1
|
Zhou Q, Huang X, Chen Z, Wang F, Xie L, Sun Q, Du J, Lin J, Li B, Li L. Mechanism of Rhizoma Polygonati in the treatment of Alzheimer's disease based on network pharmacology and molecular docking. Brain Res 2025; 1862:149680. [PMID: 40412586 DOI: 10.1016/j.brainres.2025.149680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/24/2025] [Accepted: 05/05/2025] [Indexed: 05/27/2025]
Abstract
OBJECTIVE The therapeutic mechanisms of Rhizoma Polygonati (RP) on Alzheimer's disease (AD) were explored using network pharmacology methods and in vitro experiments for validation. MATERIALS AND METHODS First, the main active ingredients and target proteins of RP were screened using Traditional Chinese Medicine Systems Pharmacology (TCMSP) and UniProt protein database. AD-related targets were predicted using the DisGeNET database. Subsequently, Protein-protein interaction (PPI) networks and core targets were analyzed using STRING. DAVID was utilized for GO annotation, while KEGG plug-in was employed to perform enrichment analysis of KEGG pathways. AutoDockTools were examined molecular docking. And the RP mechanism on AD was confirmed in vitro experimentation. RESULTS Screening identified 8 active ingredients, 76 potential targets, and 3397 CE-related genes, with 58 overlapping targets. 4 target proteins were analyzed through the PPI networks. The RP and AD shared 451 GO biological process items and 150 KEGG signal pathways. Molecular docking results showed that diosgenin (Dio) had strong binding abilities to AKT1 and Caspase 3. Dio inhibited apoptosis through AKT1/Caspase 3 pathway in the glutamate-induced SH-SY5Y cells in vitro. CONCLUSION The study revealed RP's potential mechanisms in treating AD, offering a theoretical basis for clinical use, by integrating network pharmacology with in vitro experiments.
Collapse
Affiliation(s)
- Qiong Zhou
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | | | - Zihao Chen
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Fuwei Wang
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Lihua Xie
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Qiang Sun
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Jikun Du
- Central Research Laboratory, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen 518104, China.
| | - Jiantao Lin
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| | - Baohong Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| | - Li Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
2
|
Liu Z, Jia J. Omaveloxolone Ameliorates Cognitive Deficits by Inhibiting Apoptosis and Neuroinflammation in APP/PS1 Mice. Mol Neurobiol 2025; 62:2191-2202. [PMID: 39088030 DOI: 10.1007/s12035-024-04361-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/09/2024] [Indexed: 08/02/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease associated with aging, characterized by progressive cognitive impairment and memory loss. However, treatments that delay AD progression or improve its symptoms remain limited. The aim of the present study was to investigate the therapeutic effects of omaveloxolone (Omav) on AD and to explore the underlying mechanisms. Thirty-week-old APP/PS1 mice were selected as an experimental model of AD. The spatial learning and memory abilities were tested using the Morris water maze. Amyloid-beta (Aβ) deposition in the brains was measured using immunohistochemistry. Network pharmacological analyses and molecular docking were conducted to gain insights into the therapeutic mechanisms of Omav. Finally, validation analyses were conducted to detect changes in the associated pathways and proteins. Our finding revealed that Omav markedly rescued cognitive dysfunction and reduced Aβ deposition in the brains of APP/PS1 mice. Network pharmacological analysis identified 112 intersecting genes, with CASP3 and MTOR emerging as the key targets. In vivo validation experiments indicated that Omav attenuated neuronal apoptosis by regulating apoptotic proteins, including caspase 3, Bax, and Bcl-2. Moreover, Omav suppressed neuroinflammation and induced autophagy by inhibiting the phosphorylation of mTOR. These findings highlight the therapeutic efficacy of Omav in AD and that its neuroprotective effects were associated with inhibiting neuronal apoptosis and regulating neuroinflammation.
Collapse
Affiliation(s)
- Zhaojun Liu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Changchun Street 45, Beijing, PR China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Changchun Street 45, Beijing, PR China.
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, PR China.
- Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, PR China.
- Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, PR China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, PR China.
| |
Collapse
|
3
|
Khan H, Naseem T, Kaushik P, Narang J, Khan R, Panwar S, Parvez S. Decoding paradoxical links of cytokine markers in cognition: Cross talk between physiology, inflammaging, and Alzheimer's disease- related cognitive decline. Ageing Res Rev 2024; 101:102535. [PMID: 39374831 DOI: 10.1016/j.arr.2024.102535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Recent research has revolutionized our understanding of memory consolidation by emphasizing the critical role of astrocytes, microglia, and immune cells in through cytokine signaling. Cytokines, compact proteins, play pivotal roles in neuronal development, synaptic transmission, and normal aging. This review explores the cellular mechanisms contributing to cognitive decline in inflammaging and Alzheimer's disease, highlighting the paradoxical effects of most studied cytokines (IL-1, IL-6, TNF-α) in brain function, which act as a double-edged sword in brain physiology, acting both as facilitators of healthy cognitive function and as a potential contributor to cognitive decline.
Collapse
Affiliation(s)
- Hiba Khan
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Talib Naseem
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Pooja Kaushik
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Jagriti Narang
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Knowledge City, Sahibzada Ajit Singh Nagar, Mohali, Punjab 140306, India
| | - Siddharth Panwar
- School of Computing and Electrical Engineering, Indian Institute of Technology, Mandi, Himachal Pradesh 175075, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
4
|
Akyuz E, Aslan FS, Gokce E, Ilmaz O, Topcu F, Kakac S. Extracellular vesicle and CRISPR gene therapy: Current applications in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease. Eur J Neurosci 2024; 60:6057-6090. [PMID: 39297377 DOI: 10.1111/ejn.16541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 10/17/2024]
Abstract
Neurodegenerative diseases are characterized by progressive deterioration of the nervous system. Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD) are prominently life-threatening examples of neurodegenerative diseases. The complexity of the pathophysiology in neurodegenerative diseases causes difficulties in diagnosing. Although the drugs temporarily help to correct specific symptoms including memory loss and degeneration, a complete treatment has not been found yet. New therapeutic approaches have been developed to understand and treat the underlying pathogenesis of neurodegenerative diseases. With this purpose, clustered-regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas) technology has recently suggested a new treatment option. Editing of the genome is carried out by insertion and deletion processes on DNA. Safe delivery of the CRISPR/Cas system to the targeted cells without affecting surrounding cells is frequently investigated. Extracellular vesicles (EVs), that is exosomes, have recently been used in CRISPR/Cas studies. In this review, CRISPR/Cas and EV approaches used for diagnosis and/or treatment in AD, PD, ALS, and HD are reviewed. CRISPR/Cas and EV technologies, which stand out as new therapeutic approaches, may offer a definitive treatment option in neurodegenerative diseases.
Collapse
Affiliation(s)
- Enes Akyuz
- Department of Biophysics, International School of Medicine, University of Health Sciences, Istanbul, Türkiye
| | | | - Enise Gokce
- School of Medicine, Pamukkale University, Denizli, Türkiye
| | - Oguzkan Ilmaz
- School of Medicine, Giresun University, Giresun, Türkiye
| | | | - Seda Kakac
- Department of Molecular Biology and Genetics, Faculty of Science, Gebze Technical University, Kocaeli, Türkiye
| |
Collapse
|
5
|
Han Y, Gao Q, Xu Y, Chen K, Li R, Guo W, Wang S. Cysteine sulfenylation contributes to liver fibrosis via the regulation of EphB2-mediated signaling. Cell Death Dis 2024; 15:602. [PMID: 39164267 PMCID: PMC11335765 DOI: 10.1038/s41419-024-06997-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024]
Abstract
Sulfenylation is a reversible oxidative posttranslational modification (PTM) of proteins on cysteine residues. Despite the dissection of various biological functions of cysteine sulfenylation, its roles in hepatic fibrosis remain elusive. Here, we report that EphB2, a receptor tyrosine kinase previously implicated in liver fibrosis, is regulated by cysteine sulfenylation during the fibrotic progression of liver. Specifically, EphB2 is sulfenylated at the residues of Cys636 and Cys862 in activated hepatic stellate cells (HSCs), leading to the elevation of tyrosine kinase activity and protein stability of EphB2 and stronger interactions with focal adhesion kinase for the activation of downstream mitogen-activated protein kinase signaling. The inhibitions of both EphB2 kinase activity and cysteine sulfenylation by idebenone (IDE), a marketed drug with potent antioxidant activity, can markedly suppress the activation of HSCs and ameliorate hepatic injury in two well-recognized mouse models of liver fibrosis. Collectively, this study reveals cysteine sulfenylation as a new type of PTM for EphB2 and sheds a light on the therapeutic potential of IDE for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Yueqing Han
