1
|
Züger S, Krings W, Gorb SN, Büscher TH, Sombke A. Material composition and mechanical properties of the venom-injecting forcipules in centipedes. Front Zool 2024; 21:21. [PMID: 39180121 PMCID: PMC11342574 DOI: 10.1186/s12983-024-00543-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/13/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Centipedes are terrestrial and predatory arthropods that possess an evolutionary transformed pair of appendages used for venom injection-the forcipules. Many arthropods incorporate reinforcing elements into the cuticle of their piercing or biting structures to enhance hardness, elasticity or resistance to wear and structural failure. Given their frequent exposure to high mechanical stress, we hypothesise that the cuticle of the centipede forcipule might be mechanically reinforced. With a combination of imaging, analytical techniques and mechanical testing, we explore the centipede forcipule in detail to shed light on its morphology and performance. Additionally, we compare these data to characteristics of the locomotory leg to infer evolutionary processes. RESULTS We examined sclerotization patterns using confocal laser-scanning microscopy based on autofluorescence properties of the cuticle (forcipule and leg) and elemental composition by energy-dispersive X-ray spectroscopy in representative species from all five centipede lineages. These experiments revealed gradually increasing sclerotization towards the forcipular tarsungulum and a stronger sclerotization of joints in taxa with condensed podomeres. Depending on the species, calcium, zinc or chlorine are present with a higher concentration towards the distal tarsungulum. Interestingly, these characteristics are more or less mirrored in the locomotory leg's pretarsal claw in Epimorpha. To understand how incorporated elements affect mechanical properties, we tested resistance to structural failure, hardness (H) and Young's modulus (E) in two representative species, one with high zinc and one with high calcium content. Both species, however, exhibit similar properties and no differences in mechanical stress the forcipule can withstand. CONCLUSIONS Our study reveals similarities in the material composition and properties of the forcipules in centipedes. The forcipules transformed from an elongated leg-like appearance into rigid piercing structures. Our data supports their serial homology to the locomotory leg and that the forcipule's tarsungulum is a fusion of tarsus and pretarsal claw. Calcium or zinc incorporation leads to comparable mechanical properties like in piercing structures of chelicerates and insects, but the elemental incorporation does not increase H and E in centipedes, suggesting that centipedes followed their own pathways in the evolutionary transformation of piercing tools.
Collapse
Affiliation(s)
- Simon Züger
- Department of Evolutionary Biology, Integrative Zoology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
- Department of Functional Morphology and Biomechanics, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany.
| | - Wencke Krings
- Department of Functional Morphology and Biomechanics, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany
- Department of Cariology, Endodontology and Periodontology, Universität Leipzig, Liebigstrasse 12, 04103, Leipzig, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Thies H Büscher
- Department of Functional Morphology and Biomechanics, Kiel University, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Andy Sombke
- Department of Evolutionary Biology, Integrative Zoology, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
- Center for Anatomy and Cell Biology, Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| |
Collapse
|
2
|
Vujić VD, Ilić BS, Lučić LR, Jovanović ZS, Milovanović JZ, Dudić BD, Stojanović DZ. Presence of morphological integration and modularity of the forcipular apparatus in Lithobius melanops (Chilopoda: Lithobiomorpha: Lithobiidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2022; 71:101203. [PMID: 36088838 DOI: 10.1016/j.asd.2022.101203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/15/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
The presence of morphological integration and modularity of the forcipular apparatus, despite its evolutionary significance, has not been analyzed in centipedes. This morphological structure has a crucial role in feeding and defense, thanks to its poisonous part (forcipules), which is important for catching the prey. The aims of our study were: i) to test the hypothesis of modularity of the forcipular apparatus in centipede Lithobius melanops; and ii) to investigate the influence of allometry on overall morphological integration in the aforementioned species using a geometric morphometric approach. The presence of fluctuating asymmetry was obtained by Procrustes ANOVA. Allometry was significant only for the symmetric component of the forcipular apparatus. The modularity hypothesis was not accepted, because the covariance coefficients for symmetric and asymmetric components were lower than 89.5% and 72.1% (respectively) of other RV coefficients obtained by a random contiguous partition of the forcipular apparatus. Results of the present study indicate that allometry does increase the level of morphological integration in the forcipular apparatus. According to our results, the forcipular coxosternite and forcipules could not be considered as separate modules; namely, they probably share similar developmental pathways and function in different forms of behavior and survival in L. melanops.
