1
|
Nagpurkar K, Ghive P, Kale M, Nistane N, Taksande B, Umekar M, Trivedi R. Neurosteroids as emerging therapeutics for treatment-resistant depression: Mechanisms and clinical potential. Neuroscience 2025; 577:300-314. [PMID: 40398726 DOI: 10.1016/j.neuroscience.2025.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/30/2025] [Accepted: 05/14/2025] [Indexed: 05/23/2025]
Abstract
Treatment-resistant depression (TRD) is a severe and persistent subset of major depressive disorder (MDD) that remains unresponsive to at least two different classes of antidepressants. Given the limitations of conventional treatments, neurosteroids have emerged as promising alternatives due to their rapid and multi-faceted mechanisms of action. Neurosteroids such as allopregnanolone, pregnenolone, and dehydroepiandrosterone (DHEA) modulate key neurotransmitter systems, including gamma-aminobutyric acid (GABA_A) and N-methyl-D-aspartate (NMDA) receptors, enhancing inhibitory transmission and promoting synaptic plasticity. They regulate the hypothalamic-pituitary-adrenal (HPA) axis, mitigating stress-related neurotoxicity and restoring neurochemical balance. Preclinical studies have demonstrated the efficacy of neurosteroids in reversing depressive-like behaviors in rodent models of chronic stress, while clinical trials highlight their potential for rapid and sustained antidepressant effects. Notably, the FDA approval of brexanolone for postpartum depression underscores the translational potential of neurosteroid-based therapies. However, challenges such as limited bioavailability, long-term safety concerns, and regulatory hurdles must be addressed to optimize their clinical application. This review explores the therapeutic potential of neurosteroids in TRD, discussing their mechanisms, clinical evidence, and future directions. The findings support the integration of neurosteroid-based treatments into TRD management, offering new hope for patients unresponsive to conventional antidepressants. This review uniquely highlights the paradigm shift offered by neurosteroids, moving beyond the traditional monoamine hypothesis, and positions them as novel, multi-target therapeutics capable of addressing the complex neurobiology of TRD.
Collapse
Affiliation(s)
- Krutika Nagpurkar
- Department of Quality Assurance, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur 441002, India
| | - Pratik Ghive
- Department of Quality Assurance, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur 441002, India
| | - Mayur Kale
- Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur 441002, India
| | - Neha Nistane
- Department of Pharmaceutics, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur 441002, India
| | - Brijesh Taksande
- Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur 441002, India
| | - Milind Umekar
- Department of Pharmaceutics, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur 441002, India
| | - Rashmi Trivedi
- Department of Quality Assurance, Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur 441002, India.
| |
Collapse
|
2
|
Zikereya T, Liu C, Wei L, Wang Y, Zhang Z, Han C, Shi K, Chen W. The cannabinoid receptor 1 mediates exercise-induced improvements of motor skill learning and performance in parkinsonian mouse. Exp Neurol 2025; 391:115289. [PMID: 40340015 DOI: 10.1016/j.expneurol.2025.115289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 04/26/2025] [Accepted: 05/02/2025] [Indexed: 05/10/2025]
Abstract
The endocannabinoid system (eCBs) modulates corticostriatal circuits through cannabinoid receptor 1 (CB1R). These circuits are crucial for encoding goal-directed and habitual learning behaviors and are implicated in the occurrence and progression of Parkinson's disease (PD). While exercise has been shown to enhance motor performance and reverse learning deficits in PD patients, the underlying molecular mechanisms remain unclear. We hypothesized that a treadmill training program could rescue changes in striatal plasticity and ameliorate early motor and cognitive deficits in mice subjected to an intrastriatal 6-hydroxydopamine injection. Our findings demonstrated that exercise training would improve motor performance and learning abilities in PD mice. Moreover, both immunofluorescence and reverse transcription polymerase chain reaction results suggested that corticostriatal activation decreased CB1R expression in the dorsomedial striatum of PD mice but increased expression in the substantia nigra pars reticulata following treadmill exercise. These results suggest that dysregulated CB1R expression is associated with the pathogenesis of Parkinsonism, highlighting the vital role of the CB1R in corticostriatal pathway functionality enhanced by exercise. Our results suggest the potential benefits of treadmill exercise in alleviating Parkinsonism, providing valuable insights into future potential treating strategies.
Collapse
Affiliation(s)
- Talifu Zikereya
- Department of Physical Education, China University of Geosciences, Beijing, China
| | - Chuang Liu
- Department of Physical Education, China University of Geosciences, Beijing, China
| | - Longwei Wei
- Physical Education College, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Yinhao Wang
- Physical Education College, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Zhizhen Zhang
- Department of Mathematics and Statistics, University of Massachusetts at Amherst, Amherst, USA
| | - Chuanliang Han
- School of Biomedical Sciences and Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Kaixuan Shi
- Department of Physical Education, China University of Geosciences, Beijing, China.
| | - Wei Chen
- Physical Education College, Hebei Normal University, Shijiazhuang, Hebei, China.
| |
Collapse
|
3
|
Kumar K, Aggarwal S, Kandpal A, Kaur R, Jaggi AS, Yadav HN, Singh D, Chopra D, Singh N. Unraveling the role of brain renin angiotensin system in vascular dementia: mechanisms and therapeutic perspectives. Exp Brain Res 2025; 243:130. [PMID: 40285869 DOI: 10.1007/s00221-025-07072-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/29/2025] [Indexed: 04/29/2025]
Abstract
Dementia is a heterogeneous syndrome characterized by the progressive deterioration of various brain functions, severely impacting cognitive, emotional, and social abilities. According to a World Health Organization (WHO) report, dementia represents a pressing global health concern, with the number of affected individuals projected to triple by 2050. Among its various subtypes, vascular dementia (VD) stands as the second most common form, following Alzheimer's disease (AD). Despite ongoing efforts in drug development, no pharmaceutical entity has yet received approval from the U.S. Food and Drug Administration (FDA) for the treatment of VD. Emerging evidence underscores the critical involvement of the brain's Renin-Angiotensin System (RAS) in the pathogenesis of multiple neurodegenerative disorders, including VD. The intricate roles of RAS components include regulating vascular tone, neuronal growth and survival, regulating cerebral blood flow and endothelial dysfunction, increasing neuroinflammation (by increasing release of IL-1, IL-6, TNF-α, microglial activation), oxidative stress and destruction of BBB integrity, mainly through Angiotensin II type 1 (AT1) and type 2 (AT2) receptors, are of significant interest in the pathophysiology of VD. However, disruptions in these signaling pathways are believed to contribute substantially to the progression of VD. This review addresses the limitations of current therapeutic approaches for VD while emphasizing the untapped potential of RAS-targeted interventions. We systematically explore the neurophysiological mechanisms of brain RAS, their role in promoting neuronal health, and the factors that compromise these pathways, ultimately leading to cognitive decline. By elucidating these mechanisms and challenges, the review offers novel insights into designing innovative RAS-based therapeutic strategies, paving the way for effective clinical management of VD. This work aspires to stimulate further research and development in this underexplored yet promising domain.
