1
|
Naseem S, Sun L, Qiu J. Stress granules in atherosclerosis: Insights and therapeutic opportunities. Curr Probl Cardiol 2024; 49:102760. [PMID: 39059785 DOI: 10.1016/j.cpcardiol.2024.102760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Atherosclerosis, a complex inflammatory and metabolic disorder, is the underlying cause of several life-threatening cardiovascular diseases. Stress granules (SG) are biomolecular condensates composed of proteins and mRNA that form in response to stress. Recent studies suggest a potential link between SG and atherosclerosis development. However, there remain gaps in understanding SG role in atherosclerosis development. Here we provide a thorough analysis of the role of SG in atherosclerosis, covering cellular stresses stimulation, core components, and regulatory genes in SG formation. Furthermore, we explore atherosclerosis induced factors such as inflammation, low or oscillatory shear stress (OSS), and oxidative stress (OS) may impact SG formation and then the development of atherosclerotic lesions. We have assessed how changes in SG dynamics impact pro-atherogenic processes like endothelial dysfunction, lipid metabolism, and immune cell recruitment in atherosclerosis. In summary, this review emphasizes the complex interplay between SG and atherosclerosis that could open innovative directions for targeted therapeutic strategies in preventing or treating atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Sahar Naseem
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Lijuan Sun
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
2
|
Katsiki N, Filippatos T, Vlachopoulos C, Panagiotakos D, Milionis H, Tselepis A, Garoufi A, Rallidis L, Richter D, Nomikos T, Kolovou G, Kypreos K, Chrysohoou C, Tziomalos K, Skoumas I, Koutagiar I, Attilakos A, Papagianni M, Boutari C, Kotsis V, Pitsavos C, Elisaf M, Tsioufis K, Liberopoulos E. Executive summary of the Hellenic Atherosclerosis Society guidelines for the diagnosis and treatment of dyslipidemias - 2023. ATHEROSCLEROSIS PLUS 2024; 55:74-92. [PMID: 38425675 PMCID: PMC10901915 DOI: 10.1016/j.athplu.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/20/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) remains the main cause of death worldwide, and thus its prevention, early diagnosis and treatment is of paramount importance. Dyslipidemia represents a major ASCVD risk factor that should be adequately managed at different clinical settings. 2023 guidelines of the Hellenic Atherosclerosis Society focus on the assessment of ASCVD risk, laboratory evaluation of dyslipidemias, new and emerging lipid-lowering drugs, as well as diagnosis and treatment of lipid disorders in women, the elderly and in patients with familial hypercholesterolemia, acute coronary syndromes, heart failure, stroke, chronic kidney disease, diabetes, autoimmune diseases, and non-alcoholic fatty liver disease. Statin intolerance is also discussed.
Collapse
Affiliation(s)
- N Katsiki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
- School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - Td Filippatos
- Department of Internal Medicine, School of Medicine, University of Crete, Crete, Greece
| | - C Vlachopoulos
- Cardiology Department, First Cardiology Clinic, Athens Medical School, Hippokration Hospital, Athens, Greece
| | - D Panagiotakos
- Department of Nutrition and Dietetics, School of Health Sciences & Education, Harokopio University, Athens, Greece
| | - H Milionis
- Department of Internal Medicine, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - A Tselepis
- Atherothrombosis Research Centre, University of Ioannina, Ioannina, Greece
| | - A Garoufi
- 2nd Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - L Rallidis
- 2nd Department of Cardiology, Medical School, National and Kapodistrian University of Athens, University General Hospital ATTIKON, Athens, Greece
| | - D Richter
- Head of Cardiac Department, Euroclinic Hospital, Athens, Greece
| | - T Nomikos
- Department of Nutrition and Dietetics, School of Health Sciences & Education, Harokopio University, Athens, Greece
| | - G Kolovou
- Metropolitan Hospital, Cardiometabolic Center, Lipoprotein Apheresis and Lipid Disorders Clinic, Athens, Greece
| | - K Kypreos
- School of Medicine, European University Cyprus, Nicosia, Cyprus
- University of Patras, School of Health Science, Department of Medicine, Pharmacology Laboratory, Patras, 26500, Greece
| | - C Chrysohoou
- 1st Cardiology Clinic National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - K Tziomalos
- First Propedeutic Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | - I Skoumas
- 1st Department of Cardiology, National & Kapodistrian University of Athens, Athens, Greece
| | - I Koutagiar
- 1st Cardiology Department, Hygeia Hospital, Athens, Greece
| | - A Attilakos
- 3rd Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Attikon General Hospital, Athens, Greece
| | - M Papagianni
- Third Department of Pediatrics, Aristotle University of Thessaloniki, School of Medicine, “Hippokrateion" General Hospital of Thessaloniki, Thessaloniki, Greece
| | - C Boutari
- Second Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - V Kotsis
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University Thessaloniki, Greece
| | - C Pitsavos
- First Cardiology Clinic, School of Medicine, University of Athens, Greece
| | - M Elisaf
- Department of Internal Medicine, Faculty of Medicine, University Hospital of Ioannina, 45110, Ioannina, Greece
| | - K Tsioufis
- 1st Department of Cardiology, National and Kapodistrian University of Athens, Hippocration Hospital, Greece
| | - E Liberopoulos
- 1st Department of Propedeutic Medicine, School of Medicine, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| |
Collapse
|
3
|