Collapse
Affiliation(s)
- Vukica D Vujić
- University of Belgrade, Institute of Zoology, Studentski Trg 16, 11000, Belgrade, Serbia.
| | - Bojan S Ilić
- University of Belgrade, Institute of Zoology, Studentski Trg 16, 11000, Belgrade, Serbia.
| | - Luka R Lučić
- University of Belgrade, Institute of Zoology, Studentski Trg 16, 11000, Belgrade, Serbia.
| | - Zvezdana S Jovanović
- University of Belgrade, Institute of Zoology, Studentski Trg 16, 11000, Belgrade, Serbia.
| | - Jelena Z Milovanović
- University of Belgrade, Institute of Zoology, Studentski Trg 16, 11000, Belgrade, Serbia.
| | - Boris D Dudić
- University of Belgrade, Institute of Zoology, Studentski Trg 16, 11000, Belgrade, Serbia.
| | - Dalibor Z Stojanović
- University of Belgrade, Institute of Zoology, Studentski Trg 16, 11000, Belgrade, Serbia.
| |
Collapse
|
3
|
Fort A, McHale M, Cascella K, Potin P, Perrineau MM, Kerrison PD, da Costa E, Calado R, Domingues MDR, Costa Azevedo I, Sousa-Pinto I, Gachon C, van der Werf A, de Visser W, Beniers JE, Jansen H, Guiry MD, Sulpice R. Exhaustive reanalysis of barcode sequences from public repositories highlights ongoing misidentifications and impacts taxa diversity and distribution. Mol Ecol Resour 2021; 22:86-101. [PMID: 34153167 DOI: 10.1111/1755-0998.13453] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 11/27/2022]
Abstract
Accurate species identification often relies on public repositories to compare the barcode sequences of the investigated individual(s) with taxonomically assigned sequences. However, the accuracy of identifications in public repositories is often questionable, and the names originally given are rarely updated. For instance, species of the Sea Lettuce (Ulva spp.; Ulvophyceae, Ulvales, Ulvaceae) are frequently misidentified in public repositories, including herbaria and gene banks, making species identification based on traditional barcoding unreliable. We DNA barcoded 295 individual distromatic foliose strains of Ulva from the North-East Atlantic for three loci (rbcL, tufA, ITS1). Seven distinct species were found, and we compared our results with all worldwide Ulva spp. sequences present in the NCBI database for the three barcodes rbcL, tufA and the ITS1. Our results demonstrate a large degree of species misidentification, where we estimate that 24%-32% of the entries pertaining to foliose species are misannotated and provide an exhaustive list of NCBI sequences reannotations. An analysis of the global distribution of registered samples from foliose species also indicates possible geographical isolation for some species, and the absence of U. lactuca from Northern Europe. We extended our analytical framework to three other genera, Fucus, Porphyra and Pyropia and also identified erroneously labelled accessions and possibly new synonymies, albeit less than for Ulva spp. Altogether, exhaustive taxonomic clarification by aggregation of a library of barcode sequences highlights misannotations and delivers an improved representation of species diversity and distribution.