Collapse
Affiliation(s)
- Kuldeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Sonal Aggarwal
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Ayush Kandpal
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Ramanpreet Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Amteshwar S Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Harlokesh Narayan Yadav
- Department of Pharmacology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Dhandeep Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Dimple Chopra
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
4
|
Kopalli SR, Behl T, Baldaniya L, Ballal S, Joshi KK, Arya R, Chaturvedi B, Chauhan AS, Verma R, Patel M, Jain SK, Wal A, Gulati M, Koppula S. Neuroadaptation in neurodegenerative diseases: compensatory mechanisms and therapeutic approaches. Prog Neuropsychopharmacol Biol Psychiatry 2025; 139:111375. [PMID: 40280271 DOI: 10.1016/j.pnpbp.2025.111375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/17/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
Progressive neuronal loss is a hallmark of neurodegenerative diseases including Alzheimer's, Parkinson's, Huntington's, and Amyotrophic Lateral Sclerosis (ALS), which cause cognitive and motor impairment. Delaying the onset and course of symptoms is largely dependent on neuroadaptation, the brain's ability to restructure in response to damage. The molecular, cellular, and systemic processes that underlie neuroadaptation are examined in this study. These mechanisms include gliosis, neurogenesis, synaptic plasticity, and changes in neurotrophic factors. Axonal sprouting, dendritic remodelling, and compensatory alterations in neurotransmitter systems are important adaptations observed in NDDs; nevertheless, these processes may shift to maladaptive plasticity, which would aid in the advancement of the illness. Amyloid and tau pathology-induced synaptic alterations in Alzheimer's disease emphasize compensatory network reconfiguration. Dopamine depletion causes a major remodelling of the basal ganglia in Parkinson's disease, and non-dopaminergic systems compensate. Both ALS and Huntington's disease rely on motor circuit rearrangement and transcriptional dysregulation to slow down functional deterioration. Neuroadaptation is, however, constrained by oxidative stress, compromised autophagy, and neuroinflammation, particularly in elderly populations. The goal of emerging therapy strategies is to improve neuroadaptation by pharmacologically modifying neurotrophic factors, neuroinflammation, and synaptic plasticity. Neurostimulation, cognitive training, and physical rehabilitation are instances of non-pharmacological therapies that support neuroplasticity. Restoring compensating systems may be possible with the use of stem cell techniques and new gene treatments. The goal of future research is to combine biomarkers and individualized medicines to maximize neuroadaptive responses and decrease the course of illness. In order to reduce neurodegeneration and enhance patient outcomes, this review highlights the dual function of neuroadaptation in NDDs and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Punjab-140306, India
| | - Lalji Baldaniya
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot 360003, Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, India; Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Renu Arya
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | - Bhumi Chaturvedi
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Ashish Singh Chauhan
- Uttaranchal Institute of Pharmaceutical Sciences, Division of research and innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Rakesh Verma
- Department of Pharmacology, Institute of Medical Science, BHU, Varanasi, India
| | - Minesh Patel
- Department of Pharmacology & Pharmacy Practice, Saraswati Institute of Pharmaceutical Sciences, Dhanap, Gandhinagar, Gujarat, India
| | - Sanmati Kumar Jain
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Koni, Bilaspur, India, 495009
| | - Ankita Wal
- Pranveer Singh Institute of Technology, Pharmacy, NH-19, Bhauti Road, Kanpur, UP, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| |
Collapse
|
5
|
Takhor NH, Phan CW. The role of Ergothioneine in cognition and age-related neurodegenerative disease: a systematic review. Inflammopharmacology 2025:10.1007/s10787-025-01746-6. [PMID: 40249478 DOI: 10.1007/s10787-025-01746-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 04/01/2025] [Indexed: 04/19/2025]
Abstract
Ergothioneine (ET) is an under recognised diet-derived compound which has the potential to be a "longevity vitamin". It was found to be beneficial for cognitive function and age-related neurodegenerative disorder (ARND). Thus, this study was conducted to synthesise the existing evidence of ET's effects on cognition and ARND, emphasizing its potential as a micronutrient for healthy aging. This study also highlights the future prospects of the research regarding ET's effects on cognition and ARND that are suggested in existing literature. Three databases (Pubmed, Scopus, and Web of Science) were used to search for the studies that meet the inclusion and exclusion criteria. A total of 19 studies were included after screening in this review. The risk of bias of each study was assessed using the Office of Health Assessment and Translation (OHAT) risk of bias rating tool. All studies' characteristics and main findings were tabulated according to their type of study. Mechanisms of ET in improving cognitive function and preventing ARND were found to be through its antioxidative, anti-inflammatory and antisenescence properties. Its role in neurotransmission and neuroprotection also contributed to improving cognition and preventing ARND. In conclusion, ET is a potential compound to be explored as its role in cognition and ARND have been discovered through several studies.