Vinci P, Fiotti N, Panizon E, Tosoni LM, Cerrato C, Pellicori F, Pirulli A, Altamura N, Schincariol P, Di Girolamo FG, Biolo G. Epidemiology of atherosclerotic cardiovascular disease in polygenic hypercholesterolemia with or without high lipoprotein(a) levels. Front Cardiovasc Med 2024; 10:1272288. [PMID: 38322275 PMCID: PMC10845343 DOI: 10.3389/fcvm.2023.1272288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/08/2023] [Indexed: 02/08/2024] Open
Abstract
Background and aims Epidemiology of atherosclerotic cardiovascular disease might be different in patients with polygenic hypercholesterolemia plus high levels (≥30 mg/dl) of Lp(a) (H-Lpa) than in those with polygenic hypercholesterolemia alone (H-LDL). We compared the incidence of peripheral artery disease (PAD), coronary artery disease (CAD), and cerebrovascular disease (CVD) in patients with H-Lpa and in those with H-LDL. Methods Retrospective analysis of demographics, risk factors, vascular events, therapy, and lipid profile in outpatient clinical data. Inclusion criteria was adult age, diagnosis of polygenic hypercholesterolemia, and both indication and availability for Lp(a) measurement. Results Medical records of 258 patients with H-Lpa and 290 H-LDL were reviewed for occurrence of vascular events. The median duration of follow-up was 10 years (IQR 3-16). In spite of a similar reduction of LDL cholesterol, vascular events occurred more frequently, and approximately 7 years earlier (P = 0.024) in patients with H-Lpa than in H-LDL (HR 1.96 1.21-3.17, P = 0.006). The difference was around 10 years for acute events (TIA, Stroke, acute coronary events) and one year for chronic ones (P = 0.023 and 0.525, respectively). Occurrence of acute CAD was higher in H-Lpa men (HR 3.1, 95% CI 1.2-7.9, P = 0.007) while, among women, PAD was observed exclusively in H-Lpa subjects with smoking habits (P = 0.009). Conclusions Patients with high Lp(a) levels suffer from a larger and earlier burden of the disease compared to those with polygenic hypercholesterolemia alone. These patients are at higher risk of CAD if they are men, and of PAD if they are women.
Collapse
Affiliation(s)
- Pierandrea Vinci
- U.C.O. Clinica Medica, Department of Medical, Surgical and Health Sciences, University of Trieste and ASUGI, Trieste, Italy
| | - Nicola Fiotti
- U.C.O. Clinica Medica, Department of Medical, Surgical and Health Sciences, University of Trieste and ASUGI, Trieste, Italy
| | - Emiliano Panizon
- U.C.O. Clinica Medica, Department of Medical, Surgical and Health Sciences, University of Trieste and ASUGI, Trieste, Italy
| | - Letizia Maria Tosoni
- U.C.O. Clinica Medica, Department of Medical, Surgical and Health Sciences, University of Trieste and ASUGI, Trieste, Italy
| | - Carla Cerrato
- U.C.O. Clinica Medica, Department of Medical, Surgical and Health Sciences, University of Trieste and ASUGI, Trieste, Italy
| | - Federica Pellicori
- U.C.O. Clinica Medica, Department of Medical, Surgical and Health Sciences, University of Trieste and ASUGI, Trieste, Italy
| | - Alessia Pirulli
- U.C.O. Clinica Medica, Department of Medical, Surgical and Health Sciences, University of Trieste and ASUGI, Trieste, Italy
| | - Nicola Altamura
- U.C.O. Clinica Medica, Department of Medical, Surgical and Health Sciences, University of Trieste and ASUGI, Trieste, Italy
| | - Paolo Schincariol
- Hospital Pharmacy, Cattinara Hospital, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Filippo Giorgio Di Girolamo
- U.C.O. Clinica Medica, Department of Medical, Surgical and Health Sciences, University of Trieste and ASUGI, Trieste, Italy
- Hospital Pharmacy, Cattinara Hospital, Azienda Sanitaria Universitaria Giuliano Isontina, Trieste, Italy
| | - Gianni Biolo
- U.C.O. Clinica Medica, Department of Medical, Surgical and Health Sciences, University of Trieste and ASUGI, Trieste, Italy
| |
Collapse
|
4
|
Watts GF, Gidding SS, Hegele RA, Raal FJ, Sturm AC, Jones LK, Sarkies MN, Al-Rasadi K, Blom DJ, Daccord M, de Ferranti SD, Folco E, Libby P, Mata P, Nawawi HM, Ramaswami U, Ray KK, Stefanutti C, Yamashita S, Pang J, Thompson GR, Santos RD. International Atherosclerosis Society guidance for implementing best practice in the care of familial hypercholesterolaemia. Nat Rev Cardiol 2023; 20:845-869. [PMID: 37322181 DOI: 10.1038/s41569-023-00892-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/12/2023] [Indexed: 06/17/2023]
Abstract
This contemporary, international, evidence-informed guidance aims to achieve the greatest good for the greatest number of people with familial hypercholesterolaemia (FH) across different countries. FH, a family of monogenic defects in the hepatic LDL clearance pathway, is a preventable cause of premature coronary artery disease and death. Worldwide, 35 million people have FH, but most remain undiagnosed or undertreated. Current FH care is guided by a useful and diverse group of evidence-based guidelines, with some primarily directed at cholesterol management and some that are country-specific. However, none of these guidelines provides a comprehensive overview of FH care that includes both the lifelong components of clinical practice and strategies for implementation. Therefore, a group of international experts systematically developed this guidance to compile clinical strategies from existing evidence-based guidelines for the detection (screening, diagnosis, genetic testing and counselling) and management (risk stratification, treatment of adults or children with heterozygous or homozygous FH, therapy during pregnancy and use of apheresis) of patients with FH, update evidence-informed clinical recommendations, and develop and integrate consensus-based implementation strategies at the patient, provider and health-care system levels, with the aim of maximizing the potential benefit for at-risk patients and their families worldwide.