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Qi Gao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yating Xu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Ke Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Rongxin Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Weiran Guo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Shuzhen Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
6
|
Arjmand S, Ilaghi M, Sisakht AK, Guldager MB, Wegener G, Landau AM, Gjedde A. Regulation of mitochondrial dysfunction by estrogens and estrogen receptors in Alzheimer's disease: A focused review. Basic Clin Pharmacol Toxicol 2024; 135:115-132. [PMID: 38801027 DOI: 10.1111/bcpt.14035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that primarily manifests itself by progressive memory loss and cognitive decline, thus significantly affecting memory functions and quality of life. In this review, we proceed from the understanding that the canonical amyloid-β hypothesis, while significant, has faced setbacks, highlighting the need to adopt a broader perspective considering the intricate interplay of diverse pathological pathways for effective AD treatments. Sex differences in AD offer valuable insights into a better understanding of its pathophysiology. Fluctuation of the levels of ovarian sex hormones during perimenopause is associated with changes in glucose metabolism, as a possible window of opportunity to further understand the roles of sex steroid hormones and their associated receptors in the pathophysiology of AD. We review these dimensions, emphasizing the potential of estrogen receptors (ERs) to reveal mitochondrial functions in the search for further research and therapeutic strategies for AD pharmacotherapy. Understanding and addressing the intricate interactions of mitochondrial dysfunction and ERs potentially pave the way for more effective approaches to AD therapy.
Collapse
Affiliation(s)
- Shokouh Arjmand
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mehran Ilaghi
- Institute of Neuropharmacology, Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Karimi Sisakht
- Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Matti Bock Guldager
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anne M Landau
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Albert Gjedde
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Yang S, Li Z, Yi J, Pan M, Cao W, Ma J, Zhang P. Nebivolol, an antihypertensive agent, has new application in inhibiting melanoma. Anticancer Drugs 2024; 35:512-524. [PMID: 38602174 PMCID: PMC11078289 DOI: 10.1097/cad.0000000000001597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/04/2024] [Indexed: 04/12/2024]
Abstract
Repurposing existing drugs for cancer therapy has become an important strategy because of its advantages, such as cost reduction, effect and safety. The present study was designed to investigate the antimelanoma effect and possible mechanisms of action of nebivolol, which is an approved and widely prescribed antihypertensive agent. In this study, we explored the effect of nebivolol on cell proliferation and cell activity in melanoma in vitro and the potential antimelanoma mechanism of nebivolol through a series of experiments, including the analysis of the effects with regard to cell apoptosis and metastasis. Furthermore, we evaluated the antimelanoma effect on xenograft tumor models and inspected the antimelanoma mechanism of nebivolol in vivo using immunohistochemical and immunofluorescence staining assays. As results in this work, in vitro , nebivolol possessed a strong activity for suppression proliferation and cell cycle arrest on melanoma. Moreover, nebivolol significantly induced cell apoptosis in melanoma through a mitochondrial-mediated endogenous apoptosis pathway. Additionally, nebivolol inhibited melanoma cell metastasis. More importantly, nebivolol exhibited significantly effective melanoma xenograft models in vivo , which related to the mechanism of apoptosis induction, proliferation inhibition, metastasis blocking and angiogenesis arrest. Overall, the data of the present study recommend that nebivolol holds great potential in application as a novel agent for the treatment of melanoma.