Collapse
Affiliation(s)
- Nurfarah Hazwani Takhor
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Chia Wei Phan
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Neuroscience Research Group (NeuRG), Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Mushroom Research Centre, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
6
|
Luo W, Duan M, Liang E, Wang S, Yuan J. The regulation of glutamatergic nervous system in sleep-wake states and general anesthesia. Brain Res Bull 2025; 221:111220. [PMID: 39842646 DOI: 10.1016/j.brainresbull.2025.111220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/04/2025] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
The sleep-wake states and general anesthesia share many neurophysiological similarities, as both involve reversible changes in consciousness and modulation of brain activity. This paper reviews the role of glutamatergic neurons, the brain's primary excitatory neurons, in regulating sleep-wake states and general anesthesia. We discuss the involvement of glutamatergic neurons across various brain regions, including the brainstem, basal forebrain, thalamus, hypothalamus, and cortex, highlighting their contributions to physiological sleep-wake and anesthesia modulation. Recent advancements in techniques such as optogenetics, chemogenetics, and neural tracing have enhanced our understanding of these neurons' functions. Understanding these mechanisms can lead to improved therapeutic strategies for sleep disorders and more precise anesthetic practices, providing new avenues for clinical intervention.
Collapse
Affiliation(s)
- Wei Luo
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
| | - Meiyi Duan
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
| | - Enpeng Liang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
| | - Siwei Wang
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China.
| | - Jie Yuan
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China; Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
7
|
Aboul-Fotouh S, Zohny SM, Elnahas EM, Habib MZ, Hassan GA. Can memantine treat autism? Answers from preclinical and clinical studies. Neurosci Biobehav Rev 2025; 169:106019. [PMID: 39826825 DOI: 10.1016/j.neubiorev.2025.106019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/02/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Autism Spectrum Disorder (ASD) represents a clinical challenge due to its diverse behavioral symptoms and complex neuro-pathophysiology. Finding effective treatments that target the fundamental mechanisms of ASD remains a top priority. This narrative review presents the potential of the NMDA-receptor blocker memantine in managing ASD symptoms. Preclinical studies indicate that memantine could abrogate excitotoxicity, GABA/glutamate imbalance, reduced levels of brain-derived neurotrophic factor (BDNF), blood-brain barrier (BBB) leakage, and neuroinflammation, offering hope for managing core deficits associated with ASD like impaired social interaction and repetitive behaviors. However, clinical trials yield conflicting results, with some showing slight improvements in symptom severity and cognitive function, while others demonstrate limited efficacy. Further exploration of memantine's neurobiological mechanisms and refinement of treatment approaches are crucial for comprehensively tackling ASD complexities. Drawing from both animal models and clinical data, this review examines memantine's impact on core ASD symptoms, cognitive function, and potential mechanisms of action. Lastly, it identifies research gaps and proposes avenues for future investigations to enhance our understanding and utilization of memantine in ASD management.
Collapse
Affiliation(s)
- Sawsan Aboul-Fotouh
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sohir M Zohny
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Esraa M Elnahas
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mohamed Z Habib
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt; Basic Medical Sciences Department, Faculty of Medicine, King Salman International University, El Tor, South Sinai, Egypt.
| | - Ghada Am Hassan
- Neuropsychiatry Department, Faculty of Medicine, Galala University, Suez, Egypt; Neuropsychiatry Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
8
|
Li P, Lei W, Dong Y, Wang X, Ye X, Tian Y, Yang Y, Liu J, Li N, Niu X, Wang X, Tian Y, Xu L, Yang Y, Liu J. mGluR7: The new player protecting the central nervous system. Ageing Res Rev 2024; 102:102554. [PMID: 39454762 DOI: 10.1016/j.arr.2024.102554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/16/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
Metabotropic glutamate receptor 7 (mGluR7) belongs to the family of type III mGluR receptor, playing an important part in the central nervous system (CNS) through response to neurotransmitter regulation, reduction of excitatory toxicity, and early neuronal development. Drugs targeting mGluR7 (mGluR7 agonists, antagonists, and allosteric modulators) may be among the most promising agents for the treatment of CNS disorders, such as psychiatric disorders, neurodegenerative diseases, and neurodevelopmental impairments, though these potential therapies are at early stages and the data are still limited. In this review, we summarized the structure and function of mGluR7 and discussed recent progress on mGluR7 agonists and antagonists. A deeper understanding of mGluR7 will contribute to uncovering the molecular mechanisms of neuroprotection and providing a theoretical basis for the formulation of therapeutic strategies.
Collapse
Affiliation(s)
- Pan Li
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China; Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Department of Ophthalmology, Xi'an No.1 Hospital, Faculty of Life Sciences and Medicine, Northwest University, 30 Fenxiang Road, Xi'an 710002, China
| | - Wangrui Lei
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yushu Dong
- Department of Neurosurgery, General Hospital of Northern Theater Command, No.83, Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Xiaowu Wang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Xingyan Ye
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Ye Tian
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yaru Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Jie Liu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Ning Li
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Xiaochen Niu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Xin Wang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yifan Tian
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Lu Xu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yang Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China.
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China.
| |
Collapse
|
9
|
Tanaka M, Szabó Á, Vécsei L. Redefining Roles: A Paradigm Shift in Tryptophan-Kynurenine Metabolism for Innovative Clinical Applications. Int J Mol Sci 2024; 25:12767. [PMID: 39684480 DOI: 10.3390/ijms252312767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/16/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
The tryptophan-kynurenine (KYN) pathway has long been recognized for its essential role in generating metabolites that influence various physiological processes. Traditionally, these metabolites have been categorized into distinct, often opposing groups, such as pro-oxidant versus antioxidant, excitotoxic/neurotoxic versus neuroprotective. This dichotomous framework has shaped much of the research on conditions like neurodegenerative and neuropsychiatric disorders, as well as cancer, where metabolic imbalances are a key feature. The effects are significantly influenced by various factors, including the concentration of metabolites and the particular cellular milieu in which they are generated. A molecule that acts as neuroprotective at low concentrations may exhibit neurotoxic effects at elevated levels. The oxidative equilibrium of the surrounding environment can alter the function of KYN from an antioxidant to a pro-oxidant. This narrative review offers a comprehensive examination and analysis of the contemporary understanding of KYN metabolites, emphasizing their multifaceted biological functions and their relevance in numerous physiological and pathological processes. This underscores the pressing necessity for a paradigm shift in the comprehension of KYN metabolism. Understanding the context-dependent roles of KYN metabolites is vital for novel therapies in conditions like Alzheimer's disease, multiple sclerosis, and cancer. Comprehensive pathway modulation, including balancing inflammatory signals and enzyme regulation, offers promising avenues for targeted, effective treatments.