Collapse
Affiliation(s)
- Gerald F Watts
- School of Medicine, University of Western Australia, Perth, WA, Australia.
- Departments of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, WA, Australia.
| | | | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine, Western University, London, ON, Canada
| | - Frederick J Raal
- Department of Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Amy C Sturm
- Department of Genomic Health, Geisinger, Danville, PA, USA
- 23andMe, Sunnyvale, CA, USA
| | - Laney K Jones
- Department of Genomic Health, Geisinger, Danville, PA, USA
| | - Mitchell N Sarkies
- School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Khalid Al-Rasadi
- Medical Research Centre, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Dirk J Blom
- Division of Lipidology and Cape Heart Institute, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | | | | | | | - Peter Libby
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pedro Mata
- Fundación Hipercolesterolemia Familiar, Madrid, Spain
| | - Hapizah M Nawawi
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM) and Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
- Specialist Lipid and Coronary Risk Prevention Clinics, Hospital Al-Sultan Abdullah (HASA) and Clinical Training Centre, Puncak Alam and Sungai Buloh Campuses, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Uma Ramaswami
- Royal Free London NHS Foundation Trust, University College London, London, UK
| | - Kausik K Ray
- Imperial Centre for Cardiovascular Disease Prevention, Imperial College London, London, UK
| | - Claudia Stefanutti
- Department of Molecular Medicine, Extracorporeal Therapeutic Techniques Unit, Lipid Clinic and Atherosclerosis Prevention Centre, Regional Centre for Rare Diseases, Immunohematology and Transfusion Medicine, Umberto I Hospital, 'Sapienza' University of Rome, Rome, Italy
| | - Shizuya Yamashita
- Department of Cardiology, Rinku General Medical Center, Osaka, Japan
| | - Jing Pang
- School of Medicine, University of Western Australia, Perth, WA, Australia
| | | | - Raul D Santos
- Lipid Clinic, Heart Institute (InCor), University of São Paulo, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| |
Collapse
|
5
|
Graves LE, Horton A, Alexander IE, Srinivasan S. Gene Therapy for Paediatric Homozygous Familial Hypercholesterolaemia. Heart Lung Circ 2023; 32:769-779. [PMID: 37012174 DOI: 10.1016/j.hlc.2023.01.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/26/2022] [Accepted: 01/04/2023] [Indexed: 04/03/2023]
Abstract
The clinical outcome for children and adolescents with homozygous familial hypercholesterolaemia (HoFH) can be devastating, and treatment options are limited in the presence of a null variant. In HoFH, atherosclerotic risk accumulates from birth. Gene therapy is an appealing treatment option as restoration of low-density lipoprotein receptor (LDLR) gene function could provide a cure for HoFH. A clinical trial using a recombinant adeno-associated vector (rAAV) to deliver LDLR DNA to adult patients with HoFH was recently completed; results have not yet been reported. However, this treatment strategy may face challenges when translating to the paediatric population. The paediatric liver undergoes substantial growth which is significant as rAAV vector DNA persists primarily as episomes (extra-chromosomal DNA) and are not replicated during cell division. Therefore, rAAV-based gene addition treatment administered in childhood would likely only have a transient effect. With over 2,000 unique variants in LDLR, a goal of genomic editing-based therapy development would be to treat most (if not all) mutations with a single set of reagents. For a robust, durable effect, LDLR must be repaired in the genome of hepatocytes, which could be achieved using genomic editing technology such as clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 and a DNA repair strategy such as homology-independent targeted integration. This review discusses this issue in the context of the paediatric patient group with severe compound heterozygous or homozygous null variants which are associated with aggressive early-onset atherosclerosis and myocardial infarction, together with the important pre-clinical studies that use genomic editing strategies to treat HoFH in place of apheresis and liver transplantation.
Collapse
Affiliation(s)
- Lara E Graves
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, NSW, Australia; Children's Hospital at Westmead Clinical School, University of Sydney, Sydney, NSW, Australia; Gene Therapy Research Unit, Children's Medical Research Institute, Sydney, NSW, Australia.
