1
|
Cohen-Hagai K, Kuchuk E, Matalon ST, Benchetrit S, Zitman-Gal T. Exosomes Derived from Dialysis Patients' Serum Enhance Endothelial-Mesenchymal Transition and Calcification in Endothelial Cells. KIDNEY360 2025; 6:351-360. [PMID: 39899380 PMCID: PMC11970854 DOI: 10.34067/kid.0000000678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/06/2024] [Indexed: 02/05/2025]
Abstract
Key Points Vascular calcification (VC) is an independent risk factor of cardiovascular disease in patients with ESKD. We found that exosomes derived from serum of dialysis patients with VC induced endothelial–mesenchymal transition and thus contribute to calcification. The complex interplay between exosomes from dialysis patients with VC and endothelial cells highlights the critical need for therapeutic strategies. Background Vascular calcification (VC) is prevalent among patients with ESKD. Exosomes, small extracellular vesicles actively secreted by cells, contain proteins, nucleic acids, lipids, and other bioactive substances and are considered major mediators of cell–cell interactions. Endothelial–mesenchymal transition (EndMT) has been observed in a variety of pathological conditions, such as abnormal shear stress, vascular damage, and chronic inflammation. The aim of this research was to assess the effects of serum-derived exosomes from ESKD patients with VC on the induction of EndMT in endothelial cells (ECs) and their potential role in accelerating VC. Methods Twenty patients on hemodialysis with VC and ten healthy volunteers were recruited. Cardiac and brain VCs were assessed among patients with ESKD treated with dialysis. Serum samples were obtained at dialysis initiation for exosome isolation. Human umbilical vein ECs were treated with 100 µ g/ml exosomes for 24–96 hours. At the end of incubation, cells were collected for mRNA and protein analysis. Results Exosomes isolated from dialysis patients with VC induced EndMT in human umbilical vein ECs. After 24 hours, endothelial markers CD31 and vascular endothelial-cadherin were decreased (31% and 51%, respectively; P < 0.001) and the mesenchymal proteins Vimentin and N -cadherin were increased (283% and 156%, respectively; P < 0.001), compared with healthy exosomes. After 96 hours of incubation, expression of genes essential for osteoblast differentiation, including the bone morphogenetic genes (BMP2, BMPR2, BMP4, and BMP9), and the transcription factor RUNX2 were significantly elevated. Conclusions Exosomes derived from the serum of dialysis patients with VC induced EndMT and contributed to calcification. The vicious cycle highlighted the intricate interplay between exosomes, ECs, and VC, emphasizing the critical necessity for therapeutic strategies to disrupt this pathway and mitigate calcification advancement.
Collapse
Affiliation(s)
- Keren Cohen-Hagai
- Department of Nephrology and Hypertension, Meir Medical Center, Kfar Saba, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Eran Kuchuk
- Department of Nephrology and Hypertension, Meir Medical Center, Kfar Saba, Israel
| | - Shelly Tartakover Matalon
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Autoimmune Research Laboratory, Meir Medical Center, Kfar Saba, Israel
| | - Sydney Benchetrit
- Department of Nephrology and Hypertension, Meir Medical Center, Kfar Saba, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tali Zitman-Gal
- Department of Nephrology and Hypertension, Meir Medical Center, Kfar Saba, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Liang X, Li Y, Wang P, Liu H. Key regulators of vascular calcification in chronic kidney disease: Hyperphosphatemia, BMP2, and RUNX2. PeerJ 2024; 12:e18063. [PMID: 39308809 PMCID: PMC11416758 DOI: 10.7717/peerj.18063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Vascular calcification is quite common in patients with end-stage chronic kidney disease and is a major trigger for cardiovascular complications in these patients. These complications significantly impact the survival rate and long-term prognosis of individuals with chronic kidney disease. Numerous studies have demonstrated that the development of vascular calcification involves various pathophysiological mechanisms, with the osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs) being of utmost importance. High phosphate levels, bone morphogenetic protein 2 (BMP2), and runt-related transcription factor 2 (RUNX2) play crucial roles in the osteogenic transdifferentiation process of VSMCs. This article primarily reviews the molecular mechanisms by which high phosphate, BMP2, and RUNX2 regulate vascular calcification secondary to chronic kidney disease, and discusses the complex interactions among these factors and their impact on the progression of vascular calcification. The insights provided here aim to offer new perspectives for future research on the phenotypic switching and osteogenic transdifferentiation of VSMCs, as well as to aid in optimizing clinical treatment strategies for this condition, bearing significant clinical and scientific implications.
Collapse
Affiliation(s)
- Xinhua Liang
- Affiliated Hospital of Guangdong Medical University, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Zhanjiang, Guangdong Province, China
| | - Yankun Li
- Affiliated Hospital of Guangdong Medical University, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Zhanjiang, Guangdong Province, China
| | - Peng Wang
- Affiliated Hospital of Guangdong Medical University, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Zhanjiang, Guangdong, China
| | - Huafeng Liu
- Affiliated Hospital of Guangdong Medical University, Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Zhanjiang, Guangdong, China
| |
Collapse
|
3
|
Chisavu L, Ivan VM, Mihaescu A, Chisavu F, Schiller O, Marc L, Bob F, Schiller A. Novel Biomarkers in Evaluating Cardiac Function in Patients on Hemodialysis-A Pilot Prospective Observational Cohort Study. Diagnostics (Basel) 2024; 14:664. [PMID: 38535084 PMCID: PMC10969652 DOI: 10.3390/diagnostics14060664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 01/03/2025] Open
Abstract
Chronic kidney disease patients treated by hemodialysis present a high cardiovascular morbidity and mortality. There is an imperative need for novel biomarkers for identifying these patients and to offer possible therapeutically interventions. We performed a prospective observational cohort study on 77 patients in the period of October 2021-October 2023. We measured serum plasma levels of interleukin 1-beta, galectin 3, human suppression of tumorigenicity factor 2, bone morphogenetic protein 2 and fibroblastic growth factor 23 at the inclusion site. We evaluated the correlations of these biomarkers with cardiac function and structure evaluated by echocardiography. The mean age was 61.02 (±11.81) years, with 45 (56.2%) males and with a dialysis vintage of 4.95 (2.4-7.8) years. Median ejection fraction was 51 (43-54%), and more than two-thirds of the patients presented valvular calcifications. Overall mortality was 22%. Interleukin 1-beta was correlated positively with ejection fraction and global longitudinal strain and negatively with left atrium diameter and left ventricle telesystolic diameter. Galectin 3 values were negatively correlated with aortic valve fibrosis and mitral valve calcifications, and human suppression tumorigenicity factor 2 was negatively correlated with mitral valve calcifications. Some of these novel biomarkers could be used to better assess cardiovascular disease in patients on maintenance hemodialysis.
Collapse
Affiliation(s)
- Lazar Chisavu
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine ‘Victor Babes’, 300041 Timisoara, Romania; (L.C.); (V.M.I.); (F.C.); (L.M.); (F.B.); (A.S.)
- Department of Internal Medicine II–Division of Nephrology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Viviana Mihaela Ivan
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine ‘Victor Babes’, 300041 Timisoara, Romania; (L.C.); (V.M.I.); (F.C.); (L.M.); (F.B.); (A.S.)
- Department of Internal Medicine II–Division of Cardiology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Adelina Mihaescu
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine ‘Victor Babes’, 300041 Timisoara, Romania; (L.C.); (V.M.I.); (F.C.); (L.M.); (F.B.); (A.S.)
- Department of Internal Medicine II–Division of Nephrology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Flavia Chisavu
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine ‘Victor Babes’, 300041 Timisoara, Romania; (L.C.); (V.M.I.); (F.C.); (L.M.); (F.B.); (A.S.)
- Louis Turcanu’ Emergency County Hospital for Children, 300011 Timisoara, Romania
| | | | - Luciana Marc
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine ‘Victor Babes’, 300041 Timisoara, Romania; (L.C.); (V.M.I.); (F.C.); (L.M.); (F.B.); (A.S.)
- Department of Internal Medicine II–Division of Nephrology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Flaviu Bob
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine ‘Victor Babes’, 300041 Timisoara, Romania; (L.C.); (V.M.I.); (F.C.); (L.M.); (F.B.); (A.S.)
- Department of Internal Medicine II–Division of Nephrology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Adalbert Schiller
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine ‘Victor Babes’, 300041 Timisoara, Romania; (L.C.); (V.M.I.); (F.C.); (L.M.); (F.B.); (A.S.)
- Department of Internal Medicine II–Division of Nephrology, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
4
|
Curaj A, Vanholder R, Loscalzo J, Quach K, Wu Z, Jankowski V, Jankowski J. Cardiovascular Consequences of Uremic Metabolites: an Overview of the Involved Signaling Pathways. Circ Res 2024; 134:592-613. [PMID: 38422175 DOI: 10.1161/circresaha.123.324001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The crosstalk of the heart with distant organs such as the lung, liver, gut, and kidney has been intensively approached lately. The kidney is involved in (1) the production of systemic relevant products, such as renin, as part of the most essential vasoregulatory system of the human body, and (2) in the clearance of metabolites with systemic and organ effects. Metabolic residue accumulation during kidney dysfunction is known to determine cardiovascular pathologies such as endothelial activation/dysfunction, atherosclerosis, cardiomyocyte apoptosis, cardiac fibrosis, and vascular and valvular calcification, leading to hypertension, arrhythmias, myocardial infarction, and cardiomyopathies. However, this review offers an overview of the uremic metabolites and details their signaling pathways involved in cardiorenal syndrome and the development of heart failure. A holistic view of the metabolites, but more importantly, an exhaustive crosstalk of their known signaling pathways, is important for depicting new therapeutic strategies in the cardiovascular field.
Collapse
Affiliation(s)
- Adelina Curaj
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Raymond Vanholder
- Department of Internal Medicine and Pediatrics, Nephrology Section, University Hospital, Ghent, Belgium (R.V.)
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.L.)
| | - Kaiseng Quach
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Zhuojun Wu
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Vera Jankowski
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
| | - Joachim Jankowski
- Institute of Molecular Cardiovascular Research, RWTH Aachen University, Germany (A.C., K.Q., Z.W., V.J., J.J.)
- Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht, University of Maastricht, the Netherlands (J.J.)
- Aachen-Maastricht Institute for Cardiorenal Disease, RWTH Aachen University, Aachen, Germany (J.J.)
| |
Collapse
|
5
|
Sanz-Gómez M, Manzano-Lista FJ, Vega-Martín E, González-Moreno D, Alcalá M, Gil-Ortega M, Somoza B, Pizzamiglio C, Ruilope LM, Aránguez I, Kolkhof P, Kreutz R, Fernández-Alfonso MS. Finerenone protects against progression of kidney and cardiovascular damage in a model of type 1 diabetes through modulation of proinflammatory and osteogenic factors. Biomed Pharmacother 2023; 168:115661. [PMID: 37832406 DOI: 10.1016/j.biopha.2023.115661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
The non-steroidal mineralocorticoid receptor antagonist (MRA) finerenone (FIN) improves kidney and cardiovascular outcomes in patients with chronic kidney disease (CKD) in type 2 diabetes (T2D). We explored the effect of FIN in a novel model of type 1 diabetic Munich Wistar Frömter (MWF) rat (D) induced by injection of streptozotocin (15 mg/kg) and additional exposure to a high-fat/high-sucrose diet. Oral treatment with FIN (10 mg/kg/day in rat chow) in diabetic animals (D-FIN) was compared to a group of D rats receiving no treatment and a group of non-diabetic untreated MWF rats (C) (n = 7-10 animals per group). After 6 weeks, D and D-FIN exhibited significantly elevated blood glucose levels (271.7 ± 67.1 mg/dl and 266.3 ± 46.8 mg/dl) as compared to C (110.3 ± 4.4 mg/dl; p < 0.05). D showed a 10-fold increase of kidney damage markers Kim-1 and Ngal which was significantly suppressed in D-FIN. Blood pressure, pulse wave velocity (PWV) and arterial collagen deposition were lower in D-FIN, associated to an improvement in endothelial function due to a reduction in pro-contractile prostaglandins, as well as reactive oxygen species (ROS) and inflammatory cytokines (IL-1, IL-6, TNFα and TGFβ) in perivascular and perirenal adipose tissue (PVAT and PRAT, respectively). In addition, FIN restored the imbalance observed in CKD between the procalcifying BMP-2 and the nephroprotective BMP-7 in plasma, kidney, PVAT, and PRAT. Our data show that treatment with FIN improves kidney and vascular damage in a new rat model of DKD with T1D associated with a reduction in inflammation, fibrosis and osteogenic factors independently from changes in glucose homeostasis.