Collapse
Affiliation(s)
- Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Ágnes Szabó
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
10
|
Zhang Z, Zhang Z, Liu P, Xue X, Zhang C, Peng L, Shen W, Yang S, Wang F. The Role of Photobiomodulation to Modulate Ion Channels in the Nervous System: A Systematic Review. Cell Mol Neurobiol 2024; 44:79. [PMID: 39579175 PMCID: PMC11585518 DOI: 10.1007/s10571-024-01513-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 11/06/2024] [Indexed: 11/25/2024]
Abstract
Photobiomodulation (PBM) is a safe and effective neurotherapy that modulates cellular pathways by altering cell membrane potentials, leading to beneficial biological effects such as anti-inflammatory and neuroregenerative responses. This review compiles studies from PubMed up to March 2024, investigating the impact of light at wavelengths ranging from 620 to 1270 nm on ion channels. Out of 330 articles screened, 19 met the inclusion criteria. Research indicates that PBM can directly affect various ion channels by influencing neurotransmitter synthesis in neighboring cells, impacting receptors like glutamate and acetylcholine, as well as potassium, sodium channels, and transient receptor potential channels. The diversity of studies hampers a comprehensive meta-analysis for evaluating treatment strategies effectively. This systematic review aims to explore the potential role of optoelectronic signal transduction in PBM, studying the neurobiological mechanisms and therapeutic significance of PBM on ion channels. However, the lack of uniformity in current treatment methods underscores the necessity of establishing standardized and reliable therapeutic approaches.
Collapse
Affiliation(s)
- Zhixin Zhang
- Senior Department of Otolaryngology Head and Neck Surgery, The sixth of Chinese PLA General Hospital, Chinese PLA Medical School, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
- State Key Laboratory of Hearing and Balance Science, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
- National Clinical Research Center for Otolaryngologic Diseases, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
- Key Laboratory of Hearing Science, Ministry of Education, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
- Graduate School of Medicine, Chinese PLA General Hospital, Chinese PLA Medical School, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Zhiyu Zhang
- School of Physics and Optoelectronic Engineering Xidian University, No.2, South Taibai Road, Xi'an, 710071, Shaanxi, China
| | - Peng Liu
- Senior Department of Otolaryngology Head and Neck Surgery, The sixth of Chinese PLA General Hospital, Chinese PLA Medical School, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- State Key Laboratory of Hearing and Balance Science, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- Graduate School of Medicine, Chinese PLA General Hospital, Chinese PLA Medical School, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xinmiao Xue
- Senior Department of Otolaryngology Head and Neck Surgery, The sixth of Chinese PLA General Hospital, Chinese PLA Medical School, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- State Key Laboratory of Hearing and Balance Science, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- Graduate School of Medicine, Chinese PLA General Hospital, Chinese PLA Medical School, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Chi Zhang
- Senior Department of Otolaryngology Head and Neck Surgery, The sixth of Chinese PLA General Hospital, Chinese PLA Medical School, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- State Key Laboratory of Hearing and Balance Science, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Lili Peng
- Senior Department of Otolaryngology Head and Neck Surgery, The sixth of Chinese PLA General Hospital, Chinese PLA Medical School, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- State Key Laboratory of Hearing and Balance Science, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Weidong Shen
- Senior Department of Otolaryngology Head and Neck Surgery, The sixth of Chinese PLA General Hospital, Chinese PLA Medical School, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- State Key Laboratory of Hearing and Balance Science, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Shiming Yang
- Senior Department of Otolaryngology Head and Neck Surgery, The sixth of Chinese PLA General Hospital, Chinese PLA Medical School, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
- State Key Laboratory of Hearing and Balance Science, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
- National Clinical Research Center for Otolaryngologic Diseases, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
- Key Laboratory of Hearing Science, Ministry of Education, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
| | - Fangyuan Wang
- Senior Department of Otolaryngology Head and Neck Surgery, The sixth of Chinese PLA General Hospital, Chinese PLA Medical School, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
- State Key Laboratory of Hearing and Balance Science, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
- National Clinical Research Center for Otolaryngologic Diseases, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
- Key Laboratory of Hearing Science, Ministry of Education, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
11
|
Nadei OV, Agalakova NI. AMPA and NMDA Receptors in Hippocampus of Rats with Fluoride-Induced Cognitive Decline. Int J Mol Sci 2024; 25:11796. [PMID: 39519348 PMCID: PMC11546234 DOI: 10.3390/ijms252111796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
This experimental study was performed to evaluate the alterations in the expression of a few subunits composing glutamate AMPA (a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) and NMDA (N-methyl-D-aspartate) receptors in the hippocampal cells of Wistar rats in response to long-term fluoride (F-) exposure. The animals were given water with background 0.4 (control), 5, 20, and 50 ppm F- (as NaF) for 12 months. The cognitive capacities of rats were examined by novel object recognition (NOR), Y-maze test, and Morris water maze tests. RT-qPCR and Western blotting techniques were used to evaluate the expression of different AMPA and NMDA subunits at transcriptional and translational levels, respectively. Long-term F- poisoning disturbed the formation of hippocampus-dependent working spatial and long-term non-spatial memory. The expression of Gria1, Gria2, and Gria3 genes encoding different subunits of AMPA receptors were comparable in hippocampi of control and F--exposed animals, although the levels of both Grin2a and Grin2b mRNA increased. Long-term F- intake enhanced the ratio of phospho-GluA1/total-GluA1 proteins in subcellular fraction enriched with cytosolic proteins, while decreased content of GluA2 but elevated level of GluA3 were observed in subcellular fraction enriched with membrane proteins. Such changes were accompanied by increased phosphorylation of GluN2A and GluN2B subunits, higher ratios of GluN2A/GluN1 and GluN2B/GluN1 proteins in the cytosol, and GluN2A/GluN2B ratio in membranes. These changes indicate the predominance of Ca2+-permeable AMPARs in membranes and a shift between different NMDARs subunits in hippocampal cells of F--exposed rats, which is typical for neurodegeneration and can at least partially underly the observed disturbances in cognitive capacities of animals.