| | - Ari Horton
- Monash Heart and Monash Children's Hospital, Monash Health, Melbourne, Vic, Australia; Monash Cardiovascular Research Centre, Victorian Heart Institute, Melbourne, Vic, Australia; Monash Genetics, Monash Health, Melbourne, Vic, Australia; Department of Genomic Medicine, The Royal Melbourne Hospital, Parkville, Vic, Australia; Department of Paediatrics, Monash University Clayton, Vic, Australia
| | - Ian E Alexander
- Children's Hospital at Westmead Clinical School, University of Sydney, Sydney, NSW, Australia; Gene Therapy Research Unit, Children's Medical Research Institute, Sydney, NSW, Australia
| | - Shubha Srinivasan
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, NSW, Australia; Children's Hospital at Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
6
|
Tricou EP, Morgan KM, Betts M, Sturm AC. Genetic Testing for Familial Hypercholesterolemia in Clinical Practice. Curr Atheroscler Rep 2023; 25:197-208. [PMID: 37060538 DOI: 10.1007/s11883-023-01094-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2023] [Indexed: 04/16/2023]
Abstract
PURPOSE OF REVIEW Genetic testing has proven utility in identifying and diagnosing individuals with FH. Here we outline the current landscape of genetic testing for FH, recommendations for testing practices and the efforts underway to improve access, availability, and uptake. RECENT FINDINGS Alternatives to the traditional genetic testing and counseling paradigm for FH are being explored including expanding screening programs, testing in primary care and/or cardiology clinics, leveraging electronic communication tools like chatbots, and implementing direct contact approaches to facilitate genetic testing of both probands and at-risk relatives. There is no consensus on if, when, and how genetic testing or accompanying genetic counseling should be provided for FH, though traditional genetic counseling and/or testing in specialty lipid clinics is often recommended in expert statements and professional guidelines. More evidence is needed to determine whether alternative approaches to the implementation of genetic testing for FH may be more effective.
Collapse
Affiliation(s)
| | - Kelly M Morgan
- Genomic Medicine Institute, Geisinger, Danville, PA, USA
| | - Megan Betts
- Genomic Medicine Institute, Geisinger, Danville, PA, USA
- Precision Medicine Center-Medical Group, WellSpan, York, PA, USA
| | | |
Collapse
|
7
|
Sarkies M, Jones LK, Pang J, Sullivan D, Watts GF. How Can Implementation Science Improve the Care of Familial Hypercholesterolaemia? Curr Atheroscler Rep 2023; 25:133-143. [PMID: 36806760 PMCID: PMC10027803 DOI: 10.1007/s11883-023-01090-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2023] [Indexed: 02/23/2023]
Abstract
PURPOSE OF REVIEW Describe the application of implementation science to improve the detection and management of familial hypercholesterolaemia. RECENT FINDINGS Gaps between evidence and practice, such as underutilization of genetic testing, family cascade testing, failure to achieve LDL-cholesterol goals and low levels of knowledge and awareness, have been identified through clinical registry analyses and clinician surveys. Implementation science theories, models and frameworks have been applied to assess barriers and enablers in the literature specific to local contextual factors (e.g. stages of life). The effect of implementation strategies to overcome these factors has been evaluated; for example, automated identification of individuals with FH or training and education to improve statin adherence. Clinical registries were identified as a key infrastructure to monitor, evaluate and sustain improvements in care. The expansion in evidence supporting the care of familial hypercholesterolaemia requires a similar expansion of efforts to translate new knowledge into clinical practice.
Collapse
Affiliation(s)
- Mitchell Sarkies
- School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia.
- Centre for Healthcare Resilience and Implementation Science, Australian Institute of Health Innovation, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Laney K Jones
- Department of Genomic Health, Research Institute, Geisinger, Danville, PA, USA
- Heart and Vascular Institute, Geisinger, Danville, PA, USA
| | - Jing Pang
- School of Medicine, University of Western Australia, Perth, WA, Australia
| | - David Sullivan
- Department of Chemical Pathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Gerald F Watts
- School of Medicine, University of Western Australia, Perth, WA, Australia
- Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, Perth, WA, Australia
| |
Collapse
|
8
|
Horton AE, Martin AC, Srinivasan S, Justo RN, Poplawski NK, Sullivan D, Brett T, Chow CK, Nicholls SJ, Pang J, Watts GF. Integrated guidance to enhance the care of children and adolescents with familial hypercholesterolaemia: Practical advice for the community clinician. J Paediatr Child Health 2022; 58:1297-1312. [PMID: 35837752 PMCID: PMC9545564 DOI: 10.1111/jpc.16096] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/17/2022] [Accepted: 05/28/2022] [Indexed: 11/28/2022]
Abstract
Familial hypercholesterolaemia (FH) is a highly penetrant monogenic disorder present from birth that markedly elevates plasma low-density lipoprotein (LDL)-cholesterol (LDL-C) concentration and, if untreated, leads to premature atherosclerosis and coronary artery disease (CAD). At a prevalence of 1:250 individuals, with over 90% undiagnosed, recent estimates suggest that there are approximately 22 000 children and adolescents with FH in Australia and New Zealand. However, the overwhelming majority remain undetected and inadequately treated until adulthood or after their first cardiac event. The guidance in this paper aims to increase awareness about paediatric FH and provide practical advice for the diagnosis and management of FH in children and adolescents. Recommendations are given on the detection, diagnosis, assessment and management of FH in children and adolescents. Recommendations are also made on genetic testing, including counselling and the potential for universal screening programmes. Practical guidance on management includes treatment of non-cholesterol risk factors, and safe and appropriate use of LDL-C lowering therapies, including statins, ezetimibe, PCSK9 inhibitors and lipoprotein apheresis. Models of care for FH need to be adapted to local and regional health care needs and available resources. Targeting the detection of FH as a priority in children and young adults has the potential to alter the natural history of atherosclerotic cardiovascular disease and recognise the promise of early detection for improving long-term health outcomes. A comprehensive implementation strategy, informed by further research, including assessments of cost-benefit, will be required to ensure that this new guidance benefits all families with or at risk of FH.
