the specific mechanism of H19 regulating osteoclast differentiation in vitro. Then, ovariectomized osteoporosis models in wild type mice and H19 knockout mice were conducted. And micro-CT analysis, HE staining, and immunohistochemistry were performed to verify the mechanism of H19 regulating osteoclast differentiation in vivo. Bone marrow derived monocytes and bone mesenchymal stem cells were extracted from mice and assayed for osteoclastic and osteogenic-related assays, respectively. RESULTS In vitro, H19 promoted osteoclast differentiation and bone resorption of RAW264.7 cells, while miR-29c-3p inhibited them. Both H19 and cathepsin K were the target genes of miR-29c-3p. In vivo, H19 knockout mice have increased femur bone mineral density, decreased osteoclast formation, and reduced cathepsin K expression. MiR-29c-3p agomir could increase bone mineral density in osteoporotic mice on the premise of H19 knockout. CONCLUSIONS H19 upregulates cathepsin K expression through sponging miR-29c-3p, which promoting osteoclast differentiation and enhancing bone resorption. This underscores the potential of H19 and miR-29c-3p as promising biomarkers for osteoporosis.
Collapse
Affiliation(s)
- Huazhi Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, No. 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China; National Center of Stomatology & National Clinical Research Center for Oral Diseases, No. 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China; National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China; Beijing Key Laboratory of Digital Stomatology, No. 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China; Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, No. 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China
| | - Fu Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, No. 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China
| | - Anqi Tao
- Department of Pathology, Peking University School and Hospital of Stomatology, No. 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China
| | - Tong Wu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, No. 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China
| | - Xinxin Zhan
- Department of Dental Materials & NMPA Key Laboratory for Dental Materials, No. 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China; Dental Medical Devices Testing Center, Peking University School of Stomatology, No. 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China
| | - Hongyi Tang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, No. 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China
| | - Xinyu Cui
- Department of Orthodontics, Peking University School and Hospital of Stomatology, No. 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China
| | - Zeyun Ma
- Department of VIP service, Peking University School and Hospital of Stomatology, No. 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China.
| | - Cuiying Li
- Central Laboratory, Peking University School and Hospital of Stomatology, No. 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China.
| | - Jiuhui Jiang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, No. 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China.
| | - Yixiang Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, No. 22 Zhongguancun Avenue South, Haidian District, Beijing 100081, PR China.
| |
Collapse
|
3
|
Wei H, Xu Y, Lin L, Li Y, Zhu X. A review on the role of RNA methylation in aging-related diseases. Int J Biol Macromol 2024; 254:127769. [PMID: 38287578 DOI: 10.1016/j.ijbiomac.2023.127769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 01/31/2024]
Abstract
Senescence is the underlying mechanism of organism aging and is robustly regulated at the post-transcriptional level. This regulation involves the chemical modifications, of which the RNA methylation is the most common. Recently, a rapidly growing number of studies have demonstrated that methylation is relevant to aging and aging-associated diseases. Owing to the rapid development of detection methods, the understanding on RNA methylation has gone deeper. In this review, we summarize the current understanding on the influence of RNA modification on cellular senescence, with a focus on mRNA methylation in aging-related diseases, and discuss the emerging potential of RNA modification in diagnosis and therapy.
Collapse
Affiliation(s)
- Hong Wei
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China; Department of Neurology, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China; Central Laboratory of the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Yuhao Xu
- Medical School, Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Li Lin
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China; Central Laboratory of the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Yuefeng Li
- Medical School, Jiangsu University, Zhenjiang, Jiangsu 212001, China.
| | - Xiaolan Zhu
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China; Central Laboratory of the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China.
| |
Collapse
|
4
|
Rather HA, Almousa S, Craft S, Deep G. Therapeutic efficacy and promise of stem cell-derived extracellular vesicles in Alzheimer's disease and other aging-related disorders. Ageing Res Rev 2023; 92:102088. [PMID: 37827304 PMCID: PMC10842260 DOI: 10.1016/j.arr.2023.102088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/01/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
The term extracellular vesicles (EVs) refers to a variety of heterogeneous nanovesicles secreted by almost all cell types, primarily for intercellular communication and maintaining cellular homeostasis. The role of EVs has been widely reported in the genesis and progression of multiple pathological conditions, and these vesicles are suggested to serve as 'liquid biopsies'. In addition to their use as biomarkers, EVs secreted by specific cell types, especially with stem cell properties, have shown promise as cell-free nanotherapeutics. Stem cell-derived EVs (SC-EVs) have been increasingly used as an attractive alternative to stem cell therapies and have been reported to promote regeneration of aging-associated tissue loss and function. SC-EVs treatment ameliorates brain and peripheral aging, reproductive dysfunctions and inhibits cellular senescence, thereby reversing several aging-related disorders and dysfunctions. The anti-aging therapeutic potential of SC-EVs depends on multiple factors, including the type of stem cells, the age of the source stem cells, and their physiological state. In this review, we briefly describe studies related to the promising effects of SC-EVs against various aging-related pathologies, and then we focus in-depth on the therapeutic benefits of SC-EVs against Alzheimer's disease, one of the most devastating neurodegenerative diseases in elderly individuals. Numerous studies in transgenic mouse models have reported the usefulness of SC-EVs in targeting the pathological hallmarks of Alzheimer's disease, including amyloid plaques, neurofibrillary tangles, and neuroinflammation, leading to improved neuronal protection, synaptic plasticity, and cognitive measures. Cell culture studies have further identified the underlying molecular mechanisms through which SC-EVs reduce amyloid beta (Aβ) levels or shift microglia phenotype from pro-inflammatory to anti-inflammatory state. Interestingly, multiple routes of administration, including nasal delivery, have confirmed that SC-EVs could cross the blood-brain barrier. Due to this, SC-EVs have also been tested to deliver specific therapeutic cargo molecule/s (e.g., neprilysin) to the brain. Despite these promises, several challenges related to quality control, scalability, and biodistribution remain, hindering the realization of the vast clinical promise of SC-EVs.
Collapse
Affiliation(s)
- Hilal Ahmad Rather
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Sameh Almousa
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Suzanne Craft
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Atirum Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, United States.
| |
Collapse
|
5
|
D'Onofrio N, Prattichizzo F, Martino E, Anastasio C, Mele L, La Grotta R, Sardu C, Ceriello A, Marfella R, Paolisso G, Balestrieri ML. MiR-27b attenuates mitochondrial oxidative stress and inflammation in endothelial cells. Redox Biol 2023; 62:102681. [PMID: 37003179 PMCID: PMC10090437 DOI: 10.1016/j.redox.2023.102681] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/16/2023] [Indexed: 03/18/2023] Open
Abstract
MiR-27b is highly expressed in endothelial cells (EC) but its function in this context is poorly characterized. This study aims to investigate the effect of miR-27b on inflammatory pathways, cell cycle, apoptosis, and mitochondrial oxidative imbalances in immortalized human aortic endothelial cells (teloHAEC), human umbilical vein endothelial cells (HUVEC), and human coronary artery endothelial cells (HCAEC) exposed to TNF-α. Treatment with TNF-α downregulates the expression of miR-27b in all EC lines, promotes the activation of inflammatory pathways, induces mitochondrial alteration and reactive oxygen species accumulation, fostering the induction of intrinsic apoptosis. Moreover, miR-27b mimic counteracts the TNF-α-related cytotoxicity and inflammation, as well as cell cycle arrest and caspase-3-dependent apoptosis, restoring mitochondria redox state, function, and membrane polarization. Mechanistically, hsa-miR-27b-3p targets the 3'untranslated regions of FOXO1 mRNA to downregulate its expression, blunting the activation of the Akt/FOXO1 pathway. Here, we show that miR-27b is involved in the regulation of a broad range of functionally intertwined phenomena in EC, suggesting its key role in mitigating mithochondrial oxidative stress and inflammation, most likely through targeting of FOXO1. Overall, results reveal for the first time that miR-27b could represent a possible target for future therapies aimed at improving endothelial health.
Collapse
Affiliation(s)
- Nunzia D'Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138, Naples, Italy.
| | | | - Elisa Martino
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138, Naples, Italy.
| | - Camilla Anastasio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138, Naples, Italy.
| | - Luigi Mele
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Via Luciano Armanni 5, 80138, Naples, Italy.
| | | | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Miraglia, 80138, Naples, Italy.
| | | | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Miraglia, 80138, Naples, Italy; Mediterranea Cardiocentro, 80122, Naples, Italy.