Collapse
Affiliation(s)
| | - Natalia Ivanovna Agalakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 44 Thorez Avenue, Saint-Petersburg 194223, Russia;
| |
Collapse
|
12
|
Zhang T, Liu C, Zhong N, Wang Y, Huang Y, Zhang X. Advances in the Treatment of Cognitive Impairment in Schizophrenia: Targeting NMDA Receptor Pathways. Int J Mol Sci 2024; 25:10668. [PMID: 39408997 PMCID: PMC11477438 DOI: 10.3390/ijms251910668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Cognitive impairment is a core feature of schizophrenia, playing a pivotal role in the pathogenesis and prognosis of this disorder. Cognitive impairment in schizophrenia encompasses a wide range of domains, including processing speed, episodic memory, working memory, and executive function. These deficits persist throughout the course of the illness and significantly impact functional outcomes and quality of life. Therefore, it is imperative to identify the biological basis of cognitive deficits in schizophrenia and develop effective treatments. The role of N-methyl-D-aspartate (NMDA) receptors in synaptic transmission and plasticity has long been recognized, making them potential targets for schizophrenia treatment. This review will focus on emerging pharmacology targeting NMDA receptors, offering strategies for the prevention and treatment of cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoqin Zhang
- Department of Pharmacology, Health Science Center, Ningbo University, Ningbo 315211, China; (T.Z.); (C.L.); (N.Z.); (Y.W.); (Y.H.)
| |
Collapse
|
13
|
Zhuang R, Yan Z, Gao Y, Nurmamat A, Zhang S, Xiu M, Zhou Y, Pang Y, Li D, Zhao L, Liu X, Han Y. Evolutionary and functional analysis of metabotropic glutamate receptors in lampreys. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1861-1877. [PMID: 38951427 DOI: 10.1007/s10695-024-01374-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/22/2024] [Indexed: 07/03/2024]
Abstract
The metabotropic glutamate receptor (mGluR, GRM) family is involved in multiple signaling pathways and regulates neurotransmitter release. However, the evolutionary history, distribution, and function of the mGluRs family in lampreys have not been determined. Therefore, we identified the mGluRs gene family in the genome of Lethenteron reissneri, which has been conserved throughout vertebrate evolution. We confirmed that Lr-GRM3, Lr-GRM5, and Lr-GRM7 encode three types of mGluRs in lamprey. Additionally, we investigated the distribution of Lr-GRM3 within this species by qPCR and Western blotting. Furthermore, we conducted RNA sequencing to investigate the molecular function of Lr-GRM3 in lamprey. Our gene expression profile revealed that, similar to that in jawed vertebrates, Lr-GRM3 participates in multiple signal transduction pathways and influences synaptic excitability in lampreys. Moreover, it also affects intestinal motility and the inflammatory response in lampreys. This study not only enhances the understanding of mGluRs' gene evolution but also highlights the conservation of GRM3's role in signal transduction while expanding our knowledge of its functions specifically within lampreys. In summary, our experimental findings provide valuable insights for studying both the evolution and functionality of the mGluRs family.
Collapse
Affiliation(s)
- Ruyu Zhuang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
| | - Zihao Yan
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
| | - Yicheng Gao
- The First Clinical College of China Medical University, Shenyang, 110001, China
| | - Ayqeqan Nurmamat
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
| | - Shuyuan Zhang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
| | - Min Xiu
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
| | - Yuesi Zhou
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
| | - Ya Pang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
| | - Ding Li
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
| | - Liang Zhao
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
| | - Xin Liu
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian, 116081, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Yinglun Han
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China.
- Lamprey Research Center, College of Life Sciences, Liaoning Normal University, Dalian, 116081, China.
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
14
|
Si M, Cai X, Liu Y, Li Z, Luo X, Zhu HL, Qian Y. An antagonist-based two-photon fluorogenic probe for imaging metabotropic glutamate receptor 5 in neuronal cells. Talanta 2024; 275:126167. [PMID: 38710128 DOI: 10.1016/j.talanta.2024.126167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/09/2024] [Accepted: 04/25/2024] [Indexed: 05/08/2024]
Abstract
The expression of metabotropic glutamate receptor 5 (mGluR5) is subject to developmental regulation and undergoes significant changes in neuropsychiatric disorders and diseases. Visualizing mGluR5 by fluorescence imaging is a highly desired innovative technology for biomedical applications. Nevertheless, there are substantial problems with the chemical probes that are presently accessible. In this study, we have successfully developed a two-photon fluorogenic probe, mGlu-5-TP, based on the structure of mGluR5 antagonist 6-methyl-2-(phenylethynyl)pyridine (MPEP). Due to this antagonist-based probe selectively recognizes mGluR5, high expression of mGluR5 on living SH-SY5Y human neuroblastoma cells has been detected during intracellular inflammation triggered by lipopolysaccharides (LPS). Of particular significance, the probe can be employed along with two-photon fluorescence microscopy to enable real-time visualization of the mGluR5 in Aβ fiber-treated neuronal cells, thereby establishing a connection to the progression of Alzheimer's disease (AD). These results revealed that the probe can be a valuable imaging tool for studying mGluR5-related diseases in the nervous system.
Collapse
Affiliation(s)
- Mingran Si
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, China
| | - Xinyi Cai
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Road 163, Nanjing, 210023, China
| | - Yani Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Road 163, Nanjing, 210023, China
| | - Zheng Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, China
| | - Xiangjie Luo
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, China.
