1
|
Huang J, Hu W, Xiong H, Zhou Y, Cao F, Ding C, Li Y, Chen M. Cardiomyocyte-derived Galectin-9 induces macrophage M2 polarization via the TIM3 pathway to attenuate myocardial remodeling post-myocardial infarction. Mol Cell Biochem 2025:10.1007/s11010-025-05277-0. [PMID: 40259180 DOI: 10.1007/s11010-025-05277-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 03/31/2025] [Indexed: 04/23/2025]
Abstract
M2 macrophages play a key role in tissue repair during the late stages of myocardial infarction (MI). This study highlights the influence of cardiomyocyte-derived Galectin-9 on macrophage function post-MI. Using a murine model with left anterior descending (LAD) artery ligation, we examined the effects of Galectin-9 deficiency, exogenous Galectin-9 supplementation, and macrophage depletion on myocardial macrophage polarization and tissue remodeling. Our results showed increased Galectin-9 expression in infarcted myocardial tissue. Galectin-9 deficiency impaired cardiac recovery and reduced M2 macrophage presence in the infarcted area. Supplementation with exogenous Galectin-9 improved tissue remodeling in Galectin-9-deficient mice and increased M2 macrophage levels. However, macrophage depletion negated the benefits of Galectin-9 supplementation, exacerbating cardiac dysfunction. In vitro, Galectin-9 enhanced the M2 phenotype in macrophage-like RAW264.7 cells after hypoxic preconditioning of cardiomyocytes. This effect was diminished when cardiomyocytes lacked Galectin-9. TIM3 knockdown in RAW264.7 cells reversed the M2 polarization induced by recombinant Galectin-9 and inhibited the PI3K/Akt signaling pathway. These findings suggest that injured cardiomyocytes release Galectin-9 after MI, which binds to TIM3 on macrophages, activating the PI3K/Akt pathway to promote M2 polarization. This cardiomyocyte-macrophage interaction mitigates myocardial remodeling and helps preserve cardiac function after MI.
Collapse
Affiliation(s)
- Jiabing Huang
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, NO.1 Minde Road, Nanchang, 330006, China.
| | - Weitong Hu
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, NO.1 Minde Road, Nanchang, 330006, China
| | - Hongliang Xiong
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, NO.1 Minde Road, Nanchang, 330006, China
| | - Yue Zhou
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, NO.1 Minde Road, Nanchang, 330006, China
| | - Fangying Cao
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, NO.1 Minde Road, Nanchang, 330006, China
| | - Congcong Ding
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, NO.1 Minde Road, Nanchang, 330006, China
| | - Yunde Li
- Department of Cardiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, NO.1 Minde Road, Nanchang, 330006, China
| | - Mingxian Chen
- Department of Cardiology, The Second Xiangya Hospital of Central South University, NO.139 Renmin Middle Road, Changsha, 410011, China.
| |
Collapse
|
2
|
Lightfoot A, Lewis JW, Patten DA, Shetty S, Hewett PW, Mansour AA, McGettrick HM, Iqbal AJ. Differential expression of endothelial derived galectins in response to shear stress. Exp Cell Res 2025; 447:114521. [PMID: 40107440 DOI: 10.1016/j.yexcr.2025.114521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/14/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Endothelial cells function as mechanosensors, dynamically altering their functional response based on varying shear stress/flow patterns to maintain vascular homeostasis. Disturbed flow leads to endothelium dysfunction, promoting conditions such as atherosclerosis. Understanding the molecular impact of flow is crucial for the development of new therapeutic targets for vascular diseases. Galectins have been implicated in vascular diseases, specifically their role in inflammation. However, the regulation of endothelial galectins by shear stress remains unexplored. METHODS Galectin gene and protein expression were analysed from publicly available datasets or in human umbilical endothelial cells (HUVEC) and human arterial endothelial cells (HAEC) cultured under either shear stress induced by orbital shaking or static conditions by qPCR, immunofluorescence imaging and ELISA. RESULTS Laminar shear stress upregulated LGALS9 and downregulated LGALS1, while disturbed flow reversed these effects. Complex shear environments significantly increased Gal-3 and Gal-9 expression at both gene and protein levels, with distinct variations in surface expression and secretion. In vivo single-cell RNA sequencing (scRNAseq) revealed reduced Lgals9 expression in endothelial cells exposed to disturbed flow in carotid artery ligation models compared to laminar flow. SIGNIFICANCE These findings highlight that endothelial galectin expression is shear-regulated, which has significant implications for understanding galectin biology and there potential as therapeutic targets in vascular diseases influenced by shear stress.
Collapse
Affiliation(s)
- Abbey Lightfoot
- Department of Cardiovascular Sciences, College of Medicine and Health University of Birmingham, Birmingham, B15 2TT, UK
| | - Jonathan W Lewis
- Department of Inflammation and Ageing, College of Medicine and Health University of Birmingham, Birmingham, B15 2TT, UK
| | - Daniel A Patten
- Department of Immunology and Immunotherapy, College of Medicine and Health University of Birmingham, Birmingham, B15 2TT, UK
| | - Shishir Shetty
- Department of Immunology and Immunotherapy, College of Medicine and Health University of Birmingham, Birmingham, B15 2TT, UK
| | - Peter W Hewett
- Department of Cardiovascular Sciences, College of Medicine and Health University of Birmingham, Birmingham, B15 2TT, UK
| | - Adel Abo Mansour
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Helen M McGettrick
- Department of Inflammation and Ageing, College of Medicine and Health University of Birmingham, Birmingham, B15 2TT, UK.
| | - Asif J Iqbal
- Department of Cardiovascular Sciences, College of Medicine and Health University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
3
|
Li B, Khan H, Shaikh F, Zamzam A, Abdin R, Qadura M. Prediction of Major Adverse Limb Events in Females with Peripheral Artery Disease using Blood-Based Biomarkers and Clinical Features. J Cardiovasc Transl Res 2025; 18:316-330. [PMID: 39643751 DOI: 10.1007/s12265-024-10574-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 11/13/2024] [Indexed: 12/09/2024]
Abstract
The objective of this study was to identify a female-specific prognostic biomarker for peripheral artery disease (PAD) and develop a prediction model for 2-year major adverse limb events (MALE). Patients with/without PAD were recruited (n=461). Plasma concentrations of 68 circulating proteins were measured and patients were followed for 2 years. The primary outcome was MALE (composite of vascular intervention, major amputation, or acute/chronic limb threatening ischemia). We trained a random forest model using: 1) clinical characteristics, 2) female-specific PAD biomarker, and 3) clinical characteristics and female-specific PAD biomarker. Galectin-9 was the only protein to be significantly elevated in females compared to males in the discovery/validation analyses. The random forest model achieved the following AUROC's: 0.72 (clinical features), 0.83 (Galectin-9), and 0.86 (clinical features + Galectin-9). We identified Galectin-9 as a female-specific PAD biomarker and developed an accurate prognostic model for 2-year MALE using a combination of clinical features and plasma Galectin-9 levels.