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Miraglia, 80138, Naples, Italy; Mediterranea Cardiocentro, 80122, Naples, Italy.
| | - Maria Luisa Balestrieri
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via L. De Crecchio 7, 80138, Naples, Italy.
| |
Collapse
|
6
|
Liu Y, Gu S, Su Y, Wang S, Cheng Y, Sang X, Jin L, Liu Y, Li C, Liu W, Chen M, Wang X, Wang Z. Embryonic stem cell extracellular vesicles reverse the senescence of retinal pigment epithelial cells by the p38MAPK pathway. Exp Eye Res 2023; 227:109365. [PMID: 36577484 DOI: 10.1016/j.exer.2022.109365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/26/2022]
Abstract
Retinal pigment epithelial (RPE) cellular senescence is regarded as an initiator for age-related macular degeneration (AMD). We previously demonstrated that by the coculture way, embryonic stem cells (ESCs) can reverse the senescence of RPE cells, but xenograft cells can cause a plethora of adverse effects. Extracellular vesicles (EVs) derived from ESCs can act as messengers to mediate nearby cell activities and have the same potential as ESCs to reverse RPE senescence. Furthermore, ESC-EVs have achieved preliminary efficacy while treating many age-related diseases. The present study aimed to test the effect of ESC-EVs on the replicative senescence model of RPE cells as well as its mechanism. The results showed that ESC-EVs enhanced the proliferative ability and cell cycle transition of senescent RPE cells, whereas reduced the senescence-associated galactosidase (SA-β-gal) staining rate, as well as the levels of mitochondrial membrane potential (MMP) and reactive oxygen species (ROS). Moreover, classical markers of cellular senescence p21WAF1/CIP1 (p21) and p16INK4a (p16) were downregulated. The bioinformatic analysis and further study showed that the inhibition of the p38MAPK pathway by ESC-EVs played a pivotal role in RPE cellular senescence-reversing effect, which was ameliorated or even abolished when dehydrocorydaline were administrated simultaneously, demonstrating that ESC-EVs can effectively reverse RPE cellular senesence by inhibiting the p38MAPK pathway, thus highlights the potential of ESC-derived EVs as biomaterials for preventative and protective therapy in AMD.
Collapse
Affiliation(s)
- Yurun Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| | - Simin Gu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| | - Yaru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| | - Shoubi Wang
- The First Affiliated Hospital of Xiamen, 55 Zhenhai Road, Xiamen, China.
| | - Yaqi Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| | - Xuan Sang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| | - Lin Jin
- The First Affiliated Hospital of Shandong First Medical University, 16766 Jingshi Road, Jinan, Shandong Province, China.
| | - Ying Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| | - Chaoyang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| | - Weiqin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| | - Minghao Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| | - Xiaoran Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| | - Zhichong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| |
Collapse
|
7
|
Yang D, Xiao F, Li J, Wang S, Fan X, Ni Q, Li Y, Zhang M, Yan T, Yang M, He Z. Age-related ceRNA networks in adult Drosophila ageing. Front Genet 2023; 14:1096902. [PMID: 36926584 PMCID: PMC10012872 DOI: 10.3389/fgene.2023.1096902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
As Drosophila is an extensively used genetic model system, understanding of its regulatory networks has great significance in revealing the genetic mechanisms of ageing and human diseases. Competing endogenous RNA (ceRNA)-mediated regulation is an important mechanism by which circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs) regulate ageing and age-related diseases. However, extensive analyses of the multiomics (circRNA/miRNA/mRNA and lncRNA/miRNA/mRNA) characteristics of adult Drosophila during ageing have not been reported. Here, differentially expressed circRNAs and microRNAs (miRNAs) between 7 and 42-day-old flies were screened and identified. Then, the differentially expressed mRNAs, circRNAs, miRNAs, and lncRNAs between the 7- and 42-day old flies were analysed to identify age-related circRNA/miRNA/mRNA and lncRNA/miRNA/mRNA networks in ageing Drosophila. Several key ceRNA networks were identified, such as the dme_circ_0009500/dme_miR-289-5p/CG31064, dme_circ_0009500/dme_miR-289-5p/frizzled, dme_circ_0009500/dme_miR-985-3p/Abl, and XLOC_027736/dme_miR-985-3p/Abl XLOC_189909/dme_miR-985-3p/Abl networks. Furthermore, real-time quantitative PCR (qPCR) was used to verify the expression level of those genes. Those results suggest that the discovery of these ceRNA networks in ageing adult Drosophila provide new information for research on human ageing and age-related diseases.
Collapse
Affiliation(s)
- Deying Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Feng Xiao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiamei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Siqi Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiaolan Fan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qingyong Ni
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingwang Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Taiming Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingyao Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhi He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
8
|
Wang SY, Xu Y, Hong Q, Chen XM, Cai GY. Mesenchymal stem cells ameliorate cisplatin-induced acute kidney injury via let-7b-5p. Cell Tissue Res 2022; 392:517-533. [PMID: 36543894 DOI: 10.1007/s00441-022-03729-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022]
Abstract
Acute kidney injury (AKI) is a clinically common kidney disease. Age is an important factor that contributes to the susceptibility to AKI. Mesenchymal stem cells (MSCs) are a promising therapy for AKI, and miRNAs in exosomes (Exos) derived from MSCs are an important aspect of MSC treatment. However, the therapeutic effect of miRNA from MSC-derived Exos on AKI and the related mechanism have not been fully clarified. Whether there is a relationship between the mechanisms of senescence for AKI susceptibility and the therapeutic effect of MSCs has not been studied. We compared the degree of cisplatin-induced AKI injury in young and elderly mice and investigated changes in the expression of p53 and markers of DNA damage and apoptosis, which are important in both senescence and AKI. Ageing mice exhibited increased expression of p53 and pro-apoptosis markers. Upregulation of the senescence-associated DNA damage/p53 pathway may be an important susceptibility factor for cisplatin-induced AKI. Treatment with MSCs can reduce the degree of DNA damage and suppress p53 expression and apoptosis. Upon screening for differentially expressed miRNAs, let-7b-5p levels were found to be lower in aged mice than in young mice, and MSC treatment increased let-7b-5p levels. The presence of let-7b-5p in MSC-derived Exos alleviates tubular epithelial cell apoptosis by inhibiting p53, which reduces DNA damage and apoptosis pathway activity. Let-7b-5p downregulation may lead to increased renal AKI susceptibility, thus indicating that this miRNA is a potential driver of the MSC treatment response in AKI.
Collapse
|
9
|
Cheng M, Yang Z, Qiao L, Yang Y, Deng Y, Zhang C, Mi T. AGEs induce endothelial cells senescence and endothelial barrier dysfunction via miR-1-3p/MLCK signaling pathways. Gene 2022; 851:147030. [DOI: 10.1016/j.gene.2022.147030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/10/2022] [Accepted: 10/31/2022] [Indexed: 11/08/2022]
|
10
|
Xia S, Zheng Y, Yan F, Chen G. MicroRNAs modulate neuroinflammation after intracerebral hemorrhage: Prospects for new therapy. Front Immunol 2022; 13:945860. [PMID: 36389834 PMCID: PMC9665326 DOI: 10.3389/fimmu.2022.945860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/13/2022] [Indexed: 12/03/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is the most common subtype of hemorrhagic stroke. After ICH, blood components extravasate from vessels into the brain, activating immune cells and causing them to release a series of inflammatory mediators. Immune cells, together with inflammatory mediators, lead to neuroinflammation in the perihematomal region and the whole brain, and neuroinflammation is closely related to secondary brain injury as well as functional recovery of the brain. Despite recent progress in understanding the pathophysiology of ICH, there is still no effective treatment for this disease. MicroRNAs (miRNAs) are non-coding RNAs 17-25 nucleotides in length that are generated naturally in the human body. They bind complementarily to messenger RNAs and suppress translation, thus regulating gene expression at the post-transcriptional level. They have been found to regulate the pathophysiological process of ICH, particularly the neuroinflammatory cascade. Multiple preclinical studies have shown that manipulating the expression and activity of miRNAs can modulate immune cell activities, influence neuroinflammatory responses, and ultimately affect neurological functions after ICH. This implicates the potentially crucial roles of miRNAs in post-ICH neuroinflammation and indicates the possibility of applying miRNA-based therapeutics for this disease. Thus, this review aims to address the pathophysiological roles and molecular underpinnings of miRNAs in the regulation of neuroinflammation after ICH. With a more sophisticated understanding of ICH and miRNAs, it is possible to translate these findings into new pharmacological therapies for ICH.
Collapse
Affiliation(s)
- Siqi Xia
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yonghe Zheng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Zhejiang University, Hangzhou, Zhejiang, China
| | - Feng Yan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Zhejiang University, Hangzhou, Zhejiang, China
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Li Y, Wang M, Sun M, Wang X, Pei D, Lei B, Li A. Engineering antioxidant poly (citrate-gallic acid)-Exosome hybrid hydrogel with microglia immunoregulation for Traumatic Brain Injury-post neuro-restoration. COMPOSITES PART B: ENGINEERING 2022; 242:110034. [DOI: 10.1016/j.compositesb.2022.110034] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
|
12
|
Liu F, Ye S, Jiang P, Zhang W, Wang Z, Li C. The proteome profiling of EVs originating from senescent cell model using quantitative proteomics and parallel reaction monitoring. J Proteomics 2022; 266:104669. [PMID: 35788408 DOI: 10.1016/j.jprot.2022.104669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/30/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022]
Abstract
Senescence is the inevitable biological processes and is also considered as the biggest risk factor for the development of age - related diseases (ARDs) and geriatric syndrome (GS). Senescence is also known as inflammaging because it is characterized by persistent, long-term, low-grade inflammation named senescence-associated secretory phenotype (SASP). However, the mechanism for the persistence of inflammaging remains largely unclear. To explore the role of extracellular vesicles (EVs) in senescence/inflammaging, we established the cellular senescence model and performed TMT-based comparative quantitative proteomics and parallel reaction monitoring (PRM) to reveal the changes of EVs between young cells and senescent cells. A total of 3966 proteins were quantifiable, of which 132 were up-regulated, 144 were down-regulated, compared with the young cells. Subsequently, we chose 19 proteins involved in inflammation or proliferation to carry out PRM validation analysis. The result indicated that proteins promoting NF-κB signal pathway were up-regulated, and proteins promoting cell proliferation were down-regulated. The study provided a comprehensive altered proteomics profiles of EVs from senescent cells, and the result showed that EVs could serve as information carrier for further research on the pathogenesis and progression of senescence/inflammaging. SIGNIFICANCE: The mechanism of inflammaging occurrence and development has yet been clear. Therefore, this study attempts to provide an improved understanding of inflammaging from the perspective of EVs. The proteomics analysis revealed that the most changed proteins were connected to inflammation signaling pathways, cell growth and cell death, and PRM analysis results showed that proteins involved in NF-κB signal pathway and cell proliferation were more changed. The research systematically analyzed the profiles of proteins in senescence cell model, and the result indicated that further research should focus on the relationship between EVs and senescence/inflammaging.
Collapse
Affiliation(s)
- Fengjuan Liu
- Institute of blood transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, China.
| | - Shengliang Ye
- Institute of blood transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, China.
| | - Peng Jiang
- Institute of blood transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, China.
| | - Wei Zhang
- Institute of blood transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, China
| | - Zongkui Wang
- Institute of blood transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, China.
| | - Changqing Li
- Institute of blood transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, China.
| |
Collapse
|
13
|
Bahmani L, Ullah M. Different Sourced Extracellular Vesicles and Their Potential Applications in Clinical Treatments. Cells 2022; 11:1989. [PMID: 35805074 PMCID: PMC9265969 DOI: 10.3390/cells11131989] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) include a heterogeneous group of natural cell-derived nanostructures that are increasingly regarded as promising biotherapeutic agents and drug delivery vehicles in human medicine. Desirable intrinsic properties of EVs including the ability to bypass natural membranous barriers and to deliver their unique biomolecular cargo to specific cell populations position them as fiercely competitive alternatives for currently available cell therapies and artificial drug delivery platforms. EVs with distinct characteristics can be released from various cell types into the extracellular environment as a means of transmitting bioactive components and altering the status of the target cell. Despite the existence of a large number of preclinical studies confirming the therapeutic efficacy of different originated EVs for treating several pathological conditions, in this review, we first provide a brief overview of EV biophysical properties with an emphasis on their intrinsic therapeutic benefits over cell-based therapies and synthetic delivery systems. Next, we describe in detail different EVs derived from distinct cell sources, compare their advantages and disadvantages, and recapitulate their therapeutic effects on various human disorders to highlight the progress made in harnessing EVs for clinical applications. Finally, knowledge gaps and concrete hurdles that currently hinder the clinical translation of EV therapies are debated with a futuristic perspective.
Collapse
Affiliation(s)
- Leila Bahmani
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA;
- Molecular Medicine Department of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, USA;
- Molecular Medicine Department of Medicine, Stanford University, Palo Alto, CA 94304, USA
| |
Collapse
|
14
|
Ren H, Guo Z, Liu Y, Song C. Stem Cell-derived Exosomal MicroRNA as Therapy for Vascular Age-related Diseases. Aging Dis 2022; 13:852-867. [PMID: 35656114 PMCID: PMC9116915 DOI: 10.14336/ad.2021.1110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
Vascular age-related diseases describe a group of age-related chronic diseases that result in a considerable healthcare burden to society. Vascular aging includes structural changes and dysfunctions of endothelial cells (ECs) and smooth muscle cells (SMCs) in blood vessels. Compared with conventional treatment for vascular age-related diseases, stem cell (SC) therapy elicits better anti-aging effects viathe inhibition/delay ECs and SMCs from entering senescence. Exosomal noncoding RNA (ncRNAs) in vascular aging and stem cell-derived exosomal microRNAs (SCEV-miRNAs), especially in mesenchymal stem cells, have an important role in the development of age-related diseases. This review summarizes SCEV-miRNAs of diverse origins that may play a vital role in treating subclinical and clinical stages of vascular age-related disorders. We further explored possible age-related pathways and molecular targets of SCEV-miRNA, which are associated with dysfunctions of ECs and SMCs in the senescent stage. Moreover, the perspectives and difficulties of SCEV-miRNA clinical translation are discussed. This review aims to provide greater understanding of the biology of vascular aging and to identify critical therapeutic targets for SCEV-miRNAs. Though still in its infancy, the potential value of SCEV-miRNAs for vascular age-related diseases is clear.
Collapse
Affiliation(s)
- Hang Ren
- Department of Cardiovascular Internal Medicine, the Second Hospital of Jilin University, Changchun, China
| | - Ziyuan Guo
- Department of Cardiovascular Internal Medicine, the Second Hospital of Jilin University, Changchun, China
| | - Yang Liu
- Department of Cardiovascular Internal Medicine, the Second Hospital of Jilin University, Changchun, China
| | - Chunli Song
- Department of Cardiovascular Internal Medicine, the Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Rahman MM, Islam MR, Islam MT, Harun-Or-Rashid M, Islam M, Abdullah S, Uddin MB, Das S, Rahaman MS, Ahmed M, Alhumaydhi FA, Emran TB, Mohamed AAR, Faruque MRI, Khandaker MU, Mostafa-Hedeab G. Stem Cell Transplantation Therapy and Neurological Disorders: Current Status and Future Perspectives. BIOLOGY 2022; 11:147. [PMID: 35053145 PMCID: PMC8772847 DOI: 10.3390/biology11010147] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases are a global health issue with inadequate therapeutic options and an inability to restore the damaged nervous system. With advances in technology, health scientists continue to identify new approaches to the treatment of neurodegenerative diseases. Lost or injured neurons and glial cells can lead to the development of several neurological diseases, including Parkinson's disease, stroke, and multiple sclerosis. In recent years, neurons and glial cells have successfully been generated from stem cells in the laboratory utilizing cell culture technologies, fueling efforts to develop stem cell-based transplantation therapies for human patients. When a stem cell divides, each new cell has the potential to either remain a stem cell or differentiate into a germ cell with specialized characteristics, such as muscle cells, red blood cells, or brain cells. Although several obstacles remain before stem cells can be used for clinical applications, including some potential disadvantages that must be overcome, this cellular development represents a potential pathway through which patients may eventually achieve the ability to live more normal lives. In this review, we summarize the stem cell-based therapies that have been explored for various neurological disorders, discuss the potential advantages and drawbacks of these therapies, and examine future directions for this field.
Collapse
Affiliation(s)
- Mohammad Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Mohammad Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Mohammad Touhidul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Mohammad Harun-Or-Rashid
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Mahfuzul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Sabirin Abdullah
- Space Science Center, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Mohammad Borhan Uddin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Sumit Das
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Mohammad Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | | | | | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway 47500, Selangor, Malaysia;
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department & Health Sciences Research Unit, Medical College, Jouf University, Sakaka 72446, Saudi Arabia;
- Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef 62521, Egypt
| |
Collapse
|
16
|
Luo DS, Li YQ, Deng ZQ, Liu GH. Progress and prospect of stem cell therapy for diabetic erectile dysfunction. World J Diabetes 2021; 12:2000-2010. [PMID: 35047115 PMCID: PMC8696650 DOI: 10.4239/wjd.v12.i12.2000] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/18/2021] [Accepted: 10/31/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetic erectile dysfunction (DED) is a common complication of diabetes mellitus, significantly impairing the quality of life of patients. The conventional clinical treatment still has limitations. Stem cells (SCs), as a type of cells with multidirectional or directional differentiation capability and sustainable self-renewal potential, are widely used in regenerative medicine and tissue engineering. With the continuous update of regenerative medicine theory and the success of animal experiments, SCs as a treatment for male erectile dysfunction, especially DED, have attracted widespread attention because of curable possibility. This review focus on the current progress in the clinical application of SC treatment for DED. Moreover, we summarize the development prospects of SCs in the field of DMED therapy.
Collapse
Affiliation(s)
- Dao-Sheng Luo
- Department of Urology, Dongguan People’s Hospital, Dongguan 523000, Guangdong Province, China
| | - Yan-Qing Li
- Reproductive Centre, Sun Yat-Sen University, The Sixth Affiliated Hospital, Guangzhou 510000, Guangdong Province, China
| | - Zhi-Quan Deng
- Department of Urology, Dongguan People’s Hospital, Dongguan 523000, Guangdong Province, China
| | - Gui-Hua Liu
- Reproductive Centre, Sun Yat-Sen University, The Sixth Affiliated Hospital, Guangzhou 510000, Guangdong Province, China
| |
Collapse
|
17
|
Li X, Hu S, Zhang H, Yin H, Wang H, Zhou D, Sun Y, Ma L, Shen B, Zhu C. MiR-279-3p regulates deltamethrin resistance through CYP325BB1 in Culex pipiens pallens. Parasit Vectors 2021; 14:528. [PMID: 34641939 PMCID: PMC8507342 DOI: 10.1186/s13071-021-05033-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/23/2021] [Indexed: 11/15/2022] Open
Abstract
Background The overuse of insecticides to control insect vectors has promoted extensive insecticide resistance in mosquitoes. In this study, the functions of microRNA (miR)-279-3p and its target CYP325BB1 in the regulation of deltamethrin resistance in Culex pipiens pallens was investigated. Methods Quantitative real-time reverse transcription PCR was used to detect the expression levels of miR-279-3p and CYP325BB1. Then, the dual-luciferase reporter assay system, RNA interference, CDC bottle bioassay and Cell Counting Kit-8 (CCK-8) assay were used to explore the roles of these molecules in deltamethrin resistance both in vivo and in vitro. Results The expression patterns of miR-279-3p and CYP325BB1 were compared between deltamethrin-sensitive (DS-strain) and deltamethrin-resistant (DR-strain) mosquitoes. Luciferase activity was downregulated by miR-279-3p, the effect of which was ablated by a mutation of the putative binding site for CYP325BB1. In DR-strain mosquitoes, the expression of miR-279-3p was increased by microinjection and oral feeding of miR-279-3p agomir (mimic). CYP325BB1 mRNA levels were downregulated, which resulted in a higher mortality of the mosquitoes in miR-279-3p mimic-treated groups. In the DS-strain mosquitoes, microinjection of a miR-279-3p inhibitor decreased miR-279-3p expression, whereas the expression of CYP325BB1 was increased; the mortality of these mosquitoes decreased significantly. In addition, overexpression of pIB/V5-His-CYP325BB1 changed the sensitivity of C6/36 cells to deltamethrin in vitro. Also in DR-strain mosquitoes, downregulation of CYP325BB1 expression by microinjection of si-CYP325BB1 increased mosquito mortality in vivo. Conclusions These findings provide empirical evidence of the involvement of miRNAs in the regulation of insecticide resistance and indicate that miR-279-3p suppresses the expression of CYP325BB1, which in turn decreases deltamethrin resistance, resulting in increased mosquito mortality. Taken together, the results provide important information for use in the development of future mosquito control strategies. Graphical abstract ![]()
Collapse
Affiliation(s)
- Xixi Li
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China.,Department of Pathogen Biology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210046, People's Republic of China
| | - Shengli Hu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China.,Department of Stomatology, Fifty People's Hospital of Yuhang District, Hangzhou, Zhejiang, 311199, People's Republic of China
| | - Hongbo Zhang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Haitao Yin
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Huan Wang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Dan Zhou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Lei Ma
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China.
| | - Changliang Zhu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| |
Collapse
|
18
|
Das M, Kale V. Involvement of extracellular vesicles in aging process and their beneficial effects in alleviating aging-associated symptoms. Cell Biol Int 2021; 45:2403-2419. [PMID: 34427351 DOI: 10.1002/cbin.11691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/25/2021] [Accepted: 08/14/2021] [Indexed: 12/16/2022]
Abstract
Aging is a gradual and unavoidable physiological phenomenon that manifests in the natural maturation process and continues to progress from infanthood to adulthood. Many elderly people suffer from aging-associated hematological and nonhematological disorders. Recent advances in regenerative medicine have shown new revolutionary paths of treating such diseases using stem cells; however, aging also affects the quality and competence of stem and progenitor cells themselves and ultimately directs their death or apoptosis and senescence, leading to a decline in their regenerative potential. Recent research works show that extracellular vesicles (EVs) isolated from different types of stem cells may provide a safe treatment for aging-associated disorders. The cargo of EVs comprises packets of information in the form of various macromolecules that can modify the fate of the target cells. To harness the true potential of EVs in regenerative medicine, it is necessary to understand how this cargo contributes to the rejuvenation of aged stem and progenitor populations and to identify the aging-associated changes in the macromolecular profile of the EVs themselves. In this review, we endeavor to summarize the current knowledge of the involvement of EVs in the aging process and delineate the role of EVs in the reversal of aging-associated phenotypes. We have also analyzed the involvement of the molecular cargo of EVs in the generation of aging-associated disorders. This knowledge could not only help us in understanding the mechanism of the aging process but could also facilitate the development of new cell-free biologics to treat aging-related disorders in the future.
Collapse
Affiliation(s)
- Madhurima Das
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, India
| | - Vaijayanti Kale
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, India
| |
Collapse
|
19
|
Hamdan Y, Mazini L, Malka G. Exosomes and Micro-RNAs in Aging Process. Biomedicines 2021; 9:968. [PMID: 34440172 PMCID: PMC8393989 DOI: 10.3390/biomedicines9080968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/06/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022] Open
Abstract
Exosomes are the main actors of intercellular communications and have gained great interest in the new cell-free regenerative medicine. These nanoparticles are secreted by almost all cell types and contain lipids, cytokines, growth factors, messenger RNA, and different non-coding RNA, especially micro-RNAs (mi-RNAs). Exosomes' cargo is released in the neighboring microenvironment but is also expected to act on distant tissues or organs. Different biological processes such as cell development, growth and repair, senescence, migration, immunomodulation, and aging, among others, are mediated by exosomes and principally exosome-derived mi-RNAs. Moreover, their therapeutic potential has been proved and reinforced by their use as biomarkers for disease diagnostics and progression. Evidence has increasingly shown that exosome-derived mi-RNAs are key regulators of age-related diseases, and their involvement in longevity is becoming a promising issue. For instance, mi-RNAs such as mi-RNA-21, mi-RNA-29, and mi-RNA-34 modulate tissue functionality and regeneration by targeting different tissues and involving different pathways but might also interfere with long life expectancy. Human mi-RNAs profiling is effectively related to the biological fluids that are reported differently between young and old individuals. However, their underlying mechanisms modulating cell senescence and aging are still not fully understood, and little was reported on the involvement of mi-RNAs in cell or tissue longevity. In this review, we summarize exosome biogenesis and mi-RNA synthesis and loading mechanism into exosomes' cargo. Additionally, we highlight the molecular mechanisms of exosomes and exosome-derived mi-RNA regulation in the different aging processes.
Collapse
Affiliation(s)
| | - Loubna Mazini
- Institute of Biological Sciences, Université Mohammed VI Polytechnique, Lot 660 Hay Moulay Rachid, Ben Guerir 3150, Morocco; (Y.H.); (G.M.)
| | | |
Collapse
|
20
|
Pillalamarri N, Abdullah, Ren G, Khan L, Ullah A, Jonnakuti S, Ullah M. Exploring the utility of extracellular vesicles in ameliorating viral infection-associated inflammation, cytokine storm and tissue damage. Transl Oncol 2021; 14:101095. [PMID: 33887552 PMCID: PMC8053440 DOI: 10.1016/j.tranon.2021.101095] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) have emerged as potential mediators of intercellular communication. EVs are nano-sized, lipid membrane-bound vesicles that contains biological information in the form of proteins, metabolites and/or nucleic acids. EVs are key regulators of tissue repair mechanisms, such as in the context of lung injuries. Recent studies suggest that EVs have the ability to repair COVID19-associated acute lung damage. EVs hold great promise for therapeutic treatments, particularly in treating a potentially fatal autoimmune response and attenuate inflammation. They are known to boost lung immunity and are involved in the pathogenesis of various lung diseases, including viral infection. EV-based immunization technology has been proven to elicit robust immune responses in many models of infectious disease, including COVID-19. The field of EV research has tremendous potential in advancing our understanding about viral infection pathogenesis, and can be translated into anti-viral therapeutic strategies.
Collapse
Affiliation(s)
- Nagavalli Pillalamarri
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, United States
| | - Abdullah
- Molecular Medicine Department of Medicine, Stanford University, CA, United States
| | - Gang Ren
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, United States
| | - Luqman Khan
- School of Medicine, University of California, San Francisco, CA 94158, United States
| | - Asad Ullah
- School of Medicine, University of California, San Francisco, CA 94158, United States
| | - Sriya Jonnakuti
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, United States
| | - Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, United States; Molecular Medicine Department of Medicine, Stanford University, CA, United States.
| |
Collapse
|
21
|
Fayazi N, Sheykhhasan M, Soleimani Asl S, Najafi R. Stem Cell-Derived Exosomes: a New Strategy of Neurodegenerative Disease Treatment. Mol Neurobiol 2021; 58:3494-3514. [PMID: 33745116 PMCID: PMC7981389 DOI: 10.1007/s12035-021-02324-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 02/05/2021] [Indexed: 02/06/2023]
Abstract
Short-term symptomatic treatment and dose-dependent side effects of pharmacological treatment for neurodegenerative diseases have forced the medical community to seek an effective treatment for this serious global health threat. Therapeutic potential of stem cell for treatment of neurodegenerative disorders was identified in 1980 when fetal nerve tissue was used to treat Parkinson's disease (PD). Then, extensive studies have been conducted to develop this treatment strategy for neurological disease therapy. Today, stem cells and their secretion are well-known as a therapeutic environment for the treatment of neurodegenerative diseases. This new paradigm has demonstrated special characteristics related to this treatment, including neuroprotective and neurodegeneration, remyelination, reduction of neural inflammation, and recovery of function after induced injury. However, the exact mechanism of stem cells in repairing nerve damage is not yet clear; exosomes derived from them, an important part of their secretion, are introduced as responsible for an important part of such effects. Numerous studies over the past few decades have evaluated the therapeutic potential of exosomes in the treatment of various neurological diseases. In this review, after recalling the features and therapeutic history, we will discuss the latest stem cell-derived exosome-based therapies for these diseases.
Collapse
Affiliation(s)
- Nashmin Fayazi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohsen Sheykhhasan
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sara Soleimani Asl
- Anatomy Department, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
22
|
Ullah M, Kodam SP, Mu Q, Akbar A. Microbubbles versus Extracellular Vesicles as Therapeutic Cargo for Targeting Drug Delivery. ACS NANO 2021; 15:3612-3620. [PMID: 33666429 DOI: 10.1021/acsnano.0c10689] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Extracellular vesicles (EVs) and microbubbles are nanoparticles in drug-delivery systems that are both considered important for clinical translation. Current research has found that both microbubbles and EVs have the potential to be utilized as drug-delivery agents for therapeutic targets in various diseases. In combination with EVs, microbubbles are capable of delivering chemotherapeutic drugs to tumor sites and neighboring sites of damaged tissues. However, there are no standards to evaluate or to compare the benefits of EVs (natural carrier) versus microbubbles (synthetic carrier) as drug carriers. Both drug carriers are being investigated for release patterns and for pharmacokinetics; however, few researchers have focused on their targeted delivery or efficacy. In this Perspective, we compare EVs and microbubbles for a better understanding of their utility in terms of delivering drugs to their site of action and future clinical translation.
Collapse
Affiliation(s)
- Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, California 94304, United States
- Department of Molecular Medicine, School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Sai Priyanka Kodam
- Department of Molecular Medicine, School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Qian Mu
- Department of Molecular Medicine, School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Asma Akbar
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, California 94304, United States
| |
Collapse
|
23
|
Macrophage migration inhibitory factor facilitates the therapeutic efficacy of mesenchymal stem cells derived exosomes in acute myocardial infarction through upregulating miR-133a-3p. J Nanobiotechnology 2021; 19:61. [PMID: 33639970 PMCID: PMC7916292 DOI: 10.1186/s12951-021-00808-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Background Exosome transplantation is a promising cell-free therapeutic approach for the treatment of ischemic heart disease. The purpose of this study was to explore whether exosomes derived from Macrophage migration inhibitory factor (MIF) engineered umbilical cord MSCs (ucMSCs) exhibit superior cardioprotective effects in a rat model of AMI and reveal the mechanisms underlying it. Results Exosomes isolated from ucMSCs (MSC-Exo), MIF engineered ucMSCs (MIF-Exo) and MIF downregulated ucMSCs (siMIF-Exo) were used to investigate cellular protective function in human umbilical vein endothelial cells (HUVECs) and H9C2 cardiomyocytes under hypoxia and serum deprivation (H/SD) and infarcted hearts in rats. Compared with MSC-Exo and siMIF-Exo, MIF-Exo significantly enhanced proliferation, migration, and angiogenesis of HUVECs and inhibited H9C2 cardiomyocyte apoptosis under H/SD in vitro. MIF-Exo also significantly inhibited cardiomyocyte apoptosis, reduced fibrotic area, and improved cardiac function as measured by echocardiography in infarcted rats in vivo. Exosomal miRNAs sequencing and qRT-PCR confirmed miRNA-133a-3p significantly increased in MIF-Exo. The biological effects of HUVECs and H9C2 cardiomyocytes were attenuated with incubation of MIF-Exo and miR-133a-3p inhibitors. These effects were accentuated with incubation of siMIF-Exo and miR-133a-3p mimics that increased the phosphorylation of AKT protein in these cells. Conclusion MIF-Exo can provide cardioprotective effects by promoting angiogenesis, inhibiting apoptosis, reducing fibrosis, and preserving heart function in vitro and in vivo. The mechanism in the biological activities of MIF-Exo involves miR-133a-3p and the downstream AKT signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00808-5.
Collapse
|
24
|
Wang X, HuangFu C, Zhu X, Liu J, Gong X, Pan Q, Ma X. Exosomes and Exosomal MicroRNAs in Age-Associated Stroke. Curr Vasc Pharmacol 2021; 19:587-600. [PMID: 33563154 DOI: 10.2174/1570161119666210208202621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/04/2021] [Accepted: 01/18/2021] [Indexed: 11/22/2022]
Abstract
Aging has been considered to be the most important non-modifiable risk factor for stroke and death. Changes in circulation factors in the systemic environment, cellular senescence and artery hypertension during human ageing have been investigated. Exosomes are nanosize membrane vesicles that can regulate target cell functions via delivering their carried bioactive molecules (e.g. protein, mRNA, and microRNAs). In the central nervous system, exosomes and exosomal microRNAs play a critical role in regulating neurovascular function, and are implicated in the initiation and progression of stroke. MicroRNAs are small non-coding RNAs that have been reported to play critical roles in various biological processes. Recently, evidence has shown that microRNAs are packaged into exosomes and can be secreted into the systemic and tissue environment. Circulating microRNAs participate in cellular senescence and contribute to age-associated stroke. Here, we provide an overview of current knowledge on exosomes and their carried microRNAs in the regulation of cellular and organismal ageing processes, demonstrating the potential role of exosomes and their carried microRNAs in age-associated stroke.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Changmei HuangFu
- Department of Geriatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Xiudeng Zhu
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Jiehong Liu
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Xinqin Gong
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Qunwen Pan
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| | - Xiaotang Ma
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, . China
| |
Collapse
|
25
|
Wei W, Ao Q, Wang X, Cao Y, Liu Y, Zheng SG, Tian X. Mesenchymal Stem Cell-Derived Exosomes: A Promising Biological Tool in Nanomedicine. Front Pharmacol 2021; 11:590470. [PMID: 33716723 PMCID: PMC7944140 DOI: 10.3389/fphar.2020.590470] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022] Open
Abstract
As nano-scale biological vesicles, extracellular vesicles (EVs)/exosomes, in particular, exosomes derived from mesenchymal stem cells (MSC-exosomes), have been studied in the diagnosis, prevention, and treatment of many diseases. In addition, through the combination of nanotechnology and biotechnology, exosomes have emerged as innovative tools for the development of nanomedicine. This review focuses on a profound summarization of MSC-exosomes as a powerful tool in bionanomedicine. It systemically summarizes the role of MSC-exosomes as a nanocarrier, drug loading and tissue engineering, and their potential contribution in a series of diseases as well as the advantages of exosomes over stem cells and synthetic nanoparticles and potential disadvantages. The in-depth understanding of the functions and mechanisms of exosomes provides insights into the basic research and clinical transformation in the field of nanomedicine.
Collapse
Affiliation(s)
- Wumei Wei
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| | - Qiang Ao
- Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Xiaohong Wang
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| | - Yue Cao
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| | - Yanying Liu
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Song Guo Zheng
- Department of Internal Medicine, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, United States
| | - Xiaohong Tian
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, China
| |
Collapse
|
26
|
Kodam SP, Ullah M. Diagnostic and Therapeutic Potential of Extracellular Vesicles. Technol Cancer Res Treat 2021; 20:15330338211041203. [PMID: 34632862 PMCID: PMC8504225 DOI: 10.1177/15330338211041203] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) are naturally phospholipid enclosed nanovesicles released by many cells in the body. They are stable in circulation, have low immunogenicity, and act as carriers for functionally active biological molecules. They interact with target organs and bind to the receptors. Their target specificity is important to use EVs as noninvasive diagnostic and prognostic tools. EVs play a vital role in normal physiology and cellular communication. They are known to protect their cargo from degradation, which makes them important drug carriers for targeted drug delivery. Using EVs with markers and tracking their path in systemic circulation can be revolutionary in using them as diagnostic tools. We will discuss the scope of this in this paper. Although there are limitations in EVs isolation and storage, their high biocompatibility will fuel more innovations to overcome these challenges.
Collapse
Affiliation(s)
- Sai Priyanka Kodam
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, California, USA
- School of Medicine, Stanford University, Palo Alto, California, USA
| | - Mujib Ullah
- Institute for Immunity and Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, California, USA
- School of Medicine, Stanford University, Palo Alto, California, USA
| |
Collapse
|
27
|
Liu YR, Cheng YQ, Wang SB, Su YR, Liu Y, Li CY, Jin L, Wan Q, Sang X, Wang ZC. Therapeutic effects and perspective of stem cell extracellular vesicles in aging and cancer. J Cell Physiol 2020; 236:4783-4796. [PMID: 33368322 DOI: 10.1002/jcp.30212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/02/2020] [Accepted: 11/28/2020] [Indexed: 12/16/2022]
Abstract
Senescent cells can secrete a plethora of cytokines which induce senescent phenotype of neighboring cells and was called senescence-associated secretory phenotype. Previously, it was believed that cancer was caused by the infinite division and uncontrolled proliferation of cells. Based on this, anticancer treatments were all aimed at killing cancer cells. Cancer is now considered an age-related disease. Cancer cells are not exogenous, but one of the worst results of injuries which initially induce cell senescence. Therefore, reversing cell senescence can fundamentally prevent and treat cancer. Though current anticancer treatments induce the cancer cells apoptosis, they induce senescence of normal cells at the same time, thus promoting the occurrence and development of cancer and forming a vicious circle. Extracellular vesicles (EVs) are nano-sized vesicles which partially mirror their parent cells. In the tumor microenvironment, EVs of senescent cells can change the expression profile of cancer cells, contributing to their resistance to chemotherapy. There is growing evidence indicates that stem cell EVs exert effective antiaging and anticancer actions by transferring functional microRNAs and proteins. This review will summarize the therapeutic role of stem cell EVs in reversing aging and cancer, which suggests the broad clinical application perspective.
Collapse
Affiliation(s)
- Yu-Run Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ya-Qi Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shou-Bi Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ya-Ru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ying Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chao-Yang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qi Wan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xuan Sang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Chong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
28
|
Jiang X, Xing L, Chen Y, Qin R, Song S, Lu Y, Xie S, Wang L, Pu H, Gui X, Li T, Xu J, Li J, Jia S, Lu D. CircMEG3 inhibits telomerase activity by reducing Cbf5 in human liver cancer stem cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:310-323. [PMID: 33425489 PMCID: PMC7779543 DOI: 10.1016/j.omtn.2020.11.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022]
Abstract
Circular RNA (CircRNA) is a newly identified special class of non-coding RNA (ncRNA) that plays an important regulatory role in the progression of certain diseases. Herein, our results indicate that CircMEG3 is downregulated expression and negatively correlated with the expression of telomerase-related gene Cbf5 in human liver cancer. Moreover, CircMEG3 inhibits the growth of human liver cancer stem cells in vivo and in vitro. CircMEG3 inhibits the expression of m6A methyltransferase METTL3 dependent on HULC. Moreover, CircMEG3 inhibits the expression of Cbf5, a component of telomere synthetase H/ACA ribonucleoprotein (RNP; catalyst RNA pseudouracil modification) through METTL3 dependent on HULC. Thereby, CircMEG3 inhibits telomerase activity and shortens telomere lifespan dependent on HULC and Cbf5 in human liver cancer stem cell. Strikingly, increased Cbf5 abrogates the ability of CircMEG3 to inhibit malignant differentiation of human liver cancer stem cells. In summary, these observations provide important basic information for finding effective liver cancer therapeutic targets.
Collapse
Affiliation(s)
- Xiaoxue Jiang
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Libo Xing
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Yingjie Chen
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Rushi Qin
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Shuting Song
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Yanan Lu
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Sijie Xie
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Liyan Wang
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Hu Pu
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Xin Gui
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Tianming Li
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Jie Xu
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Jiao Li
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Song Jia
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Dongdong Lu
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
29
|
Shi HZ, Zeng JC, Shi SH, Giannakopoulos H, Zhang QZ, Le AD. Extracellular Vesicles of GMSCs Alleviate Aging-Related Cell Senescence. J Dent Res 2020; 100:283-292. [PMID: 33073684 DOI: 10.1177/0022034520962463] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Healthy aging is a complex biological process with progressive accumulation of senescent cells characterized by stable cell cycle arrest, resulting in impaired homeostasis, regenerative potential, and gradual functional decline in multiple tissues and organs, whereby the aberrant activation of mammalian target of rapamycin (mTOR) signaling networks plays a central role. Herein, we explored the effects of extracellular vesicles (EVs) released by gingiva-derived mesenchymal stem cells (GMSC-EVs) on oxidative stress-induced cellular senescence in human endothelial cells and skin fibroblasts and their antiaging potentials. Our results showed that GMSC-EVs robustly abrogated oxidative stress-induced upregulation in the expression of cellular senescence-related genes, such as β-galactosidase, p21, p53, and γH2AX, and mTOR/pS6 signaling pathway, in human umbilical vein endothelial cells (HUVECs) and skin fibroblasts. Meanwhile, GMSC-EVs restored oxidative stress-induced impairment in proliferation and tube formation by HUVECs. Systemic administration of GMSC-EVs attenuated aging-associated elevation in the expression levels of p21, mTOR/pS6, interleukin 6, and tumor necrosis factor α in skin and heart tissues of aged mice. These findings suggest that GMSC-EVs could be a potential alternative source of cell-free product for attenuation of aging-related skin and vascular dysfunctions due to their potent inhibitory effects on oxidative stress-induced cellular senescence in endothelial cells and skin fibroblasts.
Collapse
Affiliation(s)
- H Z Shi
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
- Health Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - J C Zeng
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - S H Shi
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - H Giannakopoulos
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
- Department of Oral & Maxillofacial Surgery, Penn Medicine Hospital of the University of Pennsylvania, Perelman Center for Advanced Medicine, Philadelphia, PA, USA
| | - Q Z Zhang
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - A D Le
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
- Department of Oral & Maxillofacial Surgery, Penn Medicine Hospital of the University of Pennsylvania, Perelman Center for Advanced Medicine, Philadelphia, PA, USA
| |
Collapse
|
30
|
Li S, Wang X. The potential roles of exosomal noncoding RNAs in osteosarcoma. J Cell Physiol 2020; 236:3354-3365. [PMID: 33044018 DOI: 10.1002/jcp.30101] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022]
Abstract
Clinically, it is difficult to efficaciously screen and diagnose osteosarcoma (OS) in advance due to the low sensitivity and poor specificity of the existing tumor markers. Exosomes (Exos) are nanoscale vesicles containing RNAs, lipids, and proteins with a diameter of 30-100 nm. They are multivesicular bodies formed during the invagination of lysosomal particles in cells and released extracellularly after fusing with cell membranes. Besides, Exos are important carriers of cell-to-cell communication signals and genetic materials in the tumor microenvironment. During tumorigenesis, the tumor cells interplay with immune cells, endothelial cells, and related fibroblasts through Exos and boost cancer development. After altering the surrounding microenvironment, the Exos drive tumor cells to proliferate, speed up angiogenesis, and boost cancers to develop along with body fluid transportation. Currently, Exos are becoming novel noninvasive tumor diagnostic markers with high sensitivity, exerting pivotal impacts in fundamental research and clinical applications. Here, we review the existing literature on the roles of exosomal noncoding RNAs in OS progression and their potential clinical applications as novel biomarkers and therapeutics.
Collapse
Affiliation(s)
- Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China.,School of Fundamental Sciences, Center of 3D Printing and Organ Manufacturing, China Medical University (CMU), Shenyang, China
| | - Xiaohong Wang
- School of Fundamental Sciences, Center of 3D Printing and Organ Manufacturing, China Medical University (CMU), Shenyang, China.,Department of Mechanical Engineering, Center of Organ Manufacturing, Tsinghua University, Beijing, China
| |
Collapse
|
31
|
Ullah M, Akbar A, Yannarelli G. Applications of artificial intelligence in, early detection of cancer, clinical diagnosis and personalized medicine. Artif Intell Cancer 2020; 1:39-44. [DOI: 10.35713/aic.v1.i2.39] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Affiliation(s)
- Mujib Ullah
- Institute for Immunity, Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, United States
- Molecular Medicine, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, United States
| | - Asma Akbar
- Institute for Immunity, Transplantation, Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Palo Alto, CA 94304, United States
- Molecular Medicine, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, United States
| | - Gustavo Yannarelli
- Laboratorio de Regulación Génica y Células Madre, Instituto de Medicina Traslacional, Trasplante y Bioingeniería, Universidad Favaloro-CONICET, Buenos Aires 1078, Argentina
| |
Collapse
|
32
|
The Potential Diagnostic Value of Exosomal Long Noncoding RNAs in Solid Tumors: A Meta-Analysis and Systematic Review. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6786875. [PMID: 32879887 PMCID: PMC7448226 DOI: 10.1155/2020/6786875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/27/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022]
Abstract
Background Exosomes are defined as small membranous vesicles. After RNA content was discovered in exosomes, they emerged as a novel approach for the treatment and diagnosis of cancer. Long noncoding RNAs (lncRNA), a kind of specific RNA transcript, have been reported to function as tumor growth, metastasis, invasion, and prognosis by regulating the tumor microenvironment in exosomes. This study aims at exploring the potential diagnostic of exosomal lncRNA in solid tumors. Methods A meta-analysis conducted from January 2000 to October 2019 identified publications in the English language. We searched all relevant English literature from the Web of Science, EMBASE, and PubMed databases through October 1, 2019. The articles were strictly screened by our criteria and critiqued using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Results There were 28 studies with 19 articles (4017 patients) identified, including studies on gastric cancer, laryngeal squamous cell carcinoma, colorectal cancer, cholangiocarcinoma, breast cancer, esophageal squamous cell carcinoma, hepatocellular carcinoma, nonsmall cell lung cancer, and prostate cancer. A meta-analysis showed that the combined value of sensitivity in 29 studies was 0.74 (95% confidence interval [CI], 0.7-0.78), and the combined value of specificity in the studies was 0.81 (95% CI, 0.78-0.83). This suggests the high diagnostic efficacy of liquid exosomes in cancer patients. It is statistically insignificant in terms of sex, ethnicity, and year. The diagnostic power of urinary system tumors was found to be higher than that of digestive system tumors by several subgroup analyses. Conclusions We performed a meta-analysis and literature review of 28 studies that included 4017 patients with 10 malignant cancer types. Mechanistically, our study demonstrated that lncRNAs in exosomes could be a promising bioindicator for the diagnosis and prognosis of solid tumors. INPLASY Registration Number: INPLASY202060083.
Collapse
|
33
|
Wang Y, Zhong Y, Zhang C, Liao J, Wang G. PM2.5 downregulates MicroRNA-139-5p and induces EMT in Bronchiolar Epithelium Cells by targeting Notch1. J Cancer 2020; 11:5758-5767. [PMID: 32913469 PMCID: PMC7477455 DOI: 10.7150/jca.46976] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/19/2020] [Indexed: 12/30/2022] Open
Abstract
PM2.5 was closely linked to lung cancer worldwide. However, the mechanism involved in PM2.5 induced lung cancer is still largely unknown. In this study, we performed chronic PM2.5 stimulation animal and cells model to investigate the carcinogenetic mechanisms of PM2.5 by targeting EMT through Notch1 signal pathway. Next, we focused on the miRNA involved in PM2.5 induced Notch1 pathway activation. We found chronic PM2.5 could induce EMT event in vivo and in vitro, while reducing miR-139-5p expression and activating Notch1 pathway meanwhile. And blocking Notch1 signal pathway by specific small molecule inhibitor could reverse PM2.5 induced EMT. Then, overexpression of miR-139-5p downregulated the expression of Notch1 protein in untreated 16HBE cells. Importantly, overexpression of miR-139-5p blocked Notch1 pathway activation and inhibited EMT event in PM2.5 treated cells. These results indicate that PM2.5 induces EMT event through Notch1 signal pathway and miR-139-5p is a novel regulator of PM2.5-induced EMT by targeting Notch1. Our conclusion is that overexpression of miR-139-5p can down-regulate the expression of Notch1 and reverse the occurrence of malignant lung events induced by chronic exposure to PM2.5.
Collapse
Affiliation(s)
- Yunxia Wang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Yijue Zhong
- Department of Geriatrics, Jiangsu Provincial Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Cheng Zhang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Jiping Liao
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Guangfa Wang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| |
Collapse
|
34
|
The Role of microRNAs in Organismal and Skin Aging. Int J Mol Sci 2020; 21:ijms21155281. [PMID: 32722415 PMCID: PMC7432402 DOI: 10.3390/ijms21155281] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/11/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
The aging process starts directly after birth and lasts for the entire lifespan; it manifests itself with a decline in an organism’s ability to adapt and is linked to the development of age-related diseases that eventually lead to premature death. This review aims to explore how microRNAs (miRNAs) are involved in skin functioning and aging. Recent evidence has suggested that miRNAs regulate all aspects of cutaneous biogenesis, functionality, and aging. It has been noted that some miRNAs were down-regulated in long-lived individuals, such as let-7, miR-17, and miR-34 (known as longevity-related miRNAs). They are conserved in humans and presumably promote lifespan prolongation; conversely, they are up-regulated in age-related diseases, like cancers. The analysis of the age-associated cutaneous miRNAs revealed the increased expression of miR-130, miR-138, and miR-181a/b in keratinocytes during replicative senescence. These miRNAs affected cell proliferation pathways via targeting the p63 and Sirtuin 1 mRNAs. Notably, miR-181a was also implicated in skin immunosenescence, represented by the Langerhans cells. Dermal fibroblasts also expressed increased the levels of the biomarkers of aging that affect telomere maintenance and all phases of the cellular life cycle, such as let-7, miR-23a-3p, 34a-5p, miR-125a, miR-181a-5p, and miR-221/222-3p. Among them, the miR-34 family, stimulated by ultraviolet B irradiation, deteriorates collagen in the extracellular matrix due to the activation of the matrix metalloproteinases and thereby potentiates wrinkle formation. In addition to the pro-aging effects of miRNAs, the plausible antiaging activity of miR-146a that antagonized the UVA-induced inhibition of proliferation and suppressed aging-related genes (e.g., p21WAF-1, p16, and p53) through targeting Smad4 has also been noticed. Nevertheless, the role of miRNAs in skin aging is still not fully elucidated and needs to be further discovered and explained.
Collapse
|
35
|
Evaluation of the In Vitro Damage Caused by Lipid Factors on Stem Cells from a Female Rat Model of Type 2 Diabetes/Obesity and Stress Urinary Incontinence. Int J Mol Sci 2020; 21:ijms21145045. [PMID: 32708907 PMCID: PMC7404394 DOI: 10.3390/ijms21145045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 01/09/2023] Open
Abstract
Human stem cell therapy for type 2 diabetes/obesity (T2D/O) complications is performed with stem cell autografts, exposed to the noxious T2D/O milieu, often with suboptimal results. We showed in the Obese Zucker (OZ) rat model of T2D/O that when their muscle-derived stem cells (MDSC) were from long-term T2D/O male rats, their repair efficacy for erectile dysfunction was impaired and were imprinted with abnormal gene- and miR-global transcriptional signatures (GTS). The damage was reproduced in vitro by short-term exposure of normal MDSC to dyslipidemic serum, causing altered miR-GTS, fat infiltration, apoptosis, impaired scratch healing, and myostatin overexpression. Similar in vitro alterations occurred with their normal counterparts (ZF4-SC) from the T2D/O rat model for female stress urinary incontinence, and with ZL4-SC from non-T2D/O lean female rats. In the current work we studied the in vitro effects of cholesterol and Na palmitate as lipid factors on ZF4-SC and ZL4-SC. A damage partially resembling the one caused by the female dyslipidemic serum was found, but differing between both lipid factors, so that each one appears to contribute specifically to the stem cell damaging effects of dyslipidemic serum in vitro and T2D/O in vivo, irrespective of gender. These results also confirm the miR-GTS biomarker value for MDSC damage.
Collapse
|
36
|
Cianflone E, Torella M, Biamonte F, De Angelis A, Urbanek K, Costanzo FS, Rota M, Ellison-Hughes GM, Torella D. Targeting Cardiac Stem Cell Senescence to Treat Cardiac Aging and Disease. Cells 2020; 9:E1558. [PMID: 32604861 PMCID: PMC7349658 DOI: 10.3390/cells9061558] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
Adult stem/progenitor are a small population of cells that reside in tissue-specific niches and possess the potential to differentiate in all cell types of the organ in which they operate. Adult stem cells are implicated with the homeostasis, regeneration, and aging of all tissues. Tissue-specific adult stem cell senescence has emerged as an attractive theory for the decline in mammalian tissue and organ function during aging. Cardiac aging, in particular, manifests as functional tissue degeneration that leads to heart failure. Adult cardiac stem/progenitor cell (CSC) senescence has been accordingly associated with physiological and pathological processes encompassing both non-age and age-related decline in cardiac tissue repair and organ dysfunction and disease. Senescence is a highly active and dynamic cell process with a first classical hallmark represented by its replicative limit, which is the establishment of a stable growth arrest over time that is mainly secondary to DNA damage and reactive oxygen species (ROS) accumulation elicited by different intrinsic stimuli (like metabolism), as well as external stimuli and age. Replicative senescence is mainly executed by telomere shortening, the activation of the p53/p16INK4/Rb molecular pathways, and chromatin remodeling. In addition, senescent cells produce and secrete a complex mixture of molecules, commonly known as the senescence-associated secretory phenotype (SASP), that regulate most of their non-cell-autonomous effects. In this review, we discuss the molecular and cellular mechanisms regulating different characteristics of the senescence phenotype and their consequences for adult CSCs in particular. Because senescent cells contribute to the outcome of a variety of cardiac diseases, including age-related and unrelated cardiac diseases like diabetic cardiomyopathy and anthracycline cardiotoxicity, therapies that target senescent cell clearance are actively being explored. Moreover, the further understanding of the reversibility of the senescence phenotype will help to develop novel rational therapeutic strategies.
Collapse
Affiliation(s)
- Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Michele Torella
- Department of Translational Medical Sciences, AORN dei Colli/Monaldi Hospital, University of Campania “L. Vanvitelli”, Via Leonardo Bianchi, 80131 Naples, Italy;
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine and Interdepartmental Centre of Services (CIS), Magna Graecia University, 88100 Catanzaro, Italy; (F.B.); (F.S.C.)
| | - Antonella De Angelis
- Department of Experimental Medicine, Section of Pharmacology, University of Campania “L.Vanvitelli”, 80121 Naples, Italy;
| | - Konrad Urbanek
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Francesco S. Costanzo
- Department of Experimental and Clinical Medicine and Interdepartmental Centre of Services (CIS), Magna Graecia University, 88100 Catanzaro, Italy; (F.B.); (F.S.C.)
| | - Marcello Rota
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA;
| | - Georgina M. Ellison-Hughes
- Centre for Human and Applied Physiological Sciences and Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, Guys Campus-Great Maze Pond rd, London SE1 1UL, UK;
| | - Daniele Torella
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| |
Collapse
|
37
|
Yan L, Liu G, Wu X. Exosomes derived from umbilical cord mesenchymal stem cells in mechanical environment show improved osteochondral activity via upregulation of LncRNA H19. J Orthop Translat 2020; 26:111-120. [PMID: 33437630 PMCID: PMC7773952 DOI: 10.1016/j.jot.2020.03.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
Background Exosomes derived from stem cells have been demonstrated to be good candidates for the treatment of osteochondral injury. Our previous studies have demonstrated that mechanical stimulation could be crucial for the secretion of exosomes derived from umbilical cord mesenchymal stem cells (U-MSCs). Therefore, we explore whether mechanical stimulation caused by a rotary cell culture system (RCCS) has a beneficial effect on exosome yield and biological function. Methods U-MSCs were subjected to an RCCS at different rotational speeds and exosomes were characterised by transmission electron microscopy, nanoparticle tracking analysis and western blotting. small-interfering RNAs of Rab27a (siRNA-Rab27a) was used to reduce exosome production. Quantitative real-time PCR (qRT-PCR) was used to detect the expression of mechanically sensitive long non-coding RNA H19 (LncRNA H19). The effects of exosomes on chondrocyte proliferation were examined using cell counting kit-8 (CCK-8), toluidine blue staining and a series of related genes. Annexin V-FITC and PI (V-FITC/PI) flow cytometry was used to detect the effect of exosomes on the inhibition of chondrocyte apoptosis. Macroscopic evaluation, MRI quantification and immunohistochemical staining were conducted to investigate the in vivo effects of exosomal LncRNA H19 through SD rat cartilage defect models. Results RCCS significantly promoted exosome production at 36 rpm/min within 196 h. Mechanical stimulation was able to increase the expression level of exosomes. The exosomal LncRNA H19 was found to promote chondrocyte proliferation and matrix synthesis and inhibit apoptosis in vitro. Chondral regeneration activity was lost in LncRNA H19-defective exosomes. The injection of exosomal LncRNA H19 in vivo resulted in improved macroscopic assessment, MRI quantification and histological analysis. Moreover, exosomal LncRNA H19 was able to relieve pain levels during the early stages of cartilage repair in an animal experiment. Conclusion Our findings confirmed that mechanical stimulation can enhance exosome yield as well as biological function for the repair of cartilage defects. The underlying mechanism may be related to the high expression of LncRNA H19 in exosomes. The translational potential of this article: This study provides a theoretical support of optimizing exosome production. It advances the yield of mesenchymal stem cell exosome and facilitate the clinical application to repair of osteochondral damage.
Collapse
Affiliation(s)
- Litao Yan
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, People's Republic of China
| | - Gejun Liu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, People's Republic of China
| | - Xing Wu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, People's Republic of China
| |
Collapse
|
38
|
Ullah M. Need for Specialized Therapeutic Stem Cells Banks Equipped with Tumor Regression Enzymes and Anti-Tumor Genes. ACTA ACUST UNITED AC 2020; 2. [PMID: 33554055 PMCID: PMC7861576 DOI: 10.37191/mapsci-2582-4937-2(1)-013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Stem cells are currently being used in many clinical trials for regenerative purposes. These are promising results for stem cells in the treatment of several diseases, including cancer. Nevertheless, there are still many variables which should be addressed before the application of stem cells for cancer treatment. One approach should be to establish well-characterized therapeutic stem cell banks to minimize the variation in results from different clinical trials and facilitate their effective use in basic and translational research.
Collapse
Affiliation(s)
- Mujib Ullah
- Interventional Regenerative Medicine and Imaging Lab, Department of Radiology, School of Medicine, Stanford University, California, USA
| |
Collapse
|
39
|
Abstract
DNA encodes RNA and is responsible for protein production in cells. RNA editing is the process by which genetic information is altered in the RNA molecule. RNA editing in cancer initiation, progression and development has been well documented and play an important role in tumorigenesis. Studying RNA editing and its application to change genetic information after transcription, RNA-editing technology could be an important innovation in cancer and has the potential for more effective precision treatment. Bioengineering integration approach and artificial intelligence could revolutionize the entire field of RNA editing for early detection of cancer.
Collapse
Affiliation(s)
- Mujib Ullah
- Department of Radiology, School of Medicine, Stanford University, USA
| | - Asma Akbar
- Department of Radiology, School of Medicine, Stanford University, USA
| |
Collapse
|
40
|
Vélez JL, Morocho P, Montalvo M, Aguayo S, Vélez PA, Velarde G, Jara F, Paz y Miño C. The micro RNAs in human pathology: clinical utility and translational approach. BIONATURA 2020. [DOI: 10.21931/rb/2020.05.01.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In human clinics, pathologies as diverse as cancer, sepsis, autoimmune diseases, among others; of different etiology and a different pathophysiological behavior, converge in a failure of gene repression that allows the phenotypic expression of the disease; The possibility of having a biological marker that shows these events to the clinician is desirable since it would allow early diagnostic and therapeutic strategies. Micro RNAs are small and non-coding RNAs that fulfill that “genetic silencing” role, however, the step from basic research to clinical applicability, that is, their translational utility is still little diffused in specialties other than oncology. The objective of this review is to explain in a more precise way.
Collapse
|
41
|
Alessio N, Brigida AL, Peluso G, Antonucci N, Galderisi U, Siniscalco D. Stem Cell-Derived Exosomes in Autism Spectrum Disorder. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:944. [PMID: 32033002 PMCID: PMC7037429 DOI: 10.3390/ijerph17030944] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/31/2020] [Accepted: 02/02/2020] [Indexed: 02/06/2023]
Abstract
Neurodevelopmental lifelong pathologies defined by problems with social interaction, communication capacity and presence of repetitive/stereotyped clusters of behavior and interests are grouped under the definition of autism spectrum disorder (ASD). ASD prevalence is still increasing, indicating the need to identify specific biomarkers and novel pharmacotherapies. Neuroinflammation and neuro-immune cross-talk dysregulation are specific hallmarks of ASD, offering the possibility of treating these disorders by stem cell therapy. Indeed, cellular strategies have been postulated, proposed and applied to ASD. However, less is known about the molecular action mechanisms of stem cells. As a possibility, the positive and restorative effects mediated by stem cells could be due to their paracrine activity, by which stem cells produce and release several ameliorative and anti-inflammatory molecules. Among the secreted complex tools, exosomes are sub-organelles, enriched by RNA and proteins, that provide cell-to-cell communication. Exosomes could be the mediators of many stem cell-associated therapeutic activities. This review article describes the potential role of exosomes in alleviating ASD symptoms.
Collapse
Affiliation(s)
- Nicola Alessio
- Department of Experimental Medicine, Division of Molecular Biology, Biotechnology and Histology. University of Campania “Luigi Vanvitelli”, via S. Maria di Costantinopoli 16, 80138 Naples, Italy; (N.A.); (U.G.)
| | | | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy, (CNR), via P. Castellino 111, 80131 Naples, Italy;
| | - Nicola Antonucci
- Biomedical Centre for Autism Research and Therapy, 70126 Bari, Italy;
| | - Umberto Galderisi
- Department of Experimental Medicine, Division of Molecular Biology, Biotechnology and Histology. University of Campania “Luigi Vanvitelli”, via S. Maria di Costantinopoli 16, 80138 Naples, Italy; (N.A.); (U.G.)
| | - Dario Siniscalco
- Department of Experimental Medicine, Division of Molecular Biology, Biotechnology and Histology. University of Campania “Luigi Vanvitelli”, via S. Maria di Costantinopoli 16, 80138 Naples, Italy; (N.A.); (U.G.)
- Centre for Autism—La Forza del Silenzio, 81036 Caserta, Italy
| |
Collapse
|