1
|
Ye L, Chang CC, Li Q, Tintut Y, Hsu JJ. Advanced Imaging Techniques for Atherosclerosis and Cardiovascular Calcification in Animal Models. J Cardiovasc Dev Dis 2024; 11:410. [PMID: 39728300 DOI: 10.3390/jcdd11120410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
The detection and assessment of atherosclerosis and cardiovascular calcification can inform risk stratification and therapies to reduce cardiovascular morbidity and mortality. In this review, we provide an overview of current and emerging imaging techniques for assessing atherosclerosis and cardiovascular calcification in animal models. Traditional imaging modalities, such as computed tomography (CT) and magnetic resonance imaging (MRI), offer non-invasive approaches of visualizing atherosclerotic calcification in vivo; integration of these techniques with positron emission tomography (PET) imaging adds molecular imaging capabilities, such as detection of metabolically active microcalcifications with 18F-sodium fluoride. Photoacoustic imaging provides high contrast that enables in vivo evaluation of plaque composition, yet this method is limited by optical penetration depth. Light-sheet fluorescence microscopy provides high-resolution, three-dimensional imaging of cardiovascular structures and has been used for ex vivo assessment of atherosclerotic calcification, but its limited tissue penetration and requisite complex sample preparation preclude its use in vivo to evaluate cardiac tissue. Overall, with these evolving imaging tools, our understanding of cardiovascular calcification development in animal models is improving, and the combination of traditional imaging techniques with emerging molecular imaging modalities will enhance our ability to investigate therapeutic strategies for atherosclerotic calcification.
Collapse
Affiliation(s)
- Lifang Ye
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou 310014, China
- Department of Medicine, University of California, 650 Charles E Young Dr. S, Center for Health Sciences, Room A2-237, Los Angeles, CA 90095, USA
| | - Chih-Chiang Chang
- Department of Medicine, University of California, 650 Charles E Young Dr. S, Center for Health Sciences, Room A2-237, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Qian Li
- Department of Medicine, University of California, 650 Charles E Young Dr. S, Center for Health Sciences, Room A2-237, Los Angeles, CA 90095, USA
| | - Yin Tintut
- Department of Medicine, University of California, 650 Charles E Young Dr. S, Center for Health Sciences, Room A2-237, Los Angeles, CA 90095, USA
- Department of Physiology, University of California, Los Angeles, CA 90095, USA
- Department of Orthopedic Surgery, University of California, Los Angeles, CA 90404, USA
| | - Jeffrey J Hsu
- Department of Medicine, University of California, 650 Charles E Young Dr. S, Center for Health Sciences, Room A2-237, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Department of Medicine, Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, CA 90073, USA
| |
Collapse
|
2
|
Maier A, Teunissen AJP, Nauta SA, Lutgens E, Fayad ZA, van Leent MMT. Uncovering atherosclerotic cardiovascular disease by PET imaging. Nat Rev Cardiol 2024; 21:632-651. [PMID: 38575752 PMCID: PMC11324396 DOI: 10.1038/s41569-024-01009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 04/06/2024]
Abstract
Assessing atherosclerosis severity is essential for precise patient stratification. Specifically, there is a need to identify patients with residual inflammation because these patients remain at high risk of cardiovascular events despite optimal management of cardiovascular risk factors. Molecular imaging techniques, such as PET, can have an essential role in this context. PET imaging can indicate tissue-based disease status, detect early molecular changes and provide whole-body information. Advances in molecular biology and bioinformatics continue to help to decipher the complex pathogenesis of atherosclerosis and inform the development of imaging tracers. Concomitant advances in tracer synthesis methods and PET imaging technology provide future possibilities for atherosclerosis imaging. In this Review, we summarize the latest developments in PET imaging techniques and technologies for assessment of atherosclerotic cardiovascular disease and discuss the relationship between imaging readouts and transcriptomics-based plaque phenotyping.
Collapse
Affiliation(s)
- Alexander Maier
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Abraham J P Teunissen
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sheqouia A Nauta
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Esther Lutgens
- Cardiovascular Medicine and Immunology, Experimental Cardiovascular Immunology Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Zahi A Fayad
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mandy M T van Leent
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
3
|
Choi M, Toscano C, Edman MC, de Paiva CS, Hamm-Alvarez SF. The Aging Lacrimal Gland of Female C57BL/6J Mice Exhibits Multinucleate Macrophage Infiltration Associated With Lipid Dysregulation. Invest Ophthalmol Vis Sci 2024; 65:1. [PMID: 38829671 PMCID: PMC11156205 DOI: 10.1167/iovs.65.6.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/08/2024] [Indexed: 06/05/2024] Open
Abstract
Purpose Loss of function of the lacrimal gland (LG), which produces the aqueous tear film, is implicated in age-related dry eye. To better understand this deterioration, we evaluated changes in lipid metabolism and inflammation in LGs from an aging model. Methods LG sections from female C57BL/6J mice of different ages (young, 2-3 months; intermediate, 10-14 months; old, ≥24 months) were stained with Oil Red-O or Toluidine blue to detect lipids. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis and western blotting of LG lysates determined differences in the expression of genes and proteins related to lipid metabolism. A photobleaching protocol to quench age-related autofluorescence was used in LG sections to evaluate changes in immunofluorescence associated with NPC1, NPC2, CTSL, and macrophages (F4/80, CD11b) with age using confocal fluorescence microscopy. Results Old LGs showed increased lipids prominent in basal aggregates in acinar cells and in extra-acinar sites. LG gene expression of Npc1, Npc2, Lipa, and Mcoln2, encoding proteins involved in lipid metabolism, was increased with age. NPC1 was also significantly increased in old LGs by western blotting. In photobleached LG sections, confocal fluorescence microscopy imaging of NPC1, NPC2, and CTSL immunofluorescence showed age-associated enrichment in macrophages labeled to detect F4/80. Although mononuclear macrophages were detectable in LG at all ages, this novel multinucleate macrophage population containing NPC1, NPC2, and CTSL and enriched in F4/80 and some CD11b was increased with age at extra-acinar sites. Conclusions Lipid-metabolizing proteins enriched in F4/80-positive multinucleated macrophages are increased in old LGs adjacent to sites of lipid deposition in acini.