Collapse
Affiliation(s)
- Ben Li
- Department of Surgery, University of Toronto, Toronto, Canada
- Division of Vascular Surgery, St. Michael's Hospital, Unity Health Toronto, University of Toronto, 30 Bond Street, Suite 7-076, Toronto, Ontario, M5B 1W8, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Temerty Centre for Artificial Intelligence Research and Education in Medicine (T-CAIREM), University of Toronto, Toronto, Canada
| | - Hamzah Khan
- Division of Vascular Surgery, St. Michael's Hospital, Unity Health Toronto, University of Toronto, 30 Bond Street, Suite 7-076, Toronto, Ontario, M5B 1W8, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Farah Shaikh
- Division of Vascular Surgery, St. Michael's Hospital, Unity Health Toronto, University of Toronto, 30 Bond Street, Suite 7-076, Toronto, Ontario, M5B 1W8, Canada
| | - Abdelrahman Zamzam
- Division of Vascular Surgery, St. Michael's Hospital, Unity Health Toronto, University of Toronto, 30 Bond Street, Suite 7-076, Toronto, Ontario, M5B 1W8, Canada
| | - Rawand Abdin
- Department of Medicine, McMaster University, Hamilton, Canada
| | - Mohammad Qadura
- Department of Surgery, University of Toronto, Toronto, Canada.
- Division of Vascular Surgery, St. Michael's Hospital, Unity Health Toronto, University of Toronto, 30 Bond Street, Suite 7-076, Toronto, Ontario, M5B 1W8, Canada.
- Institute of Medical Science, University of Toronto, Toronto, Canada.
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, University of Toronto, Toronto, Canada.
| |
Collapse
|
4
|
Tull S, Saviano A, Fatima A, Begum J, Mansour AA, Marigliano N, Schettino A, Blaising J, Trenkle P, Sandrin V, Maione F, Regan-Komito D, Iqbal AJ. Dichotomous effects of Galectin-9 in disease modulation in murine models of inflammatory bowel disease. Biomed Pharmacother 2025; 184:117902. [PMID: 39951917 PMCID: PMC11870847 DOI: 10.1016/j.biopha.2025.117902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/17/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a multifaceted disease characterised by compromised integrity of the epithelial barrier, the gut microbiome, and mucosal inflammation. While leukocyte recruitment and infiltration into intestinal tissue are well-studied and targeted in clinical practice, the role of galectins in modulating mucosal immunity remains underexplored. Galectins, a family of lectin-binding proteins, mediate critical interactions between immune cells and the intestinal epithelium. This study investigated the effect of endogenous Galectin-9 (Gal-9), as well as the combined effects with Galectin-3 (Gal-3), in modulating disease progression in murine models of colitis, using global knockout (KO) models for Gal-3, Gal-9, and Gal-3/Gal-9. Global deficiency in both galectins demonstrated improved disease parameters in Dextran sodium sulfate (DSS)-driven colitis. In contrast, in a model of adoptive T cell driven colitis, the addition of recombinant Gal-9 (rGal-9) was associated with reduced intestinal inflammation and an improvement in disease parameters. Further in vitro studies revealed no change in bone marrow-derived macrophage cytokine production in the absence of endogenous Gal-9, whereas the addition of rGal-9 to human macrophages stimulated pro-inflammatory cytokine production. Collectively, these findings demonstrate that Gal-9 plays distinct, context-dependent effects in intestinal inflammation, with both pro-inflammatory and anti-inflammatory effects. The contrasting functions of endogenous and exogenous Gal-9 underscore its complex involvement in IBD pathogenesis and highlight the need to differentiate its physiological function from therapeutic applications.
Collapse
Affiliation(s)
- Samantha Tull
- Department of Cardiovascular Sciences (CVS), College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
| | - Anella Saviano
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, Naples 80131, Italy
| | - Areeba Fatima
- Department of Cardiovascular Sciences (CVS), College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
| | - Jenefa Begum
- Department of Cardiovascular Sciences (CVS), College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK
| | - Adel Abo Mansour
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Noemi Marigliano
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, Naples 80131, Italy
| | - Anna Schettino
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, Naples 80131, Italy
| | - Julie Blaising
- Department of Cardiovascular Sciences (CVS), College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK; ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, Naples 80131, Italy; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia; Roche Pharma Research & Early Development, CMV, Immunology, Infectious Diseases and Ophthalmology (CMI2O), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Patrick Trenkle
- Roche Pharma Research & Early Development, CMV, Immunology, Infectious Diseases and Ophthalmology (CMI2O), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Virginie Sandrin
- Roche Pharma Research & Early Development, CMV, Immunology, Infectious Diseases and Ophthalmology (CMI2O), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Francesco Maione
- ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, Naples 80131, Italy.
| | - Daniel Regan-Komito
- Roche Pharma Research & Early Development, CMV, Immunology, Infectious Diseases and Ophthalmology (CMI2O), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland.
| | - Asif J Iqbal
- Department of Cardiovascular Sciences (CVS), College of Medicine and Health, University of Birmingham, Birmingham B15 2TT, UK; ImmunoPharmaLab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Domenico Montesano 49, Naples 80131, Italy.
| |
Collapse
|
5
|
Sun Y, Xu H, Zhu Y, Rao Y, Fan X, Wang Z, Gu H, Yue X, Zhao X, Su L, Cai R. Single-cell and spatial transcriptomic analyses reveal transcriptional cell lineage heterogeneity in extracranial arteriovenous malformation. J Dermatol Sci 2025:S0923-1811(25)00022-2. [PMID: 40118698 DOI: 10.1016/j.jdermsci.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 02/05/2025] [Accepted: 02/20/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND Extracranial arteriovenous malformations (eAVMs) are rare congenital vascular anomalies consisting of abnormal artery-vein bypass with no intervening capillary network, and can lead to disability and death. The critical genetic determination factors and key transcriptional pathways of the eAVMs genesis process are still unclear. OBJECTIVE To generate an overview of the molecular information within eAVMs at the single-cell level. METHODS We performed single-cell RNA sequencing (scRNA-seq) on nine samples of eAVMs receiving a confirmatory histopathologic evaluation from a board-certified dermatopathologist and two nonlesional tissue sample controls. 10x Visium spatial transcriptomics (ST) was performed on one eAVM to spatially localize heterogeneous cells and profile the gene expression dynamics of the cells in their morphological context. The scRNA-seq and ST data were integrated and analyzed to further query for spatially restricted mapping of intrapopulation heterogeneous cells. RESULTS We identified different cell states of endothelial cells (ECs), perivascular cells and immune cells in eAVMs, uncovered the presence of MAFB+ nidus ECs, characterized mesenchymal activation in ECs, and identified transcriptional variation within perivascular cells and the presence of smooth muscle-like pericytes in eAVMs. Dysregulated cell to cell interactions among ECs, perivascular cells and immune cells that are associated with eAVMs, including those involving MDK, VEGF, ANGPT, SEMA3 and GALECTIN-9 were cataloged. Together, our results depicted the heterogeneity underlying cell function and interaction of eAVMs at a single-cell resolution. CONCLUSION We present a comprehensive picture of the cell-resolution atlas that describes the transcriptomic heterogeneity underlying cell function and interaction in eAVMs.
Collapse
Affiliation(s)
- Yi Sun
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyang Xu
- Department of Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanze Zhu
- School of Automation, Northwestern Polytechnical University, Xi 'an, China
| | - Yamin Rao
- Department of Pathology, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xindong Fan
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenfeng Wang
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Gu
- Department of Burn and Plastic Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaojie Yue
- Department of Burn and Plastic Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiong Zhao
- Department of Burn and Plastic Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Lixin Su
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ren Cai
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Salminen A. Cooperation between inhibitory immune checkpoints of senescent cells with immunosuppressive network to promote immunosenescence and the aging process. Ageing Res Rev 2025; 106:102694. [PMID: 39984130 DOI: 10.1016/j.arr.2025.102694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/30/2024] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
The accumulation of senescent cells within tissues promotes the aging process by remodelling the functions of the immune system. For many years, it has been known that senescent cells secrete pro-inflammatory cytokines and chemokines, a phenotype called the senescence-associated secretory phenotype (SASP). Chemokines and colony-stimulating factors stimulate myelopoiesis and recruit myeloid cells into aging tissues. Interestingly, recent studies have demonstrated that senescent cells are not only secretory but they also express an increased level of ligand proteins for many inhibitory immune checkpoint receptors. These ligands represent "don't eat me" markers in senescent cells and moreover, they are able to induce an exhaustion of many immune cells, such as surveying natural killer (NK) cells, cytotoxic CD8+ T cells, and macrophages. The programmed cell death protein-1 (PD-1) and its ligand PD-L1 represent the best known inhibitory immune checkpoint pathway. Importantly, the activation of inhibitory checkpoint receptors, e.g., in chronic inflammatory states, can also induce certain immune cells to differentiate toward their immunosuppressive phenotype. This can be observed in myeloid derived suppressor cells (MDSC), tissue regulatory T cells (Treg), and M2 macrophages. Conversely, these immunosuppressive cells stimulate in senescent cells the expression of many ligand proteins for inhibitory checkpoint receptors. Paradoxically, senescent cells not only promote the pro-inflammatory state but they maintain it at a low-grade level by expressing ligands for inhibitory immune checkpoint receptors. Thus, the cooperation between senescent cells and immunosuppressive cells enhances the senescence state of immune cells, i.e., immune senescence/exhaustion, and cellular senescence within tissues via bystander effects.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland.
| |
Collapse
|
7
|
Gallo A, Le Goff W, Santos RD, Fichtner I, Carugo S, Corsini A, Sirtori C, Ruscica M. Hypercholesterolemia and inflammation-Cooperative cardiovascular risk factors. Eur J Clin Invest 2025; 55:e14326. [PMID: 39370572 PMCID: PMC11628670 DOI: 10.1111/eci.14326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND Maintaining low concentrations of plasma low-density lipoprotein cholesterol (LDLc) over time decreases the number of LDL particles trapped within the artery wall, slows the progression of atherosclerosis and delays the age at which mature atherosclerotic plaques develop. This substantially reduces the lifetime risk of atherosclerotic cardiovascular disease (ASCVD) events. In this context, plaque development and vulnerability result not only from lipid accumulation but also from inflammation. RESULTS Changes in the composition of immune cells, including macrophages, dendritic cells, T cells, B cells, mast cells and neutrophils, along with altered cytokine and chemokine release, disrupt the equilibrium between inflammation and anti-inflammatory mechanisms at plaque sites. Considering that it is not a competition between LDLc and inflammation, but instead that they are partners in crime, the present narrative review aims to give an overview of the main inflammatory molecular pathways linked to raised LDLc concentrations and to describe the impact of lipid-lowering approaches on the inflammatory and lipid burden. Although remarkable changes in LDLc are driven by the most recent lipid lowering combinations, the relative reduction in plasma C-reactive protein appears to be independent of the magnitude of LDLc lowering. CONCLUSION Identifying clinical biomarkers of inflammation (e.g. interleukin-6) and possible targets for therapy holds promise for monitoring and reducing the ASCVD burden in suitable patients.
Collapse
Affiliation(s)
- Antonio Gallo
- Lipidology and Cardiovascular Prevention Unit, Department of Nutrition, APHP, Hôpital Pitié‐SalpètriêreSorbonne Université, INSERM UMR1166ParisFrance
| | - Wilfried Le Goff
- Lipidology and Cardiovascular Prevention Unit, Department of Nutrition, APHP, Hôpital Pitié‐SalpètriêreSorbonne Université, INSERM UMR1166ParisFrance
| | - Raul D. Santos
- Academic Research Organization Hospital Israelita Albert Einstein and Lipid Clinic Heart Institute (InCor)University of Sao Paulo Medical School HospitalSao PauloBrazil
| | - Isabella Fichtner
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”Università degli Studi di MilanoMilanItaly
| | - Stefano Carugo
- Department of Cardio‐Thoracic‐Vascular DiseasesFoundation IRCCS Cà Granda Ospedale Maggiore PoliclinicoMilanItaly
- Department of Clinical Sciences and Community HealthUniversità degli Studi di MilanoMilanItaly
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”Università degli Studi di MilanoMilanItaly
| | - Cesare Sirtori
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”Università degli Studi di MilanoMilanItaly
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”Università degli Studi di MilanoMilanItaly
- Department of Cardio‐Thoracic‐Vascular DiseasesFoundation IRCCS Cà Granda Ospedale Maggiore PoliclinicoMilanItaly
| |
Collapse
|
8
|
Li B, Shaikh F, Younes H, Abuhalimeh B, Chin J, Rasheed K, Zamzam A, Abdin R, Qadura M. Prediction of Major Adverse Cardiovascular Events in Patients with Peripheral Artery Disease Using Circulating Immunomodulatory Proteins. Biomedicines 2024; 12:2842. [PMID: 39767748 PMCID: PMC11674036 DOI: 10.3390/biomedicines12122842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: The leading cause of death for people with peripheral artery disease (PAD) is major adverse cardiovascular events (MACE), including heart attacks and strokes. However, research into biomarkers that could help predict MACE in patients with PAD has been limited. Immunomodulatory proteins are known to significantly influence systemic atherosclerosis, suggesting they could be useful prognostic indicators for MACE in patients with PAD. In this study, we evaluated a broad panel of immunomodulatory proteins to identify those linked to MACE in individuals with PAD. Methods: We conducted a prognostic study involving a prospectively recruited cohort of 406 patients consisting of 254 with PAD and 152 without PAD. At the baseline, we measured the plasma concentrations of 17 circulating immunomodulatory proteins and followed the cohort for two years. The primary outcome was 2-year MACE, a composite of myocardial infarction, stroke, or death. Plasma protein concentrations were compared between patients with PAD with and without 2-year MACE using Mann-Whitney U tests. We further examined the prognostic potential of differentially expressed proteins through a Cox proportional hazards analysis, determining their independent associations with 2-year MACE while controlling for all the baseline demographic and clinical characteristics, including the existing coronary artery and cerebrovascular diseases. Additionally, A Kaplan-Meier analysis was performed to evaluate the 2-year freedom from MACE in patients with low versus high levels of the differentially expressed proteins based on the median plasma concentrations. Results: The mean age of the cohort was 68.8 years (SD 11.1), with 134 patients (33%) being female. During the two-year follow-up, 63 individuals (16%) developed MACE. The following proteins were significantly elevated in patients with PAD who experienced 2-year MACE compared to those who did not: galectin-1 (0.17 [SD 0.06] vs. 0.10 [SD 0.07] pg/mL, p = 0.012), alpha-1-microglobulin (16.68 [SD 7.48] vs. 14.74 [SD 6.71] pg/mL, p = 0.019), and galectin-9 (0.14 [SD 0.09] vs. 0.09 [SD 0.05] pg/mL, p = 0.033). The Cox proportional hazards analysis indicated that these three proteins were independently associated with 2-year MACE after adjusting for all the baseline demographic and clinical factors: galectin-1 (HR 1.45 [95% CI 1.09-1.92], p = 0.019), alpha-1-microglobulin (HR 1.31 [95% CI 1.06-1.63], p = 0.013), and galectin-9 (HR 1.35 [95% CI 1.02-1.78], p = 0.028). Over the two-year follow-up, patients with higher levels of galectin-1, galectin-9, and alpha-1-microglobulin had a lower freedom from MACE. Additional analysis showed that these three proteins were not significantly associated with 2-year MACE in patients without PAD. Conclusions: Among the 17 immunomodulatory proteins evaluated, galectin-1, galectin-9, and alpha-1-microglobulin were found to be independently and specifically associated with 2-year MACE in patients with PAD. Assessing the plasma concentrations of these proteins can aid in risk stratification for MACE in patients with PAD, helping to inform clinical decisions regarding multidisciplinary referrals to cardiologists, neurologists, and vascular medicine specialists. This information can also guide the aggressiveness of medical management, ultimately improving cardiovascular outcomes for patients with PAD.
Collapse
Affiliation(s)
- Ben Li
- Department of Surgery, University of Toronto, Toronto, ON M5S 1A1, Canada;
- Division of Vascular Surgery, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1W8, Canada; (F.S.); (A.Z.)
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A1, Canada
- Temerty Centre for Artificial Intelligence Research and Education in Medicine (T-CAIREM), University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Farah Shaikh
- Division of Vascular Surgery, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1W8, Canada; (F.S.); (A.Z.)
| | - Houssam Younes
- Heart, Vascular, & Thoracic Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi 112412, United Arab Emirates; (H.Y.); (B.A.); (J.C.); (K.R.)
| | - Batool Abuhalimeh
- Heart, Vascular, & Thoracic Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi 112412, United Arab Emirates; (H.Y.); (B.A.); (J.C.); (K.R.)
| | - Jason Chin
- Heart, Vascular, & Thoracic Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi 112412, United Arab Emirates; (H.Y.); (B.A.); (J.C.); (K.R.)
| | - Khurram Rasheed
- Heart, Vascular, & Thoracic Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi 112412, United Arab Emirates; (H.Y.); (B.A.); (J.C.); (K.R.)
| | - Abdelrahman Zamzam
- Division of Vascular Surgery, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1W8, Canada; (F.S.); (A.Z.)
| | - Rawand Abdin
- Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada;
| | - Mohammad Qadura
- Department of Surgery, University of Toronto, Toronto, ON M5S 1A1, Canada;
- Division of Vascular Surgery, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1W8, Canada; (F.S.); (A.Z.)
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A1, Canada
- Heart, Vascular, & Thoracic Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi 112412, United Arab Emirates; (H.Y.); (B.A.); (J.C.); (K.R.)
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1W8, Canada
| |
Collapse
|
9
|
Shao Y, Yang WY, Nanayakkara G, Saaoud F, Ben Issa M, Xu K, Lu Y, Jiang X, Mohsin S, Wang H, Yang X. Immune Checkpoints Are New Therapeutic Targets in Regulating Cardio-, and Cerebro-Vascular Diseases and CD4 +Foxp3 + Regulatory T Cell Immunosuppression. INTERNATIONAL JOURNAL OF DRUG DISCOVERY AND PHARMACOLOGY 2024; 3:100022. [PMID: 39926714 PMCID: PMC11804271 DOI: 10.53941/ijddp.2024.100022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Although previous reviews explored the roles of selected immune checkpoints (ICPs) in cardiovascular diseases (CVD) and cerebrovascular diseases from various perspectives, many related aspects have yet to be thoroughly reviewed and analyzed. Our comprehensive review addresses this gap by discussing the cellular functions of ICPs, focusing on the tissue-specific and microenvironment-localized transcriptomic and posttranslational regulation of ICP expressions, as well as their functional interactions with metabolic reprogramming. We also analyze how 14 pairs of ICPs, including CTLA-4/CD86-CD80, PD1-PDL-1, and TIGIT-CD155, regulate CVD pathogenesis. Additionally, the review covers the roles of ICPs in modulating CD4+Foxp3+ regulatory T cells (Tregs), T cells, and innate immune cells in various CVDs and cerebrovascular diseases. Furthermore, we outline seven immunological principles to guide the development of new ICP-based therapies for CVDs. This timely and thorough analysis of recent advancements and challenges provide new insights into the role of ICPs in CVDs, cerebrovascular diseases and Tregs, and will support the development of novel therapeutics strategies for these diseases.
Collapse
Affiliation(s)
- Ying Shao
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - William Y. Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Gayani Nanayakkara
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT84112, USA
| | - Fatma Saaoud
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Mohammed Ben Issa
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Keman Xu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Yifan Lu
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Xiaohua Jiang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Sadia Mohsin
- Aging + Cardiovascular Discovery Center (ACDC), Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| | - Xiaofeng Yang
- Lemole Center for Integrated Lymphatics and Vascular Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
- Center for Metabolic Disease Research, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA19140, USA
| |
Collapse
|
10
|
Barcia Durán JG, Das D, Gildea M, Amadori L, Gourvest M, Kaur R, Eberhardt N, Smyrnis P, Cilhoroz B, Sajja S, Rahman K, Fernandez DM, Faries P, Narula N, Vanguri R, Goldberg IJ, Fisher EA, Berger JS, Moore KJ, Giannarelli C. Immune checkpoint landscape of human atherosclerosis and influence of cardiometabolic factors. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1482-1502. [PMID: 39613875 PMCID: PMC11634783 DOI: 10.1038/s44161-024-00563-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 10/21/2024] [Indexed: 12/01/2024]
Abstract
Immune checkpoint inhibitor (ICI) therapies can increase the risk of cardiovascular events in survivors of cancer by worsening atherosclerosis. Here we map the expression of immune checkpoints (ICs) within human carotid and coronary atherosclerotic plaques, revealing a network of immune cell interactions that ICI treatments can unintentionally target in arteries. We identify a population of mature, regulatory CCR7+FSCN1+ dendritic cells, similar to those described in tumors, as a hub of IC-mediated signaling within plaques. Additionally, we show that type 2 diabetes and lipid-lowering therapies alter immune cell interactions through PD-1, CTLA4, LAG3 and other IC targets in clinical development, impacting plaque inflammation. This comprehensive map of the IC interactome in healthy and cardiometabolic disease states provides a framework for understanding the potential adverse and beneficial impacts of approved and investigational ICIs on atherosclerosis, setting the stage for designing ICI strategies that minimize cardiovascular disease risk in cancer survivors.
Collapse
Grants
- R35HL135799 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01HL084312 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P30 CA016087 NCI NIH HHS
- 23POST1029885 American Heart Association (American Heart Association, Inc.)
- R35 HL135799 NHLBI NIH HHS
- R01 HL153712 NHLBI NIH HHS
- 20SFRN35210252 American Heart Association (American Heart Association, Inc.)
- R01HL165258 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 965509 American Heart Association (American Heart Association, Inc.)
- R01HL153712 U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL165258 NHLBI NIH HHS
- R01 HL084312 NHLBI NIH HHS
- U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute (NHLBI)
Collapse
Affiliation(s)
- José Gabriel Barcia Durán
- NYU Cardiovascular Research Center, Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Dayasagar Das
- NYU Cardiovascular Research Center, Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Michael Gildea
- NYU Cardiovascular Research Center, Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Letizia Amadori
- NYU Cardiovascular Research Center, Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Morgane Gourvest
- NYU Cardiovascular Research Center, Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Ravneet Kaur
- NYU Cardiovascular Research Center, Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Natalia Eberhardt
- NYU Cardiovascular Research Center, Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Panagiotis Smyrnis
- NYU Cardiovascular Research Center, Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Burak Cilhoroz
- NYU Cardiovascular Research Center, Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Swathy Sajja
- NYU Cardiovascular Research Center, Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Karishma Rahman
- Division of Cardiology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dawn M Fernandez
- Division of Cardiology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter Faries
- Department of Surgery, Vascular Division, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Navneet Narula
- Department of Pathology, New York University Grossman School of Medicine, New York University Langone Health, New York, NY, USA
| | - Rami Vanguri
- Division of Precision Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Ira J Goldberg
- Division of Endocrinology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Edward A Fisher
- NYU Cardiovascular Research Center, Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA
| | - Jeffrey S Berger
- NYU Cardiovascular Research Center, Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Kathryn J Moore
- NYU Cardiovascular Research Center, Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA.