Collapse
Affiliation(s)
- Ari E Horton
- Monash Heart and Monash Children's Hospital, Monash Health, Melbourne, Victoria, Australia
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University, Melbourne, Victoria, Australia
- Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
| | - Andrew C Martin
- Department General Paediatrics, Perth Children's Hospital, Perth, Western Australia, Australia
- Division of Paediatrics, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Shubha Srinivasan
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Discipline of Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Robert N Justo
- Department of Paediatric Cardiology, Queensland Children's Hospital, Brisbane, Queensland, Australia
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Nicola K Poplawski
- Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - David Sullivan
- Department of Chemical Pathology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Tom Brett
- General Practice and Primary Health Care Research, School of Medicine, University of Notre Dame Australia, Fremantle, Western Australia, Australia
| | - Clara K Chow
- Westmead Applied Research Centre, The University of Sydney, Sydney, New South Wales, Australia
- Department of Cardiology, Westmead Hospital, Sydney, New South Wales, Australia
- Cardiovascular Division, George Institute for Global Health, Sydney, New South Wales, Australia
| | - Stephen J Nicholls
- Monash Heart and Monash Children's Hospital, Monash Health, Melbourne, Victoria, Australia
- Monash Cardiovascular Research Centre, Victorian Heart Institute, Monash University, Melbourne, Victoria, Australia
| | - Jing Pang
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Gerald F Watts
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
- Lipid Disorders Clinic, Cardiometabolic Service, Department of Cardiology, Royal Perth Hospital, Perth, Western Australia, Australia
- Lipid Disorders Clinic, Cardiometabolic Service, Department of Internal Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
9
|
Jones JL, Lumsden NG, Simons K, Ta'eed A, de Courten MP, Wijeratne T, Cox N, Neil CJA, Manski-Nankervis JA, Hamblin PS, Janus ED, Nelson CL. Using electronic medical record data to assess chronic kidney disease, type 2 diabetes and cardiovascular disease testing, recognition and management as documented in Australian general practice: a cross-sectional analysis. Fam Med Community Health 2022; 10:fmch-2021-001006. [PMID: 35177470 PMCID: PMC8860071 DOI: 10.1136/fmch-2021-001006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Objectives To evaluate the capacity of general practice (GP) electronic medical record (EMR) data to assess risk factor detection, disease diagnostic testing, diagnosis, monitoring and pharmacotherapy for the interrelated chronic vascular diseases—chronic kidney disease (CKD), type 2 diabetes (T2D) and cardiovascular disease. Design Cross-sectional analysis of data extracted on a single date for each practice between 12 April 2017 and 18 April 2017 incorporating data from any time on or before data extraction, using baseline data from the Chronic Disease early detection and Improved Management in PrimAry Care ProjecT. Deidentified data were extracted from GP EMRs using the Pen Computer Systems Clinical Audit Tool and descriptive statistics used to describe the study population. Setting Eight GPs in Victoria, Australia. Participants Patients were ≥18 years and attended GP ≥3 times within 24 months. 37 946 patients were included. Results Risk factor and disease testing/monitoring/treatment were assessed as per Australian guidelines (or US guidelines if none available), with guidelines simplified due to limitations in data availability where required. Risk factor assessment in those requiring it: 30% of patients had body mass index and 46% blood pressure within guideline recommended timeframes. Diagnostic testing in at-risk population: 17% had diagnostic testing as per recommendations for CKD and 37% for T2D. Possible undiagnosed disease: Pathology tests indicating possible disease with no diagnosis already coded were present in 6.7% for CKD, 1.6% for T2D and 0.33% familial hypercholesterolaemia. Overall prevalence: Coded diagnoses were recorded in 3.8% for CKD, 6.6% for T2D, 4.2% for ischaemic heart disease, 1% for heart failure, 1.7% for ischaemic stroke, 0.46% for peripheral vascular disease, 0.06% for familial hypercholesterolaemia and 2% for atrial fibrillation. Pharmaceutical prescriptions: the proportion of patients prescribed guideline-recommended medications ranged from 44% (beta blockers for patients with ischaemic heart disease) to 78% (antiplatelets or anticoagulants for patients with ischaemic stroke). Conclusions Using GP EMR data, this study identified recorded diagnoses of chronic vascular diseases generally similar to, or higher than, reported national prevalence. It suggested low levels of extractable documented risk factor assessments, diagnostic testing in those at risk and prescription of guideline-recommended pharmacotherapy for some conditions. These baseline data highlight the utility of GP EMR data for potential use in epidemiological studies and by individual practices to guide targeted quality improvement. It also highlighted some of the challenges of using GP EMR data.