Collapse
Affiliation(s)
- Minchang Choi
- Department of Pharmacology and Pharmaceutical Sciences, USC Alfred E. Mann School of Pharmacy, Los Angeles, California, United States
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Cindy Toscano
- Department of Pharmacology and Pharmaceutical Sciences, USC Alfred E. Mann School of Pharmacy, Los Angeles, California, United States
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Maria C. Edman
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine of USC, Los Angeles, California, United States
- Department of Ophthalmology, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Cintia S. de Paiva
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States
| | - Sarah F. Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, USC Alfred E. Mann School of Pharmacy, Los Angeles, California, United States
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine of USC, Los Angeles, California, United States
- Department of Ophthalmology, Keck School of Medicine of USC, Los Angeles, California, United States
| |
Collapse
|
4
|
Xie L, Chen J, Hu H, Zhu Y, Wang X, Zhou S, Wang F, Xiang M. Engineered M2 macrophage-derived extracellular vesicles with platelet membrane fusion for targeted therapy of atherosclerosis. Bioact Mater 2024; 35:447-460. [PMID: 38390527 PMCID: PMC10881364 DOI: 10.1016/j.bioactmat.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/04/2024] [Accepted: 02/11/2024] [Indexed: 02/24/2024] Open
Abstract
Atherosclerosis is featured as chronic low-grade inflammation in the arteries, which leads to the formation of plaques rich in lipids. M2 macrophage-derived extracellular vesicles (M2EV) have significant potential for anti-atherosclerotic therapy. However, their therapeutic effectiveness has been hindered by their limited targeting capability in vivo. The objective of this study was to create the P-M2EV (platelet membrane-modified M2EV) using the membrane fusion technique in order to imitate the interaction between platelets and macrophages. P-M2EV exhibited excellent physicochemical properties, and microRNA (miRNA)-sequencing revealed that the extrusion process had no detrimental effects on miRNAs carried by the nanocarriers. Remarkably, miR-99a-5p was identified as the miRNA with the highest expression level, which targeted the mRNA of Homeobox A1 (HOXA1) and effectively suppressed the formation of foam cells in vitro. In an atherosclerotic low-density lipoprotein receptor-deficient (Ldlr-/-) mouse model, the intravenous injection of P-M2EV showed enhanced targeting and greater infiltration into atherosclerotic plaques compared to regular extracellular vesicles. Crucially, P-M2EV successfully suppressed the progression of atherosclerosis without causing systemic toxicity. The findings demonstrated a biomimetic platelet-mimic system that holds great promise for the treatment of atherosclerosis in clinical settings.
Collapse
Affiliation(s)
- Lan Xie
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310009, China
- Department of Rheumatology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Jinyong Chen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310009, China
| | - Haochang Hu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310009, China
| | - Yuan Zhu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310009, China
| | - Xiying Wang
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Siyu Zhou
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310009, China
| | - Feifan Wang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310009, China
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310009, China
| |
Collapse
|
5
|
Qu R, Du W, Li S, Li W, Wei G, Chen Z, Gao H, Shi S, Zou L, Li H. Destruction of vascular endothelial glycocalyx during formation of pre-metastatic niches. Heliyon 2024; 10:e29101. [PMID: 38601565 PMCID: PMC11004892 DOI: 10.1016/j.heliyon.2024.e29101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 04/12/2024] Open
Abstract
A special microenvironment called the "pre-metastatic niche" is thought to help primary tumor cells migrate to new tissues and invade them, in part because the normal barrier function of the vascular endothelium is compromised. While the primary tumor itself can promote the creation of such niches by secreting pro-metastatic factors, the underlying molecular mechanisms are still poorly understood. Here, we show that the injection of primary tumor-secreted pro-metastatic factors from B16F10 melanoma or 4T1 breast cancer cells into healthy mice can induce the destruction of the vascular endothelial glycocalyx, which is a polysaccharide coating on the vascular endothelial lumen that normally inhibits tumor cell passage into and out of the circulation. However, when human umbilical vein endothelial cultures were treated in vitro with these secreted pro-metastatic factors, no significant destruction of the glycocalyx was observed, implying that this destruction requires a complex in vivo microenvironment. The tissue section analysis revealed that secreted pro-metastatic factors could clearly upregulate macrophage-related molecules such as CD11b and tumor necrosis factor-α (TNF-α) in the heart, liver, spleen, lung, and kidney, which is associated with the upregulation and activation of heparanase. In addition, macrophage depletion significantly attenuated the degradation of the vascular endothelial glycocalyx induced by secreted pro-metastatic factors. This indicates that the secreted pro-metastatic factors that destroy the vascular endothelial glycocalyx rely primarily on macrophages. Our findings suggest that the formation of pre-metastatic niches involves degradation of the vascular endothelial glycocalyx, which may hence be a useful target for developing therapies to inhibit cancer metastasis.
Collapse
Affiliation(s)
- Rui Qu
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Wenxuan Du
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Shuyao Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Guangfei Wei
- Clinical Medical Research Center, Zhenjiang Hospital of Integrated Traditional Chinese and Western Medicine, Zhenjiang, 212004, China
| | - Zhoujiang Chen
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research, Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Sanjun Shi
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Liang Zou
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Hanmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
6
|
Uzuegbunam BC, Rummel C, Librizzi D, Culmsee C, Hooshyar Yousefi B. Radiotracers for Imaging of Inflammatory Biomarkers TSPO and COX-2 in the Brain and in the Periphery. Int J Mol Sci 2023; 24:17419. [PMID: 38139248 PMCID: PMC10743508 DOI: 10.3390/ijms242417419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Inflammation involves the activation of innate immune cells and is believed to play an important role in the development and progression of both infectious and non-infectious diseases such as neurodegeneration, autoimmune diseases, pulmonary and cancer. Inflammation in the brain is marked by the upregulation of translocator protein (TSPO) in microglia. High TSPO levels are also found, for example, in macrophages in cases of rheumatoid arthritis and in malignant tumor cells compared to their relatively low physiological expression. The same applies for cyclooxgenase-2 (COX-2), which is constitutively expressed in the kidney, brain, thymus and gastrointestinal tract, but induced in microglia, macrophages and synoviocytes during inflammation. This puts TSPO and COX-2 in the spotlight as important targets for the diagnosis of inflammation. Imaging modalities, such as positron emission tomography and single-photon emission tomography, can be used to localize inflammatory processes and to track their progression over time. They could also enable the monitoring of the efficacy of therapy and predict its outcome. This review focuses on the current development of PET and SPECT tracers, not only for the detection of neuroinflammation, but also for emerging diagnostic measures in infectious and other non-infectious diseases such as rheumatic arthritis, cancer, cardiac inflammation and in lung diseases.
Collapse
Affiliation(s)
| | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Gießen, Germany;
- Center for Mind Brain and Behavior, Universities Giessen and Marburg, 35043 Marburg, Germany;
| | - Damiano Librizzi
- Department of Nuclear Medicine, Philipps University of Marburg, 35043 Marburg, Germany;
| | - Carsten Culmsee
- Center for Mind Brain and Behavior, Universities Giessen and Marburg, 35043 Marburg, Germany;
- Institute of Pharmacology and Clinical Pharmacy, Philipps University of Marburg, 35037 Marburg, Germany
| | | |
Collapse
|
7
|
Thackeray JT, Lavine KJ, Liu Y. Imaging Inflammation Past, Present, and Future: Focus on Cardioimmunology. J Nucl Med 2023; 64:39S-48S. [PMID: 37918845 DOI: 10.2967/jnumed.122.264865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/12/2023] [Indexed: 11/04/2023] Open
Abstract
Growing evidence implicates the immune system as a critical mediator of cardiovascular disease progression and a viable therapeutic target. Increased inflammatory cell activity is seen in the full spectrum of disorders from early-stage atherosclerosis through myocardial infarction, cardiomyopathy, and chronic heart failure. Although therapeutic strategies to modulate inflammation have shown promise in preclinical animal models, efficacy in patients has been modest owing in part to the variable severity of inflammation across individuals. The diverse leukocyte subpopulations involved in different aspects of heart disease pose a challenge to effective therapy, wherein adverse and beneficial aspects of inflammation require appropriate balance. Noninvasive molecular imaging enables tissue-level interrogation of inflammatory cells in the heart and vasculature to provide mechanistic and temporal insights into disease progression. Although clinical imaging has relied on 18F-FDG as a nonselective and crude marker of inflammatory cell activity, new imaging probes targeting cell surface markers of different leukocyte subpopulations present the opportunity to visualize and quantify distinct phases of cardiac and vessel wall inflammation. Similarly, therapies are evolving to more effectively isolate adverse from beneficial cell populations. This parallel development of immunocardiology and molecular imaging provides the opportunity to refine treatments using imaging guidance, building toward mechanism-based precision medicine. Here, we discuss progress in molecular imaging of immune cells in cardiology from use of 18F-FDG in the past to the present expansion of the radiotracer arsenal and then to a future theranostic paradigm of tracer-therapy compound pairs with shared targets. We then highlight the critical experiments required to advance the field from preclinical concept to clinical reality.
Collapse
Affiliation(s)
- James T Thackeray
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany;
| | - Kory J Lavine
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri; and
| | - Yongjian Liu
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
8
|
Zhi X, Sun Y, Cai F, Wang S, Gao H, Wu F, Zhang L, Shen Z. Oxidized Low-Density Lipoprotein (Ox-LDL)-Triggered Double-Lock Probe for Spatiotemporal Lipoprotein Oxidation and Atherosclerotic Plaque Imaging. Adv Healthc Mater 2023; 12:e2301595. [PMID: 37557912 DOI: 10.1002/adhm.202301595] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/25/2023] [Indexed: 08/11/2023]
Abstract
Low-density lipoprotein (LDL), especially oxidative modified LDL (Ox-LDL), is the key risk factor for plaque accumulation and the development of cardiovascular disease. Herein, a highly specific Ox-LDL-triggered fluorogenic-colorimetric probe Pro-P1 is developed for visualizing the oxidation and aggregation progress of lipoproteins and plaque. A series of green fluorescent protein chromophores with modified donor-acceptor structures, containing carbazole as an electron donor and various substituents including pyridine-vinyl (P1), phenol-vinyl (P2), N, N-dimethylaniline-vinyl (P3), and thiophene-vinyl (P4), have been synthesized and evaluated. Emission spectroscopy and theoretical calculations of P1-P4 indicate that P1 shows enhanced green fluorescence (λem = 560 nm) by inhibiting its twisted intramolecular charge transfer in the presence of Ox-LDL. This feature allows the selection of P1 as a sensitive probe to directly visualize ferroptosis and Cu2+ -mediated LDL oxidative aggregation via in situ formation of fluorophore-bound Ox-LDL in living cells. The red-emissive probe Pro-P1 (λem = 660 nm) is prepared via borate protection of P1, which can be cleaved into P1 under high expression of HOCl and Ox-LDL condition at the lesion site, resulting in enhanced green emission. The plaque area and size with clear boundaries can be delineated by colorimetric fluorescence imaging and fluorescence lifetime imaging with precise differentiation.
Collapse
Affiliation(s)
- Xu Zhi
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yufen Sun
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Fangjian Cai
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Sisi Wang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hu Gao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Fan Wu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Lei Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zhen Shen
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
9
|
Fei X, Pan L, Yuan W, Zhao Y, Jiang L, Huang Q, Wu Y, Ru G. Papain Exerts an Anti-atherosclerosis Effect with Suppressed MPA-mediated Foam Cell Formation by Regulating the MAPK and PI3K/Akt-NF-κB Pathways. Expert Opin Ther Targets 2023; 27:239-250. [PMID: 36947095 DOI: 10.1080/14728222.2023.2194531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
BACKGROUND Papain possesses a potential anti-atherosclerosis (AS) effect. This study aimed to explore the inhibitory effects of papain on the monocyte-platelet aggregates (MPAs)-mediated production of foam cells in vitro and AS in vivo. RESEARCH DESIGN AND METHODS THP-1 cells were induced or treated by platelet, papain, nuclear factor-κB (NF-κB, p65) inhibitor, or NF-κB activator. An AS rat model was established and treated with papain. The THP-1 cells, macrophages, and foam cells were detected, and CD36, CD11b and CCR2 (macrophages) and CD14 and CD41 (MPAs) were measured. The levels of inflammatory factors, lipoprotein, and mitogen-activated protein kinase (MAPK, p38) and phosphoInositide-3 Kinase (PI3K)/Akt(protein kinase B, PKB)-NF-κB pathways proteins were determined. Finally, injury of the thoracic aorta of AS rats was observed. RESULTS Papain reduced macrophage production, lipid accumulation, and foam cell formation in vitro and downregulated the expression of monocyte chemoattractant protein 1 (MCP-1), prostaglandin E2 (PGE2), and cyclooxygenase 2 (COX2), and that of p38, c-Jun N-terminal protein kinase (JNK), Akt, and p65. Moreover, the inhibitory effects of papain were reversed by the NF-κB activator. Similarly, papain alleviated aortic smooth muscle hyperplasia, lipid droplet accumulation, and collagen diffusion and inhibited the secretion of inflammatory factors and the expression of p38, JNK, Akt, and p65 in vivo. CONCLUSIONS Papain inhibited MPA-induced foam cell formation by inactivating the MAPK and PI3K/Akt-NF-κB pathways, thereby exerting an anti-AS effect.
Collapse
Affiliation(s)
- Xianming Fei
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China 310014
| | - Lianlian Pan
- Department of Laboratory Medicine, Sanmen People's Hospital of Taizhou, Zhejiang, China 317100
| | - Wufen Yuan
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China 310014
| | - Yan Zhao
- Heart Center, Department of Cardiovascular Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China 310014
| | - Lei Jiang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China 310014
| | - Qinghua Huang
- Geriatric Medicine Center, Department of Endocrinology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China 310014
| | - Yan Wu
- Department of Laboratory Medicine, Lin'an First People's Hospital of Hangzhou, Hangzhou, Zhejiang, China 311300
| | - Guoqing Ru
- Cancer Center, Department of Pathology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China 310014
| |
Collapse
|
10
|
Proliferation of CD11b+ myeloid cells induced by TLR4 signaling promotes hepatitis B virus clearance. Cytokine 2022; 153:155867. [PMID: 35390759 DOI: 10.1016/j.cyto.2022.155867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 02/10/2022] [Accepted: 03/14/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUNDS AND AIMS Effective immune response plays a key role in the clearance of hepatitis B virus (HBV). However, the specific role of innate immune response in the clearance of virus is still unclear. Here we investigated the effect of TLR4 signaling on the proliferation and differentiation of CD11b+ myeloid cells, which contributes to virus clearance. METHODS C57BL/6 mice were pretreated with TLR4 ligand lipopolysaccharide by intraperitoneal injection. Hydrodynamic injection (HI) was performed to establish HBV-replicated mice. The viremia was monitored. The immune cells were isolated from liver and spleen of the mice. The proliferation and differentiation of CD11b+ myeloid cells were analyzed by flow cytometry. The changes of CD11b+ myeloid cells and its role in virus clearance during HBV infection after LPS stimulation were analyzed. RESULTS LPS stimulation induced the proliferation of CD11b+ myeloid cells which differentiated into neutrophils and inflammatory mononuclear macrophages. The expression of F4/80 protein on the surface of mononuclear macrophages in the liver of LPS-stimulated mice was significantly lower than that of control. It indicated that intrahepatic Kupffer cells were significantly decreased in the LPS-stimulated mice, which promoted the clearance of virus. CONCLUSION LPS stimulation induces the proliferation of CD11b+ myeloid cells that differentiate into inflammatory neutrophils and monocytes, which inhibits HBV replication. And the decrease of intrahepatic Kupffer cells also contributes to the clearance of HBV during HBV infection.