| | - Chiara Giannarelli
- NYU Cardiovascular Research Center, Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Pathology, New York University Grossman School of Medicine, New York University Langone Health, New York, NY, USA.
| |
Collapse
|
11
|
Lauf T, Häder A, Hornung F, Reisser Y, Nietzsche S, Schanz F, Trümper V, Jeznach A, Brunke S, Doenst T, Skirecki T, Löffler B, Deinhardt-Emmer S. Age-related STING suppression in macrophages contributes to increased viral load during influenza a virus infection. Immun Ageing 2024; 21:80. [PMID: 39543713 PMCID: PMC11562583 DOI: 10.1186/s12979-024-00482-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/26/2024] [Indexed: 11/17/2024]
Abstract
Ageing is a major risk factor that contributes to increased mortality and morbidity rates during influenza A virus (IAV) infections. Macrophages are crucial players in the defense against viral infections and display impaired function during ageing. However, the impact of ageing on macrophage function in response to an IAV infection remains unclear and offers potential insight for underlying mechanisms. In this study, we investigated the immune response of young and aged human monocyte-derived macrophages to two different H1N1 IAV strains. Interestingly, macrophages of aged individuals showed a lower interferon response to IAV infection, resulting in increased viral load. Transcriptomic data revealed a reduced expression of stimulator of interferon genes (STING) in aged macrophages albeit the cGAS-STING pathway was upregulated. Our data clearly indicate the importance of STING signaling for interferon production by applying a THP-1 STING knockout model. Evaluation of mitochondrial function during IAV infection revealed the release of mitochondrial DNA to be the activator of cGAS-STING pathway. The subsequent induction of apoptosis was attenuated in aged macrophages due to decreased STING signaling. Our study provides new insights into molecular mechanisms underlying age-related immune impairment. To our best knowledge, we are the first to discover an age-dependent difference in gene expression of STING on a transcriptional level in human monocyte-derived macrophages possibly leading to a diminished interferon production.
Collapse
Affiliation(s)
- Thurid Lauf
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
- Else Kröner Graduate School for Medical Students "JSAM", Jena University Hospital, Jena, Germany
| | - Antje Häder
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Franziska Hornung
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Yasmina Reisser
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Sandor Nietzsche
- Center for Electron Microscopy, Jena University Hospital, Jena, Germany
| | - Fabian Schanz
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | - Verena Trümper
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | - Aldona Jeznach
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | - Torsten Doenst
- Klinik für Herz- und Thoraxchirurgie, Jena University Hospital, Jena, Germany
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| | | |
Collapse
|
12
|
Noack D, van Haperen A, van den Hout MCGN, Marshall EM, Koutstaal RW, van Duinen V, Bauer L, van Zonneveld AJ, van IJcken WFJ, Koopmans MPG, Rockx B. A three-dimensional vessel-on-chip model to study Puumala orthohantavirus pathogenesis. LAB ON A CHIP 2024. [PMID: 39292495 DOI: 10.1039/d4lc00543k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Puumala orthohantavirus (PUUV) infection in humans can result in hemorrhagic fever with renal syndrome. Endothelial cells (ECs) are primarily infected with increased vascular permeability as a central aspect of pathogenesis. Historically, most studies included ECs cultured under static two-dimensional (2D) conditions, thereby not recapitulating the physiological environment due to their lack of flow and inherent pro-inflammatory state. Here, we present a high-throughput model for culturing primary human umbilical vein ECs in 3D vessels-on-chip in which we compared host responses of these ECs to those of static 2D-cultured ECs on a transcriptional level. The phenotype of ECs in vessels-on-chip more closely resembled the in vivo situation due to higher similarity in expression of genes encoding described markers for disease severity and coagulopathy, including IDO1, LGALS3BP, IL6 and PLAT, and more diverse endothelial-leukocyte interactions in the context of PUUV infection. In these vessels-on-chip, PUUV infection did not directly increase vascular permeability, but increased monocyte adhesion. This platform can be used for studying pathogenesis and assessment of possible therapeutics for other endotheliotropic viruses even in high biocontainment facilities.
Collapse
Affiliation(s)
- Danny Noack
- Department of Viroscience, Erasmus University Medical Center, s-Gravendijkwal 230, 3015 CE, Rotterdam, the Netherlands.
| | - Anouk van Haperen
- Department of Viroscience, Erasmus University Medical Center, s-Gravendijkwal 230, 3015 CE, Rotterdam, the Netherlands.
| | - Mirjam C G N van den Hout
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Biomics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Eleanor M Marshall
- Department of Viroscience, Erasmus University Medical Center, s-Gravendijkwal 230, 3015 CE, Rotterdam, the Netherlands.
| | - Rosanne W Koutstaal
- Department of Viroscience, Erasmus University Medical Center, s-Gravendijkwal 230, 3015 CE, Rotterdam, the Netherlands.
| | - Vincent van Duinen
- Department of Internal Medicine, Division of Nephrology and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Lisa Bauer
- Department of Viroscience, Erasmus University Medical Center, s-Gravendijkwal 230, 3015 CE, Rotterdam, the Netherlands.
| | - Anton Jan van Zonneveld
- Department of Internal Medicine, Division of Nephrology and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Wilfred F J van IJcken
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Biomics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, Erasmus University Medical Center, s-Gravendijkwal 230, 3015 CE, Rotterdam, the Netherlands.
| | - Barry Rockx
- Department of Viroscience, Erasmus University Medical Center, s-Gravendijkwal 230, 3015 CE, Rotterdam, the Netherlands.
| |
Collapse
|
13
|
Thijssen VLJL. Vascular galectins in tumor angiogenesis and cancer immunity. Semin Immunopathol 2024; 46:3. [PMID: 38990363 PMCID: PMC11239785 DOI: 10.1007/s00281-024-01014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/13/2024] [Indexed: 07/12/2024]
Abstract
Sustained tumor angiogenesis, i.e., the induction and maintenance of blood vessel growth by tumor cells, is one of the hallmarks of cancer. The vascularization of malignant tissues not only facilitates tumor growth and metastasis, but also contributes to immune evasion. Important players in all these processes are the endothelial cells which line the luminal side of blood vessel. In the tumor vasculature, these cells are actively involved in angiogenesis as well in the hampered recruitment of immune cells. This is the result of the abnormal tumor microenvironment which triggers both angiostimulatory and immune inhibitory gene expression profiles in endothelial cells. In recent years, it has become evident that galectins constitute a protein family that is expressed in the tumor endothelium. Moreover, several members of this glycan-binding protein family have been found to facilitate tumor angiogenesis and stimulate immune suppression. All this has identified galectins as potential therapeutic targets to simultaneously hamper tumor angiogenesis and alleviate immune suppression. The current review provides a brief introduction in the human galectin protein family. The current knowledge regarding the expression and regulation of galectins in endothelial cells is summarized. Furthermore, an overview of the role that endothelial galectins play in tumor angiogenesis and tumor immunomodulation is provided. Finally, some outstanding questions are discussed that should be addressed by future research efforts. This will help to fully understand the contribution of endothelial galectins to tumor progression and to exploit endothelial galectins for cancer therapy.
Collapse
Affiliation(s)
- Victor L J L Thijssen
- Radiation Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands.
- Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands.
- Cancer Center Amsterdam, Cancer Biology & Immunology, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Wang F, Lyu XY, Qin YM, Xie MJ. Relationships between systemic sclerosis and atherosclerosis: screening for mitochondria-related biomarkers. Front Genet 2024; 15:1375331. [PMID: 39050259 PMCID: PMC11266065 DOI: 10.3389/fgene.2024.1375331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/27/2024] [Indexed: 07/27/2024] Open
Abstract
Background Patients with systemic sclerosis (SSc) are known to have higher incidence of atherosclerosis (AS). Mitochondrial injuries in SSc can cause endothelial dysfunction, leading to AS; thus, mitochondria appear to be hubs linking SSc to AS. This study aimed to identify the mitochondria-related biomarkers of SSc and AS. Methods We identified common differentially expressed genes (DEGs) in the SSc (GSE58095) and AS (GSE100927) datasets of the Gene Expression Omnibus (GEO) database. Considering the intersection between genes with identical expression trends and mitochondrial genes, we used the least absolute shrinkage and selection operator (LASSO) as well as random forest (RF) algorithms to identify four mitochondria-related hub genes. Diagnostic nomograms were then constructed to predict the likelihood of SSc and AS. Next, we used the CIBERSORT algorithm to evaluate immune infiltration in both disorders, predicted the transcription factors for the hub genes, and validated these genes for the two datasets. Results A total of 112 genes and 13 mitochondria-related genes were identified; these genes were then significantly enriched for macrophage differentiation, collagen-containing extracellular matrix, collagen binding, antigen processing and presentation, leukocyte transendothelial migration, and apoptosis. Four mitochondria-related hub DEGs (IFI6, FSCN1, GAL, and SGCA) were also identified. The nomograms showed good diagnostic values for GSE58095 (area under the curve (AUC) = 0.903) and GSE100927 (AUC = 0.904). Further, memory B cells, γδT cells, M0 macrophages, and activated mast cells were significantly higher in AS, while the resting memory CD4+ T cells were lower and M1 macrophages were higher in SSc; all of these were closely linked to multiple immune cells. Gene set enrichment analysis (GSEA) showed that IFI6 and FSCN1 were involved in immune-related pathways in both AS and SSc; GAL and SGCA are related to mitochondrial metabolism pathways in both SSc and AS. Twenty transcription factors (TFs) were predicted, where two TFs, namely BRCA1 and PPARγ, were highly expressed in both SSc and AS. Conclusion Four mitochondria-related biomarkers were identified in both SSc and AS, which have high diagnostic value and are associated with immune cell infiltration in both disorders. Hence, this study provides new insights into the pathological mechanisms underlying SSc and AS. The specific roles and action mechanisms of these genes require further clinical validation in SSc patients with AS.
Collapse
Affiliation(s)
- Fei Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao Yan Lyu
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Ming Qin
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Mei Juan Xie
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Khan H, Zamzam A, Shaikh F, Saposnik G, Mamdani M, Qadura M. Predicting Major Adverse Carotid Cerebrovascular Events in Patients with Carotid Stenosis: Integrating a Panel of Plasma Protein Biomarkers and Clinical Features-A Pilot Study. J Clin Med 2024; 13:3382. [PMID: 38929911 PMCID: PMC11203750 DOI: 10.3390/jcm13123382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Background: Carotid stenosis (CS) is an atherosclerotic disease of the carotid artery that can lead to devastating cardiovascular outcomes such as stroke, disability, and death. The currently available treatment for CS is medical management through risk reduction, including control of hypertension, diabetes, and/or hypercholesterolemia. Surgical interventions are currently suggested for patients with symptomatic disease with stenosis >50%, where patients have suffered from a carotid-related event such as a cerebrovascular accident, or asymptomatic disease with stenosis >60% if the long-term risk of death is <3%. There is a lack of current plasma protein biomarkers available to predict patients at risk of such adverse events. Methods: In this study, we investigated several growth factors and biomarkers of inflammation as potential biomarkers for adverse CS events such as stroke, need for surgical intervention, myocardial infarction, and cardiovascular-related death. In this pilot study, we use a support vector machine (SVM), random forest models, and the following four significantly elevated biomarkers: C-X-C Motif Chemokine Ligand 6 (CXCL6); Interleukin-2 (IL-2); Galectin-9; and angiopoietin-like protein (ANGPTL4). Results: Our SVM model best predicted carotid cerebrovascular events with an area under the curve (AUC) of >0.8 and an accuracy of 0.88, demonstrating strong prognostic capability. Conclusions: Our SVM model may be used for risk stratification of patients with CS to determine those who may benefit from surgical intervention.
Collapse
Affiliation(s)
- Hamzah Khan
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (A.Z.); (F.S.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Abdelrahman Zamzam
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (A.Z.); (F.S.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Farah Shaikh
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (A.Z.); (F.S.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Gustavo Saposnik
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital—Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (G.S.); (M.M.)
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Muhammad Mamdani
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital—Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (G.S.); (M.M.)
| | - Mohammad Qadura
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (A.Z.); (F.S.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital—Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (G.S.); (M.M.)
| |
Collapse
|
16
|
Nandakumar M, Das P, Sathyapalan T, Butler AE, Atkin SL. A Cross-Sectional Exploratory Study of Cardiovascular Risk Biomarkers in Non-Obese Women with and without Polycystic Ovary Syndrome: Association with Vitamin D. Int J Mol Sci 2024; 25:6330. [PMID: 38928037 PMCID: PMC11204004 DOI: 10.3390/ijms25126330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Vitamin D is proposed to have a protective effect against cardiovascular disease, though the mechanism is unclear. Vitamin D deficiency is common in polycystic ovary syndrome (PCOS), where it is strongly related to obesity, insulin resistance (IR) and risk of cardiovascular disease. To determine if the inherent pathophysiology of PCOS or vitamin D levels are linked to dysregulation of cardiovascular risk proteins (CVRPs), a study in non-obese women with PCOS and without IR was undertaken. Our hypothesis was that the levels of vitamin D3 and its active metabolite would be associated with CVRPs comparably in women with and without PCOS. In women with PCOS (n = 29) and controls (n = 29), 54 CVRPs were determined by Slow Off-rate Modified Aptamer (SOMA)-scan plasma protein measurement and correlated to 25-hydroxyvitamin D3 (25(OH)D3) and the active 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) measured by gold standard isotope-dilution liquid chromatography tandem mass spectrometry. Women with PCOS had comparable IR and systemic inflammation (normal C-reactive protein) to control women, though had higher free androgen index and anti-Mullerian hormone levels. 25(OH)D3 and 1,25(OH)2D3 levels did not differ between groups. Nine CVRPs were higher in PCOS (p < 0.05) (Galectin-9, Brother of CDO, C-motif chemokine 3, Interleukin-18 receptor-1, Thrombopoietin, Interleukin-1 receptor antagonist protein, Programmed cell death 1 ligand-2, Low-affinity immunoglobulin gamma Fc-region receptor II-b and human growth hormone), whilst 45 CVRPs did not differ. 25(OH)D3 correlated with five CVRPs in PCOS and one in controls (p < 0.05). Despite the women with PCOS not exhibiting overt systemic inflammation, 9 of 54 CVRPs were elevated, all relating to inflammation, and 5 of these correlated with 25(OH)D3, suggesting an ongoing underlying inflammatory process in PCOS even in the absence of obesity/IR.
Collapse
Affiliation(s)
- Manjula Nandakumar
- Royal College of Surgeons of Ireland, Adliya P.O. Box 15503, Bahrain; (M.N.); (P.D.); (S.L.A.)
| | - Priya Das
- Royal College of Surgeons of Ireland, Adliya P.O. Box 15503, Bahrain; (M.N.); (P.D.); (S.L.A.)
| | - Thozhukat Sathyapalan
- Academic Endocrinology, Diabetes and Metabolism, Hull York Medical School, Hull HU6 7RU, UK;
| | - Alexandra E. Butler
- Royal College of Surgeons of Ireland, Adliya P.O. Box 15503, Bahrain; (M.N.); (P.D.); (S.L.A.)
| | - Stephen L. Atkin
- Royal College of Surgeons of Ireland, Adliya P.O. Box 15503, Bahrain; (M.N.); (P.D.); (S.L.A.)
| |
Collapse
|
17
|
Shete A, Ghate M, Iwasaki-Hozumi H, Patil S, Shidhaye P, Bai G, Matsuba T, Pharande P, Mahajan B, Randive A, Mukherjee A, Hattori T. Dynamics of Matricellular Protein Levels in Blood Predict Recovery in Patients with Human Immunodeficiency Virus-Tuberculosis Coinfection. Viruses 2024; 16:664. [PMID: 38793546 PMCID: PMC11126111 DOI: 10.3390/v16050664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Chronic immune activation in tuberculosis (TB) associated with human immunodeficiency virus (HIV) infection (HIV/TB) modifies their clinical course. We prospectively measured osteopontin (OPN), full-length galectin-9 (FL-Gal9), and total-Gal9 (T-Gal9) levels in 32 patients with HIV/TB coinfection treated with anti-tuberculosis and antiretroviral therapies over 6-18 months to determine the amelioration of inflammatory conditions in response to the therapies. We observed a significant time-dependent decrease in FL-Gal9 in both pulmonary TB (PTB, n = 20) and extrapulmonary TB (EPTB, n = 12) patients. The levels of T-Gal9, OPN, and CRP decreased significantly after treatment in only PTB patients. We calculated the inflammatory score (INS) indicating immunologic recovery based on the decline in OPN, FL-Gal9, T-Gal9, and CRP levels. Baseline levels of T-Gal9 and OPN positively correlated with INS in all TB and only PTB patients, respectively, indicating that their levels predict better recovery. In contrast, FL-Gal9 levels at the second visit negatively correlated with INS in EPTB patients. The decrease rate in OPN levels at the second visit also correlated positively with INS in PTB patients. Women showed a higher INS and lower levels of FL-Gal9 than men. The patients with moderate grade severity on chest X-ray had higher CD4 cell numbers than those with limited grade severity. Monitoring these markers will help to predict and assess the response to therapy as well as to devise strategies to reduce the complications caused by chronic immune activation in patients with HIV/TB coinfection.
Collapse
Affiliation(s)
- Ashwini Shete
- Indian Council of Medical Research—National Institute of Translational Virology and AIDS Research (ICMR-NITVAR, Formerly National AIDS Research Institute), Pune 411026, India; (A.S.); (M.G.); (S.P.); (P.S.); (P.P.); (B.M.); (A.R.); (A.M.)
| | - Manisha Ghate
- Indian Council of Medical Research—National Institute of Translational Virology and AIDS Research (ICMR-NITVAR, Formerly National AIDS Research Institute), Pune 411026, India; (A.S.); (M.G.); (S.P.); (P.S.); (P.P.); (B.M.); (A.R.); (A.M.)
| | - Hiroko Iwasaki-Hozumi
- Research Institute of Health and Welfare, Kibi International University, Takahashi 716-0018, Japan;
| | - Sandip Patil
- Indian Council of Medical Research—National Institute of Translational Virology and AIDS Research (ICMR-NITVAR, Formerly National AIDS Research Institute), Pune 411026, India; (A.S.); (M.G.); (S.P.); (P.S.); (P.P.); (B.M.); (A.R.); (A.M.)
| | - Pallavi Shidhaye
- Indian Council of Medical Research—National Institute of Translational Virology and AIDS Research (ICMR-NITVAR, Formerly National AIDS Research Institute), Pune 411026, India; (A.S.); (M.G.); (S.P.); (P.S.); (P.P.); (B.M.); (A.R.); (A.M.)
| | - Gaowa Bai
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China;
| | - Takashi Matsuba
- School of Pharmaceutical Science, Kyushu University of Medical Sciences, Nobeoka 882-8508, Japan;
| | - Pratiksha Pharande
- Indian Council of Medical Research—National Institute of Translational Virology and AIDS Research (ICMR-NITVAR, Formerly National AIDS Research Institute), Pune 411026, India; (A.S.); (M.G.); (S.P.); (P.S.); (P.P.); (B.M.); (A.R.); (A.M.)
| | - Bharati Mahajan
- Indian Council of Medical Research—National Institute of Translational Virology and AIDS Research (ICMR-NITVAR, Formerly National AIDS Research Institute), Pune 411026, India; (A.S.); (M.G.); (S.P.); (P.S.); (P.P.); (B.M.); (A.R.); (A.M.)
| | - Aarti Randive
- Indian Council of Medical Research—National Institute of Translational Virology and AIDS Research (ICMR-NITVAR, Formerly National AIDS Research Institute), Pune 411026, India; (A.S.); (M.G.); (S.P.); (P.S.); (P.P.); (B.M.); (A.R.); (A.M.)
| | - Anupam Mukherjee
- Indian Council of Medical Research—National Institute of Translational Virology and AIDS Research (ICMR-NITVAR, Formerly National AIDS Research Institute), Pune 411026, India; (A.S.); (M.G.); (S.P.); (P.S.); (P.P.); (B.M.); (A.R.); (A.M.)
| | - Toshio Hattori
- Research Institute of Health and Welfare, Kibi International University, Takahashi 716-0018, Japan;
- Shizuoka Graduate University of Public Health, Shizuoka City 420-0881, Japan
| |
Collapse
|
18
|
Zhang S, Zhang Q, Lu Y, Chen J, Liu J, Li Z, Xie Z. Roles of Integrin in Cardiovascular Diseases: From Basic Research to Clinical Implications. Int J Mol Sci 2024; 25:4096. [PMID: 38612904 PMCID: PMC11012347 DOI: 10.3390/ijms25074096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Cardiovascular diseases (CVDs) pose a significant global health threat due to their complex pathogenesis and high incidence, imposing a substantial burden on global healthcare systems. Integrins, a group of heterodimers consisting of α and β subunits that are located on the cell membrane, have emerged as key players in mediating the occurrence and progression of CVDs by regulating the physiological activities of endothelial cells, vascular smooth muscle cells, platelets, fibroblasts, cardiomyocytes, and various immune cells. The crucial role of integrins in the progression of CVDs has valuable implications for targeted therapies. In this context, the development and application of various integrin antibodies and antagonists have been explored for antiplatelet therapy and anti-inflammatory-mediated tissue damage. Additionally, the rise of nanomedicine has enhanced the specificity and bioavailability of precision therapy targeting integrins. Nevertheless, the complexity of the pathogenesis of CVDs presents tremendous challenges for monoclonal targeted treatment. This paper reviews the mechanisms of integrins in the development of atherosclerosis, cardiac fibrosis, hypertension, and arrhythmias, which may pave the way for future innovations in the diagnosis and treatment of CVDs.
Collapse
Affiliation(s)
- Shuo Zhang
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Qingfang Zhang
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Yutong Lu
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Jianrui Chen
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Jinkai Liu
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Zhuohan Li
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
- Queen Mary School, Medical Department, Nanchang University, Nanchang 330031, China
| | - Zhenzhen Xie
- College of Basic Medical, Nanchang University, Nanchang 330006, China; (S.Z.); (Q.Z.); (Y.L.); (J.C.); (J.L.); (Z.L.)
| |
Collapse
|
19
|
Braß SM, Mazrekaj A, Mulorz J, Ibing W, Krott KJ, Takeuchi K, Cappallo M, Liu HH, Elvers M, Schelzig H, Wagenhäuser MU. Nicotine Potentially Alters Endothelial Inflammation and Cell Adhesion via LGALS9. J Cardiovasc Dev Dis 2023; 11:6. [PMID: 38248876 PMCID: PMC10816207 DOI: 10.3390/jcdd11010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND The endothelial cell layer is essential for the maintenance of various blood vessel functions. Major risk factors for endothelial dysfunction that contribute to aortic pathologies such as abdominal aortic aneurysm (AAA) and aortic dissection (AD) include smoking tobacco cigarettes and hypertension. This study explores the effects of nicotine (Nic) and angiotensin II (Ang II) on human aortic endothelial cells (HAoECs) at a transcriptional level. METHODS HAoECs were exposed to 100 nM Nic and/or 100 nM Ang II. RNA sequencing (RNA-Seq) was performed to identify regulated genes following exposure. Results were validated applying RT-qPCR. GeneMANIA was used to perform in silico analysis aiming to identify potential downstream interacting genes in inflammatory, cell-adhesion, endothelial cell proliferation, and coagulation pathways. RESULTS RNA-Seq identified LGALS9 (Galectin-9) as being potentially regulated following Nic exposure, while subsequent RT-qPCR experiments confirmed the transcriptional regulation (p < 0.05). Subsequent in silico analysis identified potential candidate genes for interacting with LGALS9 in different gene sets. Of the top 100 genes potentially interacting with LGALS9, 18 were inflammatory response genes, 28 were involved in cell adhesion, 2 in cell proliferation, and 6 in coagulation. CONCLUSION Nic exposure of HAoECs causes a significant increase in LGALS9 at a transcriptional level. LGALS9 itself may serve as key regulator for essential endothelial cell processes via interfering with various signaling pathways and may thus represent a potentially novel target in the pathogenesis of aortic pathologies.
Collapse
Affiliation(s)
- Sönke Maximilian Braß
- Clinic for Vascular and Endovascular Surgery, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University, 40225 Duesseldorf, Germany
| | - Agnesa Mazrekaj
- Clinic for Vascular and Endovascular Surgery, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University, 40225 Duesseldorf, Germany
| | - Joscha Mulorz
- Clinic for Vascular and Endovascular Surgery, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University, 40225 Duesseldorf, Germany
| | - Wiebke Ibing
- Clinic for Vascular and Endovascular Surgery, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University, 40225 Duesseldorf, Germany
| | - Kim-Jürgen Krott
- Clinic for Vascular and Endovascular Surgery, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University, 40225 Duesseldorf, Germany
| | - Kiku Takeuchi
- Clinic for Vascular and Endovascular Surgery, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University, 40225 Duesseldorf, Germany
| | - Melanie Cappallo
- Clinic for Vascular and Endovascular Surgery, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University, 40225 Duesseldorf, Germany
- Clinic for Cardiac Surgery, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University, 40225 Duesseldorf, Germany
- CURE 3D Lab, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University, 40225 Duesseldorf, Germany
| | - Hsiang-Han Liu
- Clinic for Vascular and Endovascular Surgery, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University, 40225 Duesseldorf, Germany
| | - Margitta Elvers
- Clinic for Vascular and Endovascular Surgery, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University, 40225 Duesseldorf, Germany
| | - Hubert Schelzig
- Clinic for Vascular and Endovascular Surgery, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University, 40225 Duesseldorf, Germany
| | - Markus Udo Wagenhäuser
- Clinic for Vascular and Endovascular Surgery, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University, 40225 Duesseldorf, Germany
| |
Collapse
|
20
|
Shete A, Wagh V, Sawant J, Shidhaye P, Sane S, Rao A, Kulkarni S, Ghate M. Antiretroviral Treatment-Induced Galectin-9 Might Impact HIV Viremia in Addition to Contributing to Inflammaging. Int J Mol Sci 2023; 24:12273. [PMID: 37569647 PMCID: PMC10418429 DOI: 10.3390/ijms241512273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Galectin-9 induces HIV reactivation and also contributes to non-AIDS events through inflammaging. Hence, it is important to assess its levels in HIV-infected individuals to determine their association with HIV viremia and other comorbidities. METHODS Plasma galectin-9 levels were estimated in viremic (n = 152) and aviremic (n = 395) individuals on first-line antiretroviral therapy (ART). They were assessed for correlation with HIV-1 viral load (VL), CD4 count, and ART duration, as well as for receiver operating characteristic curve analysis. RESULT Plasma galectin-9 levels correlated positively with VL (r = 0.507, p < 0.0001) and ART duration (r = 0.308, p = 0.002) and negatively with CD4 count (r = -0.186, p < 0.0001). Area under the curve for galectin-9/CD4 count ratio for identifying viremic individuals was 0.906. Sensitivity and specificity of the ratio at a cutoff of 14.47 were 90.13% and 70.05%, respectively, for detecting viremic individuals. Further, galectin-9 levels correlated with cystatin C (r = 0.239, p = 0.0183), IL-18 (r = 0.311, p = 0.006), and systolic blood pressure (r = 0.220, p = 0.0355). Galectin-9-induced HIV reactivation was significantly lower in individuals on long-term ART than those on short-term ART. CONCLUSION The galectin-9-to-CD4 count ratio indicated the potential of galectin-9 as a cheaper monitoring tool to detect HIV viremia. Strategies for countering the effects of galectin-9 for controlling HIV viremia and non-AIDS events are urgently warranted.
Collapse
Affiliation(s)
- Ashwini Shete
- Indian Council of Medical Research, National AIDS Research Institute (ICMR-NARI), Pune 411026, India; (V.W.); (J.S.); (P.S.); (A.R.); (S.K.); (M.G.)
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Li K, Li K, Yao Q, Shui X, Zheng J, He Y, Lei W. The potential relationship of coronary artery disease and hyperuricemia: A cardiometabolic risk factor. Heliyon 2023; 9:e16097. [PMID: 37215840 PMCID: PMC10199191 DOI: 10.1016/j.heliyon.2023.e16097] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
Coronary arterial disease (CAD) is the leading cause of mortality in the world. Hyperuricemia has recently emerged as a novel independent risk factor of CAD, in addition to the traditional risk factors such as hyperlipidemia, smoking, and obesity. Several clinical studies have shown that hyperuricemia is strongly associated with the risk, progression and poor prognosis of CAD, as well as verifying an association with traditional CAD risk factors. Uric acid or enzymes in the uric acid production pathway are associated with inflammation, oxidative stress, regulation of multiple signaling pathways and the renin-angiotensin-aldosterone system (RAAS), and these pathophysiological alterations are currently the main mechanisms of coronary atherosclerosis formation. The risk of death from CAD can be effectively reduced by the uric acid-lowering therapy, but the interventional treatment of uric acid levels in patients with CAD remains controversial due to the diversity of co-morbidities and the complexity of causative factors. In this review, we analyze the association between hyperuricemia and CAD, elucidate the possible mechanisms by which uric acid induces or exacerbates CAD, and discuss the benefits and drawbacks of uric acid-lowering therapy. This review could provide theoretical references for the prevention and management of hyperuricemia-associated CAD.
Collapse
Affiliation(s)
- Kaiyue Li
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Department of Precision Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Kongwei Li
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Department of Precision Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Qingmei Yao
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Department of Precision Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xiaorong Shui
- Laboratory of Vascular Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jing Zheng
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI, USA
| | - Yuan He
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Department of Precision Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Laboratory of Cardiovascular Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Wei Lei
- Guangdong Provincial Engineering Technology Research Center for Molecular Diagnosis and Innovative Drugs Translation of Cardiopulmonary Vascular Diseases, University Joint Laboratory of Guangdong Province and Macao Region on Molecular Targets and Intervention of Cardiovascular Diseases, Department of Precision Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|