Collapse
Affiliation(s)
- Julia L Jones
- Nephrology, Western Health, Melbourne, Victoria, Australia .,Medicine, University of Melbourne, Melbourne, Victoria, Australia.,Western Health Chronic Disease Alliance, Melbourne, Victoria, Australia
| | - Natalie G Lumsden
- Nephrology, Western Health, Melbourne, Victoria, Australia.,Western Health Chronic Disease Alliance, Melbourne, Victoria, Australia.,General Practice, University of Melbourne, Melbourne, Victoria, Australia
| | - Koen Simons
- Western Health Chronic Disease Alliance, Melbourne, Victoria, Australia.,Epidemiology and Biostatistics, University of Melbourne, Melbourne, Victoria, Australia
| | - Anis Ta'eed
- Nephrology, Western Health, Melbourne, Victoria, Australia
| | - Maximilian P de Courten
- Mitchell Institute for Education and Health Policy, Melbourne, Victoria, Australia.,Chronic Disease Prevention and Management, Victoria University, Melbourne, Victoria, 3011
| | - Tissa Wijeratne
- Western Health Chronic Disease Alliance, Melbourne, Victoria, Australia.,La Trobe University, Melbourne, Victoria, Australia.,Neurology, Western Health, Melbourne, Victoria, Australia
| | - Nicholas Cox
- Medicine, University of Melbourne, Melbourne, Victoria, Australia.,Western Health Chronic Disease Alliance, Melbourne, Victoria, Australia.,Cardiology, Western Health, Melbourne, Victoria, Australia
| | - Christopher J A Neil
- Medicine, University of Melbourne, Melbourne, Victoria, Australia.,Western Health Chronic Disease Alliance, Melbourne, Victoria, Australia.,Cardiology, Western Health, Melbourne, Victoria, Australia
| | | | - Peter Shane Hamblin
- Medicine, University of Melbourne, Melbourne, Victoria, Australia.,Western Health Chronic Disease Alliance, Melbourne, Victoria, Australia.,Endocrinology and Diabetes, Western Health, Melbourne, Victoria, Australia
| | - Edward D Janus
- Medicine, University of Melbourne, Melbourne, Victoria, Australia.,Western Health Chronic Disease Alliance, Melbourne, Victoria, Australia.,Medicine, Western Health, Melbourne, Victoria, Australia
| | - Craig L Nelson
- Nephrology, Western Health, Melbourne, Victoria, Australia.,Medicine, University of Melbourne, Melbourne, Victoria, Australia.,Western Health Chronic Disease Alliance, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Martin AC, Hooper AJ, Norman R, Nguyen LT, Burnett JR, Bell DA, Brett T, Garton-Smith J, Pang J, Nowak KJ, Watts GF. Pilot study of universal screening of children and child-parent cascade testing for familial hypercholesterolaemia in Australia. J Paediatr Child Health 2022; 58:281-287. [PMID: 34387892 DOI: 10.1111/jpc.15700] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/21/2021] [Accepted: 08/01/2021] [Indexed: 12/26/2022]
Abstract
AIM Familial hypercholesterolaemia (FH) is a common and treatable cause of premature coronary artery disease. However, the majority of individuals with FH remain undiagnosed. This study investigated the feasibility, acceptability and cost-effectiveness of screening children aged 1-2 years for FH at the time of an immunisation. METHODS Children 1-2 years of age were offered screening for FH with a point-of-care total cholesterol (TC) test by capillary-collected blood sample at the time of an immunisation. An additional blood sample was taken to allow genetic testing if the TC level was above the 95th percentile (>5.3 mmol/L). Parents of children diagnosed with FH were offered testing. Following detection of the affected parent, cascade testing of their first-degree blood relatives was performed. RESULTS We screened 448 children with 32 (7.1%) having a TC ≥ 5.3 mmol/L. The FH diagnosis was confirmed in three children (1:150 screened). Reverse cascade testing of other family members identified a further five individuals with FH; hence, eight new cases of FH were diagnosed from screening 448 children (1:56 screened). Ninety-six percent of parents would screen future children for FH. The approach was cost-effective, at $3979 per quality-adjusted life year gained. CONCLUSION In Western Australia, universal screening of children aged 1-2 years for FH, undertaken at the time of an immunisation, was a feasible and effective approach to detect children, parents and other blood relatives with FH. The approach was acceptable to parents and is potentially a highly cost-effective detection strategy for families at risk of FH.