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Road 163, Nanjing, 210023, China.
| | - Yong Qian
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, China.
| |
Collapse
|
15
|
Zhu Q, Wan L, Huang H, Liao Z. IL-1β, the first piece to the puzzle of sepsis-related cognitive impairment? Front Neurosci 2024; 18:1370406. [PMID: 38665289 PMCID: PMC11043581 DOI: 10.3389/fnins.2024.1370406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Sepsis is a leading cause of death resulting from an uncontrolled inflammatory response to an infectious agent. Multiple organ injuries, including brain injuries, are common in sepsis. The underlying mechanism of sepsis-associated encephalopathy (SAE), which is associated with neuroinflammation, is not yet fully understood. Recent studies suggest that the release of interleukin-1β (IL-1β) following activation of microglial cells plays a crucial role in the development of long-lasting neuroinflammation after the initial sepsis episode. This review provides a comprehensive analysis of the recent literature on the molecular signaling pathways involved in microglial cell activation and interleukin-1β release. It also explores the physiological and pathophysiological role of IL-1β in cognitive function, with a particular focus on its contribution to long-lasting neuroinflammation after sepsis. The findings from this review may assist healthcare providers in developing novel interventions against SAE.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Anesthesiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Li Wan
- Department of Medical Genetics/Prenatal Diagnostic Center Nursing and Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Han Huang
- Department of Anesthesiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Zhimin Liao
- Department of Anesthesiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Weng Y, Zhang Y, Li Y, Lin X, Guo Z, Hu H, Shao W, Yu G, Zheng F, Cai P, Li H, Wu S. Single-cell RNA-sequencing of cellular heterogeneity and pathogenic mechanisms in paraquat-induced Parkinson's disease with depression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116169. [PMID: 38447518 DOI: 10.1016/j.ecoenv.2024.116169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
Parkinson's disease (PD) is among the most prevalent neurodegenerative diseases, and approximately one third of patients with PD are estimated to have depression. Paraquat (PQ) exposure is an important environmental risk factor for PD. In this study, we established a mouse model of PQ-induced PD with depression to comprehensively investigate cellular heterogeneity and the mechanisms underlying the progression of depression in the context of PD. We utilized single-cell RNA-seq (scRNA-seq) to acquire the transcriptomic atlas of individual cells from model mice and characterize the gene expression profiles in each differentially expressed cell type. We identified a specific glutamatergic neuron cluster responsible for the development of heterogeneous depression-associated changes and established a comprehensive gene expression atlas. Furthermore, functional enrichment and cell trajectory analyses revealed that the mechanisms underlying the progression of PD with depression were associated with specific glutamatergic neurons. Together, our findings provide a valuable resource for deciphering the cellular heterogeneity of PD with depression. The suggested connection between intrinsic transcriptional states of neurons and the progression of depression can provide insight into potential biomarkers and specific targets for anti-depression treatment in patients with PD. SYNOPSIS: Our results obtained using model mice confirm the core effects of PQ exposure on glutamatergic neurons and their potential role in the development of PD with depression.
Collapse
Affiliation(s)
- Yali Weng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yu Zhang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Yinhan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Xinpei Lin
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Zhenkun Guo
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Hong Hu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Wenya Shao
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Guangxia Yu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Ping Cai
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Siying Wu
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
17
|
Rao J, Li H, Zhang H, Xiang X, Ding X, Li L, Geng F, Qi H. Periplaneta Americana (L.) extract activates the ERK/CREB/BDNF pathway to promote post-stroke neuroregeneration and recovery of neurological functions in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117400. [PMID: 37952730 DOI: 10.1016/j.jep.2023.117400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Periplaneta americana (L.) (PA) has been used in traditional Chinese medicine for thousands of years for the effect of invigorating blood circulation and removing blood stasis. Modern pharmacological research shown that PA extract exhibits promising effects in promoting wound healing and regeneration, as well as in brain diseases such as Parkinson's disease (PD). However, whether it is effective for neuroregeneration and neurological function recovery after stroke still unknown. AIM OF THE STUDY This study aims to investigate the potential effect of PA extract to promote brain remodeling through the activation of endogenous neurogenesis and angiogenesis, in addition, preliminary exploration of its regulatory mechanism. METHODS Firstly, BrdU proliferation assay and immunofluorescence (IF) staining were used to evaluate the effect of PA extract on the neurogenesis and angiogenesis in vitro and in vivo. Subsequently, the effects of PA extract on brain injury in stroke rats were assessed by TTC and HE. While mNSS score, adhesive removal test, rota-rod test, and morris water maze test were used to assess the impact of PA extract on neurological function in post-stroke rats. Finally, the molecular mechanisms of PA extract regulation were explored by RNA-Seq and western blotting. RESULTS The number of BrdU+ cells in C17.2 cells, NSCs and BMECs dramatically increased, as well as the expression of astrocyte marker protein GFAP and neuronal marker protein Tuj-1 in C17.2 and NSCs. Moreover, PA extract also increased the number of BrdU+DCX+, BrdU+GFAP+, BrdU+CD31+ cells in the SGZ area of transient middle cerebral artery occlusion model (tMCAO) rats. TTC and HE staining revealed that PA extract significantly reduced the infarction volume and ameliorated the pathological damage. Behavioral tests demonstrated that treatment with PA extract reduced the mNSS score and the time required to remove adhesive tape, while increasing the time spent on the rotarod. Additionally, in the morris water maze test, the frequency of crossing platform and the time spent in the platform quadrant increased. Finally, RNA-Seq and Western blot revealed that PA extract increased the expression of p-ERK, p-CREB and BDNF. Importantly, PA extract mediated proliferation and differentiation of C17.2 and NSCs reversed by the ERK inhibitor SCH772984 and the BDNF inhibitor ANA-12, respectively. CONCLUSION Our study demonstrated that PA extract promoted neurogenesis and angiogenesis by activating the CREB/ERK signaling pathway and upregulating BDNF expression, thereby recovering neurological dysfunction in post-stroke.