Collapse
Affiliation(s)
- Shuping Yang
- Department of Pharmacy, Shenzhen Luohu People’s Hospital, Shenzhen, Guangdong
| | - Zhi Li
- Department of Pharmacy, Shenzhen Luohu People’s Hospital, Shenzhen, Guangdong
| | - Jiamei Yi
- Department of Pharmacy, Shenzhen Luohu People’s Hospital, Shenzhen, Guangdong
| | - Mingyue Pan
- Department of Pharmacy, Shenzhen Luohu People’s Hospital, Shenzhen, Guangdong
| | - Weiling Cao
- Department of Pharmacy, Shenzhen Luohu People’s Hospital, Shenzhen, Guangdong
| | - Jing Ma
- Department of Pharmacy, South China Hospital, Medical School, Shenzhen University, Shenzhen, China
| | - Peng Zhang
- Department of Pharmacy, Shenzhen Luohu People’s Hospital, Shenzhen, Guangdong
| |
Collapse
|
8
|
Eslami H, Rokhzadi K, Basiri M, Esmaeili-Mahani S, Mahmoodi Z, Haji-Allahverdipoor K. Direct Interaction of Minocycline to p47phox Contributes to its Attenuation of TNF-α-Mediated Neuronal PC12 Cell Death: Experimental and Simulation Validation. Cell Biochem Biophys 2024; 82:1261-1277. [PMID: 38739323 DOI: 10.1007/s12013-024-01279-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/14/2024]
Abstract
Minocycline, a repurposed approved medication, shows promise in treating neurodegeneration. However, the specific pathways targeted by minocycline remain unclear despite the identification of molecular targets. This study explores minocycline's potential protective effects against TNF-α-mediated neuronal death in PC12 cells, with a focus on unraveling its interactions with key molecular targets. The study begins by exploring minocycline's protective role against TNF-α-mediated neuronal death in PC12 cells, showcasing a substantial reduction in cleaved caspase-3 expression, DNA fragmentation, and intracellular ROS levels following minocycline pretreatment. Subsequently, a comprehensive analysis utilizing pull-down assays, computational docking, mutation analysis, molecular dynamics simulations, and free energy calculations is conducted to elucidate the direct interaction between minocycline and p47phox-the organizer subunit of NADPH oxidase-2 (NOX2) complex. Computational insights, including a literature survey and analysis of key amino acid residues, reveal a potential binding site for minocycline around Trp193 and Cys196. In silico substitutions of Trp193 and Cys196 further confirm their importance in binding with minocycline. These integrated findings underscore minocycline's protective mechanisms, linking its direct interaction with p47phox to the modulation of NOX2 activity and attenuation of NOX-derived ROS generation. Minocycline demonstrates protective effects against TNF-α-induced PC12 cell death, potentially linked to its direct interaction with p47phox. This interaction leads to a reduction in NOX2 complex assembly, ultimately attenuating NOX-derived ROS generation. These findings hold significance for researchers exploring neuroprotection and the development of p47phox inhibitors.
Collapse
Affiliation(s)
- Habib Eslami
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medicinal Sciences, Bandar Abbas, Iran
| | - Koosha Rokhzadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohsen Basiri
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Mahmoodi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Kaveh Haji-Allahverdipoor
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
9
|
Neha, Wali Z, Pinky, Hattiwale SH, Jamal A, Parvez S. GLP-1/Sigma/RAGE receptors: An evolving picture of Alzheimer's disease pathology and treatment. Ageing Res Rev 2024; 93:102134. [PMID: 38008402 DOI: 10.1016/j.arr.2023.102134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/18/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
According to the facts and figures 2023stated that 6.7 million Americans over the age of 65 have Alzheimer's disease (AD). The scenario of AD has reached up to the maximum, of 4.1 million individuals, 2/3rd are female patients, and approximately 1 in 9 adults over the age of 65 have dementia with AD dementia. The fact that there are now no viable treatments for AD indicates that the underlying disease mechanisms are not fully understood. The progressive neurodegenerative disease, AD is characterized by amyloid plaques and neurofibrillary tangles (NFTs) of abnormally hyperphosphorylated tau protein and senile plaques (SPs), which are brought on by the buildup of amyloid beta (Aβ). Numerous attempts have been made to produce compounds that interfere with these characteristics because of significant research efforts into the primary pathogenic hallmark of this disorder. Here, we summarize several research that highlights interesting therapy strategies and the neuroprotective effects of GLP-1, Sigma, and, AGE-RAGE receptors in pre-clinical and clinical AD models.