Collapse
Affiliation(s)
- Antoine Fort
- National University of Ireland - Galway, Plant Systems Biology Laboratory, Ryan Institute & MaREI Centre for Marine, Climate and Energy, School of Natural Sciences, Galway, Ireland
| | - Marcus McHale
- National University of Ireland - Galway, Plant Systems Biology Laboratory, Ryan Institute & MaREI Centre for Marine, Climate and Energy, School of Natural Sciences, Galway, Ireland
| | - Kevin Cascella
- CNRS, Sorbonne Université Sciences, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Philippe Potin
- CNRS, Sorbonne Université Sciences, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | | | - Philip D Kerrison
- Scottish Association for Marine Science (SAMS), Scottish Marine Institute, Oban, UK
| | - Elisabete da Costa
- CESAM & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Ricardo Calado
- ECOMARE & CESAM, Departamento de Biologia & Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Maria do Rosário Domingues
- CESAM & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Isabel Costa Azevedo
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
| | - Isabel Sousa-Pinto
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Matosinhos, Portugal
| | - Claire Gachon
- Scottish Association for Marine Science (SAMS), Scottish Marine Institute, Oban, UK.,UMR 7245 - Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, Paris, France
| | | | | | | | - Henrice Jansen
- Wageningen University & Research, Wageningen, The Netherlands
| | - Michael D Guiry
- AlgaeBase, Ryan Institute, National University of Ireland, Galway, Ireland
| | - Ronan Sulpice
- National University of Ireland - Galway, Plant Systems Biology Laboratory, Ryan Institute & MaREI Centre for Marine, Climate and Energy, School of Natural Sciences, Galway, Ireland
| |
Collapse
|
4
|
Arthropod venoms: Biochemistry, ecology and evolution. Toxicon 2018; 158:84-103. [PMID: 30529476 DOI: 10.1016/j.toxicon.2018.11.433] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 12/17/2022]
Abstract
Comprising of over a million described species of highly diverse invertebrates, Arthropoda is amongst the most successful animal lineages to have colonized aerial, terrestrial, and aquatic domains. Venom, one of the many fascinating traits to have evolved in various members of this phylum, has underpinned their adaptation to diverse habitats. Over millions of years of evolution, arthropods have evolved ingenious ways of delivering venom in their targets for self-defence and predation. The morphological diversity of venom delivery apparatus in arthropods is astounding, and includes extensively modified pedipalps, tail (telson), mouth parts (hypostome), fangs, appendages (maxillulae), proboscis, ovipositor (stinger), and hair (urticating bristles). Recent investigations have also unravelled an astonishing venom biocomplexity with molecular scaffolds being recruited from a multitude of protein families. Venoms are a remarkable bioresource for discovering lead compounds in targeted therapeutics. Several components with prospective applications in the development of advanced lifesaving drugs and environment friendly bio-insecticides have been discovered from arthropod venoms. Despite these fascinating features, the composition, bioactivity, and molecular evolution of venom in several arthropod lineages remains largely understudied. This review highlights the prevalence of venom, its mode of toxic action, and the evolutionary dynamics of venom in Arthropoda, the most speciose phylum in the animal kingdom.
Collapse
|
5
|
Kenning M, Müller CH, Sombke A. The ultimate legs of Chilopoda (Myriapoda): a review on their morphological disparity and functional variability. PeerJ 2017; 5:e4023. [PMID: 29158971 PMCID: PMC5691793 DOI: 10.7717/peerj.4023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/22/2017] [Indexed: 01/16/2023] Open
Abstract
The arthropodium is the key innovation of arthropods. Its various modifications are the outcome of multiple evolutionary transformations, and the foundation of nearly endless functional possibilities. In contrast to hexapods, crustaceans, and even chelicerates, the spectrum of evolutionary transformations of myriapod arthropodia is insufficiently documented and rarely scrutinized. Among Myriapoda, Chilopoda (centipedes) are characterized by their venomous forcipules-evolutionarily transformed walking legs of the first trunk segment. In addition, the posterior end of the centipedes' body, in particular the ultimate legs, exhibits a remarkable morphological heterogeneity. Not participating in locomotion, they hold a vast functional diversity. In many centipede species, elongation and annulation in combination with an augmentation of sensory structures indicates a functional shift towards a sensory appendage. In other species, thickening, widening and reinforcement with a multitude of cuticular protuberances and glandular systems suggests a role in both attack and defense. Moreover, sexual dimorphic characteristics indicate that centipede ultimate legs play a pivotal role in intraspecific communication, mate finding and courtship behavior. We address ambiguous identifications and designations of podomeres in order to point out controversial aspects of homology and homonymy. We provide a broad summary of descriptions, illustrations, ideas and observations published in past 160 years, and propose that studying centipede ultimate legs is not only essential in itself for filling gaps of knowledge in descriptive morphology, but also provides an opportunity to explore diverse pathways of leg transformations within Myriapoda.
Collapse
Affiliation(s)
- Matthes Kenning
- Zoological Institute and Museum, Cytology and Evolutionary Biology, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany
| | - Carsten H.G. Müller
- Zoological Institute and Museum, General and Systematic Zoology, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany
| | - Andy Sombke
- Zoological Institute and Museum, Cytology and Evolutionary Biology, Ernst-Moritz-Arndt Universität Greifswald, Greifswald, Germany
| |
Collapse
|
6
|
Production and packaging of a biological arsenal: evolution of centipede venoms under morphological constraint. Proc Natl Acad Sci U S A 2015; 112:4026-31. [PMID: 25775536 DOI: 10.1073/pnas.1424068112] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Venom represents one of the most extreme manifestations of a chemical arms race. Venoms are complex biochemical arsenals, often containing hundreds to thousands of unique protein toxins. Despite their utility for prey capture, venoms are energetically expensive commodities, and consequently it is hypothesized that venom complexity is inversely related to the capacity of a venomous animal to physically subdue prey. Centipedes, one of the oldest yet least-studied venomous lineages, appear to defy this rule. Although scutigeromorph centipedes produce less complex venom than those secreted by scolopendrid centipedes, they appear to rely heavily on venom for prey capture. We show that the venom glands are large and well developed in both scutigerid and scolopendrid species, but that scutigerid forcipules lack the adaptations that allow scolopendrids to inflict physical damage on prey and predators. Moreover, we reveal that scolopendrid venom glands have evolved to accommodate a much larger number of secretory cells and, by using imaging mass spectrometry, we demonstrate that toxin production is heterogeneous across these secretory units. We propose that the differences in venom complexity between centipede orders are largely a result of morphological restrictions of the venom gland, and consequently there is a strong correlation between the morphological and biochemical complexity of this unique venom system. The current data add to the growing body of evidence that toxins are not expressed in a spatially homogenous manner within venom glands, and they suggest that the link between ecology and toxin evolution is more complex than previously thought.
Collapse
|
7
|
von Reumont BM, Campbell LI, Jenner RA. Quo vadis venomics? A roadmap to neglected venomous invertebrates. Toxins (Basel) 2014; 6:3488-551. [PMID: 25533518 PMCID: PMC4280546 DOI: 10.3390/toxins6123488] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/21/2014] [Accepted: 12/02/2014] [Indexed: 01/22/2023] Open
Abstract
Venomics research is being revolutionized by the increased use of sensitive -omics techniques to identify venom toxins and their transcripts in both well studied and neglected venomous taxa. The study of neglected venomous taxa is necessary both for understanding the full diversity of venom systems that have evolved in the animal kingdom, and to robustly answer fundamental questions about the biology and evolution of venoms without the distorting effect that can result from the current bias introduced by some heavily studied taxa. In this review we draw the outlines of a roadmap into the diversity of poorly studied and understood venomous and putatively venomous invertebrates, which together represent tens of thousands of unique venoms. The main groups we discuss are crustaceans, flies, centipedes, non-spider and non-scorpion arachnids, annelids, molluscs, platyhelminths, nemerteans, and echinoderms. We review what is known about the morphology of the venom systems in these groups, the composition of their venoms, and the bioactivities of the venoms to provide researchers with an entry into a large and scattered literature. We conclude with a short discussion of some important methodological aspects that have come to light with the recent use of new -omics techniques in the study of venoms.
Collapse
Affiliation(s)
| | - Lahcen I Campbell
- Department of Life Sciences, the Natural History Museum, Cromwell Road, SW7 5BD London, UK.
| | - Ronald A Jenner
- Department of Life Sciences, the Natural History Museum, Cromwell Road, SW7 5BD London, UK.
| |
Collapse
|
8
|
Brena C. The embryoid development of Strigamia maritimaand its bearing on post-embryonic segmentation of geophilomorph centipedes. Front Zool 2014. [DOI: 10.1186/s12983-014-0058-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
9
|
Undheim EAB, Jones A, Clauser KR, Holland JW, Pineda SS, King GF, Fry BG. Clawing through evolution: toxin diversification and convergence in the ancient lineage Chilopoda (centipedes). Mol Biol Evol 2014; 31:2124-48. [PMID: 24847043 DOI: 10.1093/molbev/msu162] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite the staggering diversity of venomous animals, there seems to be remarkable convergence in regard to the types of proteins used as toxin scaffolds. However, our understanding of this fascinating area of evolution has been hampered by the narrow taxonomical range studied, with entire groups of venomous animals remaining almost completely unstudied. One such group is centipedes, class Chilopoda, which emerged about 440 Ma and may represent the oldest terrestrial venomous lineage next to scorpions. Here, we provide the first comprehensive insight into the chilopod "venome" and its evolution, which has revealed novel and convergent toxin recruitments as well as entirely new toxin families among both high- and low molecular weight venom components. The ancient evolutionary history of centipedes is also apparent from the differences between the Scolopendromorpha and Scutigeromorpha venoms, which diverged over 430 Ma, and appear to employ substantially different venom strategies. The presence of a wide range of novel proteins and peptides in centipede venoms highlights these animals as a rich source of novel bioactive molecules. Understanding the evolutionary processes behind these ancient venom systems will not only broaden our understanding of which traits make proteins and peptides amenable to neofunctionalization but it may also aid in directing bioprospecting efforts.
Collapse
Affiliation(s)
- Eivind A B Undheim
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, AustraliaVenom Evolution Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Alun Jones
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Australia
| | | | - John W Holland
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Sandy S Pineda
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Glenn F King
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Bryan G Fry
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, AustraliaVenom Evolution Laboratory, School of Biological Sciences, The University of Queensland, St. Lucia, Brisbane, Australia
| |
Collapse
|
10
|
Cooper AM, Fox GA, Nelsen DR, Hayes WK. Variation in venom yield and protein concentration of the centipedes Scolopendra polymorpha and Scolopendra subspinipes. Toxicon 2014; 82:30-51. [PMID: 24548696 DOI: 10.1016/j.toxicon.2014.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/14/2014] [Accepted: 02/05/2014] [Indexed: 10/25/2022]
Abstract
Venom generally comprises a complex mixture of compounds representing a non-trivial metabolic expense. Accordingly, natural selection should fine-tune the amount of venom carried within an animal's venom gland(s). The venom supply of scolopendromorph centipedes likely influences their venom use and has implications for the severity of human envenomations, yet we understand very little about their venom yields and the factors influencing them. We investigated how size, specifically body length, influenced volume yield and protein concentration of electrically extracted venom in Scolopendra polymorpha and Scolopendra subspinipes. We also examined additional potential influences on yield in S. polymorpha, including relative forcipule size, relative mass, geographic origin (Arizona vs. California), sex, time in captivity, and milking history. Volume yield was linearly related to body length, and S. subspinipes yielded a larger length-specific volume than S. polymorpha. Body length and protein concentration were uncorrelated. When considering multiple influences on volume yield in S. polymorpha, the most important factor was body length, but yield was also positively associated with relative forcipule length and relative body mass. S. polymorpha from California yielded a greater volume of venom with a higher protein concentration than conspecifics from Arizona, all else being equal. Previously milked animals yielded less venom with a lower protein concentration. For both species, approximately two-thirds of extractable venom was expressed in the first two pulses, with remaining pulses yielding declining amounts, but venom protein concentration did not vary across pulses. Further study is necessary to ascertain the ecological significance of the factors influencing venom yield and how availability may influence venom use.
Collapse
Affiliation(s)
- Allen M Cooper
- Department of Earth and Biological Sciences, Griggs Hall #101, Loma Linda University, 24941 Stewart St., Loma Linda, CA 92350, USA.
| | - Gerad A Fox
- Department of Earth and Biological Sciences, Griggs Hall #101, Loma Linda University, 24941 Stewart St., Loma Linda, CA 92350, USA
| | - David R Nelsen
- Department of Earth and Biological Sciences, Griggs Hall #101, Loma Linda University, 24941 Stewart St., Loma Linda, CA 92350, USA
| | - William K Hayes
- Department of Earth and Biological Sciences, Griggs Hall #101, Loma Linda University, 24941 Stewart St., Loma Linda, CA 92350, USA
| |
Collapse
|
11
|
Haug JT, Haug C, Schweigert G, Sombke A. The evolution of centipede venom claws - open questions and possible answers. ARTHROPOD STRUCTURE & DEVELOPMENT 2014; 43:5-16. [PMID: 24211515 DOI: 10.1016/j.asd.2013.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 10/24/2013] [Accepted: 10/30/2013] [Indexed: 06/02/2023]
Abstract
The maxilliped venom claw is an intriguing structure in centipedes. We address open questions concerning this structure. The maxillipeds of fossil centipedes from the Carboniferous (about 300 million years old) have been described, but not been depicted previously. Re-investigation demonstrates that they resemble their modern counterparts. A Jurassic geophilomorph centipede (about 150 million years old) was originally described as possessing a rather leg-like maxilliped. Our re-investigation shows that the maxilliped is, in fact, highly specialized as in modern Geophilomorpha. A scenario for the evolution of the centipede maxilliped is presented. It supports one of the two supposed hypotheses of centipede phylogeny, the Pleurostigmophora hypothesis. Although this hypothesis appears now well established, many aspects of character evolution resulting from this phylogeny remain to be told in detail. One such aspect is the special joint of the maxilliped in some species of Cryptops. Cryptops is an in-group of Scolopendromorpha, but its maxilliped joint can resemble that of Lithobiomorpha or even possess a mixture of characters between the both. Detailed investigation of fossils, larger sample sizes of extant species, and developmental data will be necessary to allow further improvements of the reconstruction of the evolutionary history of centipedes.
Collapse
Affiliation(s)
- Joachim T Haug
- Ludwig-Maximilians-University of Munich (LMU), Department of Biology II, Grosshaderner Str. 2, 82152 Planegg-Martinsried, Germany.
| | - Carolin Haug
- Ludwig-Maximilians-University of Munich (LMU), Department of Biology II, Grosshaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Günter Schweigert
- Staatliches Museum für Naturkunde, Rosenstein 1, 70191 Stuttgart, Germany
| | - Andy Sombke
- Ernst-Moritz-Arndt-University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary Biology, Soldmannstrasse 23, 17487 Greifswald, Germany
| |
Collapse
|
12
|
Maruzzo D, Bonato L. Morphology and diversity of the forcipules in Strigamia centipedes (Chilopoda, Geophilomorpha). ARTHROPOD STRUCTURE & DEVELOPMENT 2014; 43:17-25. [PMID: 24067538 DOI: 10.1016/j.asd.2013.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/10/2013] [Accepted: 09/10/2013] [Indexed: 06/02/2023]
Abstract
The morphology of the venomous limbs (forcipules) of 13 species of Strigamia and of six other geophilomorphs was studied with light microscopy, scanning electron microscopy, and, for a subsample, with confocal laser scanning microscopy. In all Strigamia species a well-distinct denticle is present invariantly on the inner side of the terminal article (tarsungulum), in sub-basal position, just proximal to a faint transverse sulcus and a cuticular introflexion that corresponds to the insertion point of a tendon. Strigamia species differ mainly in size and shape of the denticle and thickness of the distal part of the tarsungulum, suggesting some functional diversity in piercing and handling prey. Anatomical evidence supports the hypothesis that the tarsungulum corresponds to two ancestral articles and a denticle at the basis of the tarsungulum originated multiple times within geophilomorphs, however in different positions corresponding to either the ancestral sub-terminal article (in Strigamia, other Geophiloidea and some Schendylidae) or the ancestral terminal article (in the himantariid Thracophilus).
Collapse
Affiliation(s)
- Diego Maruzzo
- Department of Biology, University of Padova, via U. Bassi 58/B, I-35131 Padova, Italy
| | - Lucio Bonato
- Department of Biology, University of Padova, via U. Bassi 58/B, I-35131 Padova, Italy.
| |
Collapse
|
13
|
Hayden L, Arthur W. Expression patterns of Wnt genes in the venom claws of centipedes. Evol Dev 2013; 15:365-72. [PMID: 24074281 DOI: 10.1111/ede.12044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The venom claws of centipedes, also known as forcipules, represent an evolutionary novelty that must have arisen in the centipede stem species, as they are not found in any other myriapods. The developmental-genetic changes that are involved in the origin of novelties are of considerable interest. It has previously been shown that centipede forcipules have a unique Hox code. However, this is a combinatorial code: no single Hox gene has a forcipule-specific expression. Here, we focus on Wnt genes. Two genes of this family show forcipule-specific expression in the "model centipede" Strigamia maritima: Wnt7 and Wnt11. For Wnt7, this forcipular expression zone seems to be a new one, which has arisen in evolution subsequently to other expression zones of the same gene. However, for Wnt11, the forcipule-specific expression probably arose by reduction of a more general pattern that originally included most or all of the limbs of an ancestral myriapod. Thus the developmental-genetic basis of the evolutionary change that turned the first pair of walking legs into venom claws is complex, involving different types of change in expression pattern. This sort of complexity is likely to be the case regarding evolutionary changes in morphology in general. Whether the origins of those features that can be considered as novelties are different in terms of their developmental-genetic basis from more routine evolutionary changes remains an open question.
Collapse
Affiliation(s)
- Luke Hayden
- Evolutionary Developmental Biology Laboratory, Zoology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | | |
Collapse
|
14
|
Chemistry of the sternal gland secretion of the Mediterranean centipede Himantarium gabrielis (Linnaeus, 1767) (Chilopoda: Geophilomorpha: Himantariidae). Naturwissenschaften 2013; 100:861-70. [PMID: 23907296 DOI: 10.1007/s00114-013-1086-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/19/2013] [Accepted: 07/22/2013] [Indexed: 10/26/2022]
Abstract
The geophilomorph centipede, Himantarium gabrielis, when disturbed, discharges a viscous and proteinaceous secretion from the sternal glands. This exudate was found by gas chromatography-mass spectrometry, liquid chromatography-high resolution mass spectrometry, liquid chromatography-mass spectrometry-mass spectrometry and NMR analyses to be composed of hydrogen cyanide, benzaldehyde, benzoyl nitrile, benzyl nitrile, mandelonitrile, mandelonitrile benzoate, 3,7,6O-trimethylguanine (himantarine), farnesyl 2,3-dihydrofarnesoate and farnesyl farnesoate. This is the first report on the presence of benzyl nitrile and mandelonitrile benzoate in secreted substances from centipedes. Farnesyl 2,3-dihydrofarnesoate is a new compound, while himantarine and farnesyl farnesoate were not known as natural products. A post-secretion release of hydrogen cyanide by reaction of mandelonitrile and benzoyl nitrile was observed by NMR, and hydrogen cyanide signals were completely assigned. In addition, a protein component of the secretion was analysed by electrophoresis which revealed the presence of a major 55 kDa protein. Analyses of the defensive exudates of other geophilomorph families should produce further chemical surprises.
Collapse
|
15
|
Dugon MM, Hayden L, Black A, Arthur W. Development of the venom ducts in the centipede Scolopendra: an example of recapitulation. Evol Dev 2013; 14:515-21. [PMID: 23134209 DOI: 10.1111/ede.12004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In contrast to previous claims that (a) there is a law of recapitulation and, conversely, (b) recapitulation never happens, the evolutionary repatterning of development can take many forms, of which recapitulation is one. Here, we add another example to the list of case studies of recapitulation. This example involves the development of the venom claws (forcipules) in the centipede Scolopendra subspinipes mutilans, and in particular the development of the duct through which venom flows from the gland that produces it (proximal) to the opening called the meatus (distal) through which it is injected into prey. Most of the information we present is from early postembryonic stages--these have been neglected in previous work on centipede development. We show that the venom ducts arise from sutures that are invaginations of the cuticle. In S. s. mutilans, the invagination in each forcipule forms into a tubular structure that detaches itself from the exoskeleton and moves toward the center of the forcipule. This is in contrast to extant Scutigera, and also, probably, Scolopendra's extinct Scutigera-like ancestors, where the duct remains attached to the cuticle of throughout development. Thus, S. s. mutilans exhibits a recapitulatory repatterning of development.
Collapse
Affiliation(s)
- Michel M Dugon
- Department of Zoology, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland.
| | | | | | | |
Collapse
|