1
|
Serreli G, Le Sayec M, Diotallevi C, Teissier A, Deiana M, Corona G. Conjugated Metabolites of Hydroxytyrosol and Tyrosol Contribute to the Maintenance of Nitric Oxide Balance in Human Aortic Endothelial Cells at Physiologically Relevant Concentrations. Molecules 2021; 26:molecules26247480. [PMID: 34946563 PMCID: PMC8707355 DOI: 10.3390/molecules26247480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022] Open
Abstract
Nitric oxide (NO) is an important signaling molecule involved in many pathophysiological processes. NO mediates vasodilation and blood flow in the arteries, and its action contributes to maintaining vascular homeostasis by inhibiting vascular smooth muscle contraction and growth, platelet aggregation, and leukocyte adhesion to the endothelium. Dietary antioxidants and their metabolites have been found to be directly and/or indirectly involved in the modulation of the intracellular signals that lead to the production of NO. The purpose of this study was to investigate the contribution of conjugated metabolites of hydroxytyrosol (HT) and tyrosol (TYR) to the release of NO at the vascular level, and the related mechanism of action, in comparison to their parental forms. Experiments were performed in human aortic endothelial cells (HAEC) to evaluate the superoxide production, the release of NO and production of cyclic guanosine monophosphate (cGMP), the activation of serine/threonine-protein kinase 1 (Akt1), and the activation state of endothelial nitric oxide synthase (eNOS). It was observed that the tested phenolic compounds enhanced NO and cGMP concentration, inhibiting its depletion caused by superoxide overproduction. Moreover, some of them enhanced the activation of Akt (TYR, HT metabolites) and eNOS (HT, HVA, TYR-S, HT-3S). Overall, the obtained data showed that these compounds promote NO production and availability, suggesting that HT and TYR conjugated metabolites may contribute to the effects of parental extra virgin olive oil (EVOO) phenolics in the prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Gabriele Serreli
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK;
- Department of Biomedical Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy;
| | - Melanie Le Sayec
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK;
| | - Camilla Diotallevi
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK;
| | - Alice Teissier
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK;
| | - Monica Deiana
- Department of Biomedical Sciences, University of Cagliari, Monserrato, 09042 Cagliari, Italy;
| | - Giulia Corona
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK;
- Correspondence: ; Tel.: +44-(0)20-8392-3622
| |
Collapse
|
2
|
Hermans MP, Lempereur P, Salembier JP, Maes N, Albert A, Jansen O, Pincemail J. Supplementation Effect of a Combination of Olive ( Olea europea L.) Leaf and Fruit Extracts in the Clinical Management of Hypertension and Metabolic Syndrome. Antioxidants (Basel) 2020; 9:antiox9090872. [PMID: 32942738 PMCID: PMC7554871 DOI: 10.3390/antiox9090872] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The role of herbal products in the prevention of cardiovascular disease requires supporting evidence. This open pilot study assessed the effect of 2-month supplementation of a combination of olive leaf and fruit extracts (Tensiofytol®, Tilman SA, Baillonville, Belgium) in the clinical management of hypertension and metabolic syndrome (MetS). METHODS A total of 663 (pre)-hypertensive patients were enrolled by general practitioners and supplemented for two months with Tensiofytol®, two capsules per day (100 mg/d of oleuropein and 20 mg/d of hydroxytyrosol). Systolic and diastolic blood pressures (SBP/DBP) were measured before and after treatment. Markers of MetS, high-density lipoprotein cholesterol (HDL-C), triglycerides (TG), fasting blood glucose (FG) and waist circumference (WC), were also examined. RESULTS Significant reductions (p < 0.0001) in SBP/DBP (13 ± 10/7.1 ± 6.6 mmHg) were observed and similarly in pre-diabetic and diabetic patients. Improvements in SBP/DPB were independent of age and gender but greater for elevated baseline SBP/DBP. Tensiofytol® supplementation also significantly improved markers of MetS, with a decrease of TG (11%), WC (1.4%) and FG (4.8%) and an increase of HDL-C (5.3%). Minor side effects were reported in 3.2% patients. CONCLUSIONS This real-life, observational, non-controlled, non-randomized pilot study shows that supplementation of a combination of olive leaf and fruit extracts may be used efficiently and safely in reducing hypertension and MetS markers.
Collapse
Affiliation(s)
- Michel P. Hermans
- Service d’Endocrinologie et de Nutrition and Pôle Endocrinologie, Diabète et Nutrition (EDIN), Institut de Recherche expérimentale et clinique, UCLouvain, 1200 Brussels, Belgium;
| | - Philippe Lempereur
- Service de Cardiologie, Centre Hospitalier Bois de l’Abbaye, 4100 Seraing, Belgium;
| | - Jean-Paul Salembier
- Service de Cardiologie, CHU UCL Namur - site Sainte-Elisabeth, 5000 Namur, Belgium;
| | - Nathalie Maes
- Biostatistics and Medico-economic Information Department, University Hospital of Liège, 4000 Liège, Belgium; (N.M.); (A.A.)
| | - Adelin Albert
- Biostatistics and Medico-economic Information Department, University Hospital of Liège, 4000 Liège, Belgium; (N.M.); (A.A.)
| | - Olivia Jansen
- Laboratoire de Pharmacognosie, Centre Interdisciplinaire de Recherche sur le Médicament (CIRM), Université de Liège, 4000 Liège, Belgium;
| | - Joël Pincemail
- Department of Cardiovascular Surgery, CREDEC and Platform Nutrition Antioxydante et Santé, CHU and University of Liège, Sart Tilman, 4000 Liège, Belgium
- Correspondence:
| |
Collapse
|
3
|
Wide Biological Role of Hydroxytyrosol: Possible Therapeutic and Preventive Properties in Cardiovascular Diseases. Cells 2020; 9:cells9091932. [PMID: 32825589 PMCID: PMC7565717 DOI: 10.3390/cells9091932] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/14/2022] Open
Abstract
The growing incidence of cardiovascular disease (CVD) has promoted investigations of natural molecules that could prevent and treat CVD. Among these, hydroxytyrosol, a polyphenolic compound of olive oil, is well known for its antioxidant, anti-inflammatory, and anti-atherogenic effects. Its strong antioxidant properties are due to the scavenging of radicals and the stimulation of synthesis and activity of antioxidant enzymes (SOD, CAT, HO-1, NOS, COX-2, GSH), which also limit the lipid peroxidation of low-density lipoprotein (LDL) cholesterol, a hallmark of atherosclerosis. Lowered inflammation and oxidative stress and an improved lipid profile were also demonstrated in healthy subjects as well as in metabolic syndrome patients after hydroxytyrosol (HT) supplementation. These results might open a new therapeutic scenario through personalized supplementation of HT in CVDs. This review is the first attempt to collect together scientific literature on HT in both in vitro and in vivo models, as well as in human clinical studies, describing its potential biological effects for cardiovascular health.
Collapse
|
4
|
Waldbauer K, Seiringer G, Sykora C, Dirsch VM, Zehl M, Kopp B. Evaluation of Apricot, Bilberry, and Elderberry Pomace Constituents and Their Potential To Enhance the Endothelial Nitric Oxide Synthase (eNOS) Activity. ACS OMEGA 2018; 3:10545-10553. [PMID: 30320246 PMCID: PMC6173479 DOI: 10.1021/acsomega.8b00638] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
Pomace, the press residue from different fruits accumulating as waste product in food industry, contains high amounts of secondary metabolites that could be utilized for health-related applications. This study aims at evaluating the potential of pomaces of apricot, bilberry, and elderberry to serve as a source for endothelial nitric oxide synthase (eNOS)-activating compounds. Five extracts obtained from the lyophilized pomace of apricot and elderberry with solvents of different polarity were found to enhance A23187-stimulated eNOS activity when tested at 50 μg/mL in an [14C]-l-arginine to [14C]-l-citrulline conversion assay in the human endothelium-derived cell line EA.hy926 (p < 0.05). The bioassay-guided fractionation of the extracts obtained with methanol/water (70:30) led to several active fractions from apricot pomace (p < 0.05) and elderberry pomace (p < 0.01). Liquid chromatography-mass spectrometry-based chemical analysis of the extracts and active fractions pointed mainly to triterpenoic acids as active compounds. One particular dihydroxytriterpenoic acid, characteristic for elderberry, was enriched as the main compound in the two most active fractions and might serve as a promising lead structure for further studies.
Collapse
Affiliation(s)
- Katharina Waldbauer
- Faculty
of Life Sciences, Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Günter Seiringer
- Faculty
of Life Sciences, Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Christina Sykora
- Faculty
of Life Sciences, Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Verena M. Dirsch
- Faculty
of Life Sciences, Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Martin Zehl
- Faculty
of Life Sciences, Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
- Faculty
of Chemistry, Department of Analytical Chemistry, University of Vienna, Währingerstrasse 38, 1090 Vienna, Austria
| | - Brigitte Kopp
- Faculty
of Life Sciences, Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
5
|
Santos-López JA, Garcimartín A, López-Oliva ME, Bautista-Ávila M, González-Muñoz MJ, Bastida S, Benedí J, Sánchez-Muniz FJ. Chia Oil-Enriched Restructured Pork Effects on Oxidative and Inflammatory Status of Aged Rats Fed High Cholesterol/High Fat Diets. J Med Food 2017; 20:526-534. [PMID: 28294699 DOI: 10.1089/jmf.2016.0161] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chia oil has the highest recognized α-linolenic acid (ALA) content. ALA is associated with beneficial changes in plasma lipids and the prevention of cardiovascular diseases. Present article aims to analyze the effect of Chia oil-enriched restructured pork (RP) on aged rats in a nonalcoholic steatohepatitis (NASH) model. Groups of six male Wistar rats (1-year old) were fed the experimental diets: control RP diet (C) noncholesterol high saturated; cholesterol-enriched high-saturated fat/high-cholesterol control RP diet (HC) with added cholesterol and cholic acid; and Chia oil- or Hydroxytyrosol RP cholesterol-enriched high-saturated fat/high cholesterol (CHIA and HxT). Total cholesterol, hepatosomatic index, Nrf2, antioxidant, and inflammation markers were determined. CHIA reduced the hypercholesterolemic effect by lowering levels similar to C; also, ameliorated redox index. CHIA, despite high polyunsaturated fatty acids (PUFA) content, reduced thiobarbituric acid reactive substances (TBARS) and induced the lowest SOD protein synthesis but not a reduction on its activity. Chia oil activated the Nrf2 to arrest the pro-oxidative response to cholesterol and aging. Endothelial nitric oxide synthase (eNOS) system was lower in HxT than in CHIA, suggesting its antiatherogenic activity and related protective effect against high PUFA. Increase in tumor necrosis factor alpha (TNFα) was partially blocked by CHIA. Chia oil has the ability to prevent oxidative damage and modify the inflammatory response, suggesting adequate regulation of the antioxidant system. Results stress the importance of incorporating ALA into the diet.
Collapse
Affiliation(s)
| | - Alba Garcimartín
- 2 Nutrition and Food Science Department I (Nutrition), Pharmacy School, Complutense University of Madrid, Madrid, Spain
| | - María Elvira López-Oliva
- 3 Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, Madrid, Spain
| | | | - María José González-Muñoz
- 5 Biomedical Sciences Department, Toxicology Teaching Unit, Pharmacy School, Alcala University, Alcalá de Henares, Spain
| | - Sara Bastida
- 2 Nutrition and Food Science Department I (Nutrition), Pharmacy School, Complutense University of Madrid, Madrid, Spain
| | - Juana Benedí
- 1 Pharmacology Department, Pharmacy School, Complutense University of Madrid, Madrid, Spain
| | - Francisco José Sánchez-Muniz
- 2 Nutrition and Food Science Department I (Nutrition), Pharmacy School, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
6
|
Peyrol J, Riva C, Amiot MJ. Hydroxytyrosol in the Prevention of the Metabolic Syndrome and Related Disorders. Nutrients 2017; 9:E306. [PMID: 28335507 PMCID: PMC5372969 DOI: 10.3390/nu9030306] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/12/2017] [Accepted: 03/16/2017] [Indexed: 01/06/2023] Open
Abstract
Virgin olive oil (VOO) constitutes the main source of fat in the Mediterranean diet. VOO is rich in oleic acid, displaying health-promoting properties, but also contains minor bioactive components, especially phenolic compounds. Hydroxytyrosol (HT), the main polyphenol of olive oil, has been reported to be the most bioactive component. This review aims to compile the results of clinical, animal and cell culture studies evaluating the effects of HT on the features of Metabolic Syndrome (MetS) (body weight/adiposity, dyslipidemia, hypertension, and hyperglycemia/insulin resistance) and associated complications (oxidative stress and inflammation). HT was able to improve the lipid profile, glycaemia, and insulin sensitivity, and counteract oxidative and inflammatory processes. Experimental studies identified multiple molecular targets for HT conferring its beneficial effect on health in spite of its low bioavailability. However, rodent experiments and clinical trials with pure HT at biologically relevant concentrations are still lacking. Moreover, the roles of intestine and its gut microbiota have not been elucidated.
Collapse
Affiliation(s)
- Julien Peyrol
- Laboratory of Cardiovascular Pharm-Ecology EA4278, Department of Sport Sciences, Faculty of Sciences, Avignon University, F-84000 Avignon, France.
| | - Catherine Riva
- Laboratory of Cardiovascular Pharm-Ecology EA4278, Department of Sport Sciences, Faculty of Sciences, Avignon University, F-84000 Avignon, France.
| | - Marie Josèphe Amiot
- Unité Mixte de Recherche (UMR), Nutrition, Obesity and Risk of Thrombosis, Aix-Marseille University, F-13005 Marseille, France.
- Unité Mixte de Recherche (UMR), Markets, Organisations, Institutions, Stakeholder Strategies, F-34060 Montpellier, France.
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, F-34060 Montpellier, France.
- Centre International de Hautes Études Agronomiques Méditerranéennes, F-34060 Montpellier, France.
- Montpellier SupAgro, F-34060 Montpellier, France.
- Institut National de la Recherche Agronomique; Division of Nutrtition, Chemical Food Safety and Consumer Behaviour, F-75015 Paris, France.
- Institut National de la Santé et de la Recherche Médicale, F-75015 Paris, France.
| |
Collapse
|
7
|
Affiliation(s)
- Elena Bernardini
- Biblioteca del Polo centrale di Medicina e Chirurgia; Università degli studi di Milano; Milan Italy
| | - Francesco Visioli
- Department of Molecular Medicine; University of Padova; Padova Italy
- IMDEA-Food; CEI UAM + CSIC; Madrid Spain
| |
Collapse
|
8
|
Segade M, Bermejo R, Silva A, Paiva-Martins F, Gil-Longo J, Campos-Toimil M. Involvement of endothelium in the vasorelaxant effects of 3,4-DHPEA-EA and 3,4-DHPEA-EDA, two major functional bioactives in olive oil. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.03.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
9
|
Tufarelli V, Laudadio V, Casalino E. An extra-virgin olive oil rich in polyphenolic compounds has antioxidant effects in meat-type broiler chickens. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:6197-6204. [PMID: 26606933 DOI: 10.1007/s11356-015-5852-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 11/20/2015] [Indexed: 06/05/2023]
Abstract
The aim of this study was to extend the knowledge on the antioxidant effect of extra-virgin olive oil (EVOO) in the liver of broiler chickens not subjected to any form of insult. A total of 120 male broiler chickens (Hubbard strain) were divided into three groups and fed ad libitum with three isoenergetic diets from hatching until slaughter age (49 days) on a completely randomized design. The dietary treatments consisted of 2.5% added oil or fat from three sources as follows: diet containing sunflower oil (SFO); diet containing lard (LRD), and diet containing extra-virgin olive oil (EVOO). The activity of the main antioxidative enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GS-Px) and glutathione S-transferase (GST), and lipid peroxidation as thiobarbituric acid-reactive substances (TBARS) content, was measured in the liver of chickens. The susceptibility to undergo lipid peroxidation was assessed by exposing liver homogenate to 30 °C or to an ascorbate/iron mixture as pro-oxidant system. Dietary oil or fat type improved significantly (P < 0.05) the body weight and gain as well as feed efficiency in birds fed EVOO compared to those fed with the other treatments. Supplementing EVOO in the diet significantly (P < 0.05) reduced lipid peroxidation by increasing antioxidant defense system. These findings, besides adding more results on the antioxidant effect of extra-virgin olive oil on liver of other experimental model other than rats and humans, could be significant for animal welfare, with consequent benefits for both producers and consumers.
Collapse
Affiliation(s)
- Vincenzo Tufarelli
- Department of Emergency and Organ Transplantation (DETO), Section of Veterinary Science and Animal Production, University of Study of Bari 'Aldo Moro', Valenzano, 70010, Bari, Italy
| | - Vito Laudadio
- Department of Emergency and Organ Transplantation (DETO), Section of Veterinary Science and Animal Production, University of Study of Bari 'Aldo Moro', Valenzano, 70010, Bari, Italy
| | - Elisabetta Casalino
- Department of Veterinary Medicine, University of Bari 'Aldo Moro', Valenzano, 70010, Bari, Italy.
| |
Collapse
|
10
|
Waldbauer K, Seiringer G, Nguyen DL, Winkler J, Blaschke M, McKinnon R, Urban E, Ladurner A, Dirsch VM, Zehl M, Kopp B. Triterpenoic Acids from Apple Pomace Enhance the Activity of the Endothelial Nitric Oxide Synthase (eNOS). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:185-194. [PMID: 26682617 DOI: 10.1021/acs.jafc.5b05061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Pomace is an easy-accessible raw material for the isolation of fruit-derived compounds. Fruit consumption is associated with health-promoting effects, such as the prevention of cardiovascular disease. Increased vascular nitric oxide (NO) bioavailability, for example, due to an enhanced endothelial nitric oxide synthase (eNOS) activity, could be one molecular mechanism mediating this effect. To identify compounds from apple (Malus domestica Borkh.) pomace that have the potential to amplify NO bioavailability via eNOS activation, a bioassay-guided fractionation of the methanol/water (70:30) extract has been performed using the (14)C-L-arginine to (14)C-L-citrulline conversion assay (ACCA) in the human endothelium-derived cell line EA.hy926. Phytochemical characterization of the active fractions was performed using the spectrophotometric assessment of the total phenolic content, as well as TLC, HPLC-DAD-ELSD, and HPLC-MS analyses. Eleven triterpenoic acids, of which one is a newly discovered compound, were identified as the main constituents in the most active fraction, accompanied by only minor contents of phenolic compounds. When tested individually, none of the tested compounds exhibited significant eNOS activation. Nevertheless, cell stimulation with the reconstituted compound mixture restored eNOS activation, validating the potential of apple pomace as a source of bioactive components.
Collapse
Affiliation(s)
- Katharina Waldbauer
- Department of Pharmacognosy and ‡Department of Pharmaceutical Chemistry, University of Vienna , Althanstrasse 14, 1090 Vienna, Austria
| | - Günter Seiringer
- Department of Pharmacognosy and ‡Department of Pharmaceutical Chemistry, University of Vienna , Althanstrasse 14, 1090 Vienna, Austria
| | - Dieu Linh Nguyen
- Department of Pharmacognosy and ‡Department of Pharmaceutical Chemistry, University of Vienna , Althanstrasse 14, 1090 Vienna, Austria
| | - Johannes Winkler
- Department of Pharmacognosy and ‡Department of Pharmaceutical Chemistry, University of Vienna , Althanstrasse 14, 1090 Vienna, Austria
| | - Michael Blaschke
- Department of Pharmacognosy and ‡Department of Pharmaceutical Chemistry, University of Vienna , Althanstrasse 14, 1090 Vienna, Austria
| | - Ruxandra McKinnon
- Department of Pharmacognosy and ‡Department of Pharmaceutical Chemistry, University of Vienna , Althanstrasse 14, 1090 Vienna, Austria
| | - Ernst Urban
- Department of Pharmacognosy and ‡Department of Pharmaceutical Chemistry, University of Vienna , Althanstrasse 14, 1090 Vienna, Austria
| | - Angela Ladurner
- Department of Pharmacognosy and ‡Department of Pharmaceutical Chemistry, University of Vienna , Althanstrasse 14, 1090 Vienna, Austria
| | - Verena M Dirsch
- Department of Pharmacognosy and ‡Department of Pharmaceutical Chemistry, University of Vienna , Althanstrasse 14, 1090 Vienna, Austria
| | - Martin Zehl
- Department of Pharmacognosy and ‡Department of Pharmaceutical Chemistry, University of Vienna , Althanstrasse 14, 1090 Vienna, Austria
| | - Brigitte Kopp
- Department of Pharmacognosy and ‡Department of Pharmaceutical Chemistry, University of Vienna , Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
11
|
Phenolic content of extra virgin olive oil is essential to restore endothelial dysfunction but not to prevent vascular inflammation in atherosclerotic lesions of Apo E deficient mice. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
12
|
Impact of trans-resveratrol-sulfates and -glucuronides on endothelial nitric oxide synthase activity, nitric oxide release and intracellular reactive oxygen species. Molecules 2014; 19:16724-36. [PMID: 25329867 PMCID: PMC4401015 DOI: 10.3390/molecules191016724] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 09/30/2014] [Accepted: 10/13/2014] [Indexed: 01/02/2023] Open
Abstract
Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a polyphenolic natural product mainly present in grape skin, berries and peanuts. In the vasculature resveratrol is thought to boost endothelial function by increasing endothelial nitric oxide synthase (eNOS) expression, by enhancing eNOS activity, and by reduction of reactive oxygen species (ROS) levels. Recent studies show that dietary resveratrol is metabolized in the liver and intestine into resveratrol-sulfate and -glucuronide derivatives questioning the relevance of multiple reported mechanistic in vitro data on resveratrol. In this study, we compare side by side different physiologically relevant resveratrol metabolites (resveratrol sulfates- and -glucuronides) and their parent compound in their influence on eNOS enzyme activity, endothelial NO release, and intracellular ROS levels. In contrast to resveratrol, none of the tested resveratrol metabolites elevated eNOS enzyme activity and endothelial NO release or affected intracellular ROS levels, leaving the possibility that not tested metabolites are active and able to explain in vivo findings.
Collapse
|
13
|
Park SY, Do GM, Lee S, Lim Y, Shin JH, Kwon O. Acanthopanax divaricatus var. chiisanensis reduces blood pressure via the endothelial nitric oxide synthase pathway in the spontaneously hypertensive rat model. Nutr Res 2014; 34:797-806. [PMID: 25241331 DOI: 10.1016/j.nutres.2014.08.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 08/17/2014] [Accepted: 08/27/2014] [Indexed: 10/24/2022]
Abstract
In this study, we investigated the antihypertensive effects of Acanthopanax divaricatus var. chiisanensis extract (AE) and its active compound, acanthoside D (AD), on arterial blood pressure (BP) in vivo and endothelial function in vitro. We hypothesized that AE has antihypertensive effects, which is attributed to enhancement of endothelial function via the improvement of nitric oxide synthesis or the angiotensin II (Ang II) response. Spontaneously hypertensive rats (SHRs) and Wistar-Kyoto rats (WKYs) were randomly divided into 7 groups and then fed the following diets for 14 weeks: WKY fed a normal diet (WN); SHR fed a normal diet (SN); SHR fed a high-cholesterol (HC) diet (SH); SHR fed a HC diet with AE of 150, 300, 600 mg/kg body weight (SH-L, SH-M, SH-H); and SHR fed an HC diet with AD of 600 μg/kg body weight (SH-D). Blood pressure was significantly reduced in the SH-H compared with the SH from week 10 until week 14; BP was also significantly decreased in the SHR fed a HC diet with AE of 300 at week 14. Aortic wall thickness showed a tendency to decrease by AE and AD treatment. The SH-H showed increased endothelial nitric oxide synthase (eNOS) expression in the intima and media, compared with the SH. Furthermore, a significant increase in intracellular nitric oxide production was induced by AE and AD treatment in human umbilical vein endothelial cells. A significant increase of phospho-eNOS was found with a high dose of AE in human umbilical vein endothelial cells but not with AD. These results suggest that AE can regulate BP and improve endothelial function via eNOS-dependent vasodilation.
Collapse
Affiliation(s)
- Soo-Yeon Park
- Department of Nutritional Science and Food Management, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 120-750, Republic of Korea
| | - Gyeong-Min Do
- Department of Nutritional Science and Food Management, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 120-750, Republic of Korea
| | - Sena Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 120-750, Republic of Korea
| | - Yeni Lim
- Department of Nutritional Science and Food Management, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 120-750, Republic of Korea
| | - Jae-Ho Shin
- Department of Biomedical Laboratory Science, Eulji University, 553, Sanseong-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Oran Kwon
- Department of Nutritional Science and Food Management, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 120-750, Republic of Korea.
| |
Collapse
|
14
|
Pharmacological potential of Populus nigra extract as antioxidant, anti-inflammatory, cardiovascular and hepatoprotective agent. Asian Pac J Trop Biomed 2014; 3:697-704. [PMID: 23998009 DOI: 10.1016/s2221-1691(13)60141-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/20/2013] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To evaluate antioxidant, anti-inflammatory, hepatoprotective and vasorelaxant activities of Populus nigra flower buds ethanolic extract. METHODS Antioxidant and anti-inflammatory activities of the extract were assessed using respectively the ABTS test and the animal model of carrageenan-induced paw edema. Protection from hepatic toxicity caused by aluminum was examined by histopathologic analysis of liver sections. Vasorelaxant effect was estimated in endothelium-intact and -rubbed rings of porcine coronary arteries precontracted with high concentration of U46619. RESULTS The results showed a moderate antioxidant activity (40%), but potent anti-inflammatory activity (49.9%) on carrageenan-induced mice paw edema, and also as revealed by histopathologic examination, complete protection against AlCl₃-induced hepatic toxicity. Relaxant effects of the same extract on vascular preparation from porcine aorta precontracted with high concentration of U46619 were considerable at 10⁻¹ g/L, and comparable (P>0.05) between endothelium-intact (67.74%, IC₅₀=0.04 mg/mL) and -rubbed (72.72%, IC₅₀=0.075 mg/mL) aortic rings. CONCLUSIONS The extract exerted significant anti-inflammatory, hepatoprotective and vasorelaxant activities, the latter being endothelium-independent believed to be mediated mainly by the ability of components present in the extract to exert antioxidant properties, probably related to an inhibition of Ca²⁺ influx.
Collapse
|
15
|
Khurana S, Venkataraman K, Hollingsworth A, Piche M, Tai TC. Polyphenols: benefits to the cardiovascular system in health and in aging. Nutrients 2013; 5:3779-827. [PMID: 24077237 PMCID: PMC3820045 DOI: 10.3390/nu5103779] [Citation(s) in RCA: 269] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 07/25/2013] [Accepted: 08/04/2013] [Indexed: 12/26/2022] Open
Abstract
Numerous studies have demonstrated the importance of naturally occurring dietary polyphenols in promoting cardiovascular health and emphasized the significant role these compounds play in limiting the effects of cellular aging. Polyphenols such as resveratrol, epigallocatechin gallate (EGCG), and curcumin have been acknowledged for having beneficial effects on cardiovascular health, while some have also been shown to be protective in aging. This review highlights the literature surrounding this topic on the prominently studied and documented polyphenols as pertaining to cardiovascular health and aging.
Collapse
Affiliation(s)
- Sandhya Khurana
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +705-662-7239; Fax: +705-675-4858
| | - Krishnan Venkataraman
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +705-662-7239; Fax: +705-675-4858
| | - Amanda Hollingsworth
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +705-662-7239; Fax: +705-675-4858
| | - Matthew Piche
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +705-662-7239; Fax: +705-675-4858
| | - T. C. Tai
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +705-662-7239; Fax: +705-675-4858
| |
Collapse
|
16
|
Paixão J, Dinis TCP, Almeida LM. Malvidin-3-glucoside protects endothelial cells up-regulating endothelial NO synthase and inhibiting peroxynitrite-induced NF-kB activation. Chem Biol Interact 2012; 199:192-200. [PMID: 22959858 DOI: 10.1016/j.cbi.2012.08.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/14/2012] [Accepted: 08/21/2012] [Indexed: 12/13/2022]
Abstract
Anthocyanins are the most abundant flavonoid constituents of fruits and vegetables and several epidemiological studies suggest that the consumption of these compounds protect against several diseases, including vascular disorders. Previously, we have reported that anthocyanins are able to counteract peroxynitrite-induced apoptotic effects in endothelial cells through inhibition of several crucial signaling cascades, upstream and downstream of mitochondria. Following these studies, here we investigated possible effects of malvidin-3-glucoside, one of the main dietary anthocyanins, on NO bioavailability and on peroxynitrite-induced NF-kB activation in the same cell model. Our results show that treatment of bovine arterial endothelial cells with malvidin-3-glucoside up-regulated eNOS mRNA, leading to the enhancement of eNOS activity and NO production, an effect even greater when cells were further stimulated with peroxynitrite. On the other hand, in these activated endothelial cells, malvidin-3-glucoside suppressed pro-inflammatory mediators, namely iNOS expression/NO biosynthesis, COX-2 expression and IL-6 production, through inhibition of NF-kB activation. These findings suggest a potential role of malvidin-3-glucoside in NO balance and in inhibition of pro-inflammatory signaling pathways, supporting its benefits in cardiovascular health and pointing to anthocyanins as a promising tool for development of functional foods and nutraceuticals to improve endothelial function.
Collapse
Affiliation(s)
- Joana Paixão
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | |
Collapse
|
17
|
Ladurner A, Atanasov AG, Heiss EH, Baumgartner L, Schwaiger S, Rollinger JM, Stuppner H, Dirsch VM. 2-(2,4-dihydroxyphenyl)-5-(E)-propenylbenzofuran promotes endothelial nitric oxide synthase activity in human endothelial cells. Biochem Pharmacol 2012; 84:804-12. [PMID: 22771373 PMCID: PMC3443389 DOI: 10.1016/j.bcp.2012.06.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/27/2012] [Accepted: 06/28/2012] [Indexed: 12/13/2022]
Abstract
Endothelial nitric oxide synthase (eNOS) mediates important vaso-protective and immunomodulatory effects. Aim of this study was to examine whether lignan derivatives isolated from the roots of the anti-inflammatory medicinal plant Krameria lappacea influence eNOS activity and endothelial nitric oxide (NO) release. The study was performed using cultured human umbilical vein endothelial cells (HUVECs) and HUVEC-derived EA.hy926 cells. Among the eleven isolated compounds only 2-(2,4-dihydroxyphenyl)-5-(E)-propenylbenzofuran (DPPB) was able to increase eNOS enzyme activity. DPPB (1–10 μM) treatment for 24 h induced a significant and dose-dependent increase in eNOS activity as determined by the [14C]l-arginine/[14C]l-citrulline conversion assay. Immunoblotting studies further revealed a time-dependent DPPB-induced increase in eNOS-Ser1177 and decrease in eNOS-Thr495 phosphorylation, as well as increased AMPK phosphorylation at Thr172, whereas Akt phosphorylation at Ser473 was not affected. Si-RNA-mediated knockdown of AMPK and inhibition of CaMKKβ by STO 609, as well as intracellular Ca2+ chelation by Bapta AM abolished the stimulating effect of DPPB on eNOS-Ser1177 and AMPK-Thr172 phosphorylation. Furthermore, we could show that DPPB increases intracellular Ca2+ concentrations assessed with the fluorescent dye Fluo-3-AM. DPPB enhances eNOS activity and endothelial NO release by raising intracellular Ca2+ levels and increases signaling through a CaMKKβ–AMPK dependent pathway.
Collapse
Affiliation(s)
- Angela Ladurner
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Ladurner A, Schmitt CA, Schachner D, Atanasov AG, Werner ER, Dirsch VM, Heiss EH. Ascorbate stimulates endothelial nitric oxide synthase enzyme activity by rapid modulation of its phosphorylation status. Free Radic Biol Med 2012; 52:2082-90. [PMID: 22542797 PMCID: PMC3377995 DOI: 10.1016/j.freeradbiomed.2012.03.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 03/09/2012] [Accepted: 03/12/2012] [Indexed: 02/06/2023]
Abstract
Long-term exposure to ascorbate is known to enhance endothelial nitric oxide synthase (eNOS) activity by stabilizing the eNOS cofactor tetrahydrobiopterin (BH4). We investigated acute effects of ascorbate on eNOS function in primary (HUVEC) and immortalized human endothelial cells (EA.hy926), aiming to provide a molecular explanation for the rapid vasodilatation seen in vivo upon administration of ascorbate. Enzymatic activity of eNOS and intracellular BH4 levels were assessed by means of an arginine-citrulline conversion assay and HPLC analysis, respectively. Over a period of 4h, ascorbate steadily increased eNOS activity, although endothelial BH4 levels remained unchanged compared to untreated control cells. Immunoblot analyses revealed that as early as 5 min after treatment ascorbate dose-dependently increased phosphorylation at eNOS-Ser1177 and concomitantly decreased phosphorylation at eNOS-Thr495, a phosphorylation pattern indicative of increased eNOS activity. By employing pharmacological inhibitors, siRNA-mediated knockdown approaches, and overexpression of the catalytic subunit of protein phosphatase 2A (PP2A), we show that this effect was at least partly owing to reduction of PP2A activity and subsequent activation of AMP-activated kinase. In this report, we unravel a novel mechanism for how ascorbate rapidly activates eNOS independent of its effects on BH4 stabilization.
Collapse
Key Words
- ampk, amp-activated protein kinase
- bh4, tetrahydrobiopterin
- dmem, dulbecco's modified eagle's medium
- dmso, dimethyl sulfoxide
- enos, endothelial nitric oxide synthase
- fbs, fetal bovine serum
- ha-tag, hemagglutinin tag
- hepes, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
- hiv, human immunodeficiency virus
- hplc, high-performance liquid chromatography
- huvec, human umbilical vein endothelial cell
- pi3k, phosphatidylinositol 3-kinases
- pkc, protein kinase c
- pp2a, protein phosphatase 2a
- sds–page, sodium dodecyl sulfate–polyacrylamide gel electrophoresis
- tlc, thin-layer chromatography
- ascorbate
- endothelial no synthase activity
- endothelial no synthase phosphorylation
- amp-activated kinase
- protein phosphatase 2a
- free radicals
Collapse
Affiliation(s)
- Angela Ladurner
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Christoph A. Schmitt
- University College London, Wolfson Institute for Biomedical Research, London, UK
| | - Daniel Schachner
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Atanas G. Atanasov
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Ernst R. Werner
- Biocenter, Division of Biological Chemistry, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Verena M. Dirsch
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Elke H. Heiss
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
19
|
Lai Y, Shen Y, Liu XH, Zhang Y, Zeng Y, Liu YF. Interleukin-8 induces the endothelial cell migration through the activation of phosphoinositide 3-kinase-Rac1/RhoA pathway. Int J Biol Sci 2011; 7:782-91. [PMID: 21750647 PMCID: PMC3133886 DOI: 10.7150/ijbs.7.782] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 06/01/2011] [Indexed: 02/05/2023] Open
Abstract
Endothelial cell migration is essential for tumor angiogenesis, and interleukin-8 (IL-8) has been shown to play an important role in tumor growth, angiogenesis, and metastasis. This study aimed to investigate the molecular mechanism of IL-8 induced endothelial cell migration. Our results indicated that IL-8 induced a rapid rearrangement of the actin cytoskeleton in EA.Hy926 cells, generating extensions resembling membrane ruffling and stress fibers. These processes required parallel upregulation of the small GTPases Rac1 and RhoA. Moreover, we demonstrated that IL-8 activated PI3K following the same kinetics observed from IL-8 induction of cytoskeletal rearrangement, suggesting the participation of PI3K in these processes. Taken together, our study demonstrates that PI3K-Rac1/RhoA signaling pathway plays a vital role in IL-8 induced endothelial cell migration, and provides new insight into the molecular mechanisms by which IL-8 contributes to tumor angiogenesis and metastasis.
Collapse
Affiliation(s)
- Yi Lai
- Laboratory of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China
| | | | | | | | | | | |
Collapse
|
20
|
Granados-Principal S, Quiles JL, Ramirez-Tortosa CL, Sanchez-Rovira P, Ramirez-Tortosa MC. Hydroxytyrosol: from laboratory investigations to future clinical trials. Nutr Rev 2010; 68:191-206. [PMID: 20416016 DOI: 10.1111/j.1753-4887.2010.00278.x] [Citation(s) in RCA: 202] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Mediterranean countries have lower rates of mortality from cardiovascular disease and cancer than Northern European or other Western countries. This has been attributed, at least in part, to the so-called Mediterranean diet, which is composed of specific local foods, including olive oil. Traditionally, many beneficial properties associated with this oil have been ascribed to its high oleic acid content. Today, it is clear that many of the beneficial effects of ingesting virgin olive oil are due to its minor compounds. This review summarizes the existing knowledge concerning the chemistry, pharmacokinetics, and toxicology of hydroxytyrosol, a minor compound of virgin olive oil, as well as this compound's importance for health. The main findings in terms of its beneficial effects in cardiovascular disease and cancer, including its properties against inflammation and platelet aggregation, are emphasized. New evidence and strategies regarding the use of hydroxytyrosol as a natural drug for the prevention and treatment of diseases with high incidences in Western countries are also presented.
Collapse
|
21
|
de la Torre-Carbot K, Chávez-Servín JL, Jaúregui O, Castellote AI, Lamuela-Raventós RM, Nurmi T, Poulsen HE, Gaddi AV, Kaikkonen J, Zunft HF, Kiesewetter H, Fitó M, Covas MI, López-Sabater MC. Elevated circulating LDL phenol levels in men who consumed virgin rather than refined olive oil are associated with less oxidation of plasma LDL. J Nutr 2010; 140:501-8. [PMID: 20089783 DOI: 10.3945/jn.109.112912] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In human LDL, the bioactivity of olive oil phenols is determined by the in vivo disposition of the biological metabolites of these compounds. Here, we examined how the ingestion of 2 similar olive oils affected the content of the metabolic forms of olive oil phenols in LDL in men. The oils differed in phenol concentrations as follows: high (629 mg/L) for virgin olive oil (VOO) and null (0 mg/L) for refined olive oil (ROO). The study population consisted of a subsample from the EUROLIVE study and a randomized controlled, crossover design was used. Intervention periods lasted 3 wk and were preceded by a 2-wk washout period. The levels of LDL hydroxytyrosol monosulfate and homovanillic acid sulfate, but not of tyrosol sulfate, increased after VOO ingestion (P < 0.05), whereas the concentrations of circulating oxidation markers, including oxidized LDL (oxLDL), conjugated dienes, and hydroxy fatty acids, decreased (P < 0.05). The levels of LDL phenols and oxidation markers were not affected by ROO consumption. The relative increase in the 3 LDL phenols was greater when men consumed VOO than when they consumed ROO (P < 0.05), as was the relative decrease in plasma oxLDL (P = 0.001) and hydroxy fatty acids (P < 0.001). Plasma oxLDL concentrations were negatively correlated with the LDL phenol levels (r = -0.296; P = 0.013). Phenols in LDL were not associated with other oxidation markers. In summary, the phenol concentration of olive oil modulates the phenolic metabolite content in LDL after sustained, daily consumption. The inverse relationship of these metabolites with the degree of LDL oxidation supports the in vivo antioxidant role of olive oil phenolics compounds.
Collapse
Affiliation(s)
- Karina de la Torre-Carbot
- Department of Nutrition and Food Science, Reference Center in Food Technology, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Schmitt CA, Heiss EH, Schachner D, Aristei Y, Severin T, Dirsch VM. A Maillard reaction product enhances eNOS activity in human endothelial cells. Mol Nutr Food Res 2010; 54:1031-8. [PMID: 20112298 DOI: 10.1002/mnfr.200900330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nitric oxide (NO) produced by the endothelial nitric oxide synthase (eNOS) is an important signaling molecule in the cardiovascular system. Although dietary factors can modulate eNOS activity, putative effects of processed food are barely investigated. We aimed to examine whether the model Maillard reaction product 3-hydroxy-2-methyl-1-propyl-4(1H)-pyridone (HMPP), formed from maltol or starch and propylamine, affects the eNOS system. Incubation of EA.hy926 endothelial cells with 30-300 microM HMPP for 18 h enhanced endothelial NO release measured with the fluorescent probe diaminofluorescein-2 and eNOS activity determined by the [14C]L-arginine-[14C]L-citrulline conversion assay. HMPP increased NO production also in two different types of primary human endothelial cells. Protein levels of eNOS and inducible NO synthase remained unaltered by HMPP. HMPP inhibited eNOS activity within the first 2-4 h, whereas it potently increased eNOS activity after 12-24 h. Levels of eNOS phosphorylation, expression of heat-shock protein 90, caveolin-1 and various antioxidant enzymes were not affected. Intracellular reactive oxygen species remained unchanged by HMPP. This is the first study to demonstrate positive effects of a Maillard reaction product on eNOS activity and endothelial NO production, which is considered favourable for cardiovascular protection.
Collapse
|
23
|
Schmitt CA, Dirsch VM. Modulation of endothelial nitric oxide by plant-derived products. Nitric Oxide 2009; 21:77-91. [PMID: 19497380 DOI: 10.1016/j.niox.2009.05.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 04/28/2009] [Accepted: 05/26/2009] [Indexed: 12/31/2022]
|
24
|
Schmitt CA, Heiss EH, Aristei Y, Severin T, Dirsch VM. Norfuraneol dephosphorylates eNOS at threonine 495 and enhances eNOS activity in human endothelial cells. Cardiovasc Res 2008; 81:750-7. [PMID: 19036824 DOI: 10.1093/cvr/cvn326] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AIM Pentoses are widely abundant in organic food. Thermal treatment of pentoses leads to the formation of norfuraneol (NF). The aim of this study was to show whether NF, which is taken up regularly, for example with cooked food, affects the human endothelial nitric oxide synthase (eNOS) system. METHODS AND RESULTS The study was performed using cultured human umbilical vein endothelial cells (HUVEC), HUVEC-derived EA.hy926 cells, and bovine aortic endothelial cells. Nitric oxide (NO) release and eNOS activity were measured using diaminofluorescein-2 and [14C]L-arginine/[14C]L-citrulline conversion. Levels of (phospho-)eNOS were detected by western blotting. Reactive oxygen species (ROS) production was assessed using 2',7'-dichlorodihydrofluorescein diacetate. Pharmacokinetic parameters of NF were calculated by VolSurf software. NF dose dependently increased eNOS activity and NO release (30-300 microM), but did not affect total eNOS protein or cellular ROS levels. The increase in eNOS activity coincided with specific dephosphorylation of eNOS-Thr495, known to enhance eNOS activity. Inhibition of protein phosphatase 1 (PP1) by calyculin A, tautomycetin, or siRNA against PP1 reversed NF-induced eNOS-Thr495 dephosphorylation. Phosphorylation at eNOS-Ser1177 was not significantly altered by NF. Inhibition of protein kinase C with bisindolylmaleimide I (GFX) or calphostin C mimicked the effect of NF. In contrast to GFX, however, NF had no effect on phorbol-12-myristate-13-acetate-induced endothelial ROS formation. In silico, NF is stable towards CYP3A4 metabolism, shows low protein binding, and high tissue distribution. CONCLUSION NF enhances endothelial NO release most likely by promoting specific dephosphorylation of eNOS-Thr495 via PP1 in vitro and may be a promising compound to enhance endothelial function in vivo.
Collapse
Affiliation(s)
- Christoph A Schmitt
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | | | | | | | | |
Collapse
|