Collapse
Affiliation(s)
- Jiangyan Rao
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, China
| | - Hongpu Li
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, China
| | - Haonan Zhang
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, China
| | - Xiaoxia Xiang
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, China
| | - Xinyu Ding
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, China
| | - Li Li
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, China
| | - Funeng Geng
- Sichuan Key Laboratory of Medical American Cockroach, Chengdu, Sichuan, 610000, China.
| | - Hongyi Qi
- College of Pharmaceutical Sciences & College of Chinese Medicine, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
18
|
Lee JD, Solomon IH, Slack FJ, Mavrikaki M. Cognition-associated long noncoding RNAs are dysregulated upon severe COVID-19. Front Immunol 2024; 15:1290523. [PMID: 38410515 PMCID: PMC10894962 DOI: 10.3389/fimmu.2024.1290523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/23/2024] [Indexed: 02/28/2024] Open
Abstract
Severe COVID-19 leads to widespread transcriptomic changes in the human brain, mimicking diminished cognitive performance. As long noncoding RNAs (lncRNAs) play crucial roles in the regulation of gene expression, identification of the lncRNAs differentially expressed upon COVID-19 may nominate key regulatory nodes underpinning cognitive changes. Here we identify hundreds of lncRNAs differentially expressed in the brains of COVID-19 patients relative to uninfected age/sex-matched controls, many of which are associated with decreased cognitive performance and inflammatory cytokine response. Our analyses reveal pervasive transcriptomic changes in lncRNA expression upon severe COVID-19, which may serve as key regulators of neurocognitive changes in the brain.
Collapse
Affiliation(s)
- Jonathan D. Lee
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Isaac H. Solomon
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Frank J. Slack
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, United States
| | - Maria Mavrikaki
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
19
|
Zhang C, Zhang B, Xu Y, Hao W, Tang WK. The impact of depressive symptoms on cognitive impairments in chronic ketamine users. Compr Psychiatry 2024; 129:152448. [PMID: 38160647 DOI: 10.1016/j.comppsych.2023.152448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Chronic ketamine use has been associated with cognitive impairments, while depressive symptoms are commonly observed in individuals using ketamine. However, the influence of depressive symptoms on cognitive impairments in chronic ketamine users remains unclear. This study aimed to examine the impact of depressive symptoms on cognitive function in this population. METHODS A cross-sectional study was conducted with a sample of chronic ketamine users. Participants underwent comprehensive cognitive assessments, including measures of attention, executive function, working memory, verbal and visual memory. Depressive symptoms were assessed using Beck Depression Inventory (BDI) scores. Multivariate analyses were utilized to compare the cognitive performance of individuals who use ketamine, both with and without depressive symptoms, as well as a control group, while controlling for relevant covariates. RESULTS The results revealed a significant negative impact of depressive symptoms on cognitive impairments, particularly in the domains of memory and executive function, among chronic ketamine users. The analysis of partial correlations revealed that among individuals who use ketamine and have depressive symptoms, those with higher levels of depressive symptoms demonstrated poorer cognitive performance compared to individuals with lower levels of depressive symptoms, controlling for potential confounding factors. CONCLUSIONS The findings suggest that depressive symptoms contribute to cognitive impairments, specifically in memory and executive function, in chronic ketamine users. Therefore, it is crucial to evaluate depressive symptoms when considering cognitive enhancement treatment for this population.
Collapse
Affiliation(s)
- Chenxi Zhang
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Center of Sleep Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Bin Zhang
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Center of Sleep Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan Xu
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Center of Sleep Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Hao
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wai Kwong Tang
- Department of Psychiatry, The Chinese University of Hong Kong, China.
| |
Collapse
|
20
|
Liu S, Chen W, Zhao Y, Zong Y, Li J, He Z. Research Progress on Effects of Ginsenoside Rg2 and Rh1 on Nervous System and Related Mechanisms. Molecules 2023; 28:7935. [PMID: 38067664 PMCID: PMC10708332 DOI: 10.3390/molecules28237935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Neurological-related disorders are diseases that affect the body's neurons or peripheral nerve tissue, such as Parkinson's disease (PD) and Alzheimer's disease (AD). The development of neurological disorders can cause serious harm to the quality of life and functioning of the patient. The use of traditional therapeutic agents such as dopamine-promoting drugs, anticholinergic drugs, cholinesterase inhibitors, and NMDA receptor antagonists is often accompanied by a series of side effects such as drug resistance, cardiac arrhythmia, liver function abnormalities, and blurred vision. Therefore, there is an urgent need to find a therapeutic drug with a high safety profile and few side effects. Herbal medicines are rich in active ingredients that are natural macromolecules. Ginsenoside is the main active ingredient of ginseng, which has a variety of pharmacological effects and is considered to have potential value in the treatment of human diseases. Modern pharmacological studies have shown that ginsenosides Rg2 and Rh1 have strong pharmacological activities in the nervous system, with protective effects on nerve cells, improved resistance to neuronal injury, modulation of neural activity, resistance to cerebral ischemia/reperfusion injury, improvement of brain damage after eclampsia hemorrhage, improvement of memory and cognitive deficits, treatment of AD and vascular dementia, alleviation of anxiety, pain, and inhibition of ionic-like behavior. In this article, we searched the pharmacological research literature of Rg2 and Rh1 in the field of neurological diseases, summarized the latest research progress of the two ginsenosides, and reviewed the pharmacological effects and mechanisms of Rg2 and Rh1, which provided a new way of thinking for the research of the active ingredients in ginseng anti-neurological diseases and the development of new drugs.
Collapse
Affiliation(s)
- Silu Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (W.C.); (Y.Z.); (Y.Z.); (J.L.)
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (W.C.); (Y.Z.); (Y.Z.); (J.L.)
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (W.C.); (Y.Z.); (Y.Z.); (J.L.)
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (W.C.); (Y.Z.); (Y.Z.); (J.L.)
| | - Jianming Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (W.C.); (Y.Z.); (Y.Z.); (J.L.)