Collapse
Affiliation(s)
- M Sanz-Gómez
- Instituto Pluridisciplinar and Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | - F J Manzano-Lista
- Instituto Pluridisciplinar and Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | - E Vega-Martín
- Instituto Pluridisciplinar and Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | - D González-Moreno
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, CEU Universities, 28925 Madrid, Spain
| | - M Alcalá
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad CEU-San Pablo, CEU Universities, 28925 Madrid, Spain
| | - M Gil-Ortega
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, CEU Universities, 28925 Madrid, Spain
| | - B Somoza
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, CEU Universities, 28925 Madrid, Spain
| | - C Pizzamiglio
- Instituto Pluridisciplinar and Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | - L M Ruilope
- Unidad de Hipertensión, Instituto de Investigación Imas12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - I Aránguez
- Instituto Pluridisciplinar and Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | - P Kolkhof
- Cardiovascular Precision Medicines, Research & Early Development, Pharmaceuticals, Bayer AG, Wuppertal, Germany
| | - R Kreutz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Clinical Pharmacology and Toxicology, Germany.
| | - M S Fernández-Alfonso
- Instituto Pluridisciplinar and Facultad de Farmacia, Universidad Complutense de Madrid, Spain.
| |
Collapse
|
6
|
Dai Z, Zhang X. Pathophysiology and Clinical Impacts of Chronic Kidney Disease on Coronary Artery Calcification. J Cardiovasc Dev Dis 2023; 10:jcdd10050207. [PMID: 37233174 DOI: 10.3390/jcdd10050207] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
The global prevalence of chronic kidney disease (CKD) has increased in recent years. Adverse cardiovascular events have become the main cause of life-threatening events in patients with CKD, and vascular calcification is a risk factor for cardiovascular disease. Vascular calcification, especially coronary artery calcification, is more prevalent, severe, rapidly progressive, and harmful in patients with CKD. Some features and risk factors are unique to vascular calcification in patients with CKD; the formation of vascular calcification is not only influenced by the phenotypic transformation of vascular smooth muscle cells, but also by electrolyte and endocrine dysfunction, uremic toxin accumulation, and other novel factors. The study on the mechanism of vascular calcification in patients with renal insufficiency can provide a basis and new target for the prevention and treatment of this disease. This review aims to illustrate the impact of CKD on vascular calcification and to discuss the recent research data on the pathogenesis and factors involved in vascular calcification, mainly focusing on coronary artery calcification, in patients with CKD.
Collapse
Affiliation(s)
- Zhuoming Dai
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xiangyu Zhang
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| |
Collapse
|
7
|
Hevilla F, Padial M, Blanca M, Barril G, Jiménez-Salcedo T, Ramirez-Ortiz M, Nogueira Á, Gentile A, García-Escobar E, Romero-Zerbo SY, Olveira G. Effect on nutritional status and biomarkers of inflammation and oxidation of an oral nutritional supplement (with or without probiotics) in malnourished hemodialysis patients. A multicenter randomized clinical trial "Renacare Trial". Front Nutr 2023; 10:1107869. [PMID: 36819685 PMCID: PMC9936863 DOI: 10.3389/fnut.2023.1107869] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/03/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Malnutrition in patients undergoing hemodialysis is frequent and associated with a reduction in muscular mass and strength, with an increment in biomarkers of inflammation and oxidation. MATERIALS AND METHODS Randomized, multicenter, parallel-group trial in malnourished hemodialysis patients with three groups [(1) control (C) individualized diet, (2) oral nutritional supplement-ONS- + placebo-SU- PL-, and (3) ONS + probiotics-SU-PR]; the trial was open regarding the intake of ONS or individualized diet recommendations, but double-blind for the intake of probiotics. We obtained, at baseline and after 3 and 6 months, anthropometric measurements, handgrip strength, bioelectrical impedance analysis (BIA), dietary records, and routine biochemical parameters. Inflammation and oxidation were determined using ELISA techniques (Versamax and ProcartaPlex multiplex Immunoassay). Results were analyzed by intention to treat. RESULTS A total of 31 patients (11 corresponding to group C, 10 to SU-PL, and 10 to SU-PR) completed the 6-months trial. The two groups that took supplements significantly increased their protein calorie, fat (total and n-3), and fiber intake. Weight and fat-free mass (FFM) also increased significantly in the groups on supplements, both at 3 and 6 months, and dynamometry did so in the SU-PL group. At month 3, prealbumin and vitamin D were significantly increased in the SU-TOT (SU-PL + SU-PR) group. No changes were observed regarding levels of phosphorus and potassium in any of the groups. Urea increased significantly at 6 months in the SU-PL group. There were significant changes in some inflammation biomarkers in the groups on supplements during the intervention (brain-derived neurotrophic factor, bone morphogenetic protein-2, MCP-1, IL-1-beta, IL-10, IL-4, and IL-8). The total antioxidant capacity (TAC) increased significantly in the supplemented patients, with no significant changes observed in isoprostanes. CONCLUSION The specific ONS improved protein-calorie intake, nutritional status (mainly FFM), and some biomarkers of inflammation/oxidation. The addition of probiotics could have a synergistic effect with ONS in such biomarkers. CLINICAL TRAIL REGISTRATION https://clinicaltrials.gov/ct2/show/, identifier NCT03924089.
Collapse
Affiliation(s)
- Francisco Hevilla
- Servicio de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga–Plataforma BIONAND, Hospital Regional Universitario de Málaga, Málaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, Málaga, Spain
| | - Marina Padial
- Servicio de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga–Plataforma BIONAND, Hospital Regional Universitario de Málaga, Málaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, Málaga, Spain
| | - María Blanca
- Servicio de Endocrinología y Nutrición, Hospital Universitario Rey Juan Carlos, Madrid, Spain
| | | | | | - Mercedes Ramirez-Ortiz
- Servicio de Endocrinología y Nutrición, Hospital Universitario Rey Juan Carlos, Madrid, Spain
| | - Ángel Nogueira
- Servicio de Nefrología, Hospital de la Princesa, Madrid, Spain
| | - Adriana Gentile
- Servicio de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga–Plataforma BIONAND, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Eva García-Escobar
- Servicio de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga–Plataforma BIONAND, Hospital Regional Universitario de Málaga, Málaga, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Málaga, Spain
| | - Silvana Y. Romero-Zerbo
- Servicio de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga–Plataforma BIONAND, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Gabriel Olveira
- Servicio de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga–Plataforma BIONAND, Hospital Regional Universitario de Málaga, Málaga, Spain
- Departamento de Medicina y Dermatología, Universidad de Málaga, Málaga, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Málaga, Spain
| |
Collapse
|
8
|
Imbalance in Bone Morphogenic Proteins 2 and 7 Is Associated with Renal and Cardiovascular Damage in Chronic Kidney Disease. Int J Mol Sci 2022; 24:ijms24010040. [PMID: 36613483 PMCID: PMC9820638 DOI: 10.3390/ijms24010040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 12/24/2022] Open
Abstract
Arterial stiffness is a major vascular complication of chronic kidney disease (CKD). The development of renal damage, hypertension, and increased pulse wave velocity (PWV) in CKD might be associated with an imbalance in bone morphogenetic proteins (BMP)-2 and BMP-7. Plasma BMP-2 and BMP-7 were determined by ELISA in CKD patients (stages I-III; n = 95) and Munich Wistar Frömter (MWF) rats. Age-matched Wistar rats were used as a control. The expression of BMP-2, BMP-7, and profibrotic and calcification factors was determined in kidney and perivascular adipose tissues (PVAT). BMP-2 was higher in stage III CKD patients compared to control subjects. BMP-7 was lower at any CKD stage compared to controls, with a significant further reduction in stage III patients. A similar imbalance was observed in MWF rats together with the increase in systolic (SBP) and diastolic blood pressure (DBP), or pulse wave velocity (PWV). MWF exhibited elevated urinary albumin excretion (UAE) and renal expression of BMP-2 or kidney damage markers, Kim-1 and Ngal, whereas renal BMP-7 was significantly lower than in Wistar rats. SBP, DBP, PWV, UAE, and plasma creatinine positively correlated with the plasma BMP-2/BMP-7 ratio. Periaortic and mesenteric PVAT from MWF rats showed an increased expression of BMP-2 and profibrotic and calcification markers compared to Wistar rats, together with a reduced BMP-7 expression. BMP-2 and BMP-7 imbalance in plasma, kidney, and PVATs is associated with vascular damage, suggesting a profibrotic/pro-calcifying propensity associated with progressive CKD. Thus, their combined analysis stratified by CKD stages might be of clinical interest to provide information about the degree of renal and vascular damage in CKD.
Collapse
|
9
|
Kaur R, Singh R. Mechanistic insights into CKD-MBD-related vascular calcification and its clinical implications. Life Sci 2022; 311:121148. [DOI: 10.1016/j.lfs.2022.121148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/22/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
10
|
Vinchi F. Non-Transferrin-Bound Iron in the Spotlight: Novel Mechanistic Insights into the Vasculotoxic and Atherosclerotic Effect of Iron. Antioxid Redox Signal 2021; 35:387-414. [PMID: 33554718 PMCID: PMC8328045 DOI: 10.1089/ars.2020.8167] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/06/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
Significance: While atherosclerosis is an almost inevitable consequence of aging, food preferences, lack of exercise, and other aspects of the lifestyle in many countries, the identification of new risk factors is of increasing importance to tackle a disease, which has become a major health burden for billions of people. Iron has long been suspected to promote the development of atherosclerosis, but data have been conflicting, and the contribution of iron is still debated controversially. Recent Advances: Several experimental and clinical studies have been recently published about this longstanding controversial problem, highlighting the critical need to unravel the complexity behind this topic. Critical Issues: The aim of the current review is to provide an overview of the current knowledge about the proatherosclerotic impact of iron, and discuss the emerging role of non-transferrin-bound iron (NTBI) as driver of vasculotoxicity and atherosclerosis. Finally, I will provide detailed mechanistic insights on the cellular processes and molecular pathways underlying iron-exacerbated atherosclerosis. Overall, this review highlights a complex framework where NTBI acts at multiple levels in atherosclerosis by altering the serum and vascular microenvironment in a proatherogenic and proinflammatory manner, affecting the functionality and survival of vascular cells, promoting foam cell formation and inducing angiogenesis, calcification, and plaque destabilization. Future Directions: The use of additional iron markers (e.g., NTBI) may help adequately predict predisposition to cardiovascular disease. Clinical studies are needed in the aging population to address the atherogenic role of iron fluctuations within physiological limits and the therapeutic value of iron restriction approaches. Antioxid. Redox Signal. 35, 387-414.
Collapse
Affiliation(s)
- Francesca Vinchi
- Iron Research Program, Lindsley F. Kimball Research Institute (LFKRI), New York Blood Center (NYBC), New York, New York, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, Cornell University, New York, New York, USA
| |
Collapse
|
11
|
López-Baltanás R, Encarnación Rodríguez-Ortiz M, Canalejo A, Díaz-Tocados JM, Herencia C, Leiva-Cepas F, Torres-Peña JD, Ortíz-Morales A, Muñoz-Castañeda JR, Rodríguez M, Almadén Y. Magnesium supplementation reduces inflammation in rats with induced chronic kidney disease. Eur J Clin Invest 2021; 51:e13561. [PMID: 33870500 DOI: 10.1111/eci.13561] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/13/2021] [Accepted: 03/29/2021] [Indexed: 01/27/2023]
Abstract
BACKGROUND Inflammation is a common feature in chronic kidney disease (CKD) that appears specifically associated with cardiovascular derangements in CKD patients. Observational studies have revealed a link between low Mg levels and inflammation. In this study, we hypothesize that Mg might have a modulatory effect on the inflammation induced under the uraemic milieu. METHODS In vivo studies were performed in a 5/6 nephrectomized rat model of CKD. Furthermore, a possible direct effect of Mg was addressed through in vitro studies with vascular smooth muscle cells (VSMCs). RESULTS Uraemic rats fed a normal (0.1%) Mg diet showed a systemic inflammatory response evidenced by the elevation in plasma of the pro-inflammatory cytokines TNF-α, IL-1β and IL-6, and GPx activity, a marker of oxidative stress. Importantly, an increased expression of these cytokines in the aortic tissue was also observed. In contrast, a dietary Mg supplementation (0.6%) greatly prevented the oxidative stress and the pro-inflammatory response. In vitro, in VSMCs cultured in a pro-inflammatory high phosphate medium, incubation with Mg 1.6 mM inhibited the increase in the production of ROS, the rise in the expression of TNF-α, IL-1β, IL-6 and IL-8 and the activation of NF-κB signalling that was observed in cells incubated with a normal (0.8 mM) Mg. CONCLUSION Mg supplementation reduced inflammation associated with CKD, exerting a direct effect on vascular cells. These findings support a possible beneficial effect of Mg supplementation along the clinical management of CKD patients.