Collapse
|
11
|
Maekawa K, Tsuji AB, Yamashita A, Sugyo A, Katoh C, Tang M, Nishihira K, Shibata Y, Koshimoto C, Zhang MR, Nishii R, Yoshinaga K, Asada Y. Translocator protein imaging with 18F-FEDAC-positron emission tomography in rabbit atherosclerosis and its presence in human coronary vulnerable plaques. Atherosclerosis 2021; 337:7-17. [PMID: 34662838 DOI: 10.1016/j.atherosclerosis.2021.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/20/2021] [Accepted: 10/08/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND AIMS This study aimed to investigate whether N-benzyl-N-methyl-2-[7,8-dihydro-7-(2-[18F]fluoroethyl)-8-oxo-2-phenyl-9H-purin-9-yl]acetamide (18F-FEDAC), a probe for translocator protein (TSPO), can visualize atherosclerotic lesions in rabbits and whether TSPO is localized in human coronary plaques. METHODS 18F-FEDAC-PET of a rabbit model of atherosclerosis induced by a 0.5% cholesterol diet and balloon injury of the left carotid artery (n = 7) was performed eight weeks after the injury. The autoradiography intensity of 18F-FEDAC in carotid artery tissue sections was measured, and TSPO expression was evaluated immunohistochemically. TSPO expression was examined in human coronary arteries obtained from autopsy cases (n = 16), and in human coronary plaques (n = 12) aspirated from patients with acute myocardial infarction (AMI). RESULTS 18F-FEDAC-PET visualized the atherosclerotic lesions in rabbits as high-uptake areas, and the standard uptake value was higher in injured arteries (0.574 ± 0.24) than in uninjured arteries (0.277 ± 0.13, p < 0.05) or myocardium (0.189 ± 0.07, p < 0.05). Immunostaining showed more macrophages and more TSPO expression in atherosclerotic lesions than in uninjured arteries. TSPO was localized in macrophages, and arterial autoradiography intensity was positively correlated with macrophage concentration (r = 0.64) and TSPO (r = 0.67). TSPO expression in human coronary arteries was higher in AMI cases than in non-cardiac death, or in the vulnerable plaques than in early or stable lesions, respectively. TSPO was localized in macrophages in all aspirated coronary plaques with thrombi. CONCLUSIONS 18F-FEDAC-PET can visualize atherosclerotic lesions, and TSPO-expression may be a marker of high-risk coronary plaques.
Collapse
Affiliation(s)
- Kazunari Maekawa
- Department of Pathology, Faculty of Medicine, University of Miyazaki, 889-1692, 5200, Kihara, Kiyotake, Miyazaki City, Miyazaki, Japan
| | - Atsushi B Tsuji
- Diagnostic and Therapeutic Nuclear Medicine, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 263-8555, 4-9, Anagawa, Inage, Chiba City, Chiba, Japan
| | - Atsushi Yamashita
- Department of Pathology, Faculty of Medicine, University of Miyazaki, 889-1692, 5200, Kihara, Kiyotake, Miyazaki City, Miyazaki, Japan.
| | - Aya Sugyo
- Diagnostic and Therapeutic Nuclear Medicine, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 263-8555, 4-9, Anagawa, Inage, Chiba City, Chiba, Japan
| | - Chietsugu Katoh
- Department of Biomedical Science and Engineering, Faculty of Health Sciences, Hokkaido University, 060-0812, 5, 12Jo-Nishi, Kita, Kita-Ku, Sapporo City, Hokkaido, Japan
| | - Minghui Tang
- Department of Biomedical Science and Engineering, Faculty of Health Sciences, Hokkaido University, 060-0812, 5, 12Jo-Nishi, Kita, Kita-Ku, Sapporo City, Hokkaido, Japan
| | - Kensaku Nishihira
- Department of Cardiology, Miyazaki Medical Association Hospital, 880-2102, 1173, Arita, Miyazaki City, Miyazaki, Japan
| | - Yoshisato Shibata
- Department of Cardiology, Miyazaki Medical Association Hospital, 880-2102, 1173, Arita, Miyazaki City, Miyazaki, Japan
| | - Chihiro Koshimoto
- Frontier Science Research Center, University of Miyazaki, 889-1692, 5200, Kihara, Kiyotake, Miyazaki City, Miyazaki, Japan
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 263-8555, 4-9, Anagawa, Inage, Chiba City, Chiba, Japan
| | - Ryuichi Nishii
- Diagnostic and Therapeutic Nuclear Medicine, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 263-8555, 4-9, Anagawa, Inage, Chiba City, Chiba, Japan
| | - Keiichiro Yoshinaga
- Diagnostic and Therapeutic Nuclear Medicine, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 263-8555, 4-9, Anagawa, Inage, Chiba City, Chiba, Japan
| | - Yujiro Asada
- Department of Pathology, Faculty of Medicine, University of Miyazaki, 889-1692, 5200, Kihara, Kiyotake, Miyazaki City, Miyazaki, Japan
| |
Collapse
|
12
|
Hiser C, Montgomery BL, Ferguson-Miller S. TSPO protein binding partners in bacteria, animals, and plants. J Bioenerg Biomembr 2021; 53:463-487. [PMID: 34191248 PMCID: PMC8243069 DOI: 10.1007/s10863-021-09905-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/12/2021] [Indexed: 12/11/2022]
Abstract
The ancient membrane protein TSPO is phylogenetically widespread from archaea and bacteria to insects, vertebrates, plants, and fungi. TSPO’s primary amino acid sequence is only modestly conserved between diverse species, although its five transmembrane helical structure appears mainly conserved. Its cellular location and orientation in membranes have been reported to vary between species and tissues, with implications for potential diverse binding partners and function. Most TSPO functions relate to stress-induced changes in metabolism, but in many cases it is unclear how TSPO itself functions—whether as a receptor, a sensor, a transporter, or a translocator. Much evidence suggests that TSPO acts indirectly by association with various protein binding partners or with endogenous or exogenous ligands. In this review, we focus on proteins that have most commonly been invoked as TSPO binding partners. We suggest that TSPO was originally a bacterial receptor/stress sensor associated with porphyrin binding as its most ancestral function and that it later developed additional stress-related roles in eukaryotes as its ability to bind new partners evolved.
Collapse
Affiliation(s)
- Carrie Hiser
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA. .,Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.
| | - Beronda L Montgomery
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.,Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Shelagh Ferguson-Miller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
13
|
Patkar OL, Mohamed AZ, Narayanan A, Mardon K, Cowin G, Bhalla R, Stimson DHR, Kassiou M, Beecher K, Belmer A, Alvarez Cooper I, Morgan M, Hume DA, Irvine KM, Bartlett SE, Nasrallah F, Cumming P. A binge high sucrose diet provokes systemic and cerebral inflammation in rats without inducing obesity. Sci Rep 2021; 11:11252. [PMID: 34045616 PMCID: PMC8160215 DOI: 10.1038/s41598-021-90817-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
While the dire cardiometabolic consequences of the hypercaloric modern 'Western' diet are well known, there is not much information on the health impact of a high sucrose diet not inducing weight gain. Here, we tested the hypothesis that rats reared with intermittent binge access to sucrose in addition to normal chow would develop an inflammatory response in brain. To test this hypothesis, we undertook serial PET/MRI scans with the TSPO ligand [18F]DPA714 in a group of (n=9) rats at baseline and again after voluntarily consuming 5% sucrose solution three days a week for three months. Compared to a control group fed with normal chow (n=9), the sucrose rats indeed showed widespread increases in the availability of cerebral binding sites for the microglial marker, despite normal weight gain compared to the control diet group. Subsequent immunofluorescence staining of the brains confirmed the PET findings, showing a widespread 20% increase in the abundance of IBA-1-positive microglia with characteristic 'semi-activated' morphology in the binge sucrose rats, which had 23% lower density of microglial endpoints and 25% lower mean process length compared to microglia in the control rats with ordinary feeding. GFAP immunofluorescence showed no difference in astroglial coverage in the sucrose rats, except for a slight reduction in hypothalamus. The binge sucrose diet-induced neuroinflammation was associated with a significant elevation of white blood cell counts. Taking these results together, we find that long-term intake of sucrose in a binge paradigm, similar in sucrose content to the contemporary Western diet, triggered a low-grade systemic and central inflammation in non-obese rats. The molecular mechanism of this phenomenon remains to be established.
Collapse
Affiliation(s)
- Omkar L Patkar
- Macrophage Biology Group, Mater Research, Translational Research Institute, Brisbane, QLD, Australia
- Department of Nuclear Medicine, Inselspital, Bern University, Bern, Switzerland
| | - Abdalla Z Mohamed
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Ashwin Narayanan
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Karine Mardon
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Gary Cowin
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Rajiv Bhalla
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Damion H R Stimson
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Michael Kassiou
- School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Kate Beecher
- Queensland University of Technology, Translational Research Institute, Brisbane, QLD, Australia
| | - Arnauld Belmer
- Queensland University of Technology, Translational Research Institute, Brisbane, QLD, Australia
| | - Ignatius Alvarez Cooper
- Queensland University of Technology, Translational Research Institute, Brisbane, QLD, Australia
| | - Michael Morgan
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Australia
| | - David A Hume
- Macrophage Biology Group, Mater Research, Translational Research Institute, Brisbane, QLD, Australia
| | - Katharine M Irvine
- Macrophage Biology Group, Mater Research, Translational Research Institute, Brisbane, QLD, Australia
| | - Selena E Bartlett
- Queensland University of Technology, Translational Research Institute, Brisbane, QLD, Australia
| | - Fatima Nasrallah
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Paul Cumming
- Department of Nuclear Medicine, Inselspital, Bern University, Bern, Switzerland.
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
14
|
Schollhammer R, Lepreux S, Barthe N, Vimont D, Rullier A, Sibon I, Berard X, Zhang A, Kimura Y, Fujita M, Innis RB, Zanotti-Fregonara P, Morgat C. In vitro and pilot in vivo imaging of 18 kDa translocator protein (TSPO) in inflammatory vascular disease. EJNMMI Res 2021; 11:45. [PMID: 33950298 PMCID: PMC8099943 DOI: 10.1186/s13550-021-00786-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/27/2021] [Indexed: 11/25/2022] Open
Abstract
Background Inflammatory vascular disease of the arteries, such as inflamed atheromatous plaques or arteritis, may cause aneurysms or ischemic strokes. In this context, using positron emission tomography (PET) to image inflammation may help select patients who would benefit from appropriate therapeutic interventions. This study sought to assess the usefulness of the 18 kDa translocator protein (TSPO) tracers [11C]-PBR28 and [18F]-PBR06 for imaging inflammatory vascular disease in vitro and in vivo. Immunohistochemistry for macrophage infiltration as well as autoradiography with [18F]-PBR06 were performed on eight paraffin-embedded, formalin-fixed atherosclerosis plaques prospectively collected after carotid endarterectomy of eight patients affected by ischemic stroke. Six different patients, one of whom was also included in the in vitro study, underwent PET imaging. Two patients with carotid stenosis associated with ischemic stroke were imaged with [18F]-PBR06 PET/CT, and four other patients (three with large vessel vasculitis and one with bilateral carotid stenosis but without stroke) were imaged with [11C]-PBR28. Results All in vitro sections showed specific binding of [18F]-PBR06, which co-localized with immunohistochemistry markers for inflammation. However, in vivo TSPO imaging with either [11C]-PBR28 or [18F]-PBR06 was negative in all participants. Conclusion Despite good uptake on surgical samples in vitro, [11C]-PBR28 and [18F]-PBR06 are not viable clinical tools for imaging inflammatory vascular disease. Trial registration: NCT02513589, registered 31 July 2015 and NCT00547976, registered 23 October 2007. https://clinicaltrials.gov.
Collapse
Affiliation(s)
- Romain Schollhammer
- Nuclear Medicine Department, University Hospital of Bordeaux, 33076, Bordeaux, France. .,University of Bordeaux, INCIA, UMR5287, 33400, Talence, France. .,CNRS, INCIA, UMR5287, 33400, Talence, France. .,Nuclear Medicine Department, University Hospital of Bordeaux, Place Amélie Raba Léon, 33000, Bordeaux, France.
| | | | | | - Delphine Vimont
- University of Bordeaux, INCIA, UMR5287, 33400, Talence, France.,CNRS, INCIA, UMR5287, 33400, Talence, France
| | - Anne Rullier
- Histologic Department, University Hospital of Bordeaux, 33076, Bordeaux, France
| | - Igor Sibon
- Neurology Department, University Hospital of Bordeaux, 33076, Bordeaux, France
| | - Xavier Berard
- Vascular Surgery Department, University Hospital of Bordeaux, 33076, Bordeaux, France
| | - Andrea Zhang
- Molecular Imaging Branch, NIMH, Bethesda, MD, USA
| | | | | | | | | | - Clément Morgat
- Nuclear Medicine Department, University Hospital of Bordeaux, 33076, Bordeaux, France.,University of Bordeaux, INCIA, UMR5287, 33400, Talence, France.,CNRS, INCIA, UMR5287, 33400, Talence, France
| |
Collapse
|
15
|
Win Z, Weiner Rd J, Listanco A, Patel N, Sharma R, Greenwood A, Maertzdorf J, Mollenkopf HJ, Pizzoferro K, Cole T, Bodinham CL, Kaufmann SHE, Denoel P, Del Giudice G, Lewis DJM. Systematic Evaluation of Kinetics and Distribution of Muscle and Lymph Node Activation Measured by 18F-FDG- and 11C-PBR28-PET/CT Imaging, and Whole Blood and Muscle Transcriptomics After Immunization of Healthy Humans With Adjuvanted and Unadjuvanted Vaccines. Front Immunol 2021; 11:613496. [PMID: 33613536 PMCID: PMC7893084 DOI: 10.3389/fimmu.2020.613496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/24/2020] [Indexed: 12/11/2022] Open
Abstract
Systems vaccinology has been applied to detect signatures of human vaccine induced immunity but its ability, together with high definition in vivo clinical imaging is not established to predict vaccine reactogenicity. Within two European Commission funded high impact programs, BIOVACSAFE and ADITEC, we applied high resolution positron emission tomography/computed tomography (PET/CT) scanning using tissue-specific and non-specific radioligands together with transcriptomic analysis of muscle biopsies in a clinical model systematically and prospectively comparing vaccine-induced immune/inflammatory responses. 109 male participants received a single immunization with licensed preparations of either AS04-adjuvanted hepatitis B virus vaccine (AHBVV); MF59C-adjuvanted (ATIV) or unadjuvanted seasonal trivalent influenza vaccine (STIV); or alum-OMV-meningococcal B protein vaccine (4CMenB), followed by a PET/CT scan (n = 54) or an injection site muscle biopsy (n = 45). Characteristic kinetics was observed with a localized intramuscular focus associated with increased tissue glycolysis at the site of immunization detected by 18F-fluorodeoxyglucose (FDG) PET/CT, peaking after 1–3 days and strongest and most prolonged after 4CMenB, which correlated with clinical experience. Draining lymph node activation peaked between days 3–5 and was most prominent after ATIV. Well defined uptake of the immune cell-binding radioligand 11C-PBR28 was observed in muscle lesions and draining lymph nodes. Kinetics of muscle gene expression module upregulation reflected those seen previously in preclinical models with a very early (~6hrs) upregulation of monocyte-, TLR- and cytokine/chemokine-associated modules after AHBVV, in contrast to a response on day 3 after ATIV, which was bracketed by whole blood responses on day 1 as antigen presenting, inflammatory and innate immune cells trafficked to the site of immunization, and on day 5 associated with activated CD4+ T cells. These observations confirm the use of PET/CT, including potentially tissue-, cell-, or cytokine/chemokine-specific radioligands, is a safe and ethical quantitative technique to compare candidate vaccine formulations and could be safely combined with biopsy to guide efficient collection of samples for integrated whole blood and tissue systems vaccinology in small-scale but intensive human clinical models of immunization and to accelerate clinical development and optimisation of vaccine candidates, adjuvants, and formulations.
Collapse
Affiliation(s)
- Zarni Win
- Department of Nuclear Medicine and Radiological Sciences Unit, Imperial College Healthcare NHS Trust (ICHNT), London, United Kingdom
| | - January Weiner Rd
- Department for Immunology, Max Planck Institute for Infection Biology, Berlin, Germany.,Core Unit for Bioinformatics (CUBI), Berlin Institute of Health, Berlin, Germany
| | - Allan Listanco
- National Institute for Health Research (NIHR) Imperial Clinical Research Facility (NICRF), Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Neva Patel
- Department of Nuclear Medicine and Radiological Sciences Unit, Imperial College Healthcare NHS Trust (ICHNT), London, United Kingdom
| | - Rohini Sharma
- Department of Surgery & Cancer, Imperial College London (ICL), London, United Kingdom
| | - Aldona Greenwood
- Surrey Clinical Research Centre, University of Surrey, Guildford, United Kingdom
| | - Jeroen Maertzdorf
- Department for Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | - Kat Pizzoferro
- Surrey Clinical Research Centre, University of Surrey, Guildford, United Kingdom
| | - Thomas Cole
- National Institute for Health Research (NIHR) Imperial Clinical Research Facility (NICRF), Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Caroline L Bodinham
- Surrey Clinical Research Centre, University of Surrey, Guildford, United Kingdom
| | - Stefan H E Kaufmann
- Department for Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | | | - David J M Lewis
- National Institute for Health Research (NIHR) Imperial Clinical Research Facility (NICRF), Imperial College Healthcare NHS Trust, London, United Kingdom.,Surrey Clinical Research Centre, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
16
|
Binder CJ, Borén J, Catapano AL, Dallinga-Thie G, Kronenberg F, Mallat Z, Negrini S, Raggi P, von Eckardstein A. The year 2019 in Atherosclerosis. Atherosclerosis 2020; 299:67-75. [PMID: 32248950 DOI: 10.1016/j.atherosclerosis.2020.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; IRCCS Multimedica Hospital, Milan, Italy
| | - Geesje Dallinga-Thie
- Department of Vascular Medicine, Amsterdam University Medical Centers, AMC, Amsterdam, the Netherlands
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Austria
| | - Ziad Mallat
- Department of Medicine, Division of Cardiovascular Medicine, University of Cambridge, Cambridge, United Kingdom; University of Paris, PARCC, INSERM, Paris, France
| | - Simona Negrini
- Institute of Clinical Chemistry, University of Zurich, University Hospital of Zurich, Zurich, Switzerland
| | - Paolo Raggi
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada; Department of Medicine, University of Alberta, Edmonton, AB, Canada; Division of Cardiology, University of Alberta, Edmonton, AB, Canada
| | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University of Zurich, University Hospital of Zurich, Zurich, Switzerland.
| |
Collapse
|
17
|
Pérez-Medina C, Fayad ZA, Mulder WJ. Atherosclerosis Immunoimaging by Positron Emission Tomography. Arterioscler Thromb Vasc Biol 2020; 40:865-873. [PMID: 32078338 PMCID: PMC7101266 DOI: 10.1161/atvbaha.119.313455] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/16/2020] [Indexed: 12/22/2022]
Abstract
The immune system's role in atherosclerosis has long been an important research topic and is increasingly investigated for therapeutic and diagnostic purposes. Therefore, noninvasive imaging of hematopoietic organs and immune cells will undoubtedly improve atherosclerosis phenotyping and serve as a monitoring method for immunotherapeutic treatments. Among the available imaging techniques, positron emission tomography's unique features make it an ideal tool to quantitatively image the immune response in the context of atherosclerosis and afford reliable readouts to guide medical interventions in cardiovascular disease. Here, we summarize the state of the art in the field of atherosclerosis positron emission tomography immunoimaging and provide an outlook on current and future applications.
Collapse
Affiliation(s)
- Carlos Pérez-Medina
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Zahi A. Fayad
- Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Willem J.M. Mulder
- Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
18
|
Heo GS, Sultan D, Liu Y. Current and novel radiopharmaceuticals for imaging cardiovascular inflammation. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2020; 64:4-20. [PMID: 32077667 DOI: 10.23736/s1824-4785.20.03230-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide despite advances in diagnostic technologies and treatment strategies. The underlying cause of most CVD is atherosclerosis, a chronic disease driven by inflammatory reactions. Atherosclerotic plaque rupture could cause arterial occlusion leading to ischemic tissue injuries such as myocardial infarction (MI) and stroke. Clinically, most imaging modalities are based on anatomy and provide limited information about the on-going molecular activities affecting the vulnerability of atherosclerotic lesion for risk stratification of patients. Thus, the ability to differentiate stable plaques from those that are vulnerable is an unmet clinical need. Of various imaging techniques, the radionuclide-based molecular imaging modalities including positron emission tomography and single-photon emission computerized tomography provide superior ability to noninvasively visualize molecular activities in vivo and may serve as a useful tool in tackling this challenge. Moreover, the well-established translational pathway of radiopharmaceuticals may also facilitate the translation of discoveries from benchtop to clinical investigation in contrast to other imaging modalities to fulfill the goal of precision medicine. The relationship between inflammation occurring within the plaque and its proneness to rupture has been well documented. Therefore, an active effort has been significantly devoted to develop radiopharmaceuticals specifically to measure CVD inflammatory status, and potentially elucidate those plaques which are prone to rupture. In the following review, molecular imaging of inflammatory biomarkers will be briefly discussed.
Collapse
Affiliation(s)
- Gyu S Heo
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | - Deborah Sultan
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | - Yongjian Liu
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA -
| |
Collapse
|