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; (S.L.); (W.C.); (Y.Z.); (Y.Z.); (J.L.)
| |
Collapse
|
21
|
Tan S, Chen W, Kong G, Wei L, Xie Y. Peripheral inflammation and neurocognitive impairment: correlations, underlying mechanisms, and therapeutic implications. Front Aging Neurosci 2023; 15:1305790. [PMID: 38094503 PMCID: PMC10716308 DOI: 10.3389/fnagi.2023.1305790] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/10/2023] [Indexed: 08/22/2024] Open
Abstract
Cognitive impairments, such as learning and memory deficits, may occur in susceptible populations including the elderly and patients who are chronically ill or have experienced stressful events, including surgery, infection, and trauma. Accumulating lines of evidence suggested that peripheral inflammation featured by the recruitment of peripheral immune cells and the release of pro-inflammatory cytokines may be activated during aging and these conditions, participating in peripheral immune system-brain communication. Lots of progress has been achieved in deciphering the core bridging mechanism connecting peripheral inflammation and cognitive impairments, which may be helpful in developing early diagnosis, prognosis evaluation, and prevention methods based on peripheral blood circulation system sampling and intervention. In this review, we summarized the evolving evidence on the prevalence of peripheral inflammation-associated neurocognitive impairments and discussed the research advances in the underlying mechanisms. We also highlighted the prevention and treatment strategies against peripheral inflammation-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Siyou Tan
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Anesthesiology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Wenyan Chen
- Department of Anesthesiology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Gaoyin Kong
- Department of Anesthesiology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Lai Wei
- Department of Anesthesiology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Yubo Xie
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
22
|
Wu Q, Ren Q, Meng J, Gao WJ, Chang YZ. Brain Iron Homeostasis and Mental Disorders. Antioxidants (Basel) 2023; 12:1997. [PMID: 38001850 PMCID: PMC10669508 DOI: 10.3390/antiox12111997] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Iron plays an essential role in various physiological processes. A disruption in iron homeostasis can lead to severe consequences, including impaired neurodevelopment, neurodegenerative disorders, stroke, and cancer. Interestingly, the link between mental health disorders and iron homeostasis has not received significant attention. Therefore, our understanding of iron metabolism in the context of psychological diseases is incomplete. In this review, we aim to discuss the pathologies and potential mechanisms that relate to iron homeostasis in associated mental disorders. We propose the hypothesis that maintaining brain iron homeostasis can support neuronal physiological functions by impacting key enzymatic activities during neurotransmission, redox balance, and myelination. In conclusion, our review highlights the importance of investigating the relationship between trace element nutrition and the pathological process of mental disorders, focusing on iron. This nutritional perspective can offer valuable insights for the clinical treatment of mental disorders.
Collapse
Affiliation(s)
- Qiong Wu
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang 050200, China;
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| | - Qiuyang Ren
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| | - Jingsi Meng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| | - Wei-Juan Gao
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang 050200, China;
| | - Yan-Zhong Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, The Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, No. 20 Nan’erhuan Eastern Road, Shijiazhuang 050024, China; (Q.R.); (J.M.)
| |
Collapse
|
23
|
Moos WH, Faller DV, Glavas IP, Kanara I, Kodukula K, Pernokas J, Pernokas M, Pinkert CA, Powers WR, Sampani K, Steliou K, Vavvas DG. Epilepsy: Mitochondrial connections to the 'Sacred' disease. Mitochondrion 2023; 72:84-101. [PMID: 37582467 DOI: 10.1016/j.mito.2023.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/03/2023] [Accepted: 08/12/2023] [Indexed: 08/17/2023]
Abstract
Over 65 million people suffer from recurrent, unprovoked seizures. The lack of validated biomarkers specific for myriad forms of epilepsy makes diagnosis challenging. Diagnosis and monitoring of childhood epilepsy add to the need for non-invasive biomarkers, especially when evaluating antiseizure medications. Although underlying mechanisms of epileptogenesis are not fully understood, evidence for mitochondrial involvement is substantial. Seizures affect 35%-60% of patients diagnosed with mitochondrial diseases. Mitochondrial dysfunction is pathophysiological in various epilepsies, including those of non-mitochondrial origin. Decreased ATP production caused by malfunctioning brain cell mitochondria leads to altered neuronal bioenergetics, metabolism and neurological complications, including seizures. Iron-dependent lipid peroxidation initiates ferroptosis, a cell death pathway that aligns with altered mitochondrial bioenergetics, metabolism and morphology found in neurodegenerative diseases (NDDs). Studies in mouse genetic models with seizure phenotypes where the function of an essential selenoprotein (GPX4) is targeted suggest roles for ferroptosis in epilepsy. GPX4 is pivotal in NDDs, where selenium protects interneurons from ferroptosis. Selenium is an essential central nervous system micronutrient and trace element. Low serum concentrations of selenium and other trace elements and minerals, including iron, are noted in diagnosing childhood epilepsy. Selenium supplements alleviate intractable seizures in children with reduced GPX activity. Copper and cuproptosis, like iron and ferroptosis, link to mitochondria and NDDs. Connecting these mechanistic pathways to selenoproteins provides new insights into treating seizures, pointing to using medicines including prodrugs of lipoic acid to treat epilepsy and to potential alternative therapeutic approaches including transcranial magnetic stimulation (transcranial), photobiomodulation and vagus nerve stimulation.
Collapse
Affiliation(s)
- Walter H Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, CA, USA.
| | - Douglas V Faller
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Cancer Research Center, Boston University School of Medicine, Boston, MA, USA
| | - Ioannis P Glavas
- Department of Ophthalmology, New York University School of Medicine, New York, NY, USA
| | | | | | - Julie Pernokas
- Advanced Dental Associates of New England, Woburn, MA, USA
| | - Mark Pernokas
- Advanced Dental Associates of New England, Woburn, MA, USA
| | - Carl A Pinkert
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Whitney R Powers
- Department of Health Sciences, Boston University, Boston, MA, USA; Department of Anatomy, Boston University School of Medicine, Boston, MA, USA
| | - Konstantina Sampani
- Beetham Eye Institute, Joslin Diabetes Center, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, MA, USA; PhenoMatriX, Inc., Natick, MA, USA
| | - Demetrios G Vavvas
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| |
Collapse
|