Collapse
Affiliation(s)
- Andrew C Martin
- Department of General Paediatrics, Perth Children's Hospital, Perth, Western Australia, Australia.,School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Amanda J Hooper
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia.,Department of Clinical Biochemistry, PathWest Laboratory Medicine, Perth, Western Australia, Australia
| | - Richard Norman
- School of Public Health, Curtin University, Perth, Western Australia, Australia
| | - Lan T Nguyen
- Department of Clinical Biochemistry, PathWest Laboratory Medicine, Perth, Western Australia, Australia
| | - John R Burnett
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia.,Department of Clinical Biochemistry, PathWest Laboratory Medicine, Perth, Western Australia, Australia.,Lipid Disorders Clinic, Cardiometabolic Service, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Damon A Bell
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia.,Department of Clinical Biochemistry, PathWest Laboratory Medicine, Perth, Western Australia, Australia.,Lipid Disorders Clinic, Cardiometabolic Service, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Tom Brett
- General Practice and Primary Health Care Research, School of Medicine, University of Notre Dame, Fremantle, Western Australia, Australia
| | - Jacquie Garton-Smith
- Clinical Excellence Division, Department of Health, Health Networks, Perth, Western Australia, Australia
| | - Jing Pang
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Kristen J Nowak
- Public and Aboriginal Health Division, Department of Health, Office of Population Health Genomics, Perth, Western Australia, Australia
| | - Gerald F Watts
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia.,Lipid Disorders Clinic, Cardiometabolic Service, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
11
|
Bjelakovic B, Stefanutti C, Reiner Ž, Watts GF, Moriarty P, Marais D, Widhalm K, Cohen H, Harada-Shiba M, Banach M. Risk Assessment and Clinical Management of Children and Adolescents with Heterozygous Familial Hypercholesterolaemia. A Position Paper of the Associations of Preventive Pediatrics of Serbia, Mighty Medic and International Lipid Expert Panel. J Clin Med 2021; 10:4930. [PMID: 34768450 PMCID: PMC8585021 DOI: 10.3390/jcm10214930] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022] Open
Abstract
Heterozygous familial hypercholesterolaemia (FH) is among the most common genetic metabolic lipid disorders characterised by elevated low-density lipoprotein cholesterol (LDL-C) levels from birth and a significantly higher risk of developing premature atherosclerotic cardiovascular disease. The majority of the current pediatric guidelines for clinical management of children and adolescents with FH does not consider the impact of genetic variations as well as characteristics of vascular phenotype as assessed by recently developed non-invasive imaging techniques. We propose a combined integrated approach of cardiovascular (CV) risk assessment and clinical management of children with FH incorporating current risk assessment profile (LDL-C levels, traditional CV risk factors and familial history) with genetic and non-invasive vascular phenotyping. Based on the existing data on vascular phenotype status, this panel recommends that all children with FH and cIMT ≥0.5 mm should receive lipid lowering therapy irrespective of the presence of CV risk factors, family history and/or LDL-C levels Those children with FH and cIMT ≥0.4 mm should be carefully monitored to initiate lipid lowering management in the most suitable time. Likewise, all genetically confirmed children with FH and LDL-C levels ≥4.1 mmol/L (160 mg/dL), should be treated with lifestyle changes and LLT irrespective of the cIMT, presence of additional RF or family history of CHD.
Collapse
Affiliation(s)
- Bojko Bjelakovic
- Clinic of Pediatrics, Clinical Center, Medical Faculty, University of Nis, 18000 Nis, Serbia
| | - Claudia Stefanutti
- Extracorporeal Therapeutic Techniques Unit, Lipid Clinic and Atherosclerosis Prevention Centre, Immunohematology and Transfusion Medicine, Department of Molecular Medicine, “Umberto I” Hospital, “Sapienza” University of Rome, I-00161 Rome, Italy
| | - Željko Reiner
- Department of Internal Diseases, University Hospital Center Zagreb, 10000 Zagreb, Croatia;
- School of Medicine, Zagreb University, 10000 Zagreb, Croatia
| | - Gerald F. Watts
- Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, School of Medicine, University of Western Australia, Crawley 6009, Australia;
| | - Patrick Moriarty
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, MO 66104, USA;
| | - David Marais
- Division of Chemical Pathology, Department of Pathology, University of Cape Town Health Sciences, 6.33 Falmouth Building, Anzio Rd, Observatory, Cape Town 7925, South Africa;
| | - Kurt Widhalm
- Academic Institute for Clinical Nutrition, Alserstraße 14/4, 3100 Vienna, Austria;
- Department of Gastroenterology and Hepatology, Austria Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
| | - Hofit Cohen
- The Bert W. Strassburger Lipid Center, The Chaim Sheba Medical Center, Tel-Hashomer Israel, Sackler Faculty of Medicine, Tel Aviv University Israel, Tel Aviv 39040, Israel;
| | - Mariko Harada-Shiba
- Mariko Harada-Shiba Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shinmachi, Suita 564-8565, Japan;
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz, 93-338 Lodz, Poland
- Department of Cardiology and Congenital Diseases in Adults, Polish Mother’s Memorial Hospital Research Institute (PMMHRI), 93-338 Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Gora, 65-038 Zielona Gora, Poland
| |
Collapse
|
12
|
Qureshi N, Akyea RK, Dutton B, Leonardi-Bee J, Humphries SE, Weng S, Kai J. Comparing the performance of the novel FAMCAT algorithms and established case-finding criteria for familial hypercholesterolaemia in primary care. Open Heart 2021; 8:openhrt-2021-001752. [PMID: 34635577 PMCID: PMC8506870 DOI: 10.1136/openhrt-2021-001752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/07/2021] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Familial hypercholesterolaemia (FH) is a common inherited disorder causing premature coronary heart disease (CHD) and death. We have developed the novel Familial Hypercholesterolaemia Case Ascertainment Tool (FAMCAT 1) case-finding algorithm for application in primary care, to improve detection of FH. The performance of this algorithm was further improved by including personal history of premature CHD (FAMCAT 2 algorithm). This study has evaluated their performance, at 95% specificity, to detect genetically confirmed FH in the general population. We also compared these algorithms to established clinical case-finding criteria. METHODS Prospective validation study, in 14 general practices, recruiting participants from the general adult population with cholesterol documented. For 260 participants with available health records, we determined possible FH cases based on FAMCAT thresholds, Dutch Lipid Clinic Network (DLCN) score, Simon-Broome criteria and recommended cholesterol thresholds (total cholesterol >9.0 mmol/L if ≥30 years or >7.5 mmol/L if <30 years), using clinical data from electronic and manual extraction of patient records and family history questionnaires. The reference standard was genetic testing. We examined detection rate (DR), sensitivity and specificity for each case-finding criteria. RESULTS At 95% specificity, FAMCAT 1 had a DR of 27.8% (95% CI 12.5% to 50.9%) with sensitivity of 31.2% (95% CI 11.0% to 58.7%); while FAMCAT 2 had a DR of 45.8% (95% CI 27.9% to 64.9%) with sensitivity of 68.8% (95% CI 41.3% to 89.0%). DLCN score ≥6 points yielded a DR of 35.3% (95% CI 17.3% to 58.7%) and sensitivity of 37.5% (95% CI 15.2% to 64.6%). Using recommended cholesterol thresholds resulted in DR of 28.0% (95% CI 14.3% to 47.6%) with sensitivity of 43.8% (95% CI 19.8% to 70.1%). Simon-Broome criteria had lower DR 11.3% (95% CI 6.0% to 20.0%) and specificity 70.9% (95% CI 64.8% to 76.5%) but higher sensitivity of 56.3% (95% CI 29.9% to 80.2%). CONCLUSIONS In primary care, in patients with cholesterol documented, FAMCAT 2 performs better than other case-finding criteria for detecting genetically confirmed FH, with no prior clinical review required for case finding. TRIAL REGISTRATION NUMBER NCT03934320.
