1
|
Saladino GM, Mangarova DB, Nernekli K, Wang J, Annio G, Varniab ZS, Khatoon Z, Ribeiro Morais G, Shi Y, Chang E, Pisani LJ, Tikhomirov G, Falconer RA, Daldrup-Link HE. Multimodal imaging approach to track theranostic nanoparticle accumulation in glioblastoma with magnetic resonance imaging and intravital microscopy. NANOSCALE 2025; 17:9986-9995. [PMID: 40135284 PMCID: PMC11937943 DOI: 10.1039/d5nr00447k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
Theranostic nanoparticles (NPs) have been designed for simultaneous therapeutic and diagnostic purposes, thereby enabling personalized cancer therapy and in vivo drug tracking. However, studies thus far have focused on imaging NP tumor accumulation at the macroscopic level and correlating results with ex vivo histology. Limited evidence exists on whether in vivo NP tumor contrast enhancement on magnetic resonance imaging (MRI) correlates with in vivo NP tumor accumulation at the microscopic level. To address this gap, the purpose of our study was to correlate quantitative MRI estimates of NP accumulation with in vivo NP signal quantification as measured through two-photon intravital microscopy (IVM) in an orthotopic murine glioblastoma multiforme model (GBM). To enable multimodal imaging, we designed dual-mode NPs, composed of a carbohydrate-coated magnetic core (Ferumoxytol) as an MRI contrast agent, and a conjugated fluorophore (FITC) for IVM detection. We administered these NPs with or without a conjugated vascular disrupting agent (VDA) to assess its effect on NP delivery to GBM. We correlated in vivo MRI contrast enhancement in tumors, quantified as T2 relaxation time, with IVM fluorescence spatial decay rate. Results demonstrated a significantly lower tumor T2 relaxation time and spatial decay rate in tumors targeted with VDA-conjugated NPs compared to unconjugated NPs. Postmortem histological analyses validated the in vivo observations. The presented multimodal imaging approach enabled a quantitative correlation between MRI contrast enhancement at the macroscopic level and NP accumulation in the tumor microenvironment. These studies lay the groundwork for the precise evaluation of the tumor targeting of theranostic NPs.
Collapse
Affiliation(s)
| | - Dilyana B Mangarova
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Kerem Nernekli
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Jie Wang
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Giacomo Annio
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Zahra Shokri Varniab
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Zubeda Khatoon
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Goreti Ribeiro Morais
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Yifeng Shi
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, 94720, USA
| | - Edwin Chang
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Laura J Pisani
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Grigory Tikhomirov
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, 94720, USA
| | - Robert A Falconer
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Heike E Daldrup-Link
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Markousis-Mavrogenis G, Habib M, Huck DM, André F, Steen H, Mukherjee M, Mavrogeni SI, Weber B. Emerging Imaging Techniques for Atherosclerosis in Systemic Immune-Mediated Inflammatory Conditions. Arterioscler Thromb Vasc Biol 2025; 45:11-22. [PMID: 39540283 DOI: 10.1161/atvbaha.124.321202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Atherosclerosis affects patients with systemic immune-mediated inflammatory diseases at an increased rate compared with the general population. In recent years, our understanding of the pathophysiology of atherosclerosis has advanced considerably. Nevertheless, cardiovascular imaging modalities that can adequately assess the biological background of atherosclerosis have not reached widespread clinical adoption. Novel developments in cardiac imaging have the potential to enhance the diagnostic yield of these modalities further while providing essential insights into the anatomy, composition, and biology of atherosclerotic lesions. In this review, we highlight some of the latest developments in the field for the evaluation of atherosclerosis using advances in echocardiography, computed tomography, positron emission tomography, and cardiovascular magnetic resonance. Additionally, we discuss evidence specifically in patients with immune-mediated inflammatory diseases and outline unmet research needs for future development.
Collapse
Affiliation(s)
- George Markousis-Mavrogenis
- Department of Cardiology, Angiology and Pneumology (G.M.-M., F.A., H.S.), Heidelberg University, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Germany (G.M.-M., F.A., H.S.)
- University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO (United Nations Educational, Scientific and Cultural Organization) Chair in Adolescent Healthcare, Medical School, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Greece (G.M.-M., S.I.M.)
| | - Muzzamal Habib
- Division of Cardiovascular Medicine, Department of Medicine, Heart and Vascular Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (M.H., D.M.H., B.W.)
| | - Daniel M Huck
- Division of Cardiovascular Medicine, Department of Medicine, Heart and Vascular Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (M.H., D.M.H., B.W.)
| | - Florian André
- Department of Cardiology, Angiology and Pneumology (G.M.-M., F.A., H.S.), Heidelberg University, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Germany (G.M.-M., F.A., H.S.)
| | - Henning Steen
- Department of Cardiology, Angiology and Pneumology (G.M.-M., F.A., H.S.), Heidelberg University, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Germany (G.M.-M., F.A., H.S.)
| | - Monica Mukherjee
- Division of Cardiology, Johns Hopkins University, Baltimore, MD (M.M.)
| | - Sophie I Mavrogeni
- University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO (United Nations Educational, Scientific and Cultural Organization) Chair in Adolescent Healthcare, Medical School, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Greece (G.M.-M., S.I.M.)
- Department of Cardiology, Onassis Cardiac Surgery Center, Athens, Greece (S.I.M.)
- Institute of Radiology, Department of Medicine - DIMED, Padova University Hospital, Italy (S.I.M.)
| | - Brittany Weber
- Division of Cardiovascular Medicine, Department of Medicine, Heart and Vascular Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (M.H., D.M.H., B.W.)
| |
Collapse
|
3
|
Maes L, Versweyveld L, Evans NR, McCabe JJ, Kelly P, Van Laere K, Lemmens R. Novel Targets for Molecular Imaging of Inflammatory Processes of Carotid Atherosclerosis: A Systematic Review. Semin Nucl Med 2024; 54:658-673. [PMID: 37996309 DOI: 10.1053/j.semnuclmed.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023]
Abstract
Computed tomography angiography (CTA), magnetic resonance angiography (MRA) and 18F-FDG-PET have proven clinical value when evaluating patients with carotid atherosclerosis. In this systematic review, we will focus on the role of novel molecular imaging tracers in that assessment and their potential strengths to stratify stroke risk. We systematically searched PubMed, Embase, the Web of Science Core Collection, and Cochrane Library for articles reporting on molecular imaging to noninvasively detect or characterize inflammation in carotid atherosclerosis. As our focus was on nonclassical novel targets, we omitted reports solely on 18F-FDG and 18F-NaF. We summarized and mapped the selected studies to provide an overview of the current clinical development in molecular imaging in relation to risk factors, imaging and histological findings, diagnostic and prognostic performance. We identified 20 articles in which the utilized tracers to visualize carotid wall inflammation were somatostatin subtype-2- (SST2-) (n = 5), CXC-motif chemokine receptor 4- (CXCR4-) (n = 3), translocator protein- (TSPO-) (n = 2) and aVβ3 integrin-ligands (n = 2) and choline-tracers (n = 2). Tracer uptake correlated with traditional cardiovascular risk factors, that is, age, gender, diabetes, hypercholesterolemia, and hypertension as well as prior cardiovascular disease. We identified discrepancies between tracer uptake and grade of stenosis, plaque calcification, and 18F-FDG uptake, suggesting the importance of alternative characterization of atherosclerosis beyond classical neuroimaging features. Immunohistochemical analysis linked tracer uptake to markers of macrophage infiltration and neovascularization. Symptomatic carotid arteries showed higher uptake compared to asymptomatic (including contralateral, nonculprit) arteries. Some studies demonstrated a potential role of these novel molecular imaging as a specific intermediary (bio)marker for outcome. Several novel tracers show promise for identification of high-risk plaque inflammation. Based on the current evidence we cautiously propose the SST2-ligands and the choline radiotracers as viable candidates for larger prospective longitudinal outcome studies to evaluate their predictive use in clinical practice.
Collapse
Affiliation(s)
- Louise Maes
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium; Department of Neurosciences, Experimental Neurology, KULeuven - University of Leuven, Leuven, Belgium.
| | - Louis Versweyveld
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium; Department of Neurosciences, Experimental Neurology, KULeuven - University of Leuven, Leuven, Belgium
| | - Nicholas R Evans
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - John J McCabe
- Health Research Board (HRB), Stroke Clinical Trials Network Ireland (SCTNI), Dublin, Ireland; School of Medicine, University College Dublin (UCD), Dublin, Ireland; Department of Geriatric Medicine, Mater Misericordiae University Hospital Dublin, Dublin, Ireland
| | - Peter Kelly
- Health Research Board (HRB), Stroke Clinical Trials Network Ireland (SCTNI), Dublin, Ireland; School of Medicine, University College Dublin (UCD), Dublin, Ireland; Mater Misericordiae University Hospital Dublin, Stroke Service, Dublin, Ireland
| | - Koen Van Laere
- Division of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Imaging and Pathology, KULeuven - University of Leuven - Nuclear Medicine and Molecular Imaging, Leuven, Belgium
| | - Robin Lemmens
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium; Department of Neurosciences, Experimental Neurology, KULeuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Alzein MM, Patel A, Abdalla RN, Cantrell DR, Shaibani A, Ansari SA. MR Vessel Wall Imaging for Atherosclerosis and Vasculitis. Neuroimaging Clin N Am 2024; 34:251-260. [PMID: 38604709 DOI: 10.1016/j.nic.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Conventional imaging modalities, such as computed tomography angiography, MR angiography, transcranial Doppler ultrasonography, and digital subtraction angiography, are utilized in evaluating intraluminal or intravascular pathology of the intracranial vessels. Limitations of luminal imaging techniques can lead to inaccurate diagnosis, evaluation, and risk stratification, as many cerebrovascular pathologies contain an extrinsic vessel wall component. Furthermore, vessel wall imaging can provide information regarding extent, treatment response, and biopsy targets for vasculitis cases. Overall, while vessel wall imaging can provide robust data regarding intracranial pathologies, further prospective, multicenter studies are required to improve diagnostic application and accuracy.
Collapse
Affiliation(s)
- Mohamad M Alzein
- Department of Radiology, Northwestern University, Feinberg School of Medicine
| | - Abhinav Patel
- Department of Radiology, Northwestern University, Feinberg School of Medicine
| | - Ramez N Abdalla
- Department of Radiology, Northwestern University, Feinberg School of Medicine; Department of Radiology, Lurie Children's Hospital; Department of Radiology, Ain Shams University, Faculty of Medicine
| | - Donald R Cantrell
- Department of Radiology, Northwestern University, Feinberg School of Medicine; Department of Radiology, Lurie Children's Hospital
| | - Ali Shaibani
- Department of Radiology, Northwestern University, Feinberg School of Medicine; Department of Radiology, Lurie Children's Hospital; Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine
| | - Sameer A Ansari
- Department of Radiology, Northwestern University, Feinberg School of Medicine; Department of Radiology, Lurie Children's Hospital; Department of Neurological Surgery, Northwestern University, Feinberg School of Medicine; Department of Neurology, Northwestern University, Feinberg School of Medicine.
| |
Collapse
|
5
|
Si G, Du Y, Tang P, Ma G, Jia Z, Zhou X, Mu D, Shen Y, Lu Y, Mao Y, Chen C, Li Y, Gu N. Unveiling the next generation of MRI contrast agents: current insights and perspectives on ferumoxytol-enhanced MRI. Natl Sci Rev 2024; 11:nwae057. [PMID: 38577664 PMCID: PMC10989670 DOI: 10.1093/nsr/nwae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 04/06/2024] Open
Abstract
Contrast-enhanced magnetic resonance imaging (CE-MRI) is a pivotal tool for global disease diagnosis and management. Since its clinical availability in 2009, the off-label use of ferumoxytol for ferumoxytol-enhanced MRI (FE-MRI) has significantly reshaped CE-MRI practices. Unlike MRI that is enhanced by gadolinium-based contrast agents, FE-MRI offers advantages such as reduced contrast agent dosage, extended imaging windows, no nephrotoxicity, higher MRI time efficiency and the capability for molecular imaging. As a leading superparamagnetic iron oxide contrast agent, ferumoxytol is heralded as the next generation of contrast agents. This review delineates the pivotal clinical applications and inherent technical superiority of FE-MRI, providing an avant-garde medical-engineering interdisciplinary lens, thus bridging the gap between clinical demands and engineering innovations. Concurrently, we spotlight the emerging imaging themes and new technical breakthroughs. Lastly, we share our own insights on the potential trajectory of FE-MRI, shedding light on its future within the medical imaging realm.
Collapse
Affiliation(s)
- Guangxiang Si
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Yue Du
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 210029, China
| | - Peng Tang
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 210029, China
| | - Gao Ma
- Department of Radiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhaochen Jia
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Xiaoyue Zhou
- MR Collaboration, Siemens Healthineers Ltd., Shanghai 200126, China
| | - Dan Mu
- Department of Radiology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yan Shen
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 210029, China
| | - Yi Lu
- School of Mathematical Sciences, Capital Normal University, Beijing 100048, China
| | - Yu Mao
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine, Institute of Clinical Medicine, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210093, China
| | - Chuan Chen
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Yan Li
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| | - Ning Gu
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering Medicine, Institute of Clinical Medicine, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| |
Collapse
|
6
|
Wen L, Fu X, Zhang H, Ye P, Fu H, Zhou Z, Sun R, Xu T, Fu C, Zhu C, Guo Y, Fan H. Tailoring Zinc Ferrite Nanoparticle Surface Coating for Macrophage-Affinity Magnetic Resonance Imaging of Atherosclerosis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13496-13508. [PMID: 38449094 DOI: 10.1021/acsami.3c17212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Atherosclerosis is a chronic inflammatory disease characterized by the formation of atherosclerotic plaques, while macrophages as key players in plaque progression and destabilization are promising targets for atherosclerotic plaque imaging. Contrast-enhanced magnetic resonance imaging (CE-MRI) has emerged as a powerful noninvasive imaging technique for the evaluation of atherosclerotic plaques within arterial walls. However, the visualization of macrophages within atherosclerotic plaques presents considerable challenges due to the intricate pathophysiology of the disease and the dynamic behavior of these cells. Biocompatible ferrite nanoparticles with diverse surface ligands possess the potential to exhibit distinct relaxivity and cellular affinity, enabling improved imaging capabilities for macrophages in atherosclerosis. In this work, we report macrophage-affinity nanoparticles for magnetic resonance imaging (MRI) of atherosclerosis via tailoring nanoparticle surface coating. The ultrasmall zinc ferrite nanoparticles (Zn0.4Fe2.6O4) as T1 contrast agents were synthesized and modified with dopamine, 3,4-dihydroxyhydrocinnamic acid, and phosphorylated polyethylene glycol to adjust their surface charges to be positively, negatively, and neutrally charged, respectively. In vitro MRI evaluation shows that the T1 relaxivity for different surface charged Zn0.4Fe2.6O4 nanoparticles was three higher than that of the clinically used Gd-DTPA. Furthermore, in vivo atherosclerotic plaque MR imaging indicates that positively charged Zn0.4Fe2.6O4 showed superior MRI efficacy on carotid atherosclerosis than the other two, which is ascribed to high affinity to macrophages of positively charged nanoparticles. This work provides improved diagnostic capability and a better understanding of the molecular imaging of atherosclerosis.
Collapse
Affiliation(s)
- Lingyi Wen
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 614001, China
| | - Xiaomin Fu
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 614001, China
| | - Huan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
- School of Medicine, Northwest University, Xi'an 710069, China
- Department of Radiology, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China
| | - Pengfei Ye
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 614001, China
| | - Hang Fu
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 614001, China
| | - Zhongqin Zhou
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 614001, China
| | - Ran Sun
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 614001, China
| | - Ting Xu
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 614001, China
| | - Chuan Fu
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 614001, China
| | - Chengcheng Zhu
- Department of Radiology, University of Washington, Seattle, Washington 98105, United States
| | - Yingkun Guo
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 614001, China
| | - Haiming Fan
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 614001, China
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
- School of Medicine, Northwest University, Xi'an 710069, China
| |
Collapse
|
7
|
Sekita A, Unterweger H, Berg S, Ohlmeyer S, Bäuerle T, Zheng KH, Coolen BF, Nederveen AJ, Cabella C, Rossi S, Stroes ESG, Alexiou C, Lyer S, Cicha I. Accumulation of Iron Oxide-Based Contrast Agents in Rabbit Atherosclerotic Plaques in Relation to Plaque Age and Vulnerability Features. Int J Nanomedicine 2024; 19:1645-1666. [PMID: 38406599 PMCID: PMC10893894 DOI: 10.2147/ijn.s430693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/14/2023] [Indexed: 02/27/2024] Open
Abstract
Purpose In this study, a detailed characterization of a rabbit model of atherosclerosis was performed to assess the optimal time frame for evaluating plaque vulnerability using superparamagnetic iron oxide nanoparticle (SPION)-enhanced magnetic resonance imaging (MRI). Methods The progression of atherosclerosis induced by ballooning and a high-cholesterol diet was monitored using angiography, and the resulting plaques were characterized using immunohistochemistry and histology. Morphometric analyses were performed to evaluate plaque size and vulnerability features. The accumulation of SPIONs (novel dextran-coated SPIONDex and ferumoxytol) in atherosclerotic plaques was investigated by histology and MRI and correlated with plaque age and vulnerability. Toxicity of SPIONDex was evaluated in rats. Results Weak positive correlations were detected between plaque age and intima thickness, and total macrophage load. A strong negative correlation was observed between the minimum fibrous cap thickness and plaque age as well as the mean macrophage load. The accumulation of SPION in the atherosclerotic plaques was detected by MRI 24 h after administration and was subsequently confirmed by Prussian blue staining of histological specimens. Positive correlations between Prussian blue signal in atherosclerotic plaques, plaque age, and macrophage load were detected. Very little iron was observed in the histological sections of the heart and kidney, whereas strong staining of SPIONDex and ferumoxytol was detected in the spleen and liver. In contrast to ferumoxytol, SPIONDex administration in rabbits was well tolerated without inducing hypersensitivity. The maximum tolerated dose in rat model was higher than 100 mg Fe/kg. Conclusion Older atherosclerotic plaques with vulnerable features in rabbits are a useful tool for investigating iron oxide-based contrast agents for MRI. Based on the experimental data, SPIONDex particles constitute a promising candidate for further clinical translation as a safe formulation that offers the possibility of repeated administration free from the risks associated with other types of magnetic contrast agents.
Collapse
Affiliation(s)
- Alexander Sekita
- ENT-Department, Section of Experimental Oncology Und Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Harald Unterweger
- ENT-Department, Section of Experimental Oncology Und Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Sonja Berg
- ENT-Department, Section of Experimental Oncology Und Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Sabine Ohlmeyer
- Institute of Radiology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Tobias Bäuerle
- Preclinical Imaging Platform Erlangen (PIPE), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Kang H Zheng
- Department of Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Bram F Coolen
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Aart J Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Claudia Cabella
- Bracco Imaging SpA, Centro Ricerche Bracco, Colleretto Giacosa, Turin, Italy
| | - Silvia Rossi
- Bracco Imaging SpA, Centro Ricerche Bracco, Colleretto Giacosa, Turin, Italy
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Christoph Alexiou
- ENT-Department, Section of Experimental Oncology Und Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Stefan Lyer
- ENT-Department, Section of Experimental Oncology Und Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Iwona Cicha
- ENT-Department, Section of Experimental Oncology Und Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
8
|
Cheng J, Huang H, Chen Y, Wu R. Nanomedicine for Diagnosis and Treatment of Atherosclerosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304294. [PMID: 37897322 PMCID: PMC10754137 DOI: 10.1002/advs.202304294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/11/2023] [Indexed: 10/30/2023]
Abstract
With the changing disease spectrum, atherosclerosis has become increasingly prevalent worldwide and the associated diseases have emerged as the leading cause of death. Due to their fascinating physical, chemical, and biological characteristics, nanomaterials are regarded as a promising tool to tackle enormous challenges in medicine. The emerging discipline of nanomedicine has filled a huge application gap in the atherosclerotic field, ushering a new generation of diagnosis and treatment strategies. Herein, based on the essential pathogenic contributors of atherogenesis, as well as the distinct composition/structural characteristics, synthesis strategies, and surface design of nanoplatforms, the three major application branches (nanodiagnosis, nanotherapy, and nanotheranostic) of nanomedicine in atherosclerosis are elaborated. Then, state-of-art studies containing a sequence of representative and significant achievements are summarized in detail with an emphasis on the intrinsic interaction/relationship between nanomedicines and atherosclerosis. Particularly, attention is paid to the biosafety of nanomedicines, which aims to pave the way for future clinical translation of this burgeoning field. Finally, this comprehensive review is concluded by proposing unresolved key scientific issues and sharing the vision and expectation for the future, fully elucidating the closed loop from atherogenesis to the application paradigm of nanomedicines for advancing the early achievement of clinical applications.
Collapse
Affiliation(s)
- Jingyun Cheng
- Department of UltrasoundShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080P. R. China
| | - Hui Huang
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou Institute of Shanghai UniversityWenzhouZhejiang325088P. R. China
| | - Rong Wu
- Department of UltrasoundShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080P. R. China
| |
Collapse
|
9
|
Wang X, Nai YH, Gan J, Lian CPL, Ryan FK, Tan FSL, Chan DYS, Ng JJ, Lo ZJ, Chong TT, Hausenloy DJ. Multi-Modality Imaging of Atheromatous Plaques in Peripheral Arterial Disease: Integrating Molecular and Imaging Markers. Int J Mol Sci 2023; 24:11123. [PMID: 37446302 DOI: 10.3390/ijms241311123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/14/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Peripheral artery disease (PAD) is a common and debilitating condition characterized by the narrowing of the limb arteries, primarily due to atherosclerosis. Non-invasive multi-modality imaging approaches using computed tomography (CT), magnetic resonance imaging (MRI), and nuclear imaging have emerged as valuable tools for assessing PAD atheromatous plaques and vessel walls. This review provides an overview of these different imaging techniques, their advantages, limitations, and recent advancements. In addition, this review highlights the importance of molecular markers, including those related to inflammation, endothelial dysfunction, and oxidative stress, in PAD pathophysiology. The potential of integrating molecular and imaging markers for an improved understanding of PAD is also discussed. Despite the promise of this integrative approach, there remain several challenges, including technical limitations in imaging modalities and the need for novel molecular marker discovery and validation. Addressing these challenges and embracing future directions in the field will be essential for maximizing the potential of molecular and imaging markers for improving PAD patient outcomes.
Collapse
Affiliation(s)
- Xiaomeng Wang
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
| | - Ying-Hwey Nai
- Clinical Imaging Research Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Julian Gan
- Siemens Healthineers, Singapore 348615, Singapore
| | - Cheryl Pei Ling Lian
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore 138683, Singapore
| | - Fraser Kirwan Ryan
- Infocomm Technology Cluster, Singapore Institute of Technology, Singapore 138683, Singapore
| | - Forest Su Lim Tan
- Infocomm Technology Cluster, Singapore Institute of Technology, Singapore 138683, Singapore
| | - Dexter Yak Seng Chan
- Department of General Surgery, Khoo Teck Puat Hospital, Singapore 768828, Singapore
| | - Jun Jie Ng
- Division of Vascular and Endovascular Surgery, Department of Cardiac, Thoracic and Vascular Surgery, National University Heart Centre, Singapore 119074, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Zhiwen Joseph Lo
- Vascular Surgery Service, Department of Surgery, Woodlands Health, Singapore 258499, Singapore
- Centre for Population Health Sciences, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Tze Tec Chong
- Department of Vascular Surgery, Singapore General Hospital, Singapore 168752, Singapore
- Surgical Academic Clinical Programme, Singapore General Hospital, Singapore 169608, Singapore
- Vascular SingHealth Duke-NUS Disease Centre, Singapore 168752, Singapore
| | - Derek John Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore 169857, Singapore
- National Heart Research Institute Singapore, National Heart Centre, Singapore 169609, Singapore
- Yong Loo Lin School of Medicine, National University Singapore, Singapore 117597, Singapore
- The Hatter Cardiovascular Institute, University College London, London WC1E 6HX, UK
| |
Collapse
|
10
|
Cazelles A, Collard MK, Lalatonne Y, Doblas S, Zappa M, Labiad C, Cazals-Hatem D, Maggiori L, Treton X, Panis Y, Jarry U, Desvallées T, Eliat PA, Pineau R, Motte L, Letourneur D, Simon-Yarza T, Ogier-Denis E. A Preclinical Validation of Iron Oxide Nanoparticles for Treatment of Perianal Fistulizing Crohn's Disease. Int J Mol Sci 2022; 23:8324. [PMID: 35955465 PMCID: PMC9368411 DOI: 10.3390/ijms23158324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/25/2022] [Indexed: 11/26/2022] Open
Abstract
Fistulizing anoperineal lesions are severe complications of Crohn's disease (CD) that affect quality of life with a long-term risk of anal sphincter destruction, incontinence, permanent stoma, and anal cancer. Despite several surgical procedures, they relapse in about two-thirds of patients, mandating innovative treatments. Ultrasmall particles of iron oxide (USPIO) have been described to achieve in vivo rapid healing of deep wounds in the skin and liver of rats thanks to their nanobridging capability that could be adapted to fistula treatment. Our main purpose was to highlight preclinical data with USPIO for the treatment of perianal fistulizing CD. Twenty male Sprague Dawley rats with severe 2,4,6-trinitrobenzenesulfonic acid solution (TNBS)-induced proctitis were operated to generate two perianal fistulas per rat. At day 35, two inflammatory fistulas were obtained per rat and perineal magnetic resonance imaging (MRI) was performed. After a baseline MRI, a fistula tract was randomly drawn and topically treated either with saline or with USPIO for 1 min (n = 17 for each). The rats underwent a perineal MRI on postoperative days (POD) 1, 4, and 7 and were sacrificed for pathological examination. The primary outcome was the filling or closure of the fistula tract, including the external or internal openings. USPIO treatment allowed the closure and/or filling of all the treated fistulas from its application until POD 7 in comparison with the control fistulas (23%). The treatment with USPIO was safe, permanently closed the fistula along its entire length, including internal and external orifices, and paved new avenues for the treatment of perianal fistulizing Crohn's disease.
Collapse
Affiliation(s)
- Antoine Cazelles
- Département of Chirurgie Colorectale, Assistance Publique Hôpitaux de Paris, Hôpital Beaujon, CEDEX, 92110 Clichy, France; (A.C.); (M.K.C.); (C.L.); (L.M.); (Y.P.)
- Centre de Recherche sur l’Inflammation, INSERM, U1149, CNRS, ERL8252, Université Paris Cité, Team Gut Inflammation, BP 416, 75018 Paris, France; (D.C.-H.); (X.T.)
| | - Maxime K. Collard
- Département of Chirurgie Colorectale, Assistance Publique Hôpitaux de Paris, Hôpital Beaujon, CEDEX, 92110 Clichy, France; (A.C.); (M.K.C.); (C.L.); (L.M.); (Y.P.)
- Centre de Recherche sur l’Inflammation, INSERM, U1149, CNRS, ERL8252, Université Paris Cité, Team Gut Inflammation, BP 416, 75018 Paris, France; (D.C.-H.); (X.T.)
| | - Yoann Lalatonne
- Laboratory for Vascular Translational Science, Université Paris Cité, Université Sorbonne Paris Nord, LVTS, INSERM, UMR 1148, 75018 Paris, France; (Y.L.); (L.M.); (D.L.); (T.S.-Y.)
- Départements of Biochimie and de Médecine Nucléaire, Assistance Publique-Hôpitaux de Paris, Hôpital Avicenne, 93009 Bobigny, France
| | - Sabrina Doblas
- Centre de Recherche sur l’Inflammation, INSERM, U1149, CNRS, ERL8252, Laboratory of Imaging Biomarkers, Université Paris Cité, BP 416, 75018 Paris, France; (S.D.); (M.Z.)
| | - Magaly Zappa
- Centre de Recherche sur l’Inflammation, INSERM, U1149, CNRS, ERL8252, Laboratory of Imaging Biomarkers, Université Paris Cité, BP 416, 75018 Paris, France; (S.D.); (M.Z.)
- Département of Radiologie, Assistance Publique Hôpitaux de Paris, Hôpital Beaujon, CEDEX, 92110 Clichy, France
| | - Camélia Labiad
- Département of Chirurgie Colorectale, Assistance Publique Hôpitaux de Paris, Hôpital Beaujon, CEDEX, 92110 Clichy, France; (A.C.); (M.K.C.); (C.L.); (L.M.); (Y.P.)
- Centre de Recherche sur l’Inflammation, INSERM, U1149, CNRS, ERL8252, Université Paris Cité, Team Gut Inflammation, BP 416, 75018 Paris, France; (D.C.-H.); (X.T.)
| | - Dominique Cazals-Hatem
- Centre de Recherche sur l’Inflammation, INSERM, U1149, CNRS, ERL8252, Université Paris Cité, Team Gut Inflammation, BP 416, 75018 Paris, France; (D.C.-H.); (X.T.)
- Département of Pathologie, Assistance Publique Hôpitaux de Paris, Hôpital Beaujon, CEDEX, 92110 Clichy, France
| | - Léon Maggiori
- Département of Chirurgie Colorectale, Assistance Publique Hôpitaux de Paris, Hôpital Beaujon, CEDEX, 92110 Clichy, France; (A.C.); (M.K.C.); (C.L.); (L.M.); (Y.P.)
- Centre de Recherche sur l’Inflammation, INSERM, U1149, CNRS, ERL8252, Université Paris Cité, Team Gut Inflammation, BP 416, 75018 Paris, France; (D.C.-H.); (X.T.)
| | - Xavier Treton
- Centre de Recherche sur l’Inflammation, INSERM, U1149, CNRS, ERL8252, Université Paris Cité, Team Gut Inflammation, BP 416, 75018 Paris, France; (D.C.-H.); (X.T.)
- Département Gastroentérologie, Assistance Publique Hôpitaux de Paris, Hôpital Beaujon, CEDEX, 92110 Clichy, France
| | - Yves Panis
- Département of Chirurgie Colorectale, Assistance Publique Hôpitaux de Paris, Hôpital Beaujon, CEDEX, 92110 Clichy, France; (A.C.); (M.K.C.); (C.L.); (L.M.); (Y.P.)
- Centre de Recherche sur l’Inflammation, INSERM, U1149, CNRS, ERL8252, Université Paris Cité, Team Gut Inflammation, BP 416, 75018 Paris, France; (D.C.-H.); (X.T.)
| | - Ulrich Jarry
- Université Rennes, CNRS, INSERM, BIOSIT UAR 3480, US_S 018, Oncotrial, 35000 Rennes, France; (U.J.); (T.D.)
- Biotrial Pharmacology, Unité De Pharmacologie Préclinique, 35000 Rennes, France
| | - Thomas Desvallées
- Université Rennes, CNRS, INSERM, BIOSIT UAR 3480, US_S 018, Oncotrial, 35000 Rennes, France; (U.J.); (T.D.)
| | - Pierre-Antoine Eliat
- Université Rennes, CNRS, INSERM, BIOSIT UAR 3480, US_S 018, PRISM, 35000 Rennes, France;
- INRAE, INSERM, Institute NUMECAN, UMR_A 1341, Université Rennes, UMR_S 1241, 35000 Rennes, France
| | - Raphaël Pineau
- INSERM, CLCC Eugène Marquis, Oncogenesis, Stress Signaling, Université Rennes, UMR_S 1242, 35000 Rennes, France;
| | - Laurence Motte
- Laboratory for Vascular Translational Science, Université Paris Cité, Université Sorbonne Paris Nord, LVTS, INSERM, UMR 1148, 75018 Paris, France; (Y.L.); (L.M.); (D.L.); (T.S.-Y.)
| | - Didier Letourneur
- Laboratory for Vascular Translational Science, Université Paris Cité, Université Sorbonne Paris Nord, LVTS, INSERM, UMR 1148, 75018 Paris, France; (Y.L.); (L.M.); (D.L.); (T.S.-Y.)
| | - Teresa Simon-Yarza
- Laboratory for Vascular Translational Science, Université Paris Cité, Université Sorbonne Paris Nord, LVTS, INSERM, UMR 1148, 75018 Paris, France; (Y.L.); (L.M.); (D.L.); (T.S.-Y.)
| | - Eric Ogier-Denis
- Centre de Recherche sur l’Inflammation, INSERM, U1149, CNRS, ERL8252, Université Paris Cité, Team Gut Inflammation, BP 416, 75018 Paris, France; (D.C.-H.); (X.T.)
- INSERM, CLCC Eugène Marquis, Oncogenesis, Stress Signaling, Université Rennes, UMR_S 1242, 35000 Rennes, France;
- INSERM U1242, Centre Eugène Marquis, Rue de la Bataille de Flandres-Dunkerque, 35042 Rennes, France
| |
Collapse
|
11
|
Georgakis MK, Bernhagen J, Heitman LH, Weber C, Dichgans M. Targeting the CCL2-CCR2 axis for atheroprotection. Eur Heart J 2022; 43:1799-1808. [PMID: 35567558 DOI: 10.1093/eurheartj/ehac094] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/22/2021] [Accepted: 02/15/2022] [Indexed: 11/12/2022] Open
Abstract
Decades of research have established atherosclerosis as an inflammatory disease. Only recently though, clinical trials provided proof-of-concept evidence for the efficacy of anti-inflammatory strategies with respect to cardiovascular events, thus offering a new paradigm for lowering residual vascular risk. Efforts to target the inflammasome-interleukin-1β-interleukin-6 pathway have been highly successful, but inter-individual variations in drug response, a lack of reduction in all-cause mortality, and a higher rate of infections also highlight the need for a second generation of anti-inflammatory agents targeting atherosclerosis-specific immune mechanisms while minimizing systemic side effects. CC-motif chemokine ligand 2/monocyte-chemoattractant protein-1 (CCL2/MCP-1) orchestrates inflammatory monocyte trafficking between the bone marrow, circulation, and atherosclerotic plaques by binding to its cognate receptor CCR2. Adding to a strong body of data from experimental atherosclerosis models, a coherent series of recent large-scale genetic and observational epidemiological studies along with data from human atherosclerotic plaques highlight the relevance and therapeutic potential of the CCL2-CCR2 axis in human atherosclerosis. Here, we summarize experimental and human data pinpointing the CCL2-CCR2 pathway as an emerging drug target in cardiovascular disease. Furthermore, we contextualize previous efforts to interfere with this pathway, scrutinize approaches of ligand targeting vs. receptor targeting, and discuss possible pathway-intrinsic opportunities and challenges related to pharmacological targeting of the CCL2-CCR2 axis in human atherosclerotic disease.
Collapse
Affiliation(s)
- Marios K Georgakis
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, D-81377 Munich, Germany
- Center of Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jürgen Bernhagen
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, D-81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Christian Weber
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU) Munich, Germany
- Institute for Genetic and Biomedical Research, UoS of Milan, National Research Council, Milan, Italy
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, D-81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Centre for Neurodegenerative Diseases (DZNE), Munich, Germany
| |
Collapse
|
12
|
Chen W, Schilperoort M, Cao Y, Shi J, Tabas I, Tao W. Macrophage-targeted nanomedicine for the diagnosis and treatment of atherosclerosis. Nat Rev Cardiol 2022; 19:228-249. [PMID: 34759324 PMCID: PMC8580169 DOI: 10.1038/s41569-021-00629-x] [Citation(s) in RCA: 254] [Impact Index Per Article: 84.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 12/12/2022]
Abstract
Nanotechnology could improve our understanding of the pathophysiology of atherosclerosis and contribute to the development of novel diagnostic and therapeutic strategies to further reduce the risk of cardiovascular disease. Macrophages have key roles in atherosclerosis progression and, therefore, macrophage-associated pathological processes are important targets for both diagnostic imaging and novel therapies for atherosclerosis. In this Review, we highlight efforts in the past two decades to develop imaging techniques and to therapeutically manipulate macrophages in atherosclerotic plaques with the use of rationally designed nanoparticles. We review the latest progress in nanoparticle-based imaging modalities that can specifically target macrophages. Using novel molecular imaging technology, these modalities enable the identification of advanced atherosclerotic plaques and the assessment of the therapeutic efficacy of medical interventions. Additionally, we provide novel perspectives on how macrophage-targeting nanoparticles can deliver a broad range of therapeutic payloads to atherosclerotic lesions. These nanoparticles can suppress pro-atherogenic macrophage processes, leading to improved resolution of inflammation and stabilization of plaques. Finally, we propose future opportunities for novel diagnostic and therapeutic strategies and provide solutions to challenges in this area for the purpose of accelerating the clinical translation of nanomedicine for the treatment of atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Wei Chen
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maaike Schilperoort
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yihai Cao
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Ira Tabas
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.
| | - Wei Tao
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Segers FME, Ruder AV, Westra MM, Lammers T, Dadfar SM, Roemhild K, Lam TS, Kooi ME, Cleutjens KBJM, Verheyen FK, Schurink GWH, Haenen GR, van Berkel TJC, Bot I, Halvorsen B, Sluimer JC, Biessen EAL. Magnetic resonance imaging contrast-enhancement with superparamagnetic iron oxide nanoparticles amplifies macrophage foam cell apoptosis in human and murine atherosclerosis. Cardiovasc Res 2022; 118:3346-3359. [PMID: 35325057 PMCID: PMC9847560 DOI: 10.1093/cvr/cvac032] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 01/28/2022] [Accepted: 02/23/2022] [Indexed: 01/25/2023] Open
Abstract
AIMS (Ultra) Small superparamagnetic iron oxide nanoparticles, (U)SPIO, are widely used as magnetic resonance imaging contrast media and assumed to be safe for clinical applications in cardiovascular disease. As safety tests largely relied on normolipidaemic models, not fully representative of the clinical setting, we investigated the impact of (U)SPIOs on disease-relevant endpoints in hyperlipidaemic models of atherosclerosis. METHODS AND RESULTS RAW264.7 foam cells, exposed in vitro to ferumoxide (dextran-coated SPIO), ferumoxtran (dextran-coated USPIO), or ferumoxytol [carboxymethyl (CM) dextran-coated USPIO] (all 1 mg Fe/mL) showed increased apoptosis and reactive oxygen species accumulation for ferumoxide and ferumoxtran, whereas ferumoxytol was tolerated well. Pro-apoptotic (TUNEL+) and pro-oxidant activity of ferumoxide (0.3 mg Fe/kg) and ferumoxtran (1 mg Fe/kg) were confirmed in plaque, spleen, and liver of hyperlipidaemic ApoE-/- (n = 9/group) and LDLR-/- (n = 9-16/group) mice that had received single IV injections compared with saline-treated controls. Again, ferumoxytol treatment (1 mg Fe/kg) failed to induce apoptosis or oxidative stress in these tissues. Concomitant antioxidant treatment (EUK-8/EUK-134) largely prevented these effects in vitro (-68%, P < 0.05) and in plaques from LDLR-/- mice (-60%, P < 0.001, n = 8/group). Repeated ferumoxtran injections of LDLR-/- mice with pre-existing atherosclerosis enhanced plaque inflammation and apoptosis but did not alter plaque size. Strikingly, carotid artery plaques of endarterectomy patients who received ferumoxtran (2.6 mg Fe/kg) before surgery (n = 9) also showed five-fold increased apoptosis (18.2 vs. 3.7%, respectively; P = 0.004) compared with controls who did not receive ferumoxtran. Mechanistically, neither coating nor particle size seemed accountable for the observed cytotoxicity of ferumoxide and ferumoxtran. CONCLUSIONS Ferumoxide and ferumoxtran, but not ferumoxytol, induced apoptosis of lipid-laden macrophages in human and murine atherosclerosis, potentially impacting disease progression in patients with advanced atherosclerosis.
Collapse
Affiliation(s)
- Filip M E Segers
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands,Faculty of Medicine, Research Institute of Internal Medicine, University Hospital Oslo, Oslo, Norway
| | - Adele V Ruder
- Department of Pathology, CARIM School for Cardiovascular Sciences, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Marijke M Westra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, RWTH Aachen University, Aachen, Germany
| | | | - Karolin Roemhild
- Department of Nanomedicine and Theranostics, RWTH Aachen University, Aachen, Germany,Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | - Tin Sing Lam
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Marianne Eline Kooi
- Department of Radiology and Nuclear Medicine, CARIM School for Cardiovascular Sciences, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Kitty B J M Cleutjens
- Department of Pathology, CARIM School for Cardiovascular Sciences, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Fons K Verheyen
- Molecular Cell Biology and Electron Microscopy (CRISP), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Geert W H Schurink
- Department of Surgery, CARIM School for Cardiovascular Sciences, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Guido R Haenen
- Department of Toxicology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Theo J C van Berkel
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Ilze Bot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Bente Halvorsen
- Faculty of Medicine, Research Institute of Internal Medicine, University Hospital Oslo, Oslo, Norway
| | - Judith C Sluimer
- Corresponding author. Tel: +31 43 3877675; Fax: +31 43 3874613, E-mail: (J.C.S.); E-mail: (E.A.L.B.)
| | - Erik A L Biessen
- Corresponding author. Tel: +31 43 3877675; Fax: +31 43 3874613, E-mail: (J.C.S.); E-mail: (E.A.L.B.)
| |
Collapse
|
14
|
Zhang M, Xie Z, Long H, Ren K, Hou L, Wang Y, Xu X, Lei W, Yang Z, Ahmed S, Zhang H, Zhao G. Current advances in the imaging of atherosclerotic vulnerable plaque using nanoparticles. Mater Today Bio 2022; 14:100236. [PMID: 35341094 PMCID: PMC8943324 DOI: 10.1016/j.mtbio.2022.100236] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/13/2022] [Accepted: 03/05/2022] [Indexed: 01/29/2023]
Abstract
Vulnerable atherosclerotic plaques of the artery wall that pose a significant risk of cardio-cerebral vascular accidents remain the global leading cause of morbidity and mortality. Thus, early delineation of vulnerable atherosclerotic plaques is of clinical importance for prevention and treatment. The currently available imaging technologies mainly focus on the structural assessment of the vascular wall. Unfortunately, several disadvantages in these strategies limit the improvement in imaging effect. Nanoparticle technology is a novel diagnostic strategy for targeting and imaging pathological biomarkers. New functionalized nanoparticles that detect hallmarks of vulnerable plaques are promising for advance further control of this critical illness. The review aims to address the current opportunities and challenges for the use of nanoparticle technology in imagining vulnerable plaques.
Collapse
|
15
|
Tsampasian V, Swift AJ, Assadi H, Chowdhary A, Swoboda P, Sammut E, Dastidar A, Cabrero JB, Del Val JR, Nair S, Nijveldt R, Ryding A, Sawh C, Bucciarelli-Ducci C, Levelt E, Vassiliou V, Garg P. Myocardial inflammation and energetics by cardiac MRI: a review of emerging techniques. BMC Med Imaging 2021; 21:164. [PMID: 34749671 PMCID: PMC8573867 DOI: 10.1186/s12880-021-00695-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 10/28/2021] [Indexed: 11/10/2022] Open
Abstract
The role of inflammation in cardiovascular pathophysiology has gained a lot of research interest in recent years. Cardiovascular Magnetic Resonance has been a powerful tool in the non-invasive assessment of inflammation in several conditions. More recently, Ultrasmall superparamagnetic particles of iron oxide have been successfully used to evaluate macrophage activity and subsequently inflammation on a cellular level. Current evidence from research studies provides encouraging data and confirms that this evolving method can potentially have a huge impact on clinical practice as it can be used in the diagnosis and management of very common conditions such as coronary artery disease, ischaemic and non-ischaemic cardiomyopathy, myocarditis and atherosclerosis. Another important emerging concept is that of myocardial energetics. With the use of phosphorus magnetic resonance spectroscopy, myocardial energetic compromise has been proved to be an important feature in the pathophysiological process of several conditions including diabetic cardiomyopathy, inherited cardiomyopathies, valvular heart disease and cardiac transplant rejection. This unique tool is therefore being utilized to assess metabolic alterations in a wide range of cardiovascular diseases. This review systematically examines these state-of-the-art methods in detail and provides an insight into the mechanisms of action and the clinical implications of their use.
Collapse
Affiliation(s)
| | - Andrew J Swift
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Hosamadin Assadi
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Amrit Chowdhary
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Peter Swoboda
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | | | | | - Jordi Broncano Cabrero
- Cardiothoracic Imaging Unit, Hospital San Juan de Dios, Ressalta, HT Medica, Cordoba, Spain
| | - Javier Royuela Del Val
- Cardiothoracic Imaging Unit, Hospital San Juan de Dios, Ressalta, HT Medica, Cordoba, Spain
| | - Sunil Nair
- Norfolk and Norwich University Hospital, Norwich, UK
| | - Robin Nijveldt
- Cardiology Department, Radboudumc, Nijmegen, The Netherlands
| | | | - Chris Sawh
- Norfolk and Norwich University Hospital, Norwich, UK
| | | | - Eylem Levelt
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Vassilios Vassiliou
- Norwich Medical School, University of East Anglia, Norwich, UK.,Norfolk and Norwich University Hospital, Norwich, UK
| | - Pankaj Garg
- Norwich Medical School, University of East Anglia, Norwich, UK. .,Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK. .,Norfolk and Norwich University Hospital, Norwich, UK.
| |
Collapse
|
16
|
Baki A, Wiekhorst F, Bleul R. Advances in Magnetic Nanoparticles Engineering for Biomedical Applications-A Review. Bioengineering (Basel) 2021; 8:134. [PMID: 34677207 PMCID: PMC8533261 DOI: 10.3390/bioengineering8100134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Magnetic iron oxide nanoparticles (MNPs) have been developed and applied for a broad range of biomedical applications, such as diagnostic imaging, magnetic fluid hyperthermia, targeted drug delivery, gene therapy and tissue repair. As one key element, reproducible synthesis routes of MNPs are capable of controlling and adjusting structure, size, shape and magnetic properties are mandatory. In this review, we discuss advanced methods for engineering and utilizing MNPs, such as continuous synthesis approaches using microtechnologies and the biosynthesis of magnetosomes, biotechnological synthesized iron oxide nanoparticles from bacteria. We compare the technologies and resulting MNPs with conventional synthetic routes. Prominent biomedical applications of the MNPs such as diagnostic imaging, magnetic fluid hyperthermia, targeted drug delivery and magnetic actuation in micro/nanorobots will be presented.
Collapse
Affiliation(s)
- Abdulkader Baki
- Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Straße 18-20, 55129 Mainz, Germany;
| | - Frank Wiekhorst
- Physikalisch-Technische Bundesanstalt, Abbestraße 2-12, 10587 Berlin, Germany;
| | - Regina Bleul
- Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Straße 18-20, 55129 Mainz, Germany;
| |
Collapse
|
17
|
Assessment of Albumin ECM Accumulation and Inflammation as Novel In Vivo Diagnostic Targets for Multi-Target MR Imaging. BIOLOGY 2021; 10:biology10100964. [PMID: 34681063 PMCID: PMC8533611 DOI: 10.3390/biology10100964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 01/17/2023]
Abstract
Atherosclerosis is a progressive inflammatory vascular disease characterized by endothelial dysfunction and plaque burden. Extracellular matrix (ECM)-associated plasma proteins play an important role in disease development. Our magnetic resonance imaging (MRI) study investigates the feasibility of using two different molecular MRI probes for the simultaneous assessment of ECM-associated intraplaque albumin deposits caused by endothelial damage and progressive inflammation in atherosclerosis. Male apolipoprotein E-deficient (ApoE-/-)-mice were fed a high-fat diet (HFD) for 2 or 4 months. Another ApoE-/--group was treated with pravastatin and received a HFD for 4 months. T1- and T2*-weighted MRI was performed before and after albumin-specific MRI probe (gadofosveset) administration and a macrophage-specific contrast agent (ferumoxytol). Thereafter, laser ablation inductively coupled plasma mass spectrometry and histology were performed. With advancing atherosclerosis, albumin-based MRI signal enhancement and ferumoxytol-induced signal loss areas in T2*-weighted MRI increased. Significant correlations between contrast-to-noise-ratio (CNR) post-gadofosveset and albumin stain (R2 = 0.78, p < 0.05), and signal loss areas in T2*-weighted MRI with Perls' Prussian blue stain (R2 = 0.83, p < 0.05) were observed. No interference of ferumoxytol with gadofosveset enhancement was detectable. Pravastatin led to decreased inflammation and intraplaque albumin. Multi-target MRI combining ferumoxytol and gadofosveset is a promising method to improve diagnosis and treatment monitoring in atherosclerosis.
Collapse
|
18
|
Friedrich RP, Cicha I, Alexiou C. Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering. NANOMATERIALS 2021; 11:nano11092337. [PMID: 34578651 PMCID: PMC8466586 DOI: 10.3390/nano11092337] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
In recent years, many promising nanotechnological approaches to biomedical research have been developed in order to increase implementation of regenerative medicine and tissue engineering in clinical practice. In the meantime, the use of nanomaterials for the regeneration of diseased or injured tissues is considered advantageous in most areas of medicine. In particular, for the treatment of cardiovascular, osteochondral and neurological defects, but also for the recovery of functions of other organs such as kidney, liver, pancreas, bladder, urethra and for wound healing, nanomaterials are increasingly being developed that serve as scaffolds, mimic the extracellular matrix and promote adhesion or differentiation of cells. This review focuses on the latest developments in regenerative medicine, in which iron oxide nanoparticles (IONPs) play a crucial role for tissue engineering and cell therapy. IONPs are not only enabling the use of non-invasive observation methods to monitor the therapy, but can also accelerate and enhance regeneration, either thanks to their inherent magnetic properties or by functionalization with bioactive or therapeutic compounds, such as drugs, enzymes and growth factors. In addition, the presence of magnetic fields can direct IONP-labeled cells specifically to the site of action or induce cell differentiation into a specific cell type through mechanotransduction.
Collapse
|
19
|
Lu T, Wei L, Huang X, Li Y, Li G, Qin Q, Pan M, Tang B, Pan X, Wei M, Nong Z, Meng F, Li X. A potentially valuable nano graphene oxide/USPIO tumor diagnosis and treatment system. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112293. [PMID: 34474844 DOI: 10.1016/j.msec.2021.112293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/13/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022]
Abstract
Due to increased requirements for precision cancer treatment, cancer chemotherapy and combination therapies have gradually developed in the direction of diagnosis and treatment integration. In this study, a non-toxic nano carrier that demonstrates integrated MRI signal enhancing performance, as well as better chemotherapy and photothermal conversion performance, was prepared and characterized. Furthermore, the carrier was used to construct an integrated system of tumor diagnosis and treatment. Our in vitro studies showed that this system has a considerable inhibition effect on tumor cells during the treatment of chemotherapy when combined with PTT, and in vivo studies showed that the system could improve the MRI signal of the tumor site with application of a safe dosage. Thus, this system based on NGO/USPIO has the potential to be a multi-functional nano drug delivery system integrating diagnosis and treatment benefits and applications that are worthy of further research.
Collapse
Affiliation(s)
- Taicheng Lu
- School of Pharmaceutical Sciences, Guangxi Medical University, No. 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Liying Wei
- School of Pharmaceutical Sciences, Guangxi Medical University, No. 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Xiaoqing Huang
- Guangxi Cancer Hospital and Guangxi Medical University Affiliated Cancer Hospital, Department of Experimental Pathology, No. 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Yin Li
- Guangxi Cancer Hospital and Guangxi Medical University Affiliated Cancer Hospital, Department of Experimental Pathology, No. 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Guo Li
- School of Pharmaceutical Sciences, Guangxi Medical University, No. 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Qixiao Qin
- School of Pharmaceutical Sciences, Guangxi Medical University, No. 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Meishi Pan
- School of Pharmaceutical Sciences, Guangxi Medical University, No. 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Bingling Tang
- School of Pharmaceutical Sciences, Guangxi Medical University, No. 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Guangxi Medical University, No. 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Mei Wei
- School of Pharmaceutical Sciences, Guangxi Medical University, No. 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Zhenzhen Nong
- School of Pharmaceutical Sciences, Guangxi Medical University, No. 22 Shuangyong Road, Nanning 530021, Guangxi, China
| | - Fayan Meng
- Frostburg State University, Chemistry Department, 101 Braddock Rd, Frostburg, MD 21532, USA.
| | - Xuehua Li
- School of Pharmaceutical Sciences, Guangxi Medical University, No. 22 Shuangyong Road, Nanning 530021, Guangxi, China.
| |
Collapse
|
20
|
Collettini F, Brangsch J, Reimann C, Chapiro J, Savic LJ, Buchholz R, Keller S, Hamm B, Goldberg SN, Makowski MR. Hepatic Radiofrequency Ablation: Monitoring of Ablation-Induced Macrophage Recruitment in the Periablational Rim Using SPION-Enhanced Macrophage-Specific Magnetic Resonance Imaging. Invest Radiol 2021; 56:591-598. [PMID: 33787536 DOI: 10.1097/rli.0000000000000777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Macrophages accumulating in the periablational rim play a pivotal role in initiating and sustaining the perifocal inflammatory reaction, which has been shown to be at least 1 of the mechanisms responsible for the systemic pro-oncogenic effects of focal hepatic radiofrequency ablation (RFA). Herein, we tested the hypothesis to use superparamagnetic iron oxide nanoparticle (SPION)-enhanced magnetic resonance imaging (MRI) for noninvasive quantification of iron-loaded macrophages in the periablational rim of VX2 tumor-bearing rabbits. MATERIALS AND METHODS Twelve VX2 tumor-bearing rabbits underwent MRI immediately after and up to 3 weeks after focal hepatic RFA. For noninvasive quantification of macrophage accumulation in the periablational rim, animals were scanned before and 24 hours after SPION injection. T2*-weighted images were analyzed and correlated with histopathological and immunohistochemical findings. Furthermore, correlations with quantitative measurements (ICP-MS [inductively coupled plasma-mass spectrometry] and LA-ICP-MS [laser ablation-ICP-MS]) were performed. RESULTS SPION-enhanced T2*-weighted MRI scans displayed a progressive increase in the areas of signal intensity (SI) loss within the periablational rim peaking 3 weeks after RFA. Accordingly, quantitative analysis of SI changes demonstrated a significant decline in the relative SI ratio reflecting a growing accumulation of iron-loaded macrophages in the rim. Histological analyses confirmed a progressive accumulation of iron-loaded macrophages in the periablational rim. The ICP-MS and LA-ICP-MS confirmed a progressive increase of iron concentration in the periablational rim. CONCLUSIONS SPION-enhanced MRI enables noninvasive monitoring and quantification of ablation-induced macrophage recruitment in the periablational rim. Given the close interplay between ablation-induced perifocal inflammation and potential unwanted tumorigenic effects of RFA, SPION-enhanced MRI may serve as a valuable tool to guide and modulate adjuvant therapies after hepatic RFA.
Collapse
Affiliation(s)
| | | | | | - Julius Chapiro
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT
| | - Lynn Jeanette Savic
- From the Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
| | - Rebecca Buchholz
- Institute of Inorganic and Analytical Chemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Sarah Keller
- From the Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
| | - Bernd Hamm
- From the Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
| | - S Nahum Goldberg
- Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | | |
Collapse
|
21
|
Chen C, Ge J, Gao Y, Chen L, Cui J, Zeng J, Gao M. Ultrasmall superparamagnetic iron oxide nanoparticles: A next generation contrast agent for magnetic resonance imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1740. [PMID: 34296533 DOI: 10.1002/wnan.1740] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022]
Abstract
As a research hotspot, the development of magnetic resonance imaging (MRI) contrast agents has attracted great attention over the past decades for improving the accuracy of diagnosis. Ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles with core diameter smaller than 5.0 nm are expected to become a next generation of contrast agents owing to their excellent MRI performance, long blood circulation time upon proper surface modification, renal clearance capacity, and remarkable biosafety profile. On top of these merits, USPIO nanoparticles are used for developing not only T1 contrast agents, but also T2 /T1 switchable contrast agents via assembly/disassembly approaches. In recent years, as a new type of contrast agents, USPIO nanoparticles have shown considerable applications in the diagnosis of various diseases such as vascular pathological changes and inflammations apart from malignant tumors. In this review, we are focusing on the state-of-the-art developments and the latest applications of USPIO nanoparticles as MRI contrast agents to discuss their advantages and future prospects. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Can Chen
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Jianxian Ge
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Yun Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Lei Chen
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Jiabin Cui
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China.,Shanghai University of Medicine and Health Sciences (SUMHS), Shanghai, China
| |
Collapse
|
22
|
Merinopoulos I, Gunawardena T, Stirrat C, Cameron D, Eccleshall SC, Dweck MR, Newby DE, Vassiliou VS. Diagnostic Applications of Ultrasmall Superparamagnetic Particles of Iron Oxide for Imaging Myocardial and Vascular Inflammation. JACC Cardiovasc Imaging 2021; 14:1249-1264. [PMID: 32861658 DOI: 10.1016/j.jcmg.2020.06.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/22/2020] [Accepted: 06/04/2020] [Indexed: 01/03/2023]
Abstract
Cardiac magnetic resonance (CMR) is at the forefront of noninvasive methods for the assessment of myocardial anatomy, function, and most importantly tissue characterization. The role of CMR is becoming even more significant with an increasing recognition that inflammation plays a major role for various myocardial diseases such as myocardial infarction, myocarditis, and takotsubo cardiomyopathy. Ultrasmall superparamagnetic particles of iron oxide (USPIO) are nanoparticles that are taken up by monocytes and macrophages accumulating at sites of inflammation. In this context, USPIO-enhanced CMR can provide valuable additional information regarding the cellular inflammatory component of myocardial and vascular diseases. Here, we will review the recent diagnostic applications of USPIO in terms of imaging myocardial and vascular inflammation, and highlight some of their future potential.
Collapse
Affiliation(s)
- Ioannis Merinopoulos
- Norwich Medical School, University of East Anglia, Norfolk and Norwich University Hospital, Norwich, United Kingdom; Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Tharusha Gunawardena
- Norwich Medical School, University of East Anglia, Norfolk and Norwich University Hospital, Norwich, United Kingdom; Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Colin Stirrat
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Donnie Cameron
- Norwich Medical School, University of East Anglia, Norfolk and Norwich University Hospital, Norwich, United Kingdom; C.J. Gorter Centre for High Field MRI, Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Simon C Eccleshall
- Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom
| | - Marc R Dweck
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - David E Newby
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Vassilios S Vassiliou
- Norwich Medical School, University of East Anglia, Norfolk and Norwich University Hospital, Norwich, United Kingdom; Department of Cardiology, Norfolk and Norwich University Hospital, Norwich, United Kingdom.
| |
Collapse
|
23
|
Kocyigit D, Scanameo A, Xu B. Multimodality imaging for the prevention of cardiovascular events: Coronary artery calcium and beyond. Cardiovasc Diagn Ther 2021; 11:840-858. [PMID: 34295709 PMCID: PMC8261752 DOI: 10.21037/cdt-19-654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/15/2020] [Indexed: 12/24/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) has been the leading cause of death worldwide for more than a decade. Prevention is of utmost importance to reduce related mortality. The innovations in cardiovascular imaging technology, in addition to our improved understanding of coronary atherosclerosis pathogenesis, have resulted in cardiovascular imaging becoming one of the most influential tools for diagnosis and risk stratification in ASCVD. Although numerous publications have emerged on this topic, data that guide routine cardiology clinical practice currently focus on the utility of a limited number of such modalities, namely arterial ultrasonography and computed tomography. Herein, current evidence with respect to the role of multimodality cardiovascular imaging on ASCVD prevention will be reviewed.
Collapse
Affiliation(s)
- Duygu Kocyigit
- Section of Cardiovascular Imaging, Robert and Suzanne Tomsich Department of Cardiovascular Medicine, Sydell and Arnold Miller Family Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Bo Xu
- Section of Cardiovascular Imaging, Robert and Suzanne Tomsich Department of Cardiovascular Medicine, Sydell and Arnold Miller Family Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
24
|
Pan C, Lin J, Zheng J, Liu C, Yuan B, Akakuru OU, Zubair Iqbal M, Fang Q, Hu J, Chen J, Lin J, Dai Q, Guo X, Li Z, Zhang T, Xu C, Ma X, Chen T, Wu A, Jin Y. An intelligent T 1-T 2 switchable MRI contrast agent for the non-invasive identification of vulnerable atherosclerotic plaques. NANOSCALE 2021; 13:6461-6474. [PMID: 33885526 DOI: 10.1039/d0nr08039j] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Unlike stable atherosclerotic plaques, vulnerable plaques are very likely to cause serious cardio-cerebrovascular diseases. Meanwhile, how to non-invasively identify vulnerable plaques at early stages has been an urgent but challenging problem in clinical practices. Here, we propose a macrophage-targeted and in situ stimuli-triggered T1-T2 switchable magnetic resonance imaging (MRI) nanoprobe for the non-invasive diagnosis of vulnerable plaques. Precisely, single-dispersed iron oxide nanoparticles (IONPs) modified with hyaluronic acid (HA), denoted as IONP-HP, show macrophage targetability and T1 MRI enhancement (r2/r1 = 3.415). Triggered by the low pH environment of macrophage lysosomes, the single-dispersed IONP-HP transforms into a cluster analogue, which exhibits T2 MRI enhancement (r2/r1 = 13.326). Furthermore, an in vivo switch of T1-T2 enhancement modes shows that the vulnerable plaques exhibit strong T1 enhancement after intravenous administration of the nanoprobe, followed by a switch to T2 enhancement after 9 h. In contrast, stable plaques show only slight T1 enhancement but without T2 enhancement. It is therefore imperative that the intelligent and novel nanoplatform proposed in this study achieves a substantial non-invasive diagnosis of vulnerable plaques by means of a facile but effective T1-T2 switchable process, which will significantly contribute to the application of materials science in solving clinical problems.
Collapse
Affiliation(s)
- Chunshu Pan
- Department of Radiology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chen J, Zhang X, Millican R, Sherwood J, Martin S, Jo H, Yoon YS, Brott BC, Jun HW. Recent advances in nanomaterials for therapy and diagnosis for atherosclerosis. Adv Drug Deliv Rev 2021; 170:142-199. [PMID: 33428994 PMCID: PMC7981266 DOI: 10.1016/j.addr.2021.01.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/02/2021] [Accepted: 01/03/2021] [Indexed: 12/18/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease driven by lipid accumulation in arteries, leading to narrowing and thrombosis. It affects the heart, brain, and peripheral vessels and is the leading cause of mortality in the United States. Researchers have strived to design nanomaterials of various functions, ranging from non-invasive imaging contrast agents, targeted therapeutic delivery systems to multifunctional nanoagents able to target, diagnose, and treat atherosclerosis. Therefore, this review aims to summarize recent progress (2017-now) in the development of nanomaterials and their applications to improve atherosclerosis diagnosis and therapy during the preclinical and clinical stages of the disease.
Collapse
Affiliation(s)
- Jun Chen
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Xixi Zhang
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | | | | | - Sean Martin
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States; Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Young-Sup Yoon
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Brigitta C Brott
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ho-Wook Jun
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
26
|
Moonen RPM, Coolen BF, Sluimer JC, Daemen MJAP, Strijkers GJ. Iron Oxide Nanoparticle Uptake in Mouse Brachiocephalic Artery Atherosclerotic Plaque Quantified by T 2-Mapping MRI. Pharmaceutics 2021; 13:pharmaceutics13020279. [PMID: 33669667 PMCID: PMC7922981 DOI: 10.3390/pharmaceutics13020279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/29/2022] Open
Abstract
The purpose of our study was to monitor the iron oxide contrast agent uptake in mouse brachiocephalic artery (BCA) atherosclerotic plaques in vivo by quantitative T2-mapping magnetic resonance imaging (MRI). Female ApoE−/− mice (n = 32) on a 15-week Western-type diet developed advanced plaques in the BCA and were injected with ultra-small superparamagnetic iron oxides (USPIOs). Quantitative in vivo MRI at 9.4 T was performed with a Malcolm-Levitt (MLEV) prepared T2-mapping sequence to monitor the nanoparticle uptake in the atherosclerotic plaque. Ex vivo histology and particle electron paramagnetic resonance (pEPR) were used for validation. Longitudinal high-resolution in vivo T2-value maps were acquired with consistent quality. Average T2 values in the plaque decreased from a baseline value of 34.5 ± 0.6 ms to 24.0 ± 0.4 ms one day after injection and partially recovered to an average T2 of 27 ± 0.5 ms after two days. T2 values were inversely related to iron levels in the plaque as determined by ex vivo particle electron paramagnetic resonance (pEPR). We concluded that MRI T2 mapping facilitates a robust quantitative readout for USPIO uptake in atherosclerotic plaques in arteries near the mouse heart.
Collapse
Affiliation(s)
- Rik P. M. Moonen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands;
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands;
| | - Bram F. Coolen
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Judith C. Sluimer
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands;
- Department of Pathology, Maastricht University Medical Center, 6229 ER Maastricht, The Netherlands
| | - Mat J. A. P. Daemen
- Department of Pathology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Cardiovascular Sciences, 1105 AZ Amsterdam, The Netherlands;
| | - Gustav J. Strijkers
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
- Correspondence: ; Tel.: +31-20-566-52-02
| |
Collapse
|
27
|
Andelovic K, Winter P, Jakob PM, Bauer WR, Herold V, Zernecke A. Evaluation of Plaque Characteristics and Inflammation Using Magnetic Resonance Imaging. Biomedicines 2021; 9:185. [PMID: 33673124 PMCID: PMC7917750 DOI: 10.3390/biomedicines9020185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis is an inflammatory disease of large and medium-sized arteries, characterized by the growth of atherosclerotic lesions (plaques). These plaques often develop at inner curvatures of arteries, branchpoints, and bifurcations, where the endothelial wall shear stress is low and oscillatory. In conjunction with other processes such as lipid deposition, biomechanical factors lead to local vascular inflammation and plaque growth. There is also evidence that low and oscillatory shear stress contribute to arterial remodeling, entailing a loss in arterial elasticity and, therefore, an increased pulse-wave velocity. Although altered shear stress profiles, elasticity and inflammation are closely intertwined and critical for plaque growth, preclinical and clinical investigations for atherosclerosis mostly focus on the investigation of one of these parameters only due to the experimental limitations. However, cardiovascular magnetic resonance imaging (MRI) has been demonstrated to be a potent tool which can be used to provide insights into a large range of biological parameters in one experimental session. It enables the evaluation of the dynamic process of atherosclerotic lesion formation without the need for harmful radiation. Flow-sensitive MRI provides the assessment of hemodynamic parameters such as wall shear stress and pulse wave velocity which may replace invasive and radiation-based techniques for imaging of the vascular function and the characterization of early plaque development. In combination with inflammation imaging, the analyses and correlations of these parameters could not only significantly advance basic preclinical investigations of atherosclerotic lesion formation and progression, but also the diagnostic clinical evaluation for early identification of high-risk plaques, which are prone to rupture. In this review, we summarize the key applications of magnetic resonance imaging for the evaluation of plaque characteristics through flow sensitive and morphological measurements. The simultaneous measurements of functional and structural parameters will further preclinical research on atherosclerosis and has the potential to fundamentally improve the detection of inflammation and vulnerable plaques in patients.
Collapse
Affiliation(s)
- Kristina Andelovic
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany
- Experimental Physics V, University of Würzburg, 97074 Würzburg, Germany; (P.W.); (P.M.J.); (V.H.)
| | - Patrick Winter
- Experimental Physics V, University of Würzburg, 97074 Würzburg, Germany; (P.W.); (P.M.J.); (V.H.)
- Internal Medicine I, Cardiology, University Hospital Würzburg, 97080 Würzburg, Germany;
| | - Peter Michael Jakob
- Experimental Physics V, University of Würzburg, 97074 Würzburg, Germany; (P.W.); (P.M.J.); (V.H.)
| | - Wolfgang Rudolf Bauer
- Internal Medicine I, Cardiology, University Hospital Würzburg, 97080 Würzburg, Germany;
| | - Volker Herold
- Experimental Physics V, University of Würzburg, 97074 Würzburg, Germany; (P.W.); (P.M.J.); (V.H.)
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
28
|
Lu Y, Huang J, Neverova NV, Nguyen KL. USPIOs as targeted contrast agents in cardiovascular magnetic resonance imaging. CURRENT CARDIOVASCULAR IMAGING REPORTS 2021; 14:2. [PMID: 33824694 PMCID: PMC8021129 DOI: 10.1007/s12410-021-09552-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2021] [Indexed: 01/15/2023]
Abstract
PURPOSE OF REVIEW We aim to discuss the diagnostic use of ultra-small superparamagnetic iron oxide (USPIOs) including ferumoxytol in targeted cardiovascular magnetic resonance imaging (MRI). RECENT FINDINGS Ferumoxytol is the only USPIO clinically available in the U.S. and is a negatively charged USPIO that has potential use for tracking and characterization of macrophage-infiltrated cardiovascular structures. As an iron supplement that is approved for treatment of iron deficiency anemia, the iron core of ferumoxytol is incorporated into the body once it is phagocytosed by macrophages. In organs or tissues with high inflammatory cellular infiltration, such as atherosclerotic plaques and myocardial infarction, localization of iron-laden macrophages can be visualized on delayed MRI. The iron core of ferumoxytol alters the magnetic susceptibility and results in shortening of T2* and T2 relaxation rates. Areas with high concentration appear hypointense (negative contrast) on T2 and T2* MRI. Recently, in vitro findings support the potential specificity of ferumoxytol interactions with macrophage subtypes, which has implications for therapeutic interventions. With increasing concerns about gadolinium retention in the brain and other tissues, the value of ferumoxytol-enhanced MR for targeted clinical imaging is aided by its positive safety profile in patients with impaired renal function. SUMMARY This paper discusses pharmacokinetic properties of USPIOs with a focus on ferumoxytol, and summarizes relevant in vitro, animal, and human studies investigating the diagnostic use of USPIOs in targeted contrast-enhanced imaging. We also discuss future directions for USPIOs as targeted imaging agents and associated challenges.
Collapse
Affiliation(s)
- Yi Lu
- Division of Cardiology, David Geffen School of Medicine at
UCLA and VA Greater Los Angeles Healthcare System
| | - Jenny Huang
- Division of Cardiology, David Geffen School of Medicine at
UCLA and VA Greater Los Angeles Healthcare System
- Diagnostic Cardiovascular Imaging Research Laboratory,
Department of Radiology, David Geffen School of Medicine at UCLA
| | - Natalia V. Neverova
- Division of Cardiology, David Geffen School of Medicine at
UCLA and VA Greater Los Angeles Healthcare System
| | - Kim-Lien Nguyen
- Division of Cardiology, David Geffen School of Medicine at
UCLA and VA Greater Los Angeles Healthcare System
- Physics and Biology in Medicine Graduate Program,
University of California, Los Angeles
- Diagnostic Cardiovascular Imaging Research Laboratory,
Department of Radiology, David Geffen School of Medicine at UCLA
| |
Collapse
|
29
|
Tong W, Hui H, Shang W, Zhang Y, Tian F, Ma Q, Yang X, Tian J, Chen Y. Highly sensitive magnetic particle imaging of vulnerable atherosclerotic plaque with active myeloperoxidase-targeted nanoparticles. Am J Cancer Res 2021; 11:506-521. [PMID: 33391489 PMCID: PMC7738857 DOI: 10.7150/thno.49812] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
Inflammation is a pivotal driver of atherosclerotic plaque progression and rupture and is a target for identifying vulnerable plaques. However, challenges arise with the current in vivo imaging modalities for differentiating vulnerable atherosclerotic plaques from stable plaques due to their low specificity and sensitivity. Herein, we aimed to develop a novel multimodal imaging platform that specifically targets and identifies high-risk plaques in vivo by detecting active myeloperoxidase (MPO), a potential inflammatory marker of vulnerable atherosclerotic plaque. Methods: A novel multimodal imaging agent, 5-HT-Fe3O4-Cy7 nanoparticles (5HFeC NPs), used for active MPO targeting, was designed by conjugating superparamagnetic iron oxide nanoparticles (SPIONs) with 5-hydroxytryptamine and cyanine 7 N-hydroxysuccinimide ester. The specificity and sensitivity of 5HFeC NPs were evaluated using magnetic particle imaging (MPI), fluorescence imaging (FLI), and computed tomographic angiography (CTA) in an ApoE-/- atherosclerosis mouse model. Treatment with 4-ABAH, an MPO inhibitor, was used to assess the monitoring ability of 5HFeC NPs. Results: 5HFeC NPs can sensitively differentiate and accurately localize vulnerable atherosclerotic plaques in ApoE-/- mice via MPI/FLI/CTA. High MPI and FLI signals were observed in atherosclerotic plaques within the abdominal aorta, which were histologically confirmed by multiple high-risk features of macrophage infiltration, neovascularization, and microcalcification. Inhibition of active MPO reduced accumulation of 5HFeC NPs in the abdominal aorta. Accumulation of 5HFeC NPs in plaques enabled quantitative evaluation of the severity of inflammation and monitoring of MPO activity. Conclusions: This multimodal MPI approach revealed that active MPO-targeted nanoparticles might serve as a method for detecting vulnerable atherosclerotic plaques and monitoring MPO activity.
Collapse
|
30
|
Wei H, Tan T, Cheng L, Liu J, Song H, Li L, Zhang K. MRI tracing of ultrasmall superparamagnetic iron oxide nanoparticle‑labeled endothelial progenitor cells for repairing atherosclerotic vessels in rabbits. Mol Med Rep 2020; 22:3327-3337. [PMID: 32945451 PMCID: PMC7453557 DOI: 10.3892/mmr.2020.11431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
Endothelial progenitor cells (EPCs) have been discovered to be relevant to the prognosis of cardiovascular diseases. Previous research has demonstrated that EPCs serve vital roles in the occurrence and development of atherosclerosis. Significant improvements have been made in MRI technology and in the experimental use of EPCs for therapeutic angiogenesis and vascular repair. Nevertheless, the migratory, adhesive, proliferative and angiogenic properties of EPCs remain unknown. The aims of the present study were to investigate the potential of using non-invasive monitoring with ultrasmall superparamagnetic iron oxide nanoparticle (USPION)-labeled endothelial progenitor cells (EPCs) after transplantation, and to assess the treatment outcomes in an atherosclerotic rabbit model. EPCs derived from rabbit peripheral blood samples were labeled with USPION-poly-l-lysine (USPION-PLL). The morphology, proliferation, adhesive ability and labeling efficiency of the EPCs were determined by optical and electron microscopy. Moreover, biological activity was assessed by flow cytometry. In addition, T2-weighted image fast spin-echo MRI was used to detect cell labeling. USPION content in the labeled EPCs was determined by Prussian blue staining and scanning electron microscopy. Rabbit atherosclerosis model was established using a high-fat diet. USPION-labeled EPCs were transplanted into rabbits, and in vivo MRI was performed 1 and 7 days after transplantation. It was found that EPCs cultured on Matrigel formed capillary-like structures, and expressed the surface markers CD133, CD31, CD34 and vascular endothelial growth factor receptor 2 (VEGFR2). The optimal USPION concentration was 32 µg/ml, as determined by adhesion and proliferation assays. It was identified that USPION-PLL nanoparticles were 10–20 nm in diameter. Histopathological analysis results indicated that 1 day after transplantation of the labeled EPCs, blue-stained granules were observed in the intima of vascular lesions in rabbit models after Prussian blue staining. Therefore, the present results suggest that USPION-labeled EPCs may play a role in repairing endothelial injury and preventing atherosclerosis in vivo.
Collapse
Affiliation(s)
- Hongxia Wei
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| | - Tingting Tan
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| | - Li Cheng
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| | - Jiapeng Liu
- Department of Medical Imaging, Shanghai Jiahui International Hospital, Shanghai 200233, P.R. China
| | - Hongyan Song
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| | - Lei Li
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| | - Kui Zhang
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
31
|
Affiliation(s)
- Xinping Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University Nanjing China
| | - Xiaoyang Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University Nanjing China
| | - Yuxin Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University Nanjing China
| | - Fu‐Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University Nanjing China
| |
Collapse
|
32
|
Zhu G, Hom J, Li Y, Jiang B, Rodriguez F, Fleischmann D, Saloner D, Porcu M, Zhang Y, Saba L, Wintermark M. Carotid plaque imaging and the risk of atherosclerotic cardiovascular disease. Cardiovasc Diagn Ther 2020; 10:1048-1067. [PMID: 32968660 DOI: 10.21037/cdt.2020.03.10] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Carotid artery plaque is a measure of atherosclerosis and is associated with future risk of atherosclerotic cardiovascular disease (ASCVD), which encompasses coronary, cerebrovascular, and peripheral arterial diseases. With advanced imaging techniques, computerized tomography (CT) and magnetic resonance imaging (MRI) have shown their potential superiority to routine ultrasound to detect features of carotid plaque vulnerability, such as intraplaque hemorrhage (IPH), lipid-rich necrotic core (LRNC), fibrous cap (FC), and calcification. The correlation between imaging features and histological changes of carotid plaques has been investigated. Imaging of carotid features has been used to predict the risk of cardiovascular events. Other techniques such as nuclear imaging and intra-vascular ultrasound (IVUS) have also been proposed to better understand the vulnerable carotid plaque features. In this article, we review the studies of imaging specific carotid plaque components and their correlation with risk scores.
Collapse
Affiliation(s)
- Guangming Zhu
- Department of Radiology, Neuroradiology Section, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Jason Hom
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Ying Li
- Department of Radiology, Neuroradiology Section, Stanford University School of Medicine, Palo Alto, CA, USA.,Clinical Medical Research Center, Luye Pharma Group Ltd., Beijing 100000, China
| | - Bin Jiang
- Department of Radiology, Neuroradiology Section, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Fatima Rodriguez
- Division of Cardiovascular Medicine and the Cardiovascular Institute, Stanford University, Palo Alto, CA, USA
| | - Dominik Fleischmann
- Department of Radiology, Cardiovascular Imaging Section, Stanford University School of Medicine, Palo Alto, CA, USA
| | - David Saloner
- Department of Radiology, University of California San Francisco, San Francisco, CA, USA
| | - Michele Porcu
- Dipartimento di Radiologia, Azienda Ospedaliero Universitaria di Cagliari, Cagliari, Italy
| | - Yanrong Zhang
- Department of Radiology, Neuroradiology Section, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Luca Saba
- Dipartimento di Radiologia, Azienda Ospedaliero Universitaria di Cagliari, Cagliari, Italy
| | - Max Wintermark
- Department of Radiology, Neuroradiology Section, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
33
|
Evans RJ, Lavin B, Phinikaridou A, Chooi KY, Mohri Z, Wong E, Boyle JJ, Krams R, Botnar R, Long NJ. Targeted Molecular Iron Oxide Contrast Agents for Imaging Atherosclerotic Plaque. Nanotheranostics 2020; 4:184-194. [PMID: 32637296 PMCID: PMC7332796 DOI: 10.7150/ntno.44712] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/06/2020] [Indexed: 02/03/2023] Open
Abstract
Overview: Cardiovascular disease remains a leading cause of death worldwide, with vulnerable plaque rupture the underlying cause of many heart attacks and strokes. Much research is focused on identifying an imaging biomarker to differentiate stable and vulnerable plaque. Magnetic Resonance Imaging (MRI) is a non-ionising and non-invasive imaging modality with excellent soft tissue contrast. However, MRI has relatively low sensitivity (micromolar) for contrast agent detection compared to nuclear imaging techniques. There is also an increasing emphasis on developing MRI probes that are not based on gadolinium chelates because of increasing concerns over associated systemic toxicity and deposits1. To address the sensitivity and safety concerns of gadolinium this project focused on the development of a high relaxivity probe based on superparamagnetic iron oxide nanoparticles for the imaging of atherosclerotic plaque with MRI. With development, this may facilitate differentiating stable and vulnerable plaque in vivo. Aim: To develop a range of MRI contrast agents based on superparamagnetic iron oxide nanoparticles (SPIONs), and test them in a murine model of advanced atherosclerosis. Methods: Nanoparticles of four core sizes were synthesised by thermal decomposition and coated with poly(maleicanhydride-alt-1-octadecene) (PMAO), poly(ethyleneimine) (PEI) or alendronate, then characterised for core size, hydrodynamic size, surface potential and relaxivity. On the basis of these results, one candidate was selected for further studies. In vivo studies using 10 nm PMAO-coated SPIONs were performed in ApoE-/- mice fed a western diet and instrumented with a perivascular cuff on the left carotid artery. Control ApoE-/- mice were fed a normal chow diet and were not instrumented. Mice were scanned on a 3T MR scanner (Philips Achieva) with the novel SPION contrast agent, and an elastin-targeted gadolinium agent that was shown previously to enable visualisation of plaque burden. Histological analysis was undertaken to confirm imaging findings through staining for macrophages, CX3CL1, elastin, tropoelastin, and iron. Results: The lead SPION agent consisted of a 10 nm iron oxide core with poly(maleicanhydride-alt-1-octadecene), (-36.21 mV, r2 18.806 mmol-1/s-1). The irregular faceting of the iron oxide core resulted in high relaxivity and the PMAO provided a foundation for further functionalisation on surface -COOH groups. The properties of the contrast agent, including the negative surface charge and hydrodynamic size, were designed to maximise circulation time and evade rapid clearance through the renal system or phagocytosis. In vitro testing showed that the SPION agent was non-toxic. In vivo results show that the novel contrast agent accumulates in similar vascular regions to a gadolinium-based contrast agent (Gd-ESMA) targeted to elastin, which accumulates in plaque. There was a significant difference in SPION signal between the instrumented and the contralateral non-instrumented vessels in diseased mice (p = 0.0411, student's t-test), and between the instrumented diseased vessel and control vessels (p = 0.0043, 0.0022, student's t-test). There was no significant difference between the uptake of either contrast agent between stable and vulnerable plaques (p = 0.3225, student's t-test). Histological verification was used to identify plaques, and Berlin Blue staining confirmed the presence of nanoparticle deposits within vulnerable plaques and co-localisation with macrophages. Conclusion: This work presents a new MRI contrast agent for atherosclerosis which uses an under-explored surface ligand, demonstrating promising properties for in vivo behaviour, is still in circulation 24 hours post-injection with limited liver uptake, and shows good accumulation in a murine plaque model.
Collapse
Affiliation(s)
- Rhiannon J Evans
- Department of Chemistry, MSRH Building, Imperial College London, White City Campus, 80 Wood Lane, White City, London, W12 0BZ, UK.,School of Biomedical Engineering and Imaging Science, St. Thomas's Hospital, King's College London, London, SE1 7EH, UK
| | - Begoña Lavin
- School of Biomedical Engineering and Imaging Science, St. Thomas's Hospital, King's College London, London, SE1 7EH, UK
| | - Alkystis Phinikaridou
- School of Biomedical Engineering and Imaging Science, St. Thomas's Hospital, King's College London, London, SE1 7EH, UK
| | - Kok Yean Chooi
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Zahra Mohri
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Eunice Wong
- Department of Chemistry, MSRH Building, Imperial College London, White City Campus, 80 Wood Lane, White City, London, W12 0BZ, UK.,National Heart and Lung Institute, ICTEM Building, Imperial College London, Hammersmith Campus, Du Cane Rd, London, W12 0NN, UK
| | - Joseph J Boyle
- National Heart and Lung Institute, ICTEM Building, Imperial College London, Hammersmith Campus, Du Cane Rd, London, W12 0NN, UK
| | - Rob Krams
- Department of Bioengineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - René Botnar
- School of Biomedical Engineering and Imaging Science, St. Thomas's Hospital, King's College London, London, SE1 7EH, UK
| | - Nicholas J Long
- Department of Chemistry, MSRH Building, Imperial College London, White City Campus, 80 Wood Lane, White City, London, W12 0BZ, UK
| |
Collapse
|
34
|
Langsjoen J, Neuwelt A, Eberhardt S, Mlady G, Shukla U, Murali S, Pizanis C, Sillerud LO. A comparison of ferumoxytol with gadolinium as contrast agents for the diagnostic magnetic resonance imaging of osteomyelitis. Magn Reson Imaging 2020; 71:45-54. [PMID: 32439428 DOI: 10.1016/j.mri.2020.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Ferumoxytol, an FDA-approved superparamagnetic iron oxide nanoparticle (SPION) preparation used for the treatment of iron deficiency anemia, is also known to be taken up by macrophages in areas of infection or inflammation, where it produces negative contrast changes on T2-weighted MR images. PURPOSE We sought to compare Ferumoxytol-induced MRI contrast changes with those observed using standard-of-care Gadolinium in patients presenting with symptoms suggestive of osteomyelitis. SUBJECTS Out of eighteen enrolled patients, 15 had MR imaging with both ferumoxytol and gadolinium. Based on clinical and/or pathologic criteria, 7 patients were diagnosed with osteomyelitis, 5 patients had osteomyelitis ruled out, and in 3 patients a definitive diagnosis could not be made. FIELD STRENGTH 1.5 Tesla. SEQUENCES Used included STIR, T1-weighted and T2-weighted spin echo. ASSESSMENT The mean contrast changes upon ferumoxytol and gadolinium administration were measured from lesion regions of interest and compared with control regions. STATISTICAL TESTS Student's t-test, propagation of errors. Data are reported as means ± S.E. RESULTS The mean contrast changes, ΔC, associated with a diagnosis of osteomyelitis were found to be ΔCFe = -2.7 ± 0.7 when Ferumoxytol and T2w imaging sequences were used and ΔCGd = +3.1 ± 1.1 (P < 0.001) when Gadolinium and a T1w imaging sequence was used. The MRI contrast changes for both agents correlated with systemic markers of inflammation, such as the erythrocyte sedimentation rate. In patients without osteomyelitis, no significant contrast changes were observed in T2-weighted, Ferumoxytol-contrasted MRI. The macrophages in osteomyelitic lesions were found to take up at least 16 times as much iron as benign bone marrow. DATA CONCLUSION We conclude that in terms of its MRI diagnostic accuracy for osteomyelitis Ferumoxytol-contrasted MRI is a promising approach for diagnosing osteomyelitis that merits further study.
Collapse
Affiliation(s)
- Jens Langsjoen
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States of America
| | - Alex Neuwelt
- Department of Medical Oncology, Department of Veterans Affairs, Richmond, VA 23249, United States of America
| | - Stephen Eberhardt
- Department of Radiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States of America
| | - Gary Mlady
- Department of Radiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States of America
| | - Utkarsh Shukla
- University of New Mexico School of Medicine, Albuquerque, NM 87131, United States of America
| | - Sowmiya Murali
- University of New Mexico School of Medicine, Albuquerque, NM 87131, United States of America
| | - Charles Pizanis
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States of America
| | - Laurel O Sillerud
- Department of Neurology, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States of America.
| |
Collapse
|
35
|
Qiao R, Huang X, Qin Y, Li Y, Davis TP, Hagemeyer CE, Gao M. Recent advances in molecular imaging of atherosclerotic plaques and thrombosis. NANOSCALE 2020; 12:8040-8064. [PMID: 32239038 DOI: 10.1039/d0nr00599a] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As the complications of atherosclerosis such as myocardial infarction and stroke are still one of the leading causes of mortality worldwide, the development of new diagnostic tools for the early detection of plaque instability and thrombosis is urgently needed. Advanced molecular imaging probes based on functional nanomaterials in combination with cutting edge imaging techniques are now paving the way for novel and unique approaches to monitor the inflammatory progress in atherosclerosis. This review focuses on the development of various molecular probes for the diagnosis of plaques and thrombosis in atherosclerosis, along with perspectives of their diagnostic applications in cardiovascular diseases. Specifically, we summarize the biological targets that can be used for atherosclerosis and thrombosis imaging. Then we describe the emerging molecular imaging techniques based on the utilization of engineered nanoprobes together with their challenges in clinical translation.
Collapse
Affiliation(s)
- Ruirui Qiao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Daghem M, Bing R, Fayad ZA, Dweck MR. Noninvasive Imaging to Assess Atherosclerotic Plaque Composition and Disease Activity: Coronary and Carotid Applications. JACC Cardiovasc Imaging 2020; 13:1055-1068. [PMID: 31422147 PMCID: PMC10661368 DOI: 10.1016/j.jcmg.2019.03.033] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 03/07/2019] [Accepted: 03/24/2019] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease is one of the leading causes of mortality and morbidity worldwide. Atherosclerosis imaging has traditionally focused on detection of obstructive luminal stenoses or measurements of plaque burden. However, with advances in imaging technology it has now become possible to noninvasively interrogate plaque composition and disease activity, thereby differentiating stable from unstable patterns of disease and potentially improving risk stratification. This manuscript reviews multimodality imaging in this field, focusing on carotid and coronary atherosclerosis and how these novel techniques have the potential to complement current imaging assessments and improve clinical decision making.
Collapse
Affiliation(s)
- Marwa Daghem
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Rong Bing
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Zahi A Fayad
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Marc R Dweck
- British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
37
|
Calcagno C, Fayad ZA. Clinical imaging of cardiovascular inflammation. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2020; 64:74-84. [PMID: 32077666 PMCID: PMC7145733 DOI: 10.23736/s1824-4785.20.03228-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cardiovascular disease due to atherosclerosis is the number one cause of morbidity and mortality worldwide. In the past twenty years, compelling preclinical and clinical data have indicated that a maladaptive inflammatory response plays a crucial role in the development of atherosclerosis initiation and progression in the vasculature, all the way to the onset of life-threatening cardiovascular events. Furthermore, inflammation is key to heart and brain damage and healing after myocardial infarction or stroke. Recent evidence indicates that this interplay between the vasculature, organs target of ischemia and the immune system is mediated by the activation of hematopoietic organs (bone marrow and spleen). In this evolving landscape, non-invasive imaging is becoming more and more essential to support either mechanistic preclinical studies to investigate the role of inflammation in cardiovascular disease (CVD), or as a translational tool to quantify inflammation in the cardiovascular system and hematopoietic organs in patients. In this review paper, we will describe the clinical applications of non-invasive imaging to quantify inflammation in the vasculature, infarcted heart and brain, and hematopoietic organs in patients with cardiovascular disease, with specific focus on [18F]FDG PET and other novel inflammation-specific radiotracers. Furthermore, we will briefly describe the most recent clinical applications of other imaging techniques such as MRI, SPECT, CT, CEUS and OCT in this arena.
Collapse
Affiliation(s)
- Claudia Calcagno
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zahi A Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA -
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
38
|
Usman A, Patterson AJ, Yuan J, Cluroe A, Patterson I, Graves MJ, Gillard JH, Sadat U. Ferumoxytol-enhanced three-dimensional magnetic resonance imaging of carotid atheroma- a feasibility and temporal dependence study. Sci Rep 2020; 10:1808. [PMID: 32020031 PMCID: PMC7000763 DOI: 10.1038/s41598-020-58708-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/01/2020] [Indexed: 12/25/2022] Open
Abstract
Ferumoxytol is an ultrasmall super paramagnetic particles of iron oxide (USPIO) agent recently used for magnetic resonance (MR) vascular imaging. Other USPIOs have been previously used for assessing inflammation within atheroma. We aim to assess feasibility of ferumoxytol in imaging carotid atheroma (with histological assessment); and the optimum MR imaging time to detect maximum quantitative signal change post-ferumoxytol infusion. Ten patients with carotid artery disease underwent high-resolution MR imaging of their carotid arteries on a 1.5 T MR system. MR imaging was performed before and at 24, 48, 72 and 96 hrs post ferumoxytol infusion. Optimal ferumoxytol uptake time was evaluated by quantitative relaxometry maps indicating the difference in T2* (ΔT2*) and T2 (ΔT2) between baseline and post-Ferumoxytol MR imaging using 3D DANTE MEFGRE qT2*w and iMSDE black-blood qT2w sequences respectively. 20 patients in total (10 symptomatic and 10 with asymptomatic carotid artery disease) had ferumoxytol-enhanced MR imaging at the optimal imaging window. 69 carotid MR imaging studies were completed. Ferumoxytol uptake (determined by a decrease in ΔT2* and ΔT2) was identified in all carotid plaques (symptomatic and asymptomatic). Maximum quantitative decrease in ΔT2* (10.4 [3.5-16.2] ms, p < 0.001) and ΔT2 (13.4 [6.2-18.9] ms; p = 0.001) was found on carotid MR imaging at 48 hrs following the ferumoxytol infusion. Ferumoxytol uptake by carotid plaques was assessed by histopathological analysis of excised atheroma. Ferumoxytol-enhanced MR imaging using quantitative 3D MR pulse sequences allows assessment of inflammation within carotid atheroma in symptomatic and asymptomatic patients. The optimum MR imaging time for carotid atheroma is 48 hrs after its administration.
Collapse
Affiliation(s)
- Ammara Usman
- University Department of Radiology, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Andrew J Patterson
- University Department of Radiology, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Jianmin Yuan
- University Department of Radiology, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Alison Cluroe
- Department of Pathology, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Ilse Patterson
- University Department of Radiology, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Martin J Graves
- University Department of Radiology, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | | | - Umar Sadat
- University Department of Surgery, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
39
|
Wüst RCI, Calcagno C, Daal MRR, Nederveen AJ, Coolen BF, Strijkers GJ. Emerging Magnetic Resonance Imaging Techniques for Atherosclerosis Imaging. Arterioscler Thromb Vasc Biol 2020; 39:841-849. [PMID: 30917678 DOI: 10.1161/atvbaha.118.311756] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Atherosclerosis is a prevalent disease affecting a large portion of the population at one point in their lives. There is an unmet need for noninvasive diagnostics to identify and characterize at-risk plaque phenotypes noninvasively and in vivo, to improve the stratification of patients with cardiovascular disease, and for treatment evaluation. Magnetic resonance imaging is uniquely positioned to address these diagnostic needs. However, currently available magnetic resonance imaging methods for vessel wall imaging lack sufficient discriminative and predictive power to guide the individual patient needs. To address this challenge, physicists are pushing the boundaries of magnetic resonance atherosclerosis imaging to increase image resolution, provide improved quantitative evaluation of plaque constituents, and obtain readouts of disease activity such as inflammation. Here, we review some of these important developments, with specific focus on emerging applications using high-field magnetic resonance imaging, the use of quantitative relaxation parameter mapping for improved plaque characterization, and novel 19F magnetic resonance imaging technology to image plaque inflammation.
Collapse
Affiliation(s)
- Rob C I Wüst
- From the Biomedical Engineering and Physics (R.C.I.W., M.R.R.D., B.F.C., G.J.S.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Claudia Calcagno
- Department of Radiology, Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York (C.C., G.J.S.)
| | - Mariah R R Daal
- From the Biomedical Engineering and Physics (R.C.I.W., M.R.R.D., B.F.C., G.J.S.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Aart J Nederveen
- Radiology and Nuclear Medicine (A.J.N.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Bram F Coolen
- From the Biomedical Engineering and Physics (R.C.I.W., M.R.R.D., B.F.C., G.J.S.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Gustav J Strijkers
- From the Biomedical Engineering and Physics (R.C.I.W., M.R.R.D., B.F.C., G.J.S.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, the Netherlands.,Department of Radiology, Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York (C.C., G.J.S.)
| |
Collapse
|
40
|
Ruetten PPR, Cluroe AD, Usman A, Priest AN, Gillard JH, Graves MJ. Simultaneous MRI water‐fat separation and quantitative susceptibility mapping of carotid artery plaque pre‐ and post‐ultrasmall superparamagnetic iron oxide‐uptake. Magn Reson Med 2020; 84:686-697. [DOI: 10.1002/mrm.28151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/28/2019] [Accepted: 12/08/2019] [Indexed: 12/20/2022]
Affiliation(s)
| | - Alison D. Cluroe
- Department of Histopathology Addenbrooke’s Hospital Histopathology, Cambridge United Kingdom
| | - Ammara Usman
- Department of Radiology University of Cambridge Cambridge United Kingdom
| | - Andrew N. Priest
- Department of Medical Physics Cambridge University Hospitals NHS Foundation Trust Cambridge United Kingdom
| | | | - Martin J. Graves
- Department of Radiology Cambridge University Hospitals NHS Foundation Trust Cambridge United Kingdom
| |
Collapse
|
41
|
Mo H, Fu C, Wu Z, Liu P, Wen Z, Hong Q, Cai Y, Li G. IL-6-targeted ultrasmall superparamagnetic iron oxide nanoparticles for optimized MRI detection of atherosclerotic vulnerable plaques in rabbits. RSC Adv 2020; 10:15346-15353. [PMID: 35495447 PMCID: PMC9052309 DOI: 10.1039/c9ra10509c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 04/04/2020] [Indexed: 12/30/2022] Open
Abstract
Vulnerable plaques of atherosclerosis (AS) are the main culprit lesion for the serious risk of acute cardiovascular disease (CVD). Therefore, developing new non-invasive methods to detect vulnerable plaques and to evaluate their stability effectively is of great value in the early diagnosis of CVD. IL-6 plays a vital role in the development and rupture of AS. In this study, IL-6-targeted superparamagnetic iron oxide nanoparticles (Anti-IL-6-USPIO) are synthesized by a chemical condensation reaction. An AS model was established by damaging rabbit abdominal aortic intima with Foley's tube in combination with a high cholesterol diet. The results confirm that Anti-IL-6-USPIO have excellent IL-6-targeting ability and usefulness in detecting vulnerable plaques in vitro and in vivo, which may provide a novel, non-invasive strategy for evaluating acute cardiovascular risk or exploiting anti-atherosclerotic drugs. Herein, we report Anti-IL-6-USPIO for detecting IL-6 in inflammatory macrophages and MR imaging vulnerable plaques of atherosclerosis in rabbit, which would provide a novel non-invasive strategy for evaluating acute cardiovascular risk or exploiting anti-atherosclerotic drugs.![]()
Collapse
Affiliation(s)
- Huaqiang Mo
- Department of Cardiology
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510280
- People's Republic of China
| | - Chenxing Fu
- Department of Cardiology
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510280
- People's Republic of China
| | - Zhiye Wu
- Department of Cardiology
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510280
- People's Republic of China
| | - Peng Liu
- Department of Cardiology
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510280
- People's Republic of China
| | - Zhibo Wen
- Department of Radiology
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510280
- People's Republic of China
| | - Qingqing Hong
- Department of Cardiology
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510280
- People's Republic of China
| | - Yanbin Cai
- Department of Cardiology
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510280
- People's Republic of China
| | - Gongxin Li
- Department of Cardiology
- Zhujiang Hospital
- Southern Medical University
- Guangzhou 510280
- People's Republic of China
| |
Collapse
|
42
|
Cicha I, Chauvierre C, Texier I, Cabella C, Metselaar JM, Szebeni J, Dézsi L, Alexiou C, Rouzet F, Storm G, Stroes E, Bruce D, MacRitchie N, Maffia P, Letourneur D. From design to the clinic: practical guidelines for translating cardiovascular nanomedicine. Cardiovasc Res 2019; 114:1714-1727. [PMID: 30165574 DOI: 10.1093/cvr/cvy219] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/23/2018] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases (CVD) account for nearly half of all deaths in Europe and almost 30% of global deaths. Despite the improved clinical management, cardiovascular mortality is predicted to rise in the next decades due to the increasing impact of aging, obesity, and diabetes. The goal of emerging cardiovascular nanomedicine is to reduce the burden of CVD using nanoscale medical products and devices. However, the development of novel multicomponent nano-sized products poses multiple technical, ethical, and regulatory challenges, which often obstruct their road to successful approval and use in clinical practice. This review discusses the rational design of nanoparticles, including safety considerations and regulatory issues, and highlights the steps needed to achieve efficient clinical translation of promising nanomedicinal products for cardiovascular applications.
Collapse
Affiliation(s)
- Iwona Cicha
- Cardiovascular Nanomedicine Unit, Section of Experimental Oncology und Nanomedicine (SEON), ENT-Department, University Hospital Erlangen, Glückstr. 10a, Erlangen, Germany
| | - Cédric Chauvierre
- INSERM U1148, LVTS, Paris Diderot University, Paris 13 University, X. Bichat Hospital, 46 rue H. Huchard, Paris, France
| | | | - Claudia Cabella
- Centro Ricerche Bracco, Bracco Imaging Spa, Colleretto Giacosa, Italy
| | - Josbert M Metselaar
- Department of Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH-Aachen University, Aachen, Germany
| | - János Szebeni
- Nanomedicine Research and Education Center, Department of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - László Dézsi
- Nanomedicine Research and Education Center, Department of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - Christoph Alexiou
- Cardiovascular Nanomedicine Unit, Section of Experimental Oncology und Nanomedicine (SEON), ENT-Department, University Hospital Erlangen, Glückstr. 10a, Erlangen, Germany
| | - François Rouzet
- INSERM U1148, LVTS, Paris Diderot University, Paris 13 University, X. Bichat Hospital, 46 rue H. Huchard, Paris, France.,Department of Nuclear Medicine, X. Bichat Hospital, Paris, France
| | - Gert Storm
- Department of Pharmaceutics, University of Utrecht, Utrecht, The Netherlands.,Department of Biomaterials Science and Technology, University of Twente, Enschede, The Netherlands
| | - Erik Stroes
- Department of Vascular Medicine, Amsterdam Medical Center, Amsterdam, The Netherlands
| | | | - Neil MacRitchie
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Pasquale Maffia
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Didier Letourneur
- INSERM U1148, LVTS, Paris Diderot University, Paris 13 University, X. Bichat Hospital, 46 rue H. Huchard, Paris, France
| |
Collapse
|
43
|
Yang W, Zhu P, Huang H, Zheng Y, Liu J, Feng L, Guo H, Tang S, Guo R. Functionalization of Novel Theranostic Hydrogels with Kartogenin-Grafted USPIO Nanoparticles To Enhance Cartilage Regeneration. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34744-34754. [PMID: 31475824 DOI: 10.1021/acsami.9b12288] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Here, kartogenin (KGN), an emerging stable nonprotein compound with the ability to promote differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) into chondrocytes, was grafted onto the surface of modified ultrasmall superparamagnetic iron-oxide (USPIO) and then integrated into cellulose nanocrystal/dextran hydrogels. The hydrogels served as a carrier for the USPIO-KGN and a matrix for cartilage repair. We carried out in vitro and in vivo studies, the results of which demonstrated that KGN undergoes long-term stable sustained release, recruits endogenous host cells, and induces BMSCs to differentiate into chondrocytes, thus enabling in situ cartilage regeneration. Meanwhile, the USPIO-incorporated theranostic hydrogels exhibited a distinct magnetic resonance contrast enhancement and maintained a stable relaxation rate, with almost no loss, both in vivo and in vitro. According to noninvasive in vivo observation results and immunohistochemistry analyses, the regenerated cartilage tissue was very similar to natural hyaline cartilage. This innovative diagnosis and treatment system increases the convenience and effectiveness of chondrogenesis.
Collapse
Affiliation(s)
- Wei Yang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering , Jinan University , Guangzhou 510632 , China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital , Guangdong Academy of Medical Sciences , Guangzhou 510100 , China
| | - Huanlei Huang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital , Guangdong Academy of Medical Sciences , Guangzhou 510100 , China
| | - Yuanyuan Zheng
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering , Jinan University , Guangzhou 510632 , China
| | - Jian Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital , Guangdong Academy of Medical Sciences , Guangzhou 510100 , China
| | - Longbao Feng
- Beogene Biotech (Guangzhou) Co., Ltd. , Guangzhou 510663 , China
| | - Huiming Guo
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital , Guangdong Academy of Medical Sciences , Guangzhou 510100 , China
| | - Shuo Tang
- Department of Orthopaedics, The Eighth Affiliated Hospital , Sun Yat-sen University , Shenzhen 517000 , China
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering , Jinan University , Guangzhou 510632 , China
| |
Collapse
|
44
|
Fayad ZA, Swirski FK, Calcagno C, Robbins CS, Mulder W, Kovacic JC. Monocyte and Macrophage Dynamics in the Cardiovascular System: JACC Macrophage in CVD Series (Part 3). J Am Coll Cardiol 2019; 72:2198-2212. [PMID: 30360828 DOI: 10.1016/j.jacc.2018.08.2150] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/16/2018] [Accepted: 08/03/2018] [Indexed: 12/12/2022]
Abstract
It has long been recognized that the bone marrow is the primary site of origin for circulating monocytes that may later become macrophages in atherosclerotic lesions. However, only in recent times has the complex relationship among the bone marrow, monocytes/macrophages, and atherosclerotic plaques begun to be understood. Moreover, the systemic nature of these interactions, which also involves additional compartments such as extramedullary hematopoietic sites (i.e., spleen), is only just becoming apparent. In parallel, progressive advances in imaging and cell labeling techniques have opened new opportunities for in vivo imaging of monocyte/macrophage trafficking in atherosclerotic lesions and at the systemic level. In this Part 3 of a 4-part review series covering the macrophage in cardiovascular disease, the authors intersect systemic biology with advanced imaging techniques to explore monocyte and macrophage dynamics in the cardiovascular system, with an emphasis on how events at the systemic level might affect local atherosclerotic plaque biology.
Collapse
Affiliation(s)
- Zahi A Fayad
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York; The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Filip K Swirski
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Claudia Calcagno
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Clinton S Robbins
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Peter Munk Cardiac Centre, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada; Departments of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Willem Mulder
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
45
|
Li Y, Pan Y, Wu X, Li Y, Wang H, Zhu H, Jiang L. Dual-modality imaging of atherosclerotic plaques using ultrasmall superparamagnetic iron oxide labeled with rhodamine. Nanomedicine (Lond) 2019; 14:1935-1944. [PMID: 31355711 DOI: 10.2217/nnm-2019-0062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: The diagnosis of vulnerable atherosclerotic plaques remains challenging. This study labeled ultrasmall superparamagnetic iron oxide with rhodamine (USPIO-R) and evaluated USPIO-R for imaging atherosclerotic plaques. Methods: Apolipoprotein E-deficient mice were fed a high-fat diet and underwent MRI before and after an intravenous injection of USPIO-R. Subsequently, an aortic specimen from the mice was removed and sliced for fluorescence imaging and Prussian blue and immunofluorescent staining. Results: T2 signal loss appeared and persisted in the aortic plaque postinjection, and spontaneous fluorescence from the plaque was observed. The accumulated mechanism of USPIO-R by plaque was the macrophage internalization by Prussian blue and immunofluorescence. Conclusion: USPIO-R is a promising dual-modality probe for diagnosing and monitoring vulnerable atherosclerotic plaques.
Collapse
Affiliation(s)
- Yi Li
- Department of Nuclear Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, PR China
| | - Yutao Pan
- Department of Emergency & Trauma Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, PR China
| | - Xiaodong Wu
- Department of Nuclear Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, PR China
| | - Yuan Li
- Department of Nuclear Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, PR China
| | - Huoqiang Wang
- Department of Nuclear Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, PR China
| | - Hong Zhu
- Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Shanghai Key Laboratory of Stomatology, Ninth People’s Hospital, School of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
| | - Lei Jiang
- Department of Nuclear Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, PR China
| |
Collapse
|
46
|
Zheng KH, Schoormans J, Stiekema LCA, Calcagno C, Cicha I, Alexiou C, Strijkers GJ, Nederveen AJ, Stroes ESG, Coolen BF. Plaque Permeability Assessed With DCE-MRI Associates With USPIO Uptake in Patients With Peripheral Artery Disease. JACC Cardiovasc Imaging 2019; 12:2081-2083. [PMID: 31202746 DOI: 10.1016/j.jcmg.2019.04.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 12/14/2022]
|
47
|
Vigne J, Thackeray J, Essers J, Makowski M, Varasteh Z, Curaj A, Karlas A, Canet-Soulas E, Mulder W, Kiessling F, Schäfers M, Botnar R, Wildgruber M, Hyafil F. Current and Emerging Preclinical Approaches for Imaging-Based Characterization of Atherosclerosis. Mol Imaging Biol 2019; 20:869-887. [PMID: 30250990 DOI: 10.1007/s11307-018-1264-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Atherosclerotic plaques can remain quiescent for years, but become life threatening upon rupture or disruption, initiating clot formation in the vessel lumen and causing acute myocardial infarction and ischemic stroke. Whether and how a plaque ruptures is determined by its macroscopic structure and microscopic composition. Rupture-prone plaques usually consist of a thin fibrous cap with few smooth muscle cells, a large lipid core, a dense infiltrate of inflammatory cells, and neovessels. Such lesions, termed high-risk plaques, can remain asymptomatic until the thrombotic event. Various imaging technologies currently allow visualization of morphological and biological characteristics of high-risk atherosclerotic plaques. Conventional protocols are often complex and lack specificity for high-risk plaque. Conversely, new imaging approaches are emerging which may overcome these limitations. Validation of these novel imaging techniques in preclinical models of atherosclerosis is essential for effective translational to clinical practice. Imaging the vessel wall, as well as its biological milieu in small animal models, is challenging because the vessel wall is a small structure that undergoes continuous movements imposed by the cardiac cycle as it is adjacent to circulating blood. The focus of this paper is to provide a state-of-the-art review on techniques currently available for preclinical imaging of atherosclerosis in small animal models and to discuss the advantages and limitations of each approach.
Collapse
Affiliation(s)
- Jonathan Vigne
- Department of Nuclear Medicine, Bichat University Hospital, AP-HP; INSERM, U-1148, DHU FIRE, University Diderot, Paris, France
| | - James Thackeray
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Jeroen Essers
- Departments of Vascular Surgery, Molecular Genetics, Radiation Oncology, Erasmus MC, Rotterdam, The Netherlands
| | - Marcus Makowski
- Department of Radiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Zoreh Varasteh
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Adelina Curaj
- Institute for Molecular Cardiovascular Research (IMCAR), Institute for Experimental Molecular Imaging (ExMI), University Hospital Aachen, RWTH, Aachen, Germany
| | - Angelos Karlas
- Institute for Biological and Medical Imaging, Helmholtz Zentrum München, Oberschleissheim, Germany
| | - Emmanuel Canet-Soulas
- Laboratoire CarMeN, INSERM U-1060, Lyon/Hospices Civils Lyon, IHU OPERA Cardioprotection, Université de Lyon, Bron, France
| | - Willem Mulder
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, Mount Sinai, New York, USA
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging (ExMI), University Hospital Aachen, RWTH, Aachen, Germany
| | - Michael Schäfers
- Department of Nuclear Medicine, European Institute for Molecular Imaging (EIMI), Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - René Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Moritz Wildgruber
- Translational Research Imaging Center, Institut für Klinische Radiologie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Fabien Hyafil
- Department of Nuclear Medicine, Bichat University Hospital, AP-HP; INSERM, U-1148, DHU FIRE, University Diderot, Paris, France. .,Département de Médecine Nucléaire, Centre Hospitalier Universitaire Bichat, 46 rue Henri Huchard, 75018, Paris, France.
| | | |
Collapse
|
48
|
Hedgire S, Krebill C, Wojtkiewicz GR, Oliveira I, Ghoshhajra BB, Hoffmann U, Harisinghani MG. Ultrasmall superparamagnetic iron oxide nanoparticle uptake as noninvasive marker of aortic wall inflammation on MRI: proof of concept study. Br J Radiol 2018; 91:20180461. [PMID: 30160173 DOI: 10.1259/bjr.20180461] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE: Radiation therapy for cancer can lead to atherosclerosis by inducing inflammatory changes in the vascular wall. It is difficult to quantitatively measure inflammation on CT and MRI studies. The purpose of this study was to assess the use of ferumoxytol, an ultrasmall superparamagnetic iron oxide nanoparticle, as a noninvasive marker of vessel wall inflammation secondary to radiation therapy in pancreatic cancer patients in comparison with healthy volunteers. METHODS: MRI of upper abdomen (T1, T2, multi echo T2* weighted imaging) was performed on 3 T magnet before and 48 h after intravenous administration of ferumoxytol in pancreatic cancer patients who underwent radiation therapy (n = 8) and in healthy volunteers (n = 8). R2* value was obtained by drawing regions of interest outlining the aortic wall directly on the T2* medic image and subsequently transposed to the R2* image using Amira software (v. 5.3.2, FEI, Bordeaux, France). The change in R2* values was analyzed by student's t-test. RESULTS: The average change in R2* value of the pancreatic cancer patients was determined to be 216.1 ms-1. The average change R2* value of the control patients was determined to be 54.6 ms-1. Thus, pancreatic cancer patients following radiation therapy had a greater uptake of ferumoxytol (p = 0.0082) in their aortic wall as compared to healthy controls. CONCLUSION: This proof of concept study suggests that greater uptake of ferumoxytol in the aortic wall in cancer patients without visible atherosclerosis may be the expression of increased inflammation. ADVANCES IN KNOWLEDGE: Ultrasmall superparamagnetic iron oxide enhanced MRI can offer an imaging biomarker for quantitative estimation of aortic inflammation preceding atherosclerosis.
Collapse
Affiliation(s)
- Sandeep Hedgire
- 1 Department of Radiology, Division of Cardiovascular Imaging Massachusetts General Hospital , Boston, MA , USA
| | - Cicely Krebill
- 2 Department of Biology, Northeastern University , Boston, MA , USA
| | - Gregory R Wojtkiewicz
- 3 Center for Systems Biology, Richard B Simches Research Center, Massachusetts General Hospital, , Boston , MA
| | - Irai Oliveira
- 4 Departamento de Radiologia da, Faculdade de Medicina da Universidade de São Paulo , São Paulo - SP , Brazil.,5 Department of Radiology, Hospital Sírio Libanês , São Paulo - SP , Brazil
| | - Brian B Ghoshhajra
- 1 Department of Radiology, Division of Cardiovascular Imaging Massachusetts General Hospital , Boston, MA , USA
| | - Udo Hoffmann
- 1 Department of Radiology, Division of Cardiovascular Imaging Massachusetts General Hospital , Boston, MA , USA
| | - Mukesh G Harisinghani
- 6 Department of Radiology, Division of Abdominal Imaging Massachusetts General Hospital , Boston, MA , USA
| |
Collapse
|
49
|
Ferumoxytol-enhanced MRI in the peripheral vasculature. Clin Radiol 2018; 74:37-50. [PMID: 29731126 DOI: 10.1016/j.crad.2018.02.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 02/22/2018] [Indexed: 12/20/2022]
Abstract
Ferumoxytol is a promising non-gadolinium-based contrast agent with numerous varied magnetic resonance imaging applications. Previous reviews of vascular applications have focused primarily on cardiac and aortic applications. After considering safety concerns and technical issues, the objective of this paper is to explore peripheral applications for ferumoxytol-enhanced magnetic resonance angiography (MRA) and venography (MRV) in the upper and lower extremities. Separate searches for each of the following keywords were performed in pubmed: "ferumoxytol," "ultrasmall superparamagnetic iron oxide," and "USPIO." All studies pertaining to MRA or MRV in humans are included in this review. Case-based examples of various peripheral applications are used to supplement a relatively scant literature in this space. Ferumoxytol's unique properties including high T1 relaxivity and prolonged intravascular half-life make it the optimal vascular imaging contrast agent on the market and one whose vast potential has only begun to be tapped.
Collapse
|
50
|
Coolen BF, Calcagno C, van Ooij P, Fayad ZA, Strijkers GJ, Nederveen AJ. Vessel wall characterization using quantitative MRI: what's in a number? MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2017; 31:201-222. [PMID: 28808823 PMCID: PMC5813061 DOI: 10.1007/s10334-017-0644-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/04/2017] [Accepted: 07/18/2017] [Indexed: 12/15/2022]
Abstract
The past decade has witnessed the rapid development of new MRI technology for vessel wall imaging. Today, with advances in MRI hardware and pulse sequences, quantitative MRI of the vessel wall represents a real alternative to conventional qualitative imaging, which is hindered by significant intra- and inter-observer variability. Quantitative MRI can measure several important morphological and functional characteristics of the vessel wall. This review provides a detailed introduction to novel quantitative MRI methods for measuring vessel wall dimensions, plaque composition and permeability, endothelial shear stress and wall stiffness. Together, these methods show the versatility of non-invasive quantitative MRI for probing vascular disease at several stages. These quantitative MRI biomarkers can play an important role in the context of both treatment response monitoring and risk prediction. Given the rapid developments in scan acceleration techniques and novel image reconstruction, we foresee the possibility of integrating the acquisition of multiple quantitative vessel wall parameters within a single scan session.
Collapse
Affiliation(s)
- Bram F Coolen
- Department of Biomedical Engineering and Physics, Academic Medical Center, PO BOX 22660, 1100 DD, Amsterdam, The Netherlands. .,Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands.
| | - Claudia Calcagno
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pim van Ooij
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Zahi A Fayad
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gustav J Strijkers
- Department of Biomedical Engineering and Physics, Academic Medical Center, PO BOX 22660, 1100 DD, Amsterdam, The Netherlands
| | - Aart J Nederveen
- Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|