Collapse
Affiliation(s)
- Neha
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Zitin Wali
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Pinky
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Shaheenkousar H Hattiwale
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Azfar Jamal
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Suhel Parvez
- Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
10
|
Cui X, Zong S, Song W, Wang C, Liu Y, Zhang L, Xia P, Wang X, Zhao H, Wang L, Lu Z. Omaveloxolone ameliorates cognitive dysfunction in APP/PS1 mice by stabilizing the STAT3 pathway. Life Sci 2023; 335:122261. [PMID: 37951537 DOI: 10.1016/j.lfs.2023.122261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
AIMS To determine the availability and the potential molecular mechanisms underlying the therapeutic effect of omaveloxolone (RTA408) on Alzheimer's Disease (AD). MATERIALS AND METHODS This study employed network pharmacology to assess the feasibility of drug treatment of AD. To determine the cognitive status and emotional state of APPswe/PS1dE9 (APP/PS1) mice after the RTA408 treatment, three classical behavioral experiments (water maze, Y-maze, and open field test) were conducted. Immunofluorescence and immunohistochemical staining were utilized to evaluate hippocampal neuronal status and amyloid (Aβ) deposition in mice. RNA-seq and transcription factor prediction analyses were performed to explore the potential molecular mechanisms regulating the therapeutic effects of RTA408. Molecular docking was employed to predict the direct drug targets. To validate these molecular mechanisms, quantitative reverse transcription PCR (qRT-PCR), Western blotting, and immunofluorescence analyses were performed in two instrumental cell lines, i.e., mouse hippocampal neuronal cells (HT22) and microglia (BV2). RESULTS RTA408 was revealed with the capability to reduce Aβ plaque deposition and to restore damaged neurons in the hippocampal region of APP/PS1 mice, ultimately leading to an improvement in cognitive function. This beneficial effect was achieved by balancing the STAT3 pathway. Specifically, RTA408 facilitated the activations of both STAT3/OXR1 and NRF2/ARE axes, thereby enhancing the compromised resistance in neurons to oxidative stress. RTA408 inhibited the NFκB/IL6/STAT3 pathway, effectively countering the neuroinflammation triggered by microglial activation. CONCLUSION RTA408 is revealed with promising potential in the treatment of AD based on preclinical data.
Collapse
Affiliation(s)
- Xiaolin Cui
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong, China
| | - Shuai Zong
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Wenao Song
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong, China
| | - Cuicui Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Yingchao Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Li Zhang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Pengcheng Xia
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Xueying Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Hao Zhao
- Department of Otolaryngology, Head and Neck Surgery, People's Hospital, Peking University, Beijing 100044, China
| | - Le Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Zhiming Lu
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong, China; Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China; Institute of Clinical Microbiology, Shandong Academy of Clinical Medicine, Jinan 250021, Shandong, China.
| |
Collapse
|
11
|
Tang D, Sun C, Yang J, Fan L, Wang Y. Advances in the Study of the Pathology and Treatment of Alzheimer's Disease and Its Association with Periodontitis. Life (Basel) 2023; 13:2203. [PMID: 38004343 PMCID: PMC10672606 DOI: 10.3390/life13112203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) has become one of the leading causes of health problems in the elderly, and studying its causes and treatments remains a serious challenge for researchers worldwide. The two main pathological features of Alzheimer's disease are the extracellular deposition of β-amyloid (Aβ) to form senile plaques and the intracellular aggregation of hyperphosphorylated Tau protein to form neurofibrillary tangles (NFTs). Researchers have proposed several hypotheses to elucidate the pathogenesis of AD, but due to the complexity of the pathophysiologic factors involved in the development of AD, no effective drugs have been found to stop the progression of the disease. Currently, the mainstay drugs used to treat AD can only alleviate the patient's symptoms and do not have a therapeutic effect. As researchers explore interactions among diseases, much evidence suggests that there is a close link between periodontitis and AD, and that periodontal pathogenic bacteria can exacerbate Aβ deposition and Tau protein hyperphosphorylation through neuroinflammatory mechanisms, thereby advancing the pathogenesis of AD. This article reviews recent advances in the pathogenesis of AD, available therapeutic agents, the relevance of periodontitis to AD, and mechanisms of action.
Collapse
Affiliation(s)
- Dan Tang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| | - Chang Sun
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| | - Jumei Yang
- Lanzhou University Second Hospital, Lanzhou 730000, China;
| | - Lili Fan
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (C.S.); (L.F.)
| |
Collapse
|
12
|
Bagán A, Rodriguez-Arévalo S, Taboada-Jara T, Griñán-Ferré C, Pallàs M, Brocos-Mosquera I, Callado LF, Morales-García JA, Pérez B, Diaz C, Fernández-Godino R, Genilloud O, Beljkas M, Oljacic S, Nikolic K, Escolano C. Preclinical Evaluation of an Imidazole-Linked Heterocycle for Alzheimer's Disease. Pharmaceutics 2023; 15:2381. [PMID: 37896141 PMCID: PMC10610545 DOI: 10.3390/pharmaceutics15102381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 10/29/2023] Open
Abstract
Humanity is facing a vast prevalence of neurodegenerative diseases, with Alzheimer's disease (AD) being the most dominant, without efficacious drugs, and with only a few therapeutic targets identified. In this scenario, we aim to find molecular entities that modulate imidazoline I2 receptors (I2-IRs) that have been pointed out as relevant targets in AD. In this work, we explored structural modifications of well-established I2-IR ligands, giving access to derivatives with an imidazole-linked heterocycle as a common key feature. We report the synthesis, the affinity in human I2-IRs, the brain penetration capabilities, the in silico ADMET studies, and the three-dimensional quantitative structure-activity relationship (3D-QSAR) studies of this new bunch of I2-IR ligands. Selected compounds showed neuroprotective properties and beneficial effects in an in vitro model of Parkinson's disease, rescued the human dopaminergic cell line SH-SY5Y from death after treatment with 6-hydroxydopamine, and showed crucial anti-inflammatory effects in a cellular model of neuroinflammation. After a preliminary pharmacokinetic study, we explored the action of our representative 2-(benzo[b]thiophen-2-yl)-1H-imidazole LSL33 in a mouse model of AD (5xFAD). Oral administration of LSL33 at 2 mg/Kg for 4 weeks ameliorated 5XFAD cognitive impairment and synaptic plasticity, as well as reduced neuroinflammation markers. In summary, this new I2-IR ligand that promoted beneficial effects in a well-established AD mouse model should be considered a promising therapeutic strategy for neurodegeneration.
Collapse
Affiliation(s)
- Andrea Bagán
- Laboratory of Medicinal Chemistry (Associated Unit to CSIC), Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (A.B.); (S.R.-A.)
| | - Sergio Rodriguez-Arévalo
- Laboratory of Medicinal Chemistry (Associated Unit to CSIC), Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (A.B.); (S.R.-A.)
| | - Teresa Taboada-Jara
- Pharmacology Section, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (T.T.-J.); (C.G.-F.); (M.P.)
| | - Christian Griñán-Ferré
- Pharmacology Section, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (T.T.-J.); (C.G.-F.); (M.P.)
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, 28029 Madrid, Spain
| | - Mercè Pallàs
- Pharmacology Section, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, Institut de Neurociències, University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (T.T.-J.); (C.G.-F.); (M.P.)
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CiberNed), National Institute of Health Carlos III, 28029 Madrid, Spain
| | - Iria Brocos-Mosquera
- Department of Pharmacology, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain; (I.B.-M.); (L.F.C.)
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, 28029 Madrid, Spain
| | - Luis F. Callado
- Department of Pharmacology, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain; (I.B.-M.); (L.F.C.)
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, 28029 Madrid, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - José A. Morales-García
- Department of Cell Biology, School of Medicine, Complutense University (UCM), 28040 Madrid, Spain;
| | - Belén Pérez
- Department of Pharmacology, Therapeutic and Toxicology, Autonomous University of Barcelona, 08193 Cerdanyola, Spain;
| | - Caridad Diaz
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Armilla, Spain; (C.D.); (R.F.-G.); (O.G.)
| | - Rosario Fernández-Godino
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Armilla, Spain; (C.D.); (R.F.-G.); (O.G.)
| | - Olga Genilloud
- Fundación MEDINA Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Armilla, Spain; (C.D.); (R.F.-G.); (O.G.)
| | - Milan Beljkas
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (M.B.); (S.O.); (K.N.)
| | - Slavica Oljacic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (M.B.); (S.O.); (K.N.)
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (M.B.); (S.O.); (K.N.)
| | - Carmen Escolano
- Laboratory of Medicinal Chemistry (Associated Unit to CSIC), Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB), University of Barcelona, Av. Joan XXIII, 27-31, 08028 Barcelona, Spain; (A.B.); (S.R.-A.)
| |
Collapse
|
13
|
Tan HY, Wan C, Wu GL, Qiao LJ, Cai YF, Wang Q, Zhang SJ. Taohong siwu decoction ameliorates cognitive dysfunction through SIRT6/ER stress pathway in Alzheimer's disease. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116580. [PMID: 37142144 DOI: 10.1016/j.jep.2023.116580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A growing number of people suffer from Alzheimer's disease (AD), but there is currently no effective treatment yet. Taohong Siwu Decoction (TSD) has been proved to take strong neuropharmacological activity on dementia, but the effect and mechanism of TSD against AD are still elusive. AIM OF STUDY To investigate whether TSD could be effective in ameliorating cognitive deficits through SIRT6/ER stress pathway. MATERIALS AND METHODS Herein, the APP/PS1 mice, an AD model, and HT-22 cell lines were utilized. Different dosages of TSD (4.25, 8.50 and 17.00 g/kg/d) were administered to the mice for 10 weeks by gavage. Following the behavioral tests, oxidative stress levels were measured using malondialdehyde (MDA) and superoxide dismutase (SOD) kits. Nissl staining and Western blot analyses were used to detect the neuronal function. Then, immunofluorescence and Western blot analysis were applied to evaluate silent information regulator 6 (SIRT6) and ER Stress related protein levels in APP/PS1 mice and HT-22 cells. RESULTS Behavioral tests revealed that APP/PS1 mice administered with TSD orally took more time in the target quadrant, crossed more times in the target quadrant, had a higher recognition coefficient, and spent more time in the central region. In addition, TSD could ameliorate oxidative stress and inhibit neuronal apoptosis in APP/PS1 mice. Furthermore, TSD could up-regulate the SIRT6 protein expression and inhibit ER sensing proteins expressions, such as p-PERK and ATF6, in APP/PS1 mice and Aβ1-42-treated HT22 cells. CONCLUSION According to the abovementioned findings, TSD could alleviate cognitive dysfunction in AD by modulating the SIRT6/ER stress pathway.
Collapse
Affiliation(s)
- Hong-Yu Tan
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Can Wan
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Guang-Liang Wu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Li-Jun Qiao
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Ye-Feng Cai
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Postdoctoral Research Station of Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Shi-Jie Zhang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Postdoctoral Research Station of Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
14
|
Mateev E, Kondeva-Burdina M, Georgieva M, Zlatkov A. Repurposing of FDA-approved drugs as dual-acting MAO-B and AChE inhibitors against Alzheimer's disease: An in silico and in vitro study. J Mol Graph Model 2023; 122:108471. [PMID: 37087882 DOI: 10.1016/j.jmgm.2023.108471] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/25/2023]
Abstract
An in silico consensus molecular docking approach and in vitro evaluations were adopted in the present study to explore a dataset of FDA-approved drugs as novel multitarget MAO-B/AChE agents in the treatment of Alzheimer's disease (AD). GOLD 5.3 and Glide were employed in the virtual assessments and consensus superimpositions of the obtained poses were applied to increase the reliability of the docking protocols. Furthermore, the top ranked molecules were subjected to binding free energy calculations using MM/GBSA, Induced fit docking (IFD) simulations, and a literature review. Consequently, the top four multitarget drugs were examined for their in vitro MAO-B and AChE inhibition effects. The consensus molecular docking identified Dolutegravir, Rebamipide, Loracarbef and Diflunisal as potential multitarget drugs. The biological data demonstrated that most of the docking scores were in good correlation with the in vitro experiments, however the theoretical simulations in the active site of MAO-B identified two false-positives - Rebamipide and Diflunisal. Dolutegravir and Loracarbef were accessed as active MAO-B inhibitors, while Dolutegravir, Rebamapide and Diflunisal as potential AChE inhibitors. The antiretroviral agent Dolutegravir exhibited the most potent multitarget activity - 41% inhibition of MAO-B (1 μM) and 68% inhibition of AChE (10 μM). Visualizations of the intermolecular interactions of Dolutegravir in the active sites of MAO-B and AChE revealed the formation of several stable hydrogen bonds. Overall, Dolutegravir was identified as a potential anti-AD drug, however further in vivo evaluations should be considered.
Collapse
Affiliation(s)
- Emilio Mateev
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University, Sofia, Bulgaria.
| | - Magdalena Kondeva-Burdina
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University, Sofia, Bulgaria
| | - Maya Georgieva
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University, Sofia, Bulgaria
| | - Alexander Zlatkov
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University, Sofia, Bulgaria
| |
Collapse
|