Collapse
Affiliation(s)
- Nadeem Qureshi
- Primary Care Stratified Medicine (PRISM) Research Group, School of Medicine, University of Nottingham, Nottingham, UK
| | - Ralph K Akyea
- Primary Care Stratified Medicine (PRISM) Research Group, School of Medicine, University of Nottingham, Nottingham, UK
| | - Brittany Dutton
- Primary Care Stratified Medicine (PRISM) Research Group, School of Medicine, University of Nottingham, Nottingham, UK
| | - Jo Leonardi-Bee
- Primary Care Stratified Medicine (PRISM) Research Group, School of Medicine, University of Nottingham, Nottingham, UK,Centre for Evidence Based Healthcare, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Steve E Humphries
- Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, UK
| | - Stephen Weng
- Cardiovascular and Metabolism, Janssen Research & Development, High Wycombe, UK
| | - Joe Kai
- Primary Care Stratified Medicine (PRISM) Research Group, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
13
|
Qureshi N, Da Silva MLR, Abdul-Hamid H, Weng SF, Kai J, Leonardi-Bee J. Strategies for screening for familial hypercholesterolaemia in primary care and other community settings. Cochrane Database Syst Rev 2021; 10:CD012985. [PMID: 34617591 PMCID: PMC8495769 DOI: 10.1002/14651858.cd012985.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Familial hypercholesterolaemia is a common inherited condition that is associated with premature cardiovascular disease. The increased cardiovascular morbidity and mortality, resulting from high levels of cholesterol since birth, can be prevented by starting lipid-lowering therapy. However, the majority of patients in the UK and worldwide remain undiagnosed. Established diagnostic criteria in current clinical practice are the Simon-Broome and Dutch Lipid Clinical network criteria and patients are classified as having probable, possible or definite familial hypercholesterolaemia. OBJECTIVES To assess the effectiveness of healthcare interventions strategies to systematically improve identification of familial hypercholesterolaemia in primary care and other community settings compared to usual care (incidental approaches to identify familial hypercholesterolaemia in primary care and other community settings). SEARCH METHODS We searched the Cochrane Inborn Errors of Metabolism Trials Register. Date of last search: 13 September 2021. We also searched databases (Cochrane Central Register of Controlled Trials (CENTRAL), Ovid MEDLINE, PubMed, Embase, CINAHL, Web of Science, and SCOPUS) as well as handsearching relevant conference proceedings, reference lists of included articles, and the grey literature. Date of last searches: 05 March 2020. SELECTION CRITERIA: As per the Effective Practice and Organisation of Care (EPOC) Group guidelines, we planned to include randomised controlled trials (RCTs), cluster-RCTs and non-randomised studies of interventions (NRSI). Eligible NRSI were non-randomised controlled trials, prospective cohort studies, controlled before-and-after studies, and interrupted-time-series studies. We planned to selected studies with healthcare interventions strategies that aimed to systematically identify people with possible or definite clinical familial hypercholesterolaemia, in primary care and other community settings. These strategies would be compared with usual care or no intervention. We considered participants of any age from the general population who access primary care and other community settings. DATA COLLECTION AND ANALYSIS Two authors planned to independently select studies according to the inclusion criteria, to extract data and assess for risk of bias and the certainty of the evidence (according to the GRADE criteria). We contacted corresponding study authors in order to obtain further information for all the studies considered in the review. MAIN RESULTS No eligible RCTs or NRSIs were identified for inclusion, however, we excluded 28 studies. AUTHORS' CONCLUSIONS Currently, there are no RCTs or controlled NRSI evidence to determine the most appropriate healthcare strategy to systematically identify possible or definite clinical familial hypercholesterolaemia in primary care or other community settings. Uncontrolled before-and-after studies were identified, but were not eligible for inclusion. Further studies assessing healthcare strategies of systematic identification of familial hypercholesterolaemia need to be conducted with diagnosis confirmed by genetic testing or validated through clinical phenotype (or both).
Collapse
Affiliation(s)
- Nadeem Qureshi
- Division of Primary Care, School of Medicine, University of Nottingham, Nottingham, UK
| | | | - Hasidah Abdul-Hamid
- Division of Primary Care, School of Medicