1
|
Baart VM, Houvast RD, de Geus-Oei LF, Quax PHA, Kuppen PJK, Vahrmeijer AL, Sier CFM. Molecular imaging of the urokinase plasminogen activator receptor: opportunities beyond cancer. EJNMMI Res 2020; 10:87. [PMID: 32725278 PMCID: PMC7387399 DOI: 10.1186/s13550-020-00673-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
The urokinase plasminogen activator receptor (uPAR) plays a multifaceted role in almost any process where migration of cells and tissue-remodeling is involved such as inflammation, but also in diseases as arthritis and cancer. Normally, uPAR is absent in healthy tissues. By its carefully orchestrated interaction with the protease urokinase plasminogen activator and its inhibitor (plasminogen activator inhibitor-1), uPAR localizes a cascade of proteolytic activities, enabling (patho)physiologic cell migration. Moreover, via the interaction with a broad range of cell membrane proteins, like vitronectin and various integrins, uPAR plays a significant, but not yet completely understood, role in differentiation and proliferation of cells, affecting also disease progression. The implications of these processes, either for diagnostics or therapeutics, have received much attention in oncology, but only limited beyond. Nonetheless, the role of uPAR in different diseases provides ample opportunity to exploit new applications for targeting. Especially in the fields of oncology, cardiology, rheumatology, neurology, and infectious diseases, uPAR-targeted molecular imaging could offer insights for new directions in diagnosis, surveillance, or treatment options.
Collapse
Affiliation(s)
- V M Baart
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - R D Houvast
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - L F de Geus-Oei
- Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Biomedical Photonic Imaging Group, University of Twente, Enschede, The Netherlands
| | - P H A Quax
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - P J K Kuppen
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - A L Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - C F M Sier
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands. .,Percuros BV, Leiden, The Netherlands.
| |
Collapse
|
2
|
Zhang X, Zhou Y, Ding W, Zhang R, Yan S, Deng Y, Gao F, Lou M. TPO-Ab plays a role in arterial remodeling in patients with intracranial stenosis. Atherosclerosis 2018; 280:140-146. [PMID: 30513409 DOI: 10.1016/j.atherosclerosis.2018.11.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/22/2018] [Accepted: 11/22/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND AIMS Intracranial stenosis (ICS), the common cause of ischemic stroke worldwide, is associated with a high risk of recurrent stroke. We aimed to investigate the relationship between arterial remodeling and antithyroid peroxidase-antibody (TPO-Ab) level in ICS and the effect of TPO-Ab level on the migration of vascular smooth muscle cells (VSMCs). METHODS We analyzed data of mild-to-severe ICS patients with normal thyroid function who underwent high-resolution magnetic resonance imaging in our center. Vessel area (VA), lumen area, wall area and plaque size were assessed at the most narrowed lumen (MNL) and reference site, respectively. The remodeling index (RI) was defined as VAMNL/VAreference. Negative remodeling (NR) or non-NR was defined as RI ≤ 0.95 or > 0.95. A scratch-wound healing assay was also designed to analyze the impact of TPO-Ab level on migration of VSMCs, which were isolated from thoracic aorta segments of Sprague Dawley rats. RESULTS A total of 88 patients were included. Patients with elevated TPO-Ab had smaller VA, wall area, plaque size and RI than those with normal level (p < 0.05). Elevated TPO-Ab was significantly associated with NR after adjusting for demographic and vascular risks (odds ratio 10.629, 95% confidence interval, 1.842-61.327, p = 0.008). The rate of VSMCs migration was significantly increased after culture with TPO-Ab (TPO-Ab 1 μg/ml vs. Mock, 29.8% vs. 12.0%, p < 0.01). CONCLUSIONS Elevated TPO-Ab in ICS patients was related to NR. TPO-Ab could promote VSMCs migration, which might be involved in the NR of intracranial artery.
Collapse
Affiliation(s)
- Xuting Zhang
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Ying Zhou
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Wenhong Ding
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Ruiting Zhang
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Shenqiang Yan
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Yujie Deng
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Feng Gao
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Min Lou
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China.
| |
Collapse
|
3
|
Narayanaswamy PB, Tkachuk S, Haller H, Dumler I, Kiyan Y. CHK1 and RAD51 activation after DNA damage is regulated via urokinase receptor/TLR4 signaling. Cell Death Dis 2016; 7:e2383. [PMID: 27685627 PMCID: PMC5059885 DOI: 10.1038/cddis.2016.291] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/16/2016] [Accepted: 08/22/2016] [Indexed: 12/17/2022]
Abstract
Mechanisms of DNA damage and repair signaling are not completely understood that hinder the efficiency of cancer therapy. Urokinase-type plasminogen activator receptor (PLAUR) is highly expressed in most solid cancers and serves as a marker of poor prognosis. We show that PLAUR actively promotes DNA repair in cancer cells. On the contrary, downregulation of PLAUR expression results in delayed DNA repair. We found PLAUR to be essential for activation of Checkpoint kinase 1 (CHK1); maintenance of cell cycle arrest after DNA damage in a TP53-dependent manner; expression, nuclear import and recruitment to DNA-damage foci of RAD51 recombinase, the principal protein involved in the homologous recombination repair pathway. Underlying mechanism implies auto-/paracrine signaling of PLAUR/TLR4 receptor complex leading to activation of CHK1 and DNA repair. The signaling is induced by a danger molecule released by DNA-damaged cells and mediates, at least partially, activation of DNA-damage response. This study describes a new mechanism of DNA repair activation initiated by auto-/paracrine signaling of membrane receptors PLAUR/TLR4. It adds to the understanding of role of PLAUR in cancer and provides a rationale for therapeutic targeting of PLAUR/TLR4 interaction in TP53-positive cancers.
Collapse
Affiliation(s)
| | - Sergey Tkachuk
- Department of Nephrology, Hannover Medical School, Hannover D-30625, Germany
| | - Hermann Haller
- Department of Nephrology, Hannover Medical School, Hannover D-30625, Germany
| | - Inna Dumler
- Department of Nephrology, Hannover Medical School, Hannover D-30625, Germany
| | - Yulia Kiyan
- Department of Nephrology, Hannover Medical School, Hannover D-30625, Germany
| |
Collapse
|
4
|
An overview of potential molecular mechanisms involved in VSMC phenotypic modulation. Histochem Cell Biol 2015; 145:119-30. [DOI: 10.1007/s00418-015-1386-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2015] [Indexed: 12/21/2022]
|
5
|
Larmann J, Jurk K, Janssen H, Müller M, Herzog C, Lorenz A, Schmitz M, Nofer JR, Theilmeier G. Hepatic Overexpression of Soluble Urokinase Receptor (uPAR) Suppresses Diet-Induced Atherosclerosis in Low-Density Lipoprotein Receptor-Deficient (LDLR-/-) Mice. PLoS One 2015; 10:e0131854. [PMID: 26313756 PMCID: PMC4551736 DOI: 10.1371/journal.pone.0131854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 06/08/2015] [Indexed: 12/29/2022] Open
Abstract
Objective Atherosclerosis, a chronic inflammatory disease, arises from metabolic disorders and is driven by inappropriate recruitment and proliferation of monocytes / macrophages and vascular smooth-muscle-cells. The receptor for the urokinase-type plasminogen activator (uPAR, Plaur) regulates the proteolytic activation of plasminogen. It is also a coactivator of integrins and facilitates leukocyte-endothelial interactions and vascular smooth-muscle-cell migration. The role of uPAR in atherogenesis remains elusive. Methods and Results We generated C57Bl6/J low-density lipoprotein receptor (LDL) and uPAR double knockout (uPAR-/-/LDLR-/-) mice to test the role of uPAR in two distinct atherosclerosis models. In LDLR-/- mice, hepatic overexpression following hydrodynamic transfection of soluble uPAR that competes with endogenous membrane-bound uPAR was performed as an interventional strategy. Aortic root atherosclerotic lesions induced by feeding a high-fat diet were smaller and comprised less macrophages and vascular smooth-muscle-cells in double knockout mice and animals overexpressing soluble uPAR when compared to controls. In contrast, lesion size, lipid-, macrophage-, and vascular smooth muscle cell content of guide-wire-induced intima lesions in the carotid artery were not affected by uPAR deficiency. Adhesion of uPAR-/--macrophages to TNFα-stimulated endothelial cells was decreased in vitro accompanied by reduced VCAM-1 expression on primary endothelial cells. Hepatic overexpression of soluble full-length murine uPAR in LDLR-/- mice led to a reduction of diet-induced atherosclerotic lesion formation and monocyte recruitment into plaques. Ex vivo incubation with soluble uPAR protein also inhibited adhesion of macrophages to TNFα-stimulated endothelial cells in vitro. Conclusion uPAR-deficiency as well as competitive soluble uPAR reduced diet-promoted but not guide-wire induced atherosclerotic lesions in mice by preventing monocyte recruitment and vascular smooth-muscle-cell infiltration. Soluble uPAR may represent a therapeutic tool for the modulation of hyperlipidemia-associated atherosclerotic lesion formation.
Collapse
Affiliation(s)
- Jan Larmann
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
- Department of Anesthesiology University Hospital Heidelberg, Heidelberg, Germany
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis (CTH), University Medical Center, Mainz, Germany
| | - Henrike Janssen
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Martin Müller
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Christine Herzog
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Anika Lorenz
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
| | - Martina Schmitz
- Institute for Anatomy, University of Münster, Münster, Germany
| | - Jerzy-Roch Nofer
- Center for Laboratory Medicine, University Hospital Münster, Münster, Germany
| | - Gregor Theilmeier
- Department of Anesthesiology and Intensive Care Medicine, Hannover Medical School, Hannover, Germany
- Department of Health Services Sciences, Faculty of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
- * E-mail:
| |
Collapse
|
6
|
Kalbasi Anaraki P, Patecki M, Larmann J, Tkachuk S, Jurk K, Haller H, Theilmeier G, Dumler I. Urokinase receptor mediates osteogenic differentiation of mesenchymal stem cells and vascular calcification via the complement C5a receptor. Stem Cells Dev 2013; 23:352-62. [PMID: 24192237 DOI: 10.1089/scd.2013.0318] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Vascular calcification is a severe consequence of several pathological processes with a lack of effective therapy. Recent studies suggest that circulating and resident mesenchymal stem cells (MSC) contribute to the osteogenic program of vascular calcification. Molecular mechanisms underlying MSC osteogenic potential and differentiation remain, however, sparsely explored. We investigated a role for the complement receptor C5aR in these processes. We found that expression of C5aR was upregulated upon differentiation of human MSC to osteoblasts. C5aR inhibition by silencing and specific antagonist impaired osteogenic differentiation. We demonstrate that C5aR expression upon MSC differentiation was regulated by the multifunctional urokinase receptor (uPAR). uPAR targeting by siRNA resulted in complete abrogation of C5aR expression and consequently in the inhibition of MSC-osteoblast differentiation. We elucidated the NFκB pathway as the mechanism utilized by the uPAR-C5aR axis. MSC treatment with the NFκB inhibitor completely blocked the differentiation process. Nuclear translocation of the p65 RelA component of the NFκB complex was induced under osteogenic conditions and impaired by the inhibition of uPAR or C5aR. Dual-luciferase reporter assays demonstrated enhanced NFκB signaling upon MSC differentiation, whereas uPAR and C5aR downregulation lead to inhibition of the NFκB activity. We show involvement of the Erk1/2 kinase in this cascade. In vivo studies in a uPAR/LDLR double knockout mouse model of diet-induced atherosclerosis revealed impaired C5aR expression and calcification in aortic sinus plaques in uPAR(-/-)/LDLR(-/-) versus uPAR(+/+)/LDLR(-/-) control animals. These results suggest that uPAR-C5aR axis via the underlying NFκB transcriptional program controls osteogenic differentiation with functional impact on vascular calcification in vivo.
Collapse
|
7
|
Kiyan Y, Kurselis K, Kiyan R, Haller H, Chichkov BN, Dumler I. Urokinase receptor counteracts vascular smooth muscle cell functional changes induced by surface topography. Theranostics 2013; 3:516-26. [PMID: 23843899 PMCID: PMC3706695 DOI: 10.7150/thno.4119] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Current treatments for human coronary artery disease necessitate the development of the next generations of vascular bioimplants. Recent reports provide evidence that controlling cell orientation and morphology through topographical patterning might be beneficial for bioimplants and tissue engineering scaffolds. However, a concise understanding of cellular events underlying cell-biomaterial interaction remains missing. In this study, applying methods of laser material processing, we aimed to obtain useful markers to guide in the choice of better vascular biomaterials. Our data show that topographically treated human primary vascular smooth muscle cells (VSMC) have a distinct differentiation profile. In particular, cultivation of VSMC on the microgrooved biocompatible polymer E-shell induces VSMC modulation from synthetic to contractile phenotype and directs formation and maintaining of cell-cell communication and adhesion structures. We show that the urokinase receptor (uPAR) interferes with VSMC behavior on microstructured surfaces and serves as a critical regulator of VSMC functional fate. Our findings suggest that microtopography of the E-shell polymer could be important in determining VSMC phenotype and cytoskeleton organization. They further suggest uPAR as a useful target in the development of predictive models for clinical VSMC phenotyping on functional advanced biomaterials.
Collapse
Affiliation(s)
- Yulia Kiyan
- 1. Nephrology Department, Hannover Medical School, Carl-Neuberg Str. 1, Hannover 30625, Germany
| | - Kestutis Kurselis
- 2. Nanotechnology Department, Laser Zentrum Hannover e.V., Hollerithallee 8, Hannover 30419, Germany
| | - Roman Kiyan
- 2. Nanotechnology Department, Laser Zentrum Hannover e.V., Hollerithallee 8, Hannover 30419, Germany
| | - Hermann Haller
- 1. Nephrology Department, Hannover Medical School, Carl-Neuberg Str. 1, Hannover 30625, Germany
| | - Boris N. Chichkov
- 2. Nanotechnology Department, Laser Zentrum Hannover e.V., Hollerithallee 8, Hannover 30419, Germany
| | - Inna Dumler
- 1. Nephrology Department, Hannover Medical School, Carl-Neuberg Str. 1, Hannover 30625, Germany
| |
Collapse
|
8
|
Abstract
The rising epidemic of T2DM (Type 2 diabetes mellitus) worldwide is of significant concern. The inherently silent nature of the disease in its early stages precludes early detection; hence cardiovascular disease is often established by the time diabetes is diagnosed. This increased cardiovascular risk leads to significant morbidity and mortality in these individuals. Progressive development of complications as a result of previous exposure to metabolic disturbances appears to leave a long-lasting impression on cells of the vasculature that is not easily reversed and is termed 'metabolic memory'. SMCs (smooth muscle cells) of blood vessel walls, through their inherent ability to switch between a contractile quiescent phenotype and an active secretory state, maintain vascular homoeostasis in health and development. This plasticity also confers SMCs with the essential capacity to adapt and remodel in pathological states. Emerging clinical and experimental studies propose that SMCs in diabetes may be functionally impaired and thus contribute to the increased incidence of macrovascular complications. Although this idea has general support, the underlying molecular mechanisms are currently unknown and hence are the subject of intense research. The aim of the present review is to explore and evaluate the current literature relating to the problem of vascular disease in T2DM and to discuss the critical role of SMCs in vascular remodelling. Possibilities for therapeutic strategies specifically at the level of T2DM SMCs, including recent novel advances in the areas of microRNAs and epigenetics, will be evaluated. Since restoring glucose control in diabetic patients has limited effect in ameliorating their cardiovascular risk, discovering alternative strategies that restrict or reverse disease progression is vital. Current research in this area will be discussed.
Collapse
|
9
|
Jiao L, Jiang M, Fang J, Deng Y, Chen Z, Wu M. Basic fibroblast growth factor gene transfection in repair of internal carotid artery aneurysm wall. Neural Regen Res 2012; 7:2915-21. [PMID: 25317144 PMCID: PMC4190950 DOI: 10.3969/j.issn.1673-5374.2012.36.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 11/02/2012] [Indexed: 11/24/2022] Open
Abstract
Surgery or interventional therapy has some risks in the treatment of cerebral aneurysm. We established an internal carotid artery aneurysm model by dripping elastase in the crotch of the right internal and external carotid arteries of New Zealand rabbits. Following model induction, lentivirus carrying basic fibroblast growth factor was injected through the ear vein. We found that the longer the action time of the lentivirus, the smaller the aneurysm volume. Moreover, platelet-derived growth factor expression in the aneurysm increased, but smooth muscle 22 alpha and hypertension-related gene 1 mRNA expression decreased. At 1, 2, 3, and 4 weeks following model establishment, following 1 week of injection of lentivirus carrying basic fibroblast growth factor, the later the intervention time, the more severe the blood vessel damage, and the bigger the aneurysm volume, the lower the smooth muscle 22 alpha and hypertension-related gene 1 mRNA expression. Simultaneously, platelet-derived growth factor expression decreased. These data suggest that recombinant lentivirus carrying basic fibroblast growth factor can repair damaged cells in the aneurysmal wall and inhibit aneurysm dynamic growth, and that the effect is dependent on therapeutic duration.
Collapse
Affiliation(s)
- Lei Jiao
- Department of Neurosurgery, Hospital Affiliated to Jiangsu University, Zhenjiang 215002, Jiangsu Province, China
| | - Ming Jiang
- Department of Neurosurgery, Hospital Affiliated to Jiangsu University, Zhenjiang 215002, Jiangsu Province, China
| | - Jinghai Fang
- Department of Neurosurgery, Hospital Affiliated to Jiangsu University, Zhenjiang 215002, Jiangsu Province, China
| | - Yinsheng Deng
- Department of Neurosurgery, Hospital Affiliated to Jiangsu University, Zhenjiang 215002, Jiangsu Province, China
| | - Zejun Chen
- Department of Neurosurgery, Hospital Affiliated to Jiangsu University, Zhenjiang 215002, Jiangsu Province, China
| | - Min Wu
- Department of Neurosurgery, Hospital Affiliated to Jiangsu University, Zhenjiang 215002, Jiangsu Province, China
| |
Collapse
|
10
|
Statines et plaque. ARCHIVES OF CARDIOVASCULAR DISEASES SUPPLEMENTS 2012. [DOI: 10.1016/s1878-6480(12)70844-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Stansfield BK, Bessler WK, Mali R, Mund JA, Downing B, Li F, Sarchet KN, DiStasi MR, Conway SJ, Kapur R, Ingram DA. Heterozygous inactivation of the Nf1 gene in myeloid cells enhances neointima formation via a rosuvastatin-sensitive cellular pathway. Hum Mol Genet 2012. [PMID: 23197650 DOI: 10.1093/hmg/dds502] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mutations in the NF1 tumor suppressor gene cause Neurofibromatosis type 1 (NF1). Neurofibromin, the protein product of NF1, functions as a negative regulator of Ras activity. Some NF1 patients develop cardiovascular disease, which represents an underrecognized disease complication and contributes to excess morbidity and mortality. Specifically, NF1 patients develop arterial occlusion resulting in tissue ischemia and sudden death. Murine studies demonstrate that heterozygous inactivation of Nf1 (Nf1(+/-)) in bone marrow cells enhances neointima formation following arterial injury. Macrophages infiltrate Nf1(+/-) neointimas, and NF1 patients have increased circulating inflammatory monocytes in their peripheral blood. Therefore, we tested the hypothesis that heterozygous inactivation of Nf1 in myeloid cells is sufficient for neointima formation. Specific ablation of a single copy of the Nf1 gene in myeloid cells alone mobilizes a discrete pro-inflammatory murine monocyte population via a cell autonomous and gene-dosage dependent mechanism. Furthermore, lineage-restricted heterozygous inactivation of Nf1 in myeloid cells is sufficient to reproduce the enhanced neointima formation observed in Nf1(+/-) mice when compared with wild-type controls, and homozygous inactivation of Nf1 in myeloid cells amplified the degree of arterial stenosis after arterial injury. Treatment of Nf1(+/-) mice with rosuvastatin, a stain with anti-inflammatory properties, significantly reduced neointima formation when compared with control. These studies identify neurofibromin-deficient myeloid cells as critical cellular effectors of Nf1(+/-) neointima formation and propose a potential therapeutic for NF1 cardiovascular disease.
Collapse
Affiliation(s)
- Brian K Stansfield
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, IN 46202, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Whyte C, Thies F, Peyrol L, Balcerzak D. N-3 long-chain polyunsaturated fatty acids inhibit smooth muscle cell migration by modulating urokinase plasminogen activator receptor through MEK/ERK-dependent and -independent mechanisms. J Nutr Biochem 2012; 23:1378-83. [DOI: 10.1016/j.jnutbio.2011.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 08/23/2011] [Accepted: 08/30/2011] [Indexed: 11/16/2022]
|
13
|
Urokinase receptor surface expression regulates monocyte migration and is associated with accelerated atherosclerosis. Int J Cardiol 2012; 161:103-10. [DOI: 10.1016/j.ijcard.2011.12.094] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 11/29/2011] [Accepted: 12/24/2011] [Indexed: 11/18/2022]
|
14
|
Abstract
3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) are established first line treatments for hypercholesterolaemia. In addition to the direct effects of statins in reducing concentrations of atherogenic low density lipoprotein cholesterol (LDL-C), several studies have indicated that the beneficial effects of statins may be due to some of their cholesterol-independent, multiple (pleiotropic) effects which may differ between different members of the class. Pitavastatin is a novel synthetic lipophilic statin that has a number of pharmacodynamic and pharmacokinetic properties distinct from those of other statins, which may underlie its potential pleiotropic benefits in reducing cardiovascular risk factors. This review examines the principal pleiotropic effects of pitavastatin on endothelial function, vascular inflammation, oxidative stress and thrombosis. The article is based on a systematic literature search carried out in December 2010, together with more recent relevant publications where appropriate. The available data from clinical trials and in vitro and animal studies suggest that pitavastatin is not only effective in reducing LDL-C and triglycerides, but also has a range of other effects. These include increasing high density lipoprotein cholesterol, decreasing markers of platelet activation, improving cardiac, renal and endothelial function, and reducing endothelial stress, lipoprotein oxidation and, ultimately, improving the signs and symptoms of atherosclerosis. It is concluded that the diverse pleiotropic actions of pitavastatin may contribute to reducing cardiovascular morbidity and mortality beyond that achieved through LDL-C reduction.
Collapse
Affiliation(s)
- Jean Davignon
- Hyperlipidemia and Atherosclerosis Research Group, Clinical Research Institute of Montréal (IRCM) and University of Montréal, QC, Canada.
| |
Collapse
|
15
|
Padró T, Lugano R, García-Arguinzonis M, Badimon L. LDL-induced impairment of human vascular smooth muscle cells repair function is reversed by HMG-CoA reductase inhibition. PLoS One 2012; 7:e38935. [PMID: 22719992 PMCID: PMC3373563 DOI: 10.1371/journal.pone.0038935] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 05/14/2012] [Indexed: 11/18/2022] Open
Abstract
Growing human atherosclerotic plaques show a progressive loss of vascular smooth muscle cells (VSMC) becoming soft and vulnerable. Lipid loaded-VSMC show impaired vascular repair function and motility due to changes in cytoskeleton proteins involved in cell-migration. Clinical benefits of statins reducing coronary events have been related to repopulation of vulnerable plaques with VSMC. Here, we investigated whether HMG-CoA reductase inhibition with rosuvastatin can reverse the effects induced by atherogenic concentrations of LDL either in the native (nLDL) form or modified by aggregation (agLDL) on human VSMC motility. Using a model of wound repair, we showed that treatment of human coronary VSMC with rosuvastatin significantly prevented (and reversed) the inhibitory effect of nLDL and agLDL in the repair of the cell depleted areas. In addition, rosuvastatin significantly abolished the agLDL-induced dephosphorylation of myosin regulatory light chain as demonstrated by 2DE-electrophoresis and mass spectrometry. Besides, confocal microscopy showed that rosuvastatin enhances actin-cytoskeleton reorganization during lipid-loaded-VSMC attachment and spreading. The effects of rosuvastatin on actin-cytoskeleton dynamics and cell migration were dependent on ROCK-signalling. Furthermore, rosuvastatin caused a significant increase in RhoA-GTP in the cytosol of VSMC. Taken together, our study demonstrated that inhibition of HMG-CoA reductase restores the migratory capacity and repair function of VSMC that is impaired by native and aggregated LDL. This mechanism may contribute to the stabilization of lipid-rich atherosclerotic plaques afforded by statins.
Collapse
MESH Headings
- Blotting, Western
- Cell Adhesion
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Dose-Response Relationship, Drug
- Electrophoresis, Gel, Two-Dimensional
- Fluorobenzenes/pharmacology
- Humans
- Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology
- Lipoproteins, LDL/physiology
- Mass Spectrometry
- Microscopy, Confocal
- Microscopy, Fluorescence
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Pyrimidines/pharmacology
- Rosuvastatin Calcium
- Sulfonamides/pharmacology
Collapse
Affiliation(s)
- Teresa Padró
- Cardiovascular Research Center (CSIC-ICCC), Barcelona, Spain
- Biomedical Research Institute Sant-Pau (IIB-Sant Pau), Barcelona, Spain
| | - Roberta Lugano
- Cardiovascular Research Center (CSIC-ICCC), Barcelona, Spain
- Biomedical Research Institute Sant-Pau (IIB-Sant Pau), Barcelona, Spain
- CiberOBN, Institute Carlos III, Barcelona, Spain
| | - Maisa García-Arguinzonis
- Cardiovascular Research Center (CSIC-ICCC), Barcelona, Spain
- Biomedical Research Institute Sant-Pau (IIB-Sant Pau), Barcelona, Spain
- CiberOBN, Institute Carlos III, Barcelona, Spain
| | - Lina Badimon
- Cardiovascular Research Center (CSIC-ICCC), Barcelona, Spain
- Biomedical Research Institute Sant-Pau (IIB-Sant Pau), Barcelona, Spain
- CiberOBN, Institute Carlos III, Barcelona, Spain
- Autonomous University of Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
16
|
Shao Q, Shen LH, Hu LH, Pu J, Jing Q, He B. Atorvastatin suppresses inflammatory response induced by oxLDL through inhibition of ERK phosphorylation, IκBα degradation, and COX-2 expression in murine macrophages. J Cell Biochem 2012; 113:611-8. [PMID: 21956776 DOI: 10.1002/jcb.23388] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Macrophages crosstalk with oxidized low-density lipoprotein (oxLDL), play a critical role in the initiation, progression, and subsequently stability of atherosclerotic plaques. Statins, inhibitors of HMG CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase, reduce the expression of inflammatory proteins in addition to their lipid-lowering action. However, the effect and detailed anti-inflammation mechanisms of statins in macrophages induced by oxLDL remain unclearly. In the present study, we investigated the effect of atorvastatin on inflammatory response upon oxLDL stimulation in murine macrophages and analyzed the underlying mechanisms. Tumor necrosis factor (TNF)α and monocyte chemoattractant protein-1 (MCP-1) mRNA levels were assayed by real-time PCR. The expression of cyclooxygenases-2 (COX-2) was detected by real-time PCR and Western blotting. While mitogen-activated protein kinase (MAPK) phosphorylation and IκBα degradation were determined by Western blotting. Our results showed that exposure of RAW264.7 cells to oxLDL, substantially changed the morphology of the cells and increased TNFα and MCP-1 secretion. While pretreatment with atorvastatin resulted in a significant inhibition of oxLDL-induced morphological alteration and inflammatory cytokines expression in a dose-dependent fashion. Further investigation of the molecular mechanism revealed that oxLDL upregulated the transcription and protein expression of COX-2 in a time-dependent manner. Whereas, pretreatment with atorvastatin suppressed COX-2 expression, MAPK activation and IκBα degradation. Thus, we conclude that the anti-inflammatory effect of atorvastatin is mediated through the inhibition of proinflammatory COX-2. Furthermore, suppression of ERK phosphorylation and IκBα degradation is involved in this regulation. Our findings provide a novel evidence that statins suppress inflammatory response, exert its anti-atherogenic actions via against inflammation beyond cholesterol-lowing effect.
Collapse
Affiliation(s)
- Qin Shao
- Department of Cardiology, Ren Ji Hospital, Medical School of Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
17
|
Kiyan Y, Limbourg A, Kiyan R, Tkachuk S, Limbourg FP, Ovsianikov A, Chichkov BN, Haller H, Dumler I. Urokinase receptor associates with myocardin to control vascular smooth muscle cells phenotype in vascular disease. Arterioscler Thromb Vasc Biol 2011; 32:110-22. [PMID: 22075245 DOI: 10.1161/atvbaha.111.234369] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The urokinase-type plasminogen activator (uPA) and its specific receptor (uPAR) are a potent multifunctional system involved in vascular remodeling. The goal of the study was to unravel the mechanisms of uPA/uPAR-directed vascular smooth muscle cell (VSMC) differentiation. METHODS AND RESULTS Using cultured human primary VSMCs, we identified a new molecular mechanism controlling phenotypic modulation in vitro and in vivo. We found that the urokinase-type plasminogen activator receptor (uPAR) acts together with the transcriptional coactivator myocardin to regulate the VSMC phenotype. uPAR, a glycosylphosphatidylinositol-anchored cell-surface receptor family member, undergoes ligand-induced internalization and nuclear transport in VSMCs. Platelet-derived growth factor receptor β and SUMOylated RanGAP1 mediate this trafficking. Nuclear uPAR associates with myocardin, which is then recruited from the promoters of serum response factor target genes and undergoes proteasomal degradation. This chain of events initiates the synthetic VSMC phenotype. Using mouse carotid artery ligation model, we show that this mechanism contributes to adverse vascular remodeling after injury in vivo. We then cultured cells on a microstructured biomaterial and found that substrate topography induced uPAR-mediated VSMC differentiation. CONCLUSIONS These findings reveal the transcriptional activity of uPAR, controlling the differentiation of VSMCs in a vascular disease model. They also suggest a new role for uPAR as a therapeutic target and as a marker for VSMC phenotyping on prosthetic biomaterials.
Collapse
Affiliation(s)
- Yulia Kiyan
- Nephrology Department, Hannover Medical School, Carl-Neuberg Str 1, 30625 Hannover, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Neto-Ferreira R, Novaes Rocha V, da Silva Torres T, Mandarim-de-Lacerda CA, de Carvalho JJ. Beneficial effects of rosuvastatin on aortic adverse remodeling in nitric oxide-deficient rats. ACTA ACUST UNITED AC 2011; 63:473-8. [DOI: 10.1016/j.etp.2010.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 03/10/2010] [Accepted: 03/17/2010] [Indexed: 11/17/2022]
|
19
|
In-vivo assessment of the natural history of coronary atherosclerosis: vascular remodeling and endothelial shear stress determine the complexity of atherosclerotic disease progression. Curr Opin Cardiol 2011; 25:627-38. [PMID: 20838338 DOI: 10.1097/hco.0b013e32833f0236] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Atherosclerotic disease progression is determined by localized plaque growth, which is induced by systemic and local hemodynamic factors, and the nature of the wall remodeling response. The purpose of this review is to summarize the processes underlying the heterogeneity of coronary atherosclerosis progression in relation to the local hemodynamic and arterial remodeling environment. RECENT FINDINGS Multiple competing biological processes in the extracellular matrix define the extent of vascular remodeling and disease progression. The remodeling phenomenon is not consistent but is characterized by great phenotypical heterogeneity which reflects the complex effect of systemic, genetic and hemodynamic factors on the arterial wall response to plaque formation and progression. The exaggeration of expansive remodeling (i.e., excessive expansive remodeling) likely contributes to the transformation of an initially favorable action into an excessive course of vessel expansion, continued disease progression and plaque instability. Extremely low endothelial shear stress and excessive expansive remodeling establish a vicious cycle which leads to the formation of severe plaques with high-risk characteristics. SUMMARY The dynamic interplay between the local hemodynamic environment and the wall remodeling behavior determines the complexity of the natural history of atherosclerosis and explains the development of localized plaque vulnerability.
Collapse
|
20
|
Nassar T, Yarovoi S, Fanne RA, Waked O, Allen TC, Idell S, Cines DB, Higazi AAR. Urokinase plasminogen activator regulates pulmonary arterial contractility and vascular permeability in mice. Am J Respir Cell Mol Biol 2011; 45:1015-21. [PMID: 21617202 DOI: 10.1165/rcmb.2010-0302oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The concentration of urokinase plasminogen activator (uPA) is elevated in pathological settings such as acute lung injury, where pulmonary arterial contractility and permeability are disrupted. uPA limits the accretion of fibrin after injury. Here we investigated whether uPA also regulates pulmonary arterial contractility and permeability. Contractility was measured using isolated pulmonary arterial rings. Pulmonary blood flow was measured in vivo by Doppler and pulmonary vascular permeability, according to the extravasation of Evans blue. Our data show that uPA regulates the in vitro pulmonary arterial contractility induced by phenylephrine in a dose-dependent manner through two receptor-dependent pathways, and regulates vascular contractility and permeability in vivo. Physiological concentrations of uPA (≤1 nM) stimulate the contractility of pulmonary arterial rings induced by phenylephrine through the low-density lipoprotein receptor-related protein receptor. The procontractile effect of uPA is independent of its catalytic activity. At pathophysiological concentrations, uPA (20 nM) inhibits contractility and increases vascular permeability. The inhibition of vascular contractility and increase of vascular permeability is mediated through a two-step process that involves docking to N-methyl-d-aspartate receptor-1 (NMDA-R1) on pulmonary vascular smooth muscle cells, and requires catalytic activity. Peptides that specifically inhibit the docking of uPA to NMDA-R, or the uPA variant with a mutated receptor docking site, abolished both the effects of uPA on vascular contractility and permeability, without affecting its catalytic activity. These data show that uPA, at concentrations found under pathological conditions, reduces pulmonary arterial contractility and increases permeability though the activation of NMDA-R1. The selective inhibition of NMDAR-1 activation by uPA can be accomplished without a loss of fibrinolytic activity.
Collapse
Affiliation(s)
- Taher Nassar
- Department of Pathology, Laboratory Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Preusch MR, Vanakaris A, Bea F, Ieronimakis N, Shimizu T, Konstandin M, Morris-Rosenfeld S, Albrecht C, Kranzhöfer A, Katus HA, Blessing E, Kranzhöfer R. Rosuvastatin reduces neointima formation in a rat model of balloon injury. Eur J Med Res 2011; 15:461-7. [PMID: 21159570 PMCID: PMC3352654 DOI: 10.1186/2047-783x-15-11-461] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Processes of restenosis, following arterial injury, are complex involving different cell types producing various cytokines and enzymes. Among those enzymes, smooth muscle cell-derived matrix metalloproteinases (MMPs) are thought to take part in cell migration, degrading of extracellular matrix, and neointima formation. MMP-9, also known as gelatinase B, is expressed immediately after vascular injury and its expression and activity can be inhibited by statins. Using an established in vivo model of vascular injury, we investigated the effect of the HMG-CoA reductase inhibitor rosuvastatin on MMP-9 expression and neointima formation. MATERIALS AND METHODS 14-week old male Sprague Dawley rats underwent balloon injury of the common carotid artery. Half of the animals received rosuvastatin (20 mg/kg body weight/day) via oral gavage, beginning 3 days prior to injury. Gelatinase activity and neointima formation were analyzed 3 days and 14 days after balloon injury, respectively. 14 days after vascular injury, proliferative activity was assessed by staining for Ki67. RESULTS After 14 days, animals in the rosuvastatin group showed a decrease in total neointima formation (0.194±0.01 mm2 versus 0.124±0.02 mm2, p<0.05) as well as a reduced intima/media ratio (1.26±0.1 versus 0.75±0.09, p<0.05). Balloon injury resulted in increased activity of MMP-9 3 days after intervention for both rosuvastatin treated animals and controls with no significant difference observed between the groups. There was a trend towards a reduction in the number of Ki67-positive cells 14 days after injury. CONCLUSIONS Rosuvastatin attenuates neointima formation without affecting early MMP-9 activity in a rat model of vascular injury.
Collapse
Affiliation(s)
- M R Preusch
- Department of Internal Medicine III, University of Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Vallabhaneni KC, Tkachuk S, Kiyan Y, Shushakova N, Haller H, Dumler I, Eden G. Urokinase receptor mediates mobilization, migration, and differentiation of mesenchymal stem cells. Cardiovasc Res 2010; 90:113-21. [PMID: 21088115 DOI: 10.1093/cvr/cvq362] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIMS Multipotent mesenchymal stem cells (MSCs) have regenerative properties and are recognized as putative players in the pathogenesis of cardiovascular diseases. The underlying molecular mechanisms remain, however, sparsely explored. Our study was designed to elucidate a probable role for the multifunctional urokinase (uPA)/urokinase receptor (uPAR) system in MSC regulation. Though uPAR has been implicated in a broad spectrum of pathophysiological processes, nothing is known about uPAR in MSCs. METHODS AND RESULTS uPAR was required to mobilize MSCs from the bone marrow (BM) of mice stimulated with granulocyte colony-stimulating factor (G-CSF) in vivo. An insignificant amount of MSCs was mobilized in uPAR(-/-) C57BL/6J mice, whereas in wild-type animals G-CSF induced an eight-fold increase of mobilized MSCs. uPAR(-/-) mice revealed up-regulated expression of G-CSF and stromal cell-derived factor 1 (CXCR4) receptors in BM. uPAR down-regulation leads to inhibition of human MSC migration, as shown in different migration assays. uPAR down- or up-regulation resulted in inhibition or stimulation of MSC differentiation into vascular smooth muscle cells (VSMCs) correspondingly, as monitored by changes in cell morphology and expression of specific marker proteins. Injection of fluorescently labelled MSCs in non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice after femoral artery wire injury demonstrated impaired engraftment of uPAR-deficient MSCs at the place of injury. CONCLUSIONS These data suggest a multifaceted function of uPAR in MSC biology contributing to vascular repair. uPAR might guide and control the trafficking of MSCs to the vascular wall in response to injury or ischaemia and their differentiation towards functional VSMCs at the site of arterial injury.
Collapse
|
23
|
Cho JS, Jeong MH, Sim DS, Hong YJ, Lim KS, Kim JH, Kim HD, Baek JY, Yoon HJ, Her SH, Jin SW, Kim JH, Ahn Y, Cho JG, Park JC, Kang JC. Effects of combined therapy with ezetimibe plus simvastatin after drug-eluting stent implantation in a porcine coronary restenosis model. J Korean Med Sci 2010; 25:716-22. [PMID: 20436707 PMCID: PMC2858830 DOI: 10.3346/jkms.2010.25.5.716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 10/21/2009] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to examine the anti-proliferative and anti-inflammatory effects of ezetimibe/simvastatin (E/S) after drug-eluting stent (DES) implantation in a porcine coronary restenosis model. Pigs were randomized into two groups in which the coronary arteries (23 pigs) had DES. Stents were deployed with oversizing (stent/artery ratio 1.3:1) in porcine coronary arteries. Fifteen pigs were taken 10/20 mg of E/S and eight pigs were not taken E/S. Histopathologic analysis was assessed at 28 days after stenting. In neointima, most inflammatory cells were lymphohistiocytes. Lymphohistiocyte count was not different between two groups (337+/-227 vs. 443+/-366 cells, P=0.292), but neointima area was significantly smaller (1.00+/-0.49 mm(2) vs. 1.69+/-0.98 mm(2), P=0.021) and percent area stenosis was significantly lower (23.3+/-10% vs. 39+/-19%, P=0.007) in E/S group compared with control group. There were no significant differences in fibrin score (1.99+/-0.79 vs. 1.81+/-0.88, P=0.49), endothelial score (1.75+/-0.66 vs. 1.80+/-0.59, P=0.79), and the percent of endothelium covered lumen (43+/-21% vs. 45+/-21%, P=0.84) between E/S group and control group. Combined therapy with ezetimibe and simvastatin inhibits neointimal hyperplasia, but does not inhibit inflammatory infiltration and arterial healing after DES implantation in a porcine coronary restenosis model.
Collapse
Affiliation(s)
- Jung Sun Cho
- Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Myung Ho Jeong
- The Heart Center of Chonnam National University Hospital, Chonnam National University Research Institute of Medical Sciences, Gwangju, Korea
| | - Doo Sun Sim
- The Heart Center of Chonnam National University Hospital, Chonnam National University Research Institute of Medical Sciences, Gwangju, Korea
| | - Young Joon Hong
- The Heart Center of Chonnam National University Hospital, Chonnam National University Research Institute of Medical Sciences, Gwangju, Korea
| | - Kyung Seob Lim
- The Heart Center of Chonnam National University Hospital, Chonnam National University Research Institute of Medical Sciences, Gwangju, Korea
| | - Jung Ha Kim
- The Heart Center of Chonnam National University Hospital, Chonnam National University Research Institute of Medical Sciences, Gwangju, Korea
| | - Hyoung Doo Kim
- Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Ju Yeal Baek
- Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Hee Jeoung Yoon
- Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Sung-Ho Her
- Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Seung Won Jin
- Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Ju Han Kim
- The Heart Center of Chonnam National University Hospital, Chonnam National University Research Institute of Medical Sciences, Gwangju, Korea
| | - Youngkeun Ahn
- The Heart Center of Chonnam National University Hospital, Chonnam National University Research Institute of Medical Sciences, Gwangju, Korea
| | - Jeong Gwan Cho
- The Heart Center of Chonnam National University Hospital, Chonnam National University Research Institute of Medical Sciences, Gwangju, Korea
| | - Jong Chun Park
- The Heart Center of Chonnam National University Hospital, Chonnam National University Research Institute of Medical Sciences, Gwangju, Korea
| | - Jung Chaee Kang
- The Heart Center of Chonnam National University Hospital, Chonnam National University Research Institute of Medical Sciences, Gwangju, Korea
| |
Collapse
|
24
|
Yi I, Lee JJ, Park JS, Zhang WY, Kim IS, Kim Y, Shin CY, Kim HS, Myung CS. Enhanced effect of losartan and rosuvastatin on neointima hyperplasia. Arch Pharm Res 2010; 33:593-600. [PMID: 20422369 DOI: 10.1007/s12272-010-0414-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 01/11/2010] [Accepted: 01/24/2010] [Indexed: 10/19/2022]
|
25
|
Xu S, Fu J, Chen J, Xiao P, Lan T, Le K, Cheng F, He L, Shen X, Huang H, Liu P. Development of an optimized protocol for primary culture of smooth muscle cells from rat thoracic aortas. Cytotechnology 2009; 61:65-72. [PMID: 19898948 DOI: 10.1007/s10616-009-9236-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 10/15/2009] [Indexed: 01/09/2023] Open
Abstract
Primary culture of smooth muscle cells has been widely used as a valuable tool to study the molecular mechanisms underlying atherosclerosis and restenosis. Currently, tissue explants and enzymatic digestion methods are frequently applied to produce smooth muscle cells. Explants method is time consuming, usually taking several weeks. The enzymatic digestion method requires large amounts of proteolytic enzymes to generate enough cells for cardiovascular research. The present study reports an optimized method by combining both techniques to obtain high purity smooth muscle cells. The cultured cells exhibited the characteristic "hills and valleys" growth pattern as observed by phase contrast microscopy and showed alpha-SM-actin positive staining by indirect immunocytochemistry and immunofluorescence. Purity of the cells is guaranteed by the lack of von Willebrand Factor immunoreactivity. Finally, the cultured cells well proliferate on oxidized-LDL stimulation, suggesting the practical utility of this new method.
Collapse
Affiliation(s)
- Suowen Xu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, East of Waihuan Road 132, High Education Mega Center, 510006, Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Urokinase-receptor-mediated phenotypic changes in vascular smooth muscle cells require the involvement of membrane rafts. Biochem J 2009; 423:343-51. [PMID: 19691446 DOI: 10.1042/bj20090447] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The cholesterol-enriched membrane microdomains lipid rafts play a key role in cell activation by recruiting and excluding specific signalling components of cell-surface receptors upon receptor engagement. Our previous studies have demonstrated that the GPI (glycosylphosphatidylinositol)-linked uPAR [uPA (urokinase-type plasminogen activator) receptor], which can be found in lipid rafts and in non-raft fractions, can mediate the differentiation of VSMCs (vascular smooth muscle cells) towards a pathophysiological de-differentiated phenotype. However, the mechanism by which uPAR and its ligand uPA regulate VSMC phenotypic changes is not known. In the present study, we provide evidence that the molecular machinery of uPAR-mediated VSMC differentiation employs lipid rafts. We show that the disruption of rafts in VSMCs by membrane cholesterol depletion using MCD (methyl-beta-cyclodextrin) or filipin leads to the up-regulation of uPAR and cell de-differentiation. uPAR silencing by means of interfering RNA resulted in an increased expression of contractile proteins. Consequently, disruption of lipid rafts impaired the expression of these proteins and transcriptional activity of related genes. We provide evidence that this effect was mediated by uPAR. Similar effects were observed in VSMCs isolated from Cav1Z(-/-) (caveolin-1-deficient) mice. Despite the level of uPAR being significantly higher after the disruption of the rafts, uPA/uPAR-dependent cell migration was impaired. However, caveolin-1 deficiency impaired only uPAR-dependent cell proliferation, whereas cell migration was strongly up-regulated in these cells. Our results provide evidence that rafts are required in the regulation of uPAR-mediated VSMC phenotypic modulations. These findings suggest further that, in the context of uPA/uPAR-dependent processes, caveolae-associated and non-associated rafts represent different signalling membrane domains.
Collapse
|
27
|
Camoretti-Mercado B. Targeting the airway smooth muscle for asthma treatment. Transl Res 2009; 154:165-74. [PMID: 19766960 PMCID: PMC2764304 DOI: 10.1016/j.trsl.2009.06.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 06/18/2009] [Accepted: 06/20/2009] [Indexed: 02/06/2023]
Abstract
Asthma is a complex respiratory disease whose incidence has increased worldwide in the last decade. Currently there is no cure for asthma. Although bronchodilator and anti-inflammatory medications are effective medicines in some asthmatic patients, it is clear that an unmet therapeutic need persists for a subpopulation of individuals with severe asthma. This chronic lung disease is characterized by airflow limitation, lung inflammation, and remodeling that includes increased airway smooth muscle (ASM) mass. In addition to its contractile properties, the ASM also contributes to the inflammatory process by producing active mediators, which modify the extracellular matrix composition and interact with inflammatory cells. These undesirable functions make interventions aimed at reducing ASM abundance an attractive strategy for novel asthma therapies. The following three mechanisms could limit the accumulation of smooth muscle: decreased cell proliferation, augmented cell apoptosis, and reduced cell migration into the smooth muscle layer. Inhibitors of the mevalonate pathway or statins hold promise for asthma treatment, because they exhibit anti-inflammatory, antimigratory, and antiproliferative effects in preclinical and clinical studies, and they can target the smooth muscle. This review will discuss current knowledge of ASM biology and identify gaps in the field to stimulate future investigations of the cellular mechanisms that control ASM overabundance in asthma. Targeting ASM has the potential to be an innovative venue of treatment for patients with asthma.
Collapse
Affiliation(s)
- Blanca Camoretti-Mercado
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
28
|
Kusch A, Tkachuk S, Tkachuk N, Patecki M, Park JK, Dietz R, Haller H, Dumler I. The tight junction protein ZO-2 mediates proliferation of vascular smooth muscle cells via regulation of Stat1. Cardiovasc Res 2009; 83:115-22. [PMID: 19380416 DOI: 10.1093/cvr/cvp117] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Recent evidence suggests that the zonula occludens protein 2 (ZO-2) might have additional cellular functions, beyond regulation of paracellular permeability of epithelial and endothelial cells. Deregulation of ZO-2 in response to ischaemia, hypertensive stress, and vascular injury implies its involvement in cardiovascular disorders, most likely via regulating the functional behaviour of vascular smooth muscle cells (VSMC). However, a role of ZO-2 in VSMC biology has yet to be established. Our study was designed to understand the specific functions of ZO-2 in human VSMC. METHODS AND RESULTS The expression of ZO-2 and Stat1 upon vascular injury was studied using ex vivo organ culture of coronary arteries combined with immunohistochemistry. ZO-2 silencing in human primary VSMC was achieved by means of lentiviral gene transfer. Cell proliferation was assessed by analysing DNA synthesis and by cell counting. Stat1 expression was examined using immunoblotting, immunocytochemistry, TaqMan, and fluorescence activated cell sorting (FACS) analysis. Functional relevance of Stat1 up-regulation was studied using a Stat1 promoter-luciferase reporter assay and intracellular microinjections of a Stat1 specific antibody. ZO-2 was highly expressed in the media and neointima of dilated but not of control arteries, whereas expression of the transcription factor Stat1 was inversely regulated upon injury. Analysis of VSMC with down-regulated ZO-2 revealed increased expression of Stat1 in these cells, whereas Stat1 phosphorylation was not affected. Stat1 up-regulation in VSMC with ZO-2 silencing resulted in a coordinate activation of Stat1-specific genes and consequently led to inhibition of cell proliferation. This effect was restored by microinjection of a Stat1 neutralising antibody. CONCLUSION Our data suggest that the tight junction protein ZO-2 is involved in regulation of VSMC growth control upon vascular injury that is mediated by the transcription factor Stat1. Our findings point to a novel function of ZO-2 in VSMC and implicate ZO-2 as a novel important molecular target in pathological states of vascular remodelling in cardiovascular diseases.
Collapse
Affiliation(s)
- Angelika Kusch
- Medical Faculty of the Charité, Franz Volhard Klinik/Experimental and Clinical Research Center-ECRC, Max Delbrück Center, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kusch A. "Linking proteolysis to lipids". Thromb Res 2008; 123:191-3. [PMID: 18617223 DOI: 10.1016/j.thromres.2008.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2008] [Revised: 06/05/2008] [Accepted: 06/06/2008] [Indexed: 11/15/2022]
|
30
|
Kostapanos MS, Milionis HJ, Elisaf MS. An overview of the extra-lipid effects of rosuvastatin. J Cardiovasc Pharmacol Ther 2008; 13:157-74. [PMID: 18460672 DOI: 10.1177/1074248408318628] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Statins, in addition to their beneficial lipid modulation effects, exert a variety of several so-called "pleiotropic" actions that may result in clinical benefits. Rosuvastatin, the last agent of the class to be introduced, has proved remarkably potent in reducing low-density lipoprotein cholesterol levels. At present, no large-scale primary or secondary prevention clinical trials document either its long-term safety or its effectiveness in preventing cardiovascular events. A substantial number of experimental and clinical studies have indicate favorable effects of rosuvastatin on endothelial function, oxidized low-density lipoprotein, inflammation, plaque stability, vascular remodeling, hemostasis, cardiac muscle, and components of the nervous system. Available data regarding the effects of rosuvastatin on renal function and urine protein excretion do not seem to raise any safety concerns. Whether the established "pleiotropy" and/or lipid-lowering efficacy of rosuvastatin may translate into reduced morbidity and mortality remains to be shown in ongoing clinical outcome trials.
Collapse
Affiliation(s)
- Michael S Kostapanos
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina, Greece
| | | | | |
Collapse
|
31
|
Popov D, Constantinescu E. Arterial smooth muscle cells dysfunction in hyperglycaemia and hyperglycaemia associated with hyperlipidaemia: from causes to effects. Arch Physiol Biochem 2008; 114:150-60. [PMID: 18484281 DOI: 10.1080/13813450802033990] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Given the important role of smooth muscle cells in arterial wall dysfunction in diabetes, as well as in diabetes associated with accelerated atherosclerosis, we provide a brief review of the recent achievements in identification of signalling molecules underlying their altered cellular responses, and examine the consequences of these pathological insults on smooth muscle cells properties. The original results emerging from the Golden Syrian hamster model (rendered diabetic or simultaneously hyperlipidaemic-diabetic) and from human aortic smooth muscle cells cultured in 25 mM glucose (to mimic diabetic condition) or sera of obese type 2 diabetic patients (to mimic the metabolic syndrome condition) are presented in this context. We conclude this review with several open issues disclosed by the most recent literature that deserve essential attention for targeting the translational medicine.
Collapse
Affiliation(s)
- Doina Popov
- Institute of Cellular Biology and Pathology N. Simionescu, 8 B.P. Hasdeu Street, Bucharest, Romania.
| | | |
Collapse
|