Collapse
Affiliation(s)
- Rodrigo López-Baltanás
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital/University of Cordoba, Córdoba, Spain
| | - Maria Encarnación Rodríguez-Ortiz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital/University of Cordoba, Córdoba, Spain.,Red Nacional de Investigación en Nefrología (REDinREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Canalejo
- Department of Integrated Sciences/Research Center RENSMA, University of Huelva, Huelva, Spain
| | - Juan M Díaz-Tocados
- Biomedical Research Institute of Lleida (IRBLleida), Vascular and Renal Translational Research Group, Arnau de Vilanova University Hospital, Lleida, Spain.,Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Carmen Herencia
- Renal, Vascular and Diabetes Research Laboratory, Fundación Instituto de Investigaciones Sanitarias-Fundación Jiménez Díaz,, Universidad Autónoma de Madrid, Madrid, Spain
| | - Fernando Leiva-Cepas
- UGC de Anatomía Patología del Hospital Universitario Reina Sofía de Córdoba, Córdoba, Spain.,Departamento de Ciencias Morfológicas y Ciencias Sociosanitarias, Facultad de Medicina y Enfermería, Universidad de Córdoba, Córdoba, Spain
| | - José D Torres-Peña
- Lipid and Atherosclerosis Unit, Department of Internal Medicine, IMIBIC/Reina Sofia University Hospital/University of Cordoba, Córdoba, Spain.,CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Ortíz-Morales
- Lipid and Atherosclerosis Unit, Department of Internal Medicine, IMIBIC/Reina Sofia University Hospital/University of Cordoba, Córdoba, Spain.,CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Rafael Muñoz-Castañeda
- Red Nacional de Investigación en Nefrología (REDinREN), Instituto de Salud Carlos III, Madrid, Spain.,Instituto Maimonides de Investigacion Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital/University of Cordoba, Unidad de Gestión Clinica Nefrología, Córdoba, Spain
| | - Mariano Rodríguez
- Red Nacional de Investigación en Nefrología (REDinREN), Instituto de Salud Carlos III, Madrid, Spain.,Instituto Maimonides de Investigacion Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital/University of Cordoba, Unidad de Gestión Clinica Nefrología, Córdoba, Spain
| | - Yolanda Almadén
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,Unidad de Gestión Clinica Medicina Interna, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital/University of Cordoba, Córdoba, Spain
| |
Collapse
|
12
|
The BMP Pathway in Blood Vessel and Lymphatic Vessel Biology. Int J Mol Sci 2021; 22:ijms22126364. [PMID: 34198654 PMCID: PMC8232321 DOI: 10.3390/ijms22126364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) were originally identified as the active components in bone extracts that can induce ectopic bone formation. In recent decades, their key role has broadly expanded beyond bone physiology and pathology. Nowadays, the BMP pathway is considered an important player in vascular signaling. Indeed, mutations in genes encoding different components of the BMP pathway cause various severe vascular diseases. Their signaling contributes to the morphological, functional and molecular heterogeneity among endothelial cells in different vessel types such as arteries, veins, lymphatic vessels and capillaries within different organs. The BMP pathway is a remarkably fine-tuned pathway. As a result, its signaling output in the vessel wall critically depends on the cellular context, which includes flow hemodynamics, interplay with other vascular signaling cascades and the interaction of endothelial cells with peri-endothelial cells and the surrounding matrix. In this review, the emerging role of BMP signaling in lymphatic vessel biology will be highlighted within the framework of BMP signaling in the circulatory vasculature.
Collapse
|
13
|
Woodward HJ, Zhu D, Hadoke PWF, MacRae VE. Regulatory Role of Sex Hormones in Cardiovascular Calcification. Int J Mol Sci 2021; 22:4620. [PMID: 33924852 PMCID: PMC8125640 DOI: 10.3390/ijms22094620] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
Sex differences in cardiovascular disease (CVD), including aortic stenosis, atherosclerosis and cardiovascular calcification, are well documented. High levels of testosterone, the primary male sex hormone, are associated with increased risk of cardiovascular calcification, whilst estrogen, the primary female sex hormone, is considered cardioprotective. Current understanding of sexual dimorphism in cardiovascular calcification is still very limited. This review assesses the evidence that the actions of sex hormones influence the development of cardiovascular calcification. We address the current question of whether sex hormones could play a role in the sexual dimorphism seen in cardiovascular calcification, by discussing potential mechanisms of actions of sex hormones and evidence in pre-clinical research. More advanced investigations and understanding of sex hormones in calcification could provide a better translational outcome for those suffering with cardiovascular calcification.
Collapse
Affiliation(s)
- Holly J. Woodward
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK;
| | - Dongxing Zhu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Patrick W. F. Hadoke
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK;
| | - Victoria E. MacRae
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK;
| |
Collapse
|
14
|
Turner ME, White CA, Taylor SM, Neville K, Rees-Milton K, Hopman WM, Adams MA, Anastassiades T, Holden RM. Secreted Phosphoprotein 24 is a Biomarker of Mineral Metabolism. Calcif Tissue Int 2021; 108:354-363. [PMID: 33481052 DOI: 10.1007/s00223-020-00783-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/26/2020] [Indexed: 11/29/2022]
Abstract
The 24 kD form of secreted phosphoprotein (SPP-24), a cytokine-binding bone matrix protein with various truncated C-terminal products, is primarily synthesized by the liver. SPP-24 shares homology with fetuin-A, a potent vascular and soft tissue calcification inhibitor and SPP-24 is one component of calciprotein particles (CPPs), a circulating fetuin-mineral complex. The limited molecular evidence to date suggests that SPP-24 may also function as an inhibitor of bone formation and ectopic vascular calcification, potentially through bone morphogenic protein 2 (BMP-2) and Wnt-signaling mediated actions. The C-terminal products of SPP-24 bind to BMP-2 and attenuate BMP-2-induced bone formation. The aim of this study was to assess circulating SPP-24 in relation to kidney function and in concert with markers of mineral metabolism in humans. SPP-24 was measured in the serum of total of 192 subjects using ELISA-based measurements. Subjects were participants of one of two cohorts: (1) mGFR Cohort (n = 80) was participants of a study of measured GFR (mGFR) using inulin urinary clearance, recruited mostly from a chronic kidney disease clinic with low-range kidney function (eGFR 38.7 ± 25.0 mL/min/1.73 m2) and (2) CaMOS Cohort (n = 112) was a subset of randomly selected, community-dwelling participants of year 10 of the Canadian Multicentre Osteoporosis Study with eGFR in the normal range of 75.0 ± 15.9 mL/min/1.73 m2. In the combined cohort, the mean SPP-24 was 167.7 ± 101.1 ng/mL (range 33.4-633.6 ng/mL). The mean age was 66.5 ± 11.3, 57.1% female and mean eGFR (CKD-EPI) was 59.9 ± 27.0 mL/min/1.73 m2 (range 8-122 mL/min/1.73 m2). There was a strong inverse correlation between SPP-24 and eGFR (R = - 0.58, p < 0.001) that remained after adjustment for age. Following adjustment for age, eGFR, and sex, SPP-24 was significantly associated with phosphate (R = - 0.199), PTH (R = 0.298), and the Wnt-signaling inhibitor Dickkopf-related protein 1 (R = - 0.156). The results of this study indicate that SPP-24 is significantly altered by kidney function and is the first human data linking levels of SPP-24 to other biomarkers involved in mineral metabolism. Whether there is a role for circulating SPP-24 in bone formation and ectopic mineralization requires further study.
Collapse
Affiliation(s)
- Mandy E Turner
- Department of Biomedical and Molecular Sciences, Queen's University, 3048C Etherington Hall, Kingston, ON, K7L 3V6, Canada
| | - Christine A White
- Department of Medicine, Queen's University, Kingston, ON, K7L 3V6, Canada
| | - Sarah M Taylor
- Department of Biomedical and Molecular Sciences, Queen's University, 3048C Etherington Hall, Kingston, ON, K7L 3V6, Canada
| | - Kathryn Neville
- Department of Biomedical and Molecular Sciences, Queen's University, 3048C Etherington Hall, Kingston, ON, K7L 3V6, Canada
| | - Karen Rees-Milton
- Department of Medicine, Queen's University, Kingston, ON, K7L 3V6, Canada
| | - Wilma M Hopman
- KGH Research Institute, Kingston Health Sciences Centre, Kingston, ON, K7L 3V6, Canada
- Department of Public Health Sciences, Queen's University, Kingston, ON, K7L 3V6, Canada
| | - Michael A Adams
- Department of Biomedical and Molecular Sciences, Queen's University, 3048C Etherington Hall, Kingston, ON, K7L 3V6, Canada
| | - Tassos Anastassiades
- Department of Biomedical and Molecular Sciences, Queen's University, 3048C Etherington Hall, Kingston, ON, K7L 3V6, Canada
- Department of Medicine, Queen's University, Kingston, ON, K7L 3V6, Canada
| | - Rachel M Holden
- Department of Biomedical and Molecular Sciences, Queen's University, 3048C Etherington Hall, Kingston, ON, K7L 3V6, Canada.
- Department of Medicine, Queen's University, Kingston, ON, K7L 3V6, Canada.
| |
Collapse
|
15
|
Yang P, Troncone L, Augur ZM, Kim SSJ, McNeil ME, Yu PB. The role of bone morphogenetic protein signaling in vascular calcification. Bone 2020; 141:115542. [PMID: 32736145 PMCID: PMC8185454 DOI: 10.1016/j.bone.2020.115542] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 01/10/2023]
Abstract
Vascular calcification is associated with atherosclerosis, chronic kidney disease, and diabetes, and results from processes resembling endochondral or intramembranous ossification, or from processes that are distinct from ossification. Bone morphogenetic proteins (BMP), as well as other ligands, receptors, and regulators of the transforming growth factor beta (TGFβ) family regulate vascular and valvular calcification by modulating the phenotypic plasticity of multipotent progenitor lineages associated with the vasculature or valves. While osteogenic ligands BMP2 and BMP4 appear to be both markers and drivers of vascular calcification, particularly in atherosclerosis, BMP7 may serve to protect against calcification in chronic kidney disease. BMP signaling regulators such as matrix Gla protein and BMP-binding endothelial regulator protein (BMPER) play protective roles in vascular calcification. The effects of BMP signaling molecules in vascular calcification are context-dependent, tissue-dependent, and cell-type specific. Here we review the current knowledge on mechanisms by which BMP signaling regulates vascular calcification and the potential therapeutic implications.
Collapse
Affiliation(s)
- Peiran Yang
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Luca Troncone
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zachary M Augur
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stephanie S J Kim
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Megan E McNeil
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Paul B Yu
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
16
|
The Phosphodiesterase-5 Inhibitor Vardenafil Improves the Activation of BMP Signaling in Response to Hydrogen Peroxide. Cardiovasc Drugs Ther 2020; 34:41-52. [PMID: 32096002 DOI: 10.1007/s10557-020-06939-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE The pleiotropic roles of phosphodiesterase-5 inhibitors (PDE5is) in cardiovascular diseases have attracted attention. The effect of vardenafil (a PDE5i) is partly mediated through reduced oxidative stress, but it is unclear whether vardenafil protects against hydrogen peroxide (H2O2)-induced endothelial cell injury, and the molecular mechanisms that are involved remain unknown. We determined the protective role of vardenafil on H2O2-induced endothelial cell injury in cultured human umbilical vein endothelial cells (HUVECs). METHODS AND RESULTS Vardenafil decreased the number of TUNEL-positive cells, increased the Bcl2/Bax ratio, and ameliorated the numbers of BrdU-positive cells in H2O2-treated HUVECs. The bone morphogenetic protein receptor (BMPR)/p-Smad/MSX2 pathway was enhanced in response to H2O2, and vardenafil treatment could normalize this pathway. To determine whether the BMP pathway is involved, we blocked the BMP pathway using dorsomorphin, which abolished the protective effects of vardenafil. We found that vardenafil improved the H2O2-induced downregulation of BMP-binding endothelial regulator protein (BMPER), which possibly intersects with the BMP pathway in the regulation of endothelial cell injury in response to oxidative stress. CONCLUSIONS We demonstrated for the first time that exogenous H2O2 activates BMPR expression and promotes Smad1/5/8 phosphorylation. Additionally, vardenafil can attenuate H2O2-induced endothelial cell injury in HUVECs. Vardenafil decreases apoptosis through an improved Bcl-2/Bax ratio and increases cell proliferation. Vardenafil protects against endothelial cell injury through ameliorating the intracellular oxidative stress level and BMPER expression. The protective role of vardenafil on H2O2-induced endothelial cell injury is mediated through BMPR/p-Smad/MSX2 in HUVECs.
Collapse
|
17
|
Regulation of Vascular Calcification by Reactive Oxygen Species. Antioxidants (Basel) 2020; 9:antiox9100963. [PMID: 33049989 PMCID: PMC7599480 DOI: 10.3390/antiox9100963] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/18/2022] Open
Abstract
Vascular calcification is the deposition of hydroxyapatite crystals in the medial or intimal layers of arteries that is usually associated with other pathological conditions including but not limited to chronic kidney disease, atherosclerosis and diabetes. Calcification is an active, cell-regulated process involving the phenotype transition of vascular smooth muscle cells (VSMCs) from contractile to osteoblast/chondrocyte-like cells. Diverse triggers and signal transduction pathways have been identified behind vascular calcification. In this review, we focus on the role of reactive oxygen species (ROS) in the osteochondrogenic phenotype switch of VSMCs and subsequent calcification. Vascular calcification is associated with elevated ROS production. Excessive ROS contribute to the activation of certain osteochondrogenic signal transduction pathways, thereby accelerating osteochondrogenic transdifferentiation of VSMCs. Inhibition of ROS production and ROS scavengers and activation of endogenous protective mechanisms are promising therapeutic approaches in the prevention of osteochondrogenic transdifferentiation of VSMCs and subsequent vascular calcification. The present review discusses the formation and actions of excess ROS in different experimental models of calcification, and the potential of ROS-lowering strategies in the prevention of this deleterious condition.
Collapse
|
18
|
Esposito P, Verzola D, La Porta E, Milanesi S, Grignano MA, Avella A, Gregorini M, Abelli M, Ticozzelli E, Rampino T, Garibotto G. Myostatin in the Arterial Wall of Patients with End-Stage Renal Disease. J Atheroscler Thromb 2020; 27:1039-1052. [PMID: 32173683 PMCID: PMC7585912 DOI: 10.5551/jat.51144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 12/10/2019] [Indexed: 02/05/2023] Open
Abstract
AIM Myostatin (Mstn) has been described as a trigger for the progression of atherosclerosis. In this study, we evaluated the role of Mstn in arterial remodeling in patients with end-stage renal disease (ESRD). METHODS Vascular specimens were collected from 16 ESRD patients (56.4±7.9 years) undergoing renal transplant (recipients) and 15 deceased kidney non-uremic donors (55.4±12.1 years). We studied gene and protein expression of Mstn, ubiquitin ligases, Atrogin-1, and muscle ring finger protein-1 (MuRF-1), inflammatory marker CCL2, cytoskeleton components, and Klotho by reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. Moreover, we assessed vascular calcification and collagen deposition. Finally, we studied the effects of recombinant Mstn on rat vascular smooth muscle cells (VSMCs, A7r5) and evaluated the effects of uremic serum (US) on primary human VSMCs. RESULTS Myostatin mRNA was upregulated in the arterial vascular wall of recipients compared with donors (~15- folds, p<0.05). This response was accompanied by the upregulation of gene expression of Atrogin-1 and MuRF-1 (+2.5- and +10-fold) and CCL2 (+3-fold). Conversely, we found downregulation of protein expression of Smoothelin, α-smooth muscle actin (α-SMA), vimentin, and Klotho (-85%, -50%, -70%, and -80%, respectively; p<0.05) and gene expression of vimentin and Klotho. Exposition of A7r5 to Mstn induced a time-dependent SMAD 2/SMAD 3 phosphorylation and expression of collagen-1 and transforming growth factor β (TGFβ) mRNA, while US induced overexpression of Mstn and Atrogin-1 and downregulation of Smoothelin and Klotho. CONCLUSIONS Our data suggest that uremia might induce vascular Mstn gene expression together with a complex pathway of molecular and structural changes in the vascular wall. Myostatin, in turn, can translate the metabolic alterations of uremia into profibrotic and stiffness inducing signals.
Collapse
Affiliation(s)
- Pasquale Esposito
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, and University of Pavia, Pavia, Italy
- Department of Internal Medicine, Nephrology, Dialysis and Transplantation Clinics, Genoa University and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Daniela Verzola
- Department of Internal Medicine, Nephrology, Dialysis and Transplantation Clinics, Genoa University and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Edoardo La Porta
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, and University of Pavia, Pavia, Italy
- Department of Internal Medicine, Nephrology, Dialysis and Transplantation Clinics, Genoa University and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Samantha Milanesi
- Department of Internal Medicine, Nephrology, Dialysis and Transplantation Clinics, Genoa University and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Maria Antonietta Grignano
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, and University of Pavia, Pavia, Italy
| | - Alessandro Avella
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, and University of Pavia, Pavia, Italy
| | - Marilena Gregorini
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, and University of Pavia, Pavia, Italy
| | - Massimo Abelli
- Service of Surgery, University of Pavia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elena Ticozzelli
- Service of Surgery, University of Pavia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Teresa Rampino
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, and University of Pavia, Pavia, Italy
| | - Giacomo Garibotto
- Department of Internal Medicine, Nephrology, Dialysis and Transplantation Clinics, Genoa University and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
19
|
Hiepen C, Mendez PL, Knaus P. It Takes Two to Tango: Endothelial TGFβ/BMP Signaling Crosstalk with Mechanobiology. Cells 2020; 9:E1965. [PMID: 32858894 PMCID: PMC7564048 DOI: 10.3390/cells9091965] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 02/06/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-beta (TGFβ) superfamily of cytokines. While some ligand members are potent inducers of angiogenesis, others promote vascular homeostasis. However, the precise understanding of the molecular mechanisms underlying these functions is still a growing research field. In bone, the tissue in which BMPs were first discovered, crosstalk of TGFβ/BMP signaling with mechanobiology is well understood. Likewise, the endothelium represents a tissue that is constantly exposed to multiple mechanical triggers, such as wall shear stress, elicited by blood flow or strain, and tension from the surrounding cells and to the extracellular matrix. To integrate mechanical stimuli, the cytoskeleton plays a pivotal role in the transduction of these forces in endothelial cells. Importantly, mechanical forces integrate on several levels of the TGFβ/BMP pathway, such as receptors and SMADs, but also global cell-architecture and nuclear chromatin re-organization. Here, we summarize the current literature on crosstalk mechanisms between biochemical cues elicited by TGFβ/BMP growth factors and mechanical cues, as shear stress or matrix stiffness that collectively orchestrate endothelial function. We focus on the different subcellular compartments in which the forces are sensed and integrated into the TGFβ/BMP growth factor signaling.
Collapse
Affiliation(s)
| | | | - Petra Knaus
- Knaus-Lab/Signal Transduction, Institute for Chemistry and Biochemistry, Freie Universitaet Berlin, 14195 Berlin, Germany; (C.H.); (P.-L.M.)
| |
Collapse
|
20
|
Takase N, Inden M, Hirai S, Yamada Y, Kurita H, Takeda M, Yamaguchi E, Itoh A, Hozumi I. The Novel gem-Dihydroperoxide 12AC3O Suppresses High Phosphate-Induced Calcification via Antioxidant Effects in p53LMAco1 Smooth Muscle Cells. Int J Mol Sci 2020; 21:E4628. [PMID: 32610684 PMCID: PMC7369805 DOI: 10.3390/ijms21134628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/25/2020] [Accepted: 06/28/2020] [Indexed: 11/28/2022] Open
Abstract
The excessive intake of phosphate (Pi), or chronic kidney disease (CKD), can cause hyperphosphatemia and eventually lead to ectopic calcification, resulting in cerebrovascular diseases. It has been reported that reactive oxygen species (ROS), induced by high concentrations of Pi loading, play a key role in vascular calcification. Therefore, ROS suppression may be a useful treatment strategy for vascular calcification. 12AC3O is a newly synthesized gem-dihydroperoxide (DHP) that has potent antioxidant effects. In the present study, we investigated whether 12AC3O inhibited vascular calcification via its antioxidative capacity. To examine whether 12AC3O prevents vascular calcification under high Pi conditions, we performed Alizarin red and von Kossa staining, using the mouse aortic smooth muscle cell line p53LMAco1. Additionally, the effect of 12AC3O against oxidative stress, induced by high concentrations of Pi loading, was investigated using redox- sensitive dyes. Further, the direct trapping effect of 12AC3O on reactive oxygen species (ROS) was investigated by ESR analysis. Although high concentrations of Pi loading exacerbated vascular smooth muscle calcification, calcium deposition was suppressed by the treatment of both antioxidants and 12AC3O, suggesting that the suppression of ROS may be a candidate therapeutic approach for treating vascular calcification induced by high concentrations of Pi loading. Importantly, 12AC3O also attenuated oxidative stress. Furthermore, 12AC3O directly trapped superoxide anion and hydroxyl radical. These results suggest that ROS are closely involved in high concentrations of Pi-induced vascular calcification and that 12AC3O inhibits vascular calcification by directly trapping ROS.
Collapse
MESH Headings
- Animals
- Antioxidants/pharmacology
- Calcification, Physiologic/drug effects
- Cell Line
- Cells, Cultured
- Mice
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Oxidation-Reduction/drug effects
- Oxidative Stress/drug effects
- Peroxides/pharmacology
- Reactive Oxygen Species/metabolism
- Vascular Calcification/drug therapy
- Vascular Calcification/metabolism
Collapse
Affiliation(s)
- Naoko Takase
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, 1-1-1 Gifu 501-1196, Japan; (N.T.); (M.I.); (S.H.); (Y.Y.); (H.K.)
| | - Masatoshi Inden
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, 1-1-1 Gifu 501-1196, Japan; (N.T.); (M.I.); (S.H.); (Y.Y.); (H.K.)
| | - Shunsuke Hirai
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, 1-1-1 Gifu 501-1196, Japan; (N.T.); (M.I.); (S.H.); (Y.Y.); (H.K.)
| | - Yumeka Yamada
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, 1-1-1 Gifu 501-1196, Japan; (N.T.); (M.I.); (S.H.); (Y.Y.); (H.K.)
| | - Hisaka Kurita
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, 1-1-1 Gifu 501-1196, Japan; (N.T.); (M.I.); (S.H.); (Y.Y.); (H.K.)
| | - Mitsumi Takeda
- Laboratory of Pharmaceuticals Synthetic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, 1-1-1 Gifu 501-1196, Japan; (M.T.); (E.Y.); (A.I.)
| | - Eiji Yamaguchi
- Laboratory of Pharmaceuticals Synthetic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, 1-1-1 Gifu 501-1196, Japan; (M.T.); (E.Y.); (A.I.)
| | - Akichika Itoh
- Laboratory of Pharmaceuticals Synthetic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, 1-1-1 Gifu 501-1196, Japan; (M.T.); (E.Y.); (A.I.)
| | - Isao Hozumi
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, 1-1-1 Gifu 501-1196, Japan; (N.T.); (M.I.); (S.H.); (Y.Y.); (H.K.)
| |
Collapse
|
21
|
Duer M, Cobb AM, Shanahan CM. DNA Damage Response: A Molecular Lynchpin in the Pathobiology of Arteriosclerotic Calcification. Arterioscler Thromb Vasc Biol 2020; 40:e193-e202. [PMID: 32404005 DOI: 10.1161/atvbaha.120.313792] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vascular calcification is a ubiquitous pathology of aging. Oxidative stress, persistent DNA damage, and senescence are major pathways driving both cellular and tissue aging, and emerging evidence suggests that these pathways are activated, and even accelerated, in patients with vascular calcification. The DNA damage response-a complex signaling platform that maintains genomic integrity-is induced by oxidative stress and is intimately involved in regulating cell death and osteogenic differentiation in both bone and the vasculature. Unexpectedly, a posttranslational modification, PAR (poly[ADP-ribose]), which is a byproduct of the DNA damage response, initiates biomineralization by acting to concentrate calcium into spheroidal structures that can nucleate apatitic mineral on the ECM (extracellular matrix). As we start to dissect the molecular mechanisms driving aging-associated vascular calcification, novel treatment strategies to promote healthy aging and delay pathological change are being unmasked. Drugs targeting the DNA damage response and senolytics may provide new avenues to tackle this detrimental and intractable pathology.
Collapse
Affiliation(s)
- Melinda Duer
- From the Department of Chemistry, University of Cambridge, United Kingdom (M.D.)
| | - Andrew M Cobb
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom (A.M.C., C.M.S.)
| | - Catherine M Shanahan
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, United Kingdom (A.M.C., C.M.S.)
| |
Collapse
|
22
|
Tani M, Tanaka S, Takamiya K, Sakaue M, Ito M. Effects of repetitive diet-induced fluctuations in plasma phosphorus on vascular calcification and inflammation in rats with early-stage chronic kidney disease. J Clin Biochem Nutr 2020; 66:139-145. [PMID: 32231410 DOI: 10.3164/jcbn.19-93] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/21/2019] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular disease is a major cause of death among hemodialysis patients. Hyperphosphatemia induces cardiovascular disease through vascular endothelial dysfunction and calcification. Repetition of a short-term excessive-phosphorus (P) diet causes transient elevations in plasma P and subsequent vascular endothelial dysfunction in normal rats. The purpose of this study was to investigate the effects of the P fluctuation on vascular calcification and inflammation in rats after unilateral nephrectomy as an early-stage chronic kidney disease (CKD) model. Rats were bred for 36 days; CP group, fed a control P (0.6%) diet; HP group, fed a high-P (1.2%) diet; and P fluctuation group, fed low-P (0.02%) and high-P diets alternately every 2 days. Influences on vascular calcification were analyzed using Von Kossa staining and measurement of vessel Ca content. The influence on inflammation was measured as urinary levels of 8-hydroxy-2'-deoxyguanosine. We demonstrated that the P fluctuation group showed similar vascular calcification and inflammation to the HP group, despite having the same total P intake as the CP group. A diet avoiding P fluctuations may be important for patients with early-stage CKD.
Collapse
Affiliation(s)
- Mariko Tani
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Sarasa Tanaka
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Kana Takamiya
- School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Motoyoshi Sakaue
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| | - Mikiko Ito
- Graduate School of Human Science and Environment, University of Hyogo, 1-1-12 Shinzaike-Honcho, Himeji, Hyogo 670-0092, Japan
| |
Collapse
|
23
|
Iwai T, Kataoka Y, Otsuka F, Asaumi Y, Nicholls SJ, Noguchi T, Yasuda S. Chronic kidney disease and coronary atherosclerosis: evidences from intravascular imaging. Expert Rev Cardiovasc Ther 2019; 17:707-716. [DOI: 10.1080/14779072.2019.1676150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Takamasa Iwai
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Yu Kataoka
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Fumiyuki Otsuka
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Yasuhide Asaumi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | | | - Teruo Noguchi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| |
Collapse
|
24
|
Sanchis P, Ho CY, Liu Y, Beltran LE, Ahmad S, Jacob AP, Furmanik M, Laycock J, Long DA, Shroff R, Shanahan CM. Arterial "inflammaging" drives vascular calcification in children on dialysis. Kidney Int 2019; 95:958-972. [PMID: 30827513 PMCID: PMC6684370 DOI: 10.1016/j.kint.2018.12.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 11/28/2018] [Accepted: 12/06/2018] [Indexed: 01/23/2023]
Abstract
Children on dialysis have a cardiovascular mortality risk equivalent to older adults in the general population, and rapidly develop medial vascular calcification, an age-associated pathology. We hypothesized that premature vascular ageing contributes to calcification in children with advanced chronic kidney disease (CKD). Vessels from children with Stage 5 CKD with and without dialysis had evidence of increased oxidative DNA damage. The senescence markers p16 and p21 were also increased in vessels from children on dialysis. Treatment of vessel rings ex vivo with calcifying media increased oxidative DNA damage in vessels from children with Stage 5 CKD, but not in those from healthy controls. Vascular smooth muscle cells cultured from children on dialysis exhibited persistent DNA damage, impaired DNA damage repair, and accelerated senescence. Under calcifying conditions vascular smooth muscle cells from children on dialysis showed increased osteogenic differentiation and calcification. These changes correlated with activation of the senescence-associated secretory phenotype (SASP), an inflammatory phenotype characterized by the secretion of proinflammatory cytokines and growth factors. Blockade of ataxia-telangiectasia mutated (ATM)-mediated DNA damage signaling reduced both inflammation and calcification. Clinically, children on dialysis had elevated circulating levels of osteogenic SASP factors that correlated with increased vascular stiffness and coronary artery calcification. These data imply that dysregulated mineral metabolism drives vascular "inflammaging" by promoting oxidative DNA damage, premature senescence, and activation of a pro-inflammatory SASP. Drugs that target DNA damage signaling or eliminate senescent cells may have the potential to prevent vascular calcification in patients with advanced CKD.
Collapse
Affiliation(s)
- Pilar Sanchis
- British Heart Foundation Centre of Excellence, Cardiovascular Division, King's College London, London, UK
| | - Chin Yee Ho
- British Heart Foundation Centre of Excellence, Cardiovascular Division, King's College London, London, UK
| | - Yiwen Liu
- British Heart Foundation Centre of Excellence, Cardiovascular Division, King's College London, London, UK
| | - Leilani E Beltran
- British Heart Foundation Centre of Excellence, Cardiovascular Division, King's College London, London, UK
| | - Sadia Ahmad
- British Heart Foundation Centre of Excellence, Cardiovascular Division, King's College London, London, UK
| | - Anne P Jacob
- British Heart Foundation Centre of Excellence, Cardiovascular Division, King's College London, London, UK
| | - Malgorzata Furmanik
- British Heart Foundation Centre of Excellence, Cardiovascular Division, King's College London, London, UK
| | - Joanne Laycock
- British Heart Foundation Centre of Excellence, Cardiovascular Division, King's College London, London, UK
| | - David A Long
- Developmental Biology and Cancer Programme, Great Ormond Street Hospital and University College London Institute of Child Health, London, UK
| | - Rukshana Shroff
- Nephrology Unit, Great Ormond Street Hospital and University College London Institute of Child Health, London, UK
| | - Catherine M Shanahan
- British Heart Foundation Centre of Excellence, Cardiovascular Division, King's College London, London, UK.
| |
Collapse
|
25
|
Pardali E, Makowski LM, Leffers M, Borgscheiper A, Waltenberger J. BMP-2 induces human mononuclear cell chemotaxis and adhesion and modulates monocyte-to-macrophage differentiation. J Cell Mol Med 2018; 22:5429-5438. [PMID: 30102472 PMCID: PMC6201342 DOI: 10.1111/jcmm.13814] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/07/2018] [Accepted: 06/29/2018] [Indexed: 12/25/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a cardiovascular risk factor which leads to atherosclerosis, an inflammatory disease characterized by the infiltration of mononuclear cells in the vessel. Bone morphogenetic protein (BMP)‐2 is a cytokine which has been recently shown to be elevated in atherosclerosis and T2DM and to contribute to vascular inflammation. However, the role of BMP‐2 in the regulation of mononuclear cell function remains to be established. Herein, we demonstrate that BMP‐2 induced human monocyte chemotaxis via phosphoinositide 3 kinase and mitogen‐activated protein kinases. Inhibition of endogenous BMP‐2 signalling, by Noggin or a BMP receptor inhibitor, interfered with monocyte migration. Although BMP‐2 expression was increased in monocytes from T2DM patients, it could still stimulate their migration. Furthermore, BMP‐2 interfered with their differentiation into M2 macrophages. Finally, BMP‐2 both induced the adhesion of monocytes to fibronectin and endothelial cells (ECs), and promoted the adhesive properties of ECs, by increasing expression of adhesion and pro‐inflammatory molecules. Our data demonstrate that BMP‐2 could exert its pro‐inflammatory effects by inducing monocyte migration and adhesiveness to ECs and by interfering with the monocyte differentiation into M2 macrophages. Our findings provide novel insights into the mechanisms by which BMP‐2 may contribute to the development of atherosclerosis.
Collapse
Affiliation(s)
- Evangelia Pardali
- Department of Cardiovascular Medicine, University Hospital of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany
| | - Lena-Maria Makowski
- Department of Cardiovascular Medicine, University Hospital of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany
| | - Merle Leffers
- Department of Cardiovascular Medicine, University Hospital of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany
| | - Andreas Borgscheiper
- Department of Cardiovascular Medicine, University Hospital of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany
| | - Johannes Waltenberger
- Department of Cardiovascular Medicine, University Hospital of Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003 - CiM), University of Münster, Münster, Germany
| |
Collapse
|
26
|
Zhang D, Bi X, Liu Y, Huang Y, Xiong J, Xu X, Xiao T, Yu Y, Jiang W, Huang Y, Zhang J, Zhang B, Zhao J. High Phosphate-Induced Calcification of Vascular Smooth Muscle Cells is Associated with the TLR4/NF-κb Signaling Pathway. Kidney Blood Press Res 2017; 42:1205-1215. [PMID: 29227975 DOI: 10.1159/000485874] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/30/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Hyperphosphatemia is one of the most notable features of chronic kidney disease (CKD). Numerous epidemiological and clinical studies have found that high serum phosphate concentrations are associated with calcification in the coronary arteries. However, the mechanisms underlying the vascular calcification induced by high phosphate have not been understood fully. METHODS Vascular smooth muscle cells (VSMCs) were cultured in high-phosphate media to induce vascular calcification, which was detected by Alizarin red S staining. Gene expression and protein levels of differentiation markers were determined by real-time RT-PCR and western blotting, respectively. Protein levels of phosphorylated NF-κB and TLR4 were detected by western blotting, and the role of NF-κB/TLR4 was further confirmed by using an NF-κB inhibitor or TLR4 siRNA. RESULTS Our results showed that high-phosphate media induced obvious calcification of VSMCs. Simultaneously, VSMC differentiation was confirmed by the increased expression of bone morphogenetic protein-2 and Runt-related transcription factor 2 and decreased expression of the VSMC-specific marker SM22α, which was accompanied by the increased expression of inflammatory cytokines. Moreover, a significant upregulation of TLR4 and phosphorylated NF-κB was also detected in VSMCs with high-phosphate media. In contrast, VSMC calcification and the increased expression of inflammatory cytokines were markedly attenuated by pretreatment with TLR4 siRNA and pyrrolidine dithiocarbamic acid, an NF-κB inhibitor. CONCLUSION These data suggest that high-phosphate conditions directly induce vascular calcification via the activation of TLR4/NF-κB signaling in VSMCs. Moreover, inhibition of the TLR4/NF-κB signaling pathway might be a key intervention to prevent vascular calcification in patients with CKD.
Collapse
|
27
|
High phosphate induces a pro-inflammatory response by vascular smooth muscle cells and modulation by vitamin D derivatives. Clin Sci (Lond) 2017; 131:1449-1463. [DOI: 10.1042/cs20160807] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 04/22/2017] [Accepted: 04/25/2017] [Indexed: 12/22/2022]
Abstract
In chronic kidney disease patients, high phosphate (HP) levels are associated with cardiovascular disease, the major cause of morbidity and mortality. Since serum phosphate has been independently correlated with inflammation, the present study aimed to investigate an independent direct effect of HP as a pro-inflammatory factor in VSMCs. A possible modulatory effect of vitamin D (VitD) was also investigated. The study was performed in an in vitro model of human aortic smooth muscle cells (HASMCs). Incubation of cells in an HP (3.3 mM) medium caused an increased expression of the pro-inflammatory mediators intercellular adhesion molecule 1 (ICAM-1), interleukins (ILs) IL-1β, IL-6, IL-8 and tumour necrosis factor α (TNF-α) (not corroborated at the protein levels for ICAM-1), as well as an increase in reactive oxygen/nitrogen species (ROS/RNS) production. This was accompanied by the activation of nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) signalling as demonstrated by the increase in the nuclear translocation of nuclear factor κ-light-chain-enhancer of activated B cells protein 65 (p65-NF-κΒ) assessed by Western blotting and confocal microscopy. Since all these events were attenuated by an antioxidant pre-incubation with the radical scavenger Mn(III)tetrakis (4-benzoic acid) porphyrin (MnTBAP), it is suggested that the inflammatory response is upstream mediated by the ROS/RNS-induced activation of NF-κΒ. Addition of paricalcitol (PC) 3·10−8 M to cells in HP prevented the phosphate induced ROS/RNS increase, the activation of NF-κΒ and the cytokine up-regulation. A bimodal effect was observed, however, for different calcitriol (CTR) concentrations, 10−10 and 10−12 M attenuated but 10−8 M stimulated this phosphate induced pro-oxidative and pro-inflammatory response. Therefore, these findings provide novel mechanisms whereby HP may directly favour vascular dysfunctions and new insights into the protective effects exerted by VitD derivatives.
Collapse
|
28
|
Park MS, Kim SK, Park HJ, Seok H, Kang SW, Lee SH, Kim YG, Moon JY, Kim TH, Kim YH, Kang SW, Chung JH, Jeong KH. Association Studies of Bone Morphogenetic Protein 2 Gene Polymorphisms With Acute Rejection in Kidney Transplantation Recipients. Transplant Proc 2017; 49:1012-1017. [PMID: 28583517 DOI: 10.1016/j.transproceed.2017.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Bone morphogenetic proteins (BMP) belong to the transforming growth factor beta superfamily of proteins. This study was performed to evaluate the association of BMP gene polymorphisms with acute renal allograft rejection (AR) and graft dysfunction (GD) in Koreans. METHODS Three hundred thirty-one patients who had kidney transplantation procedures were recruited. Transplantation outcomes were determined in terms of AR and GD criteria. We selected six single nucleotide polymorphisms (SNPs): rs1979855 (5' near gene), rs1049007 (Ser87Ser), rs235767 (intron), rs1005464 (intron), rs235768 (Arg190Ser), and rs3178250 (3; untranslated region). RESULTS Among the six SNPs tested, the rs235767, rs1005464, and rs3178250 SNPs were significantly associated with AR (P < .05). The rs1049007 and rs235768 SNPs also showed an association with GD (P < .05). CONCLUSIONS In conclusion, these results suggest that the BMP2 gene polymorphism may be related to the development of AR and GD in kidney transplant recipients.
Collapse
Affiliation(s)
- M-S Park
- Department of Surgery, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - S K Kim
- Kohwang Medical Research Institute, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - H J Park
- Kohwang Medical Research Institute, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - H Seok
- Kohwang Medical Research Institute, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - S W Kang
- Kohwang Medical Research Institute, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - S H Lee
- Department of Nephrology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Y G Kim
- Department of Nephrology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - J Y Moon
- Department of Nephrology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - T H Kim
- Department of Nephrology, School of Medicine, In Je University, Busan, Republic of Korea
| | - Y H Kim
- Department of Nephrology, School of Medicine, In Je University, Busan, Republic of Korea
| | - S W Kang
- Department of Nephrology, School of Medicine, In Je University, Busan, Republic of Korea
| | - J-H Chung
- Kohwang Medical Research Institute, School of Medicine, Kyung Hee University, Seoul, Republic of Korea.
| | - K H Jeong
- Department of Nephrology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
29
|
Yung LM, Sánchez-Duffhues G, Ten Dijke P, Yu PB. Bone morphogenetic protein 6 and oxidized low-density lipoprotein synergistically recruit osteogenic differentiation in endothelial cells. Cardiovasc Res 2015; 108:278-87. [PMID: 26410368 DOI: 10.1093/cvr/cvv221] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 09/11/2015] [Indexed: 12/22/2022] Open
Abstract
AIMS Vascular calcification contributes to mortality and morbidity in atherosclerosis, chronic kidney disease, and diabetes. Vascular calcific lesions contain osteoblast- and chondroblast-like cells, suggesting a process of endochondral or membranous ossification thought to result from the phenotypic plasticity of vascular cells. Bone morphogenetic protein (BMP) signalling potentiates atherosclerotic calcification, whereas BMP inhibition attenuates vascular inflammation and calcification in atherogenic mice. We hypothesized endothelial cells (ECs) may undergo osteogenic differentiation in response to BMP signalling and pro-atherogenic stimuli. METHODS AND RESULTS Among various BMP ligands tested, BMP6 and BMP9 elicited the most potent signalling in bovine aortic endothelial cells (BAEC), however, only BMP6 induced osteogenic differentiation. BMP6 and oxidized low-density lipoprotein (oxLDL) independently and synergistically induced osteogenic differentiation and mineralization, in a manner consistent with endothelial-to-mesenchymal transition. Treatment of ECs with BMP6 or oxLDL individually induced osteogenic and chondrogenic transcription factors Runx2 and Msx2, whereas treatment with BMP6 and oxLDL synergistically up-regulated Osterix and Osteopontin. Production of H2O2 was necessary for oxLDL-induced regulation of Runx2, Msx2, and Osterix in BAEC, and H2O2 was sufficient by itself to up-regulate these genes. Mineralization of ECs in response to BMP6 or oxLDL was abrogated by scavenging reactive oxygen species or inhibiting BMP type I receptor kinases. Similar synergistic effects of BMP and oxLDL upon osteogenic and chondrogenic transcription and phenotypic plasticity in human aortic endothelial cells were observed. CONCLUSION These findings provide a potential mechanism for the observed interactions of BMP signalling, oxidative stress, and inflammation in recruiting vascular calcification associated with atherosclerosis.
Collapse
Affiliation(s)
- Lai-Ming Yung
- Division of Cardiology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, USA
| | - Gonzalo Sánchez-Duffhues
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Ten Dijke
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands, Leiden University Medical Center, Leiden, The Netherlands
| | - Paul B Yu
- Division of Cardiology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, USA
| |
Collapse
|
30
|
Kotani K, Yamada T. Association between urinary 8-OHdG and pulse wave velocity in hypertensive patients with type 2 diabetes mellitus. Singapore Med J 2015; 55:202-8. [PMID: 24763836 DOI: 10.11622/smedj.2014053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Oxidative stress, assessed using 8-hydroxy-2'-deoxyguanosine (8-OHdG), can be associated with arterial stiffness in patients with type 2 diabetes mellitus (T2DM) and/or hypertension (HT). We investigated the correlation between urinary 8-OHdG and pulse wave velocity (PWV) in hypertensive and non-hypertensive T2DM patients with fair glycaemic control to determine the clinical significance of HT as a comorbidity in the diabetic state. METHODS Clinical data, including traditional cardiovascular risk factors, diabetic complications, prescribed agents, urinary 8-OHdG level and brachial-ankle PWV, was collected from T2DM patients with and without HT. RESULTS There were 76 patients (45 men, 31 women; mean age 61 years; mean haemoglobin A1c level 6.5%) in the study cohort. T2DM patients with HT had significantly higher mean PWV than patients without HT (1,597 cm/s vs 1,442 cm/s; p < 0.05). Patients with HT showed no significant difference in 8-OHdG levels relative to those without HT (median 7.9 ng/mg creatinine vs 8.8 ng/mg creatinine; p > 0.05). Simple linear correlation and stepwise multiple linear regression analyses revealed that 8-OHdG levels correlated independently, significantly and positively with PWV among T2DM patients with HT (r = 0.33, p < 0.05; β= 0.23, p < 0.05). No significant correlation was observed between 8-OHdG levels and PWV among T2DM patients without HT. CONCLUSION In the hypertensive state, oxidative stress can be responsible for the development of arterial stiffness, even in patients with fairly well controlled T2DM. Oxidative stress management may be necessary for the prevention of cardiovascular disease in this population.
Collapse
Affiliation(s)
- Kazuhiko Kotani
- Department of Clinical Laboratory Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke-City, Tochigi, 329-0498, Japan.
| | | |
Collapse
|
31
|
Impact of the uremic milieu on the osteogenic potential of mesenchymal stem cells. PLoS One 2015; 10:e0116468. [PMID: 25635832 PMCID: PMC4312090 DOI: 10.1371/journal.pone.0116468] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/09/2014] [Indexed: 01/04/2023] Open
Abstract
Human mesenchymal stem cells (hMSCs), the precursors of osteoblasts during osteogenesis, play a role in the balance of bone formation and resorption, but their functioning in uremia has not been well defined. To study the effects of the uremic milieu on osteogenic properties, we applied an in vitro assay culturing hMSCs in osteogenic medium supplemented with serum from healthy donors and from uremic patients on hemodialysis. Compared to control, serum from uremic patients induces, in hMSC cultures, a modification of several key regulators of bone remodeling, in particular a reduction of the ratio Receptor Activator of Nuclear factor Kappa B Receptor (RANKL) over osteoprotegerin, indicating an adaptive response of the system to favor osteogenesis over osteoclastosis. However, the levels of osteopontin, osteocalcin, and collagen type I, are increased in cell medium, while BMP-2, and alizarin red staining were decreased, pointing to a reduction of bone formation favoring resorption. Selected uremic toxins, such as p-cresylsulfate, p-cresylglucuronide, parathyroid hormone, indoxyl sulfate, asymmetric dimethylarginine, homocysteine, were able to mimic some of the effects of whole serum from uremic patients. Serum from cinacalcet-treated patients antagonizes these effects. Hydrogen sulfide (H2S) donors as well as hemodialysis treatment are able to induce beneficial effects. In conclusion, bone modifications in uremia are influenced by the capability of the uremic milieu to alter hMSC osteogenic differentiation. Cinacalcet, H2S donors and a hemodialysis session can ameliorate the hampered calcium deposition.
Collapse
|
32
|
Buendía P, Montes de Oca A, Madueño JA, Merino A, Martín-Malo A, Aljama P, Ramírez R, Rodríguez M, Carracedo J. Endothelial microparticles mediate inflammation-induced vascular calcification. FASEB J 2014; 29:173-81. [PMID: 25342130 DOI: 10.1096/fj.14-249706] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Stimulation of endothelial cells (ECs) with TNF-α causes an increase in the expression of bone morphogenetic protein-2 (BMP-2) and the production of endothelial microparticles (EMPs). BMP-2 is known to produce osteogenic differentiation of vascular smooth muscle cells (VSMCs). It was found that EMPs from TNF-α-stimulated endothelial cells (HUVECs) contained a significant amount of BMP-2 and were able to enhance VSMC osteogenesis and calcification. Calcium content was greater in VSMCs exposed to EMPs from TNF-α-treated HUVECs than EMPs from nontreated HUVECs (3.56 ± 0.57 vs. 1.48 ± 0.56 µg/mg protein; P < 0.05). The increase in calcification was accompanied by up-regulation of Cbfa1 (osteogenic transcription factor) and down-regulation of SM22α (VSMC lineage marker). Inhibition of BMP-2 by small interfering RNA reduced the VSMC calcification induced by EMPs from TNF-α-treated HUVECs. Similar osteogenic capability was observed in EMPs from both patients with chronic kidney disease and senescent cells, which also presented a high level of BMP-2 expression. Labeling of EMPs with CellTracker shows that EMPs are phagocytized by VSMCs under all conditions (with or without high phosphate, control, and EMPs from TNF-α-treated HUVECs). Our data suggest that EC damage results in the release of EMPs with a high content of calcium and BMP-2 that are able to induce calcification and osteogenic differentiation of VSMCs.
Collapse
Affiliation(s)
- Paula Buendía
- Instituto Maimónides de Investigación Biomédica de Córdoba/Fundación de Investigaciones Biomédicas de Córdoba, Reina Sofía University Hospital, Córdoba, Spain; Redes Temáticas de Investigación Cooperativa en Salud Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Addy Montes de Oca
- Instituto Maimónides de Investigación Biomédica de Córdoba/Fundación de Investigaciones Biomédicas de Córdoba, Reina Sofía University Hospital, Córdoba, Spain; Redes Temáticas de Investigación Cooperativa en Salud Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Antonio Madueño
- Instituto Maimónides de Investigación Biomédica de Córdoba/Fundación de Investigaciones Biomédicas de Córdoba, Reina Sofía University Hospital, Córdoba, Spain
| | - Ana Merino
- Redes Temáticas de Investigación Cooperativa en Salud Renal, Instituto de Salud Carlos III, Madrid, Spain Laboratory of Experimental Nephrology, IDIBELL, Hospital Universitari de Bellvitge, L'Hospitalet, Barcelona, Spain
| | - Alejandro Martín-Malo
- Instituto Maimónides de Investigación Biomédica de Córdoba/Fundación de Investigaciones Biomédicas de Córdoba, Reina Sofía University Hospital, Córdoba, Spain; Redes Temáticas de Investigación Cooperativa en Salud Renal, Instituto de Salud Carlos III, Madrid, Spain Nephrology Unit, Reina Sofía University Hospital, Córdoba, Spain
| | - Pedro Aljama
- Instituto Maimónides de Investigación Biomédica de Córdoba/Fundación de Investigaciones Biomédicas de Córdoba, Reina Sofía University Hospital, Córdoba, Spain; Redes Temáticas de Investigación Cooperativa en Salud Renal, Instituto de Salud Carlos III, Madrid, Spain Nephrology Unit, Reina Sofía University Hospital, Córdoba, Spain
| | - Rafael Ramírez
- Nephrology Unit, Reina Sofía University Hospital, Córdoba, Spain; Redes Temáticas de Investigación Cooperativa en Salud Renal, Instituto de Salud Carlos III, Madrid, Spain Physiology Department, Alcalá de Henares University, Madrid, Spain; and
| | - Mariano Rodríguez
- Instituto Maimónides de Investigación Biomédica de Córdoba/Fundación de Investigaciones Biomédicas de Córdoba, Reina Sofía University Hospital, Córdoba, Spain; Redes Temáticas de Investigación Cooperativa en Salud Renal, Instituto de Salud Carlos III, Madrid, Spain Nephrology Unit, Reina Sofía University Hospital, Córdoba, Spain;
| | - Julia Carracedo
- Instituto Maimónides de Investigación Biomédica de Córdoba/Fundación de Investigaciones Biomédicas de Córdoba, Reina Sofía University Hospital, Córdoba, Spain; Redes Temáticas de Investigación Cooperativa en Salud Renal, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
33
|
Vervloet MG, Massy ZA, Brandenburg VM, Mazzaferro S, Cozzolino M, Ureña-Torres P, Bover J, Goldsmith D. Bone: a new endocrine organ at the heart of chronic kidney disease and mineral and bone disorders. Lancet Diabetes Endocrinol 2014; 2:427-36. [PMID: 24795256 DOI: 10.1016/s2213-8587(14)70059-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent reports of several bone-derived substances, some of which have hormonal properties, have shed new light on the bone-cardiovascular axis. Deranged concentrations of humoral factors are not only epidemiologically connected to cardiovascular morbidity and mortality, but can also be causally implicated, especially in chronic kidney disease. FGF23 rises exponentially with advancing chronic kidney disease, seems to reach maladaptive concentrations, and then induces left ventricular hypertrophy, and is possibly implicated in the process of vessel calcification. Sclerostin and DKK1, both secreted mainly by osteocytes, are important Wnt inhibitors and as such can interfere with systems for biological signalling that operate in the vessel wall. Osteocalcin, produced by osteoblasts or released from mineralised bone, interferes with insulin concentrations and sensitivity, and its metabolism is disturbed in kidney disease. These bone-derived humoral factors might place the bone at the centre of cardiovascular disease associated with chronic kidney disease. Most importantly, factors that dictate the regulation of these substances in bone and subsequent secretion into the circulation have not been researched, and could provide entirely new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Marc G Vervloet
- Department of Nephrology and Institute for Cardiovascular Research VU, VU University Medical Center, Amsterdam, Netherlands.
| | - Ziad A Massy
- Division of Nephrology, Ambroise Paré Hospital, Paris Ile de France Ouest University, Boulogne Billancourt, Paris, France; INSERM U1088, Picardie University Jules Verne, Amiens, France
| | - Vincent M Brandenburg
- Department of Cardiology and Intensive Care Medicine, RWTH University Hospital Aachen, Aachen, Germany
| | - Sandro Mazzaferro
- Department of Cardiovascular, Respiratory, Nephrologic and Geriatric Sciences, Sapienza University of Rome, Rome, Italy
| | - Mario Cozzolino
- Department of Health Sciences, Renal Division, San Paolo Hospital, University of Milan, Milan, Italy
| | - Pablo Ureña-Torres
- Department of Nephrology and Dialysis, Clinique du Landy, Department of Renal Physiology, Necker Hospital, University of Paris Descartes, Paris, France
| | - Jordi Bover
- Department of Nephrology, Fundació Puigvert, IIB Sant Pau, REDinREN, Barcelona, Spain
| | | | | |
Collapse
|
34
|
Wang Y, Tabas I. Emerging roles of mitochondria ROS in atherosclerotic lesions: causation or association? J Atheroscler Thromb 2014; 21:381-90. [PMID: 24717761 DOI: 10.5551/jat.23929] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mitochondrial-derived reactive oxygen species (mtROS) is one of the major sources of cellular ROS, and excessive mtROS is associated with atherosclerosis progression in both human and mouse models. This review aims to summarize the most recent studies showing the existence, the causes and pathological consequences of excessive mtROS in atherosclerosis. Despite numerous association and causation studies demonstrating the importance of mtROS in atherosclerosis progression, the failure of antioxidant therapy in human randomized clinical trials demands more definitive, cell-type specific investigations. Better mechanistic understanding of mtROS in atherosclerosis may lead to more effective therapeutic strategies.
Collapse
|
35
|
Abstract
Calcific aortic valve disease (CAVD) is a major contributor to cardiovascular morbidity and mortality and, given its association with age, the prevalence of CAVD is expected to continue to rise as global life expectancy increases. No drug strategies currently exist to prevent or treat CAVD. Given that valve replacement is the only available clinical option, patients often cope with a deteriorating quality of life until diminished valve function demands intervention. The recognition that CAVD results from active cellular mechanisms suggests that the underlying pathways might be targeted to treat the condition. However, no such therapeutic strategy has been successfully developed to date. One hope was that drugs already used to treat vascular complications might also improve CAVD outcomes, but the mechanisms of CAVD progression and the desired therapeutic outcomes are often different from those of vascular diseases. Therefore, we discuss the benchmarks that must be met by a CAVD treatment approach, and highlight advances in the understanding of CAVD mechanisms to identify potential novel therapeutic targets.
Collapse
Affiliation(s)
- Joshua D Hutcheson
- Center for Interdisciplinary Cardiovascular Sciences, 3 Blackfan Circle, 17th Floor, Center for Life Sciences Boston, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Elena Aikawa
- Center for Excellence in Vascular Biology, 3 Blackfan Circle, 17th Floor, Center for Life Sciences Boston, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - W David Merryman
- Department of Biomedical Engineering, 2213 Garland Avenue, Vanderbilt University, Nashville, TN 37212, USA
| |
Collapse
|
36
|
Azechi T, Sato F, Sudo R, Wachi H. 5-aza-2'-Deoxycytidine, a DNA methyltransferase inhibitor, facilitates the inorganic phosphorus-induced mineralization of vascular smooth muscle cells. J Atheroscler Thromb 2014; 21:463-76. [PMID: 24441913 DOI: 10.5551/jat.20818] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Vascular calcification, an independent risk factor for cardiovascular disease in patients with chronic kidney disease(CKD), refers to the mineralization of vascular smooth muscle cells(VSMCs) caused by phenotypic changes toward osteoblast-like cells. DNA methylation, mediated by DNA methyltransferases(DNMTs), plays an important role in the differentiation of osteoblasts. We herein assessed the effects of a DNMT inhibitor on phenotypic changes in VSMCs and the development of vascular calcification. METHODS The effects of 5-aza-2'-deoxycytidine(5-aza-dC), a DNMT inhibitor, on human aortic smooth muscle cells(HASMCs) were evaluated. The expression and DNA methylation status of osteogenic genes were determined using RT-qPCR and bisulfite sequencing, respectively. Mineralization of HASMCs was induced by high concentrations of inorganic phosphate(Pi), as confirmed by quantitation of the calcium levels and von Kossa staining. Moreover, we examined the effects of the suppression of DNMT1 and/or alkaline phosphatase(ALP) on the mineralization of HASMCs. RESULTS 5-aza-dC increased the expression and activity of ALP and reduced the DNA methylation levels of the ALP promoter region in the HASMCs. In addition, both treatment with 5-aza-dC and downregulation of the DNMT1 expression promoted the Pi-induced mineralization of HASMCs. Moreover, both treatment with phosphonoformic acid(PFA), a sodium-dependent phosphate transporter inhibitor, and suppression of the ALP expression inhibited the 5-aza-dC-promoted mineralization of HASMCs. CONCLUSIONS The present study showed that DNMT inhibitors facilitate the Pi-induced development of vascular calcification via the upregulation of the ALP expression along with a reduction in the DNA methylation level of the ALP promoter region.
Collapse
Affiliation(s)
- Takuya Azechi
- Department of Clinical Chemistry, Hoshi University School of Pharmacy and Pharmaceutical Sciences
| | | | | | | |
Collapse
|
37
|
Kramann R, Kunter U, Brandenburg VM, Leisten I, Ehling J, Klinkhammer BM, Knüchel R, Floege J, Schneider RK. Osteogenesis of heterotopically transplanted mesenchymal stromal cells in rat models of chronic kidney disease. J Bone Miner Res 2013; 28:2523-34. [PMID: 23703894 DOI: 10.1002/jbmr.1994] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 04/29/2013] [Accepted: 05/09/2013] [Indexed: 12/21/2022]
Abstract
The current study is based on the hypothesis of mesenchymal stromal cells (MSCs) contributing to soft-tissue calcification and ectopic osteogenesis in chronic kidney disease (CKD). Rat MSCs were transplanted intraperitoneally in an established three-dimensional collagen-based model in healthy control animals and two rat models of CKD and vascular calcification: (1) 5/6 nephrectomy + high phosphorus diet; and (2) adenine nephropathy. As internal controls, collagen gels without MSCs were transplanted in the same animals. After 4 and 8 weeks, MSCs were still detectable and proliferating in the collagen gels (fluorescence-activated cell sorting [FACS] analysis and confocal microscopy after fluorescence labeling of the cells). Aortas and MSC-containing collagen gels in CKD animals showed distinct similarities in calcification (micro-computed tomography [µCT], energy-dispersive X-ray [EDX] analysis, calcium content), induction of osteogenic markers, (ie, bone morphogenic protein 2 [BMP-2], Runt related transcription factor 2 [Runx2], alkaline phosphatase [ALP]), upregulation of the osteocytic marker sclerostin and extracellular matrix remodeling with increased expression of osteopontin, collagen I/III/IV, fibronectin, and laminin. Calcification, osteogenesis, and matrix remodeling were never observed in healthy control animals and non-MSC-containing collagen gels in all groups. Paul Karl Horan 26 (PKH-26)-labeled, 3G5-positive MSCs expressed Runx2 and sclerostin in CKD animals whereas PKH-26-negative migrated cells did not express osteogenic markers. In conclusion, heterotopically implanted MSCs undergo osteogenic differentiation in rat models of CKD-induced vascular calcification, supporting our hypothesis of MSCs as possible players in heterotopic calcification processes of CKD patients.
Collapse
Affiliation(s)
- Rafael Kramann
- Division of Nephrology and Clinical Immunology, Medical Faculty Rheinisch-Westfaelische Technische Hochschule (RWTH) Aachen University, Aachen, Germany; Institute of Pathology, Medical Faculty Rheinisch-Westfaelische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Abstract
Ageing is a potent, independent risk factor for cardiovascular disease. Calcification of the vascular smooth muscle cell (VSMC) layer of the vessel media is a hallmark of vascular ageing. Young patients with chronic kidney disease (CKD) exhibit an extremely high cardiovascular mortality, equivalent to that seen in octogenarians in the general population. Even children on dialysis develop accelerated medial vascular calcification and arterial stiffening, leading to the suggestion that patients with CKD exhibit a 'premature ageing' phenotype. It is now well documented that uraemic toxins, particularly those associated with dysregulated mineral metabolism, can drive VSMC damage and phenotypic changes that promote vascular calcification; epidemiological data suggest that some of these same risk factors associate with cardiovascular mortality in the aged general population. Importantly, emerging evidence suggests that uraemic toxins may promote DNA damage, a key factor driving cellular ageing, and moreover, that these ageing mechanisms may reiterate some of those seen in patients with genetically induced progeric syndromes caused by nuclear lamina disruption. This new knowledge should pave the way for the development of novel therapies that target tissue-specific ageing mechanisms to treat vascular decline in CKD.
Collapse
|
40
|
Howden R, Cooley I, Van Dodewaard C, Arthur S, Cividanes S, Leamy L, McCann Hartzell K, Gladwell W, Martin J, Scott G, Ray M, Mishina Y. Cardiac responses to 24 hrs hyperoxia in Bmp2 and Bmp4 heterozygous mice. Inhal Toxicol 2013; 25:509-16. [PMID: 23876042 PMCID: PMC6149216 DOI: 10.3109/08958378.2013.808287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Hyperoxia or clinical oxygen (O2) therapy is known to result in increased oxidative burden. Therefore, understanding susceptibility to hyperoxia exposure is clinically important. Bone morphogenetic proteins (BMPs) 2 and 4 are involved in cardiac development and may influence responses to hyperoxia. METHODS Bmp2(+/)(-). Bmp4(+/)(-) and wild-type mice were exposed to hyperoxia (100% O2) for 24 hrs. Electrocardiograms (ECG) were recorded before and during exposure by radio-telemetry. RESULTS At baseline, a significantly higher low frequency (LF) and total power (TP) heart rate variability (HRV) were found in Bmp2(+/)(-) mice only (p < 0.05). Twenty-four hours hyperoxia-induced strain-independent reductions in heart rate, QTcB and ST-interval and increases in QRS, LF HRV and standard deviation of RR-intervals were observed. In Bmp4(+/)(-) mice only, increased PR-interval (PR-I) (24 hrs), P-wave duration (P-d; 18 and 21-24 hrs), PR-I minus P-d (PR - Pd; 24 hrs) and root of the mean squared differences of successive RR-intervals (24 hrs) were found during hyperoxia (p < 0.05). DISCUSSION Elevated baseline LF and TP HRV in Bmp2(+/)(-) mice suggests an altered autonomic nervous system regulation of cardiac function in these mice. However, this was not related to strain specific differences in responses to 24 hrs hyperoxia. During hyperoxia, Bmp4(+/-) mice were the most susceptible in terms of atrioventricular conduction changes and risk of atrial fibrillation, which may have important implications for patients treated with O2 who also harbor Bmp4 mutations. This study demonstrates significant ECG and HRV responses to 24 hrs hyperoxia in mice, which highlights the need to further work on the genetic mechanisms associated with cardiac susceptibility to hyperoxia.
Collapse
Affiliation(s)
- R Howden
- Laboratory of Systems Physiology, Department of Kinesiology, University of North Carolina at Charlotte, Charlotte NC 28223, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Liu Y, Drozdov I, Shroff R, Beltran LE, Shanahan CM. Prelamin A accelerates vascular calcification via activation of the DNA damage response and senescence-associated secretory phenotype in vascular smooth muscle cells. Circ Res 2013; 112:e99-109. [PMID: 23564641 DOI: 10.1161/circresaha.111.300543] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Vascular calcification is prevalent in the aging population, yet little is known of the mechanisms driving age-associated vascular smooth muscle cell (VSMC) phenotypic change. OBJECTIVE To investigate the role of nuclear lamina disruption, a specific hallmark of VSMC aging, in driving VSMC osteogenic differentiation. METHODS AND RESULTS Prelamin A, the unprocessed form of the nuclear lamina protein lamin A, accumulated in calcifying human VSMCs in vitro and in vivo, and its overexpression promoted VSMC osteogenic differentiation and mineralization. During VSMC aging in vitro, prelamin A accumulation occurred concomitantly with increased p16 expression and osteogenic differentiation and was associated with increased levels of DNA damage. Microarray analysis showed that DNA damage repair pathways were significantly impaired in VSMCs expressing prelamin A and that chemical inhibition and siRNA depletion of the DNA damage response kinases ataxia-telangiectasia mutated/ataxia-telangiectasia- and Rad3-related effectively blocked VSMC osteogenic differentiation and mineralization. In coculture experiments, prelamin A-expressing VSMCs induced alkaline phosphatase activity in mesenchymal progenitor cells, and this was abrogated by inhibition of ataxia-telangiectasia-mutated signaling, suggesting that DNA damage induces the secretion of pro-osteogenic factors by VSMCs. Cytokine array analysis identified several ataxia-telangiectasia mutated-dependent senescence-associated secretory phenotype factors/cytokines released by prelamin A-positive VSMCs, including the calcification regulators bone morphogenetic protein 2, osteoprotegerin, and interleukin 6. CONCLUSIONS Prelamin A promotes VSMC calcification and aging by inducing persistent DNA damage signaling, which acts upstream of VSMC osteogenic differentiation and the senescence-associated secretory phenotype. Agents that target the DNA damage response and prelamin A toxicity may be potential therapies for the treatment of vascular calcification.
Collapse
Affiliation(s)
- Yiwen Liu
- British Heart Foundation Centre of Research Excellence, Cardiovascular Division, James Black Centre, King's College London, UK
| | | | | | | | | |
Collapse
|
42
|
Masuda A, Hagiwara S, Tanimoto M, Kodama F, Okumura K, Nohara N, Matsumoto M, Maiguma M, Omote K, Io H, Kurusu A, Ohsawa I, Shimizu Y, Hamada C, Horikoshi S, Tomino Y. Effects of acetate-free citrate dialysate on glycoxidation and lipid peroxidation products in hemodialysis patients. NEPHRON EXTRA 2012; 2:256-68. [PMID: 23599704 PMCID: PMC3567873 DOI: 10.1159/000342258] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background/Aims Previous studies have shown the presence of high levels of glycoxidation and lipid peroxidation products in association with atherosclerosis in patients with end-stage kidney disease. Acetates are commonly used buffer for correcting metabolic acidosis in hemodialysis (HD) patients. Since the toxic effects of acetates are well established, acetate-free citrate dialysate (AFD) has become available in Japan. The objective of the present study was to evaluate the suppressive effects of AFD on oxidative stress in maintenance HD patients by measuring plasma pentosidine and malondialdehyde-modified low-density lipoprotein (MDA-LDL) levels as markers for glycoxidation and lipid peroxidation products. Methods Plasma pentosidine, MDA-LDL and other laboratory parameters were examined on maintenance HD at the Juntendo University Hospital before and after switching to AFD. Results MDA-LDL levels divided by LDL cholesterol were significantly lower than those before switching to AFD. Furthermore, levels of plasma pentosidine were lower than those before switching to AFD. Stepwise multiple regression analysis revealed that the percent change of the calcium-phosphorus product in the nondiabetic group and that of phosphorus in the diabetic group were predictive variables for the percent change of MDA-LDL/LDL, whereas the percent change of log high-sensitive C-reactive protein and that of systolic blood pressure in the nondiabetic group and that of diastolic blood pressure in the diabetic group were predictive variables for the percent change of plasma pentosidine. Conclusions It appears that AFD decreases glycoxidation and lipid peroxidation products when compared with acid citrate dextrose in HD patients. The reduction of oxidative stress by AFD during HD may have possible beneficial effects on atherosclerosis through calcium-phosphorus metabolism and blood pressure.
Collapse
Affiliation(s)
- Atsumi Masuda
- Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ilić J, Radović K, Roganović J, Brković B, Stojić D. The levels of vascular endothelial growth factor and bone morphogenetic protein 2 in dental pulp tissue of healthy and diabetic patients. J Endod 2012; 38:764-768. [PMID: 22595109 DOI: 10.1016/j.joen.2012.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 03/12/2012] [Accepted: 03/13/2012] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP 2) are growth factors (GFs) identified within the dentine-pulp complex and involved into the cellular events connected to the pulp-healing response. It is well established that the expression of these GFs is increased in different tissues in diabetes mellitus. Because there are no data concerning the levels of VEGF and BMP 2 in human dental pulp, the aim of present study was to quantify VEGF and BMP 2 levels in intact dental pulp and dental pulp that underwent reactive dentinogenesis in healthy and diabetic human subjects. METHODS The study was conducted on 28 healthy and 28 subjects with controlled diabetes type II who underwent pulp extirpation as a part of prosthetic rehabilitation. Pulp were collected from intact teeth and teeth treated by indirect pulp capping. The levels of VEGF and BMP 2 were determined in the pulp tissue lysates with enzyme-linked immunosorbent assay. RESULTS The levels of VEGF and BMP 2 were significantly higher in intact teeth pulp of diabetic than in healthy subjects. The concentrations of these GFs were significantly lowered in teeth with indirect pulp capping both in healthy and diabetic persons. Furthermore, VEGF and BMP 2 levels were in strong positive correlation. CONCLUSIONS Similar changes in the levels of VEGF and BMP 2 in intact and treated teeth of healthy and diabetic patients could be suggestive of associated roles of these GFs in responses of healthy and diabetic dental pulp.
Collapse
Affiliation(s)
- Jugoslav Ilić
- Department of Restorative Odontology and Endodontics, School of Dental Medicine, University of Belgrade, Belgrade, Serbia
| | | | | | | | | |
Collapse
|
44
|
Bone morphogenetic protein-2 will be a novel biochemical marker in urinary tract infections and stone formation. Clin Biochem 2012; 45:766-9. [PMID: 22542719 DOI: 10.1016/j.clinbiochem.2012.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 04/03/2012] [Accepted: 04/04/2012] [Indexed: 01/18/2023]
Abstract
OBJECTIVES To investigate the role of bone morphogenetic protein-2 (BMP-2) in patients with urinary tract infection (UTI) and renal stone in relation to Tamm-Horsfall protein (THP) and osteopontin (OPN). DESIGN AND METHODS ELISA kits were used to determine these markers in serum and urinary samples of 20 patients with UTI, 15 with renal stone and 10 controls. RESULTS BMP-2 significantly increased in serum of patients who had UTI (P=0.05) and renal stone (P=0.01). In the case of UTI, serum BMP-2 at cutoff 44 pg/mL had sensitivity and specificity (92%, 80%), while cystatin C at cutoff 525 ng/mL showed sensitivity and specificity (85%, 91%). THP is a good predictor of renal diseases (P<0.001) by regression analysis. It is also the most sensitive urinary marker for UTI with sensitivity and specificity (94%, 75%) at cutoff 305 ng/mL. CONCLUSION Combination of serum BMP-2 and cystatin C are more sensitive and accurate for early diagnosis of renal infection and damage.
Collapse
|
45
|
Nemcsik J, Kiss I, Tislér A. Arterial stiffness, vascular calcification and bone metabolism in chronic kidney disease. World J Nephrol 2012; 1:25-34. [PMID: 24175239 PMCID: PMC3782208 DOI: 10.5527/wjn.v1.i1.25] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 10/18/2011] [Accepted: 12/27/2011] [Indexed: 02/06/2023] Open
Abstract
Patients with chronic kidney disease (CKD) have an extremely poor cardiovascular outcome. Arterial stiffness, a strong independent predictor of survival in CKD, is connected to arterial media calcification. A huge number of different factors contribute to the increased arterial calcification and stiffening in CKD, a process which is in parallel with impaired bone metabolism. This coincidence was demonstrated to be part of the direct inhibition of calcification in the vessels, which is a counterbalancing effect but also leads to low bone turnover. Due to the growing evidence, the definition of “CKD mineral bone disorder” was created recently, underlining the strong connection of the two phenomena. In this review, we aim to demonstrate the mechanisms leading to increased arterial stiffness and the up-to date data of the bone-vascular axis in CKD. We overview a list of the different factors, including inhibitors of bone metabolism like osteoprotegerin, fetuin-A, pyrophosphates, matrix Gla protein, osteopontin, fibroblast growth factor 23 and bone morphogenic protein, which seem to play role in the progression of vascular calcification and we evaluate their connection to impaired arterial stiffness in the mirror of recent scientific results.
Collapse
Affiliation(s)
- János Nemcsik
- János Nemcsik, Department of Family Medicine, Semmelweis University, 1125 Budapest, Hungary
| | | | | |
Collapse
|
46
|
Smith ER, Ford ML, Tomlinson LA, Rajkumar C, McMahon LP, Holt SG. Phosphorylated fetuin-A-containing calciprotein particles are associated with aortic stiffness and a procalcific milieu in patients with pre-dialysis CKD. Nephrol Dial Transplant 2011; 27:1957-66. [PMID: 22105144 DOI: 10.1093/ndt/gfr609] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Vascular stiffening occurs in normal ageing and is accelerated in chronic kidney disease (CKD). Vascular calcification contributes to this stiffening and to the high incidence of vascular morbidity and mortality in this population. A network of inhibitors work in concert to reduce mineralization risk in extra-osseous tissue. Fetuin-A is an important systemic inhibitor of ectopic calcification. A fraction of the total circulating fetuin-A interacts with mineral ions to form stable colloidal complexes, calciprotein particles (CPP), preventing deposition. We sought to assess whether CPP fetuin-A levels were associated with procalcific factors and aortic stiffness in a cohort of patients with Stages 3 and 4 CKD. METHODS We measured fetuin-A CPP levels, serum inflammatory markers [C-reactive protein (CRP), interleukin-6, tumour necrosis factor-α], oxidized low-density lipoprotein (oxLDL), bone morphogenetic protein-2 (BMP-2) and -7 (BMP-7) and aortic pulse wave velocity (APWV) in a cohort of 200 CKD patients. Serum measurements were also made in 78 healthy controls. CPP fetuin-A phosphorylation was characterized by phosphate-affinity gel chromatography. RESULTS Fetuin-A-containing CPPs were only detectable in the serum of CKD patients. Inflammatory markers, oxLDL and BMP-2 levels were all significantly higher in the CKD than control subjects. CPP fetuin-A levels were independently associated with serum phosphate, high-sensitivity C-reactive protein, oxLDL, BMP-2/7 ratio and inversely with estimated glomerular filtration rate (model R(2) = 0.51). After adjusting for confounders, CPP fetuin-A levels were independently associated with APWV. Only phosphorylated fetuin-A was present in serum CPP. CONCLUSION Increased CPP fetuin-A levels reflect an increasingly procalcific milieu and are associated with increased aortic stiffness in patients with pre-dialysis CKD.
Collapse
Affiliation(s)
- Edward R Smith
- Department of Clinical Biochemistry and Immunology, Brighton and Sussex University Hospitals NHS Trust, Brighton, UK.
| | | | | | | | | | | |
Collapse
|
47
|
Opposing actions of rosiglitazone and resveratrol on mineralization in human vascular smooth muscle cells. J Mol Cell Cardiol 2011; 51:862-71. [DOI: 10.1016/j.yjmcc.2011.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 07/20/2011] [Indexed: 12/29/2022]
|
48
|
Neven E, De Schutter TM, Behets GJ, Gupta A, D'Haese PC. Iron and vascular calcification. Is there a link? Nephrol Dial Transplant 2011; 26:1137-45. [PMID: 21325349 DOI: 10.1093/ndt/gfq858] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Iron deficiency is frequently seen in patients with end-stage renal disease, particularly in those treated by dialysis, this is because of an impairment in gastrointestinal absorption and ongoing blood losses or alternatively, due to an impaired capacity to mobilize iron from its stores, called functional iron deficiency. Therefore, these patients may require intravenous iron to sustain adequate treatment with erythropoietin-stimulating agents. Aside from this, they are also prone to vascular calcification, which has been reported a major contributing factor in the development of cardiovascular disease and the increased mortality associated herewith. Several factors and mechanisms underlying the development of vascular calcification in chronic kidney diseased patients have been put forward during recent years. In view of the ability of iron to exert direct toxic effects and to induce oxidative stress on the one hand versus its essential role in various cellular processes on the other hand, the possible role of iron in the development of vascular calcification should be considered.
Collapse
Affiliation(s)
- Ellen Neven
- Laboratory of Pathophysiology, Faculties of Medicine and Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | | | | | | | | |
Collapse
|
49
|
Del Vecchio L, Locatelli F, Carini M. What We Know About Oxidative Stress in Patients with Chronic Kidney Disease on Dialysis-Clinical Effects, Potential Treatment, and Prevention. Semin Dial 2011; 24:56-64. [PMID: 21299632 DOI: 10.1111/j.1525-139x.2010.00819.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Lucia Del Vecchio
- Department of Nephrology, Dialysis, and Renal Transplant, A Manzoni Hospital, Lecco, Italy
| | | | | |
Collapse
|
50
|
Suh JS, Hahn WH, Lee JS, Park HJ, Kim MJ, Kang SW, Chung JH, Cho BS. Coding polymorphisms of bone morphogenetic protein 2 contribute to the development of childhood IgA nephropathy. Exp Ther Med 2011; 2:337-341. [PMID: 22977507 DOI: 10.3892/etm.2011.195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 01/04/2011] [Indexed: 01/04/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are multi-functional growth factors belonging to the transforming growth factor β (TGFB) superfamily and are important in both preservation of kidney function and resistance to injury. BMP2 is highly regulated in the kidney, and high affinity binding sites for BMP2 have been identified in kidney epithelial cells. BMP2 has been demonstrated to play various roles in the pathogenesis of renal diseases. However, the role of the BMP2 gene in glomerulonephritis has not been previously investigated. We aimed to evaluate the association of BMP2 gene polymorphisms with immunoglobulin A nephropathy (IgAN) in children. We evaluated 187 pediatric patients with biopsy-confimed IgAN and 262 healthy controls. Two coding single nucleotide polymorphisms (cSNPs) in the BMP2 gene [rs235768 (missense, Arg190Ser) and rs1049007 (synonymous, Ser87Ser)] were selected and genotyped by direct sequencing. Genotypes of rs1049007 were associated with childhood IgAN in the codominant model II (GG vs. AA) [p=0.02; OR (95% CI), 0.16 (0.04-0.70)] and in the recessive model [p=0.0023; OR (95% CI), 0.16 (0.04-0.69)]. We also found an association between rs235768 and IgAN in the codominant model II (TT vs. AA) [p=0.01; OR (95% CI), 0.08 (0.01-0.57)] and in the recessive model [p=0.0002; OR (95% CI), 0.07 (0.01-0.55)]. After Bonferroni correction, these associations of rs235768 and rs1049007 with IgAN risk remained significant. In the haplotype analysis, the TG haplotype [p=0.01; OR (95% CI), 6.76 (1.55-29.50) in the dominant model] and AA haplotype [p=0.01; OR (95% CI), 0.08 (0.01-0.59) in the recessive model] showed associations with IgAN. The BMP2 gene may contribute to susceptibility to IgAN in Korean children.
Collapse
Affiliation(s)
- Jin-Soon Suh
- Department of Pediatrics, East West Kidney Disease Research Institute
| | | | | | | | | | | | | | | |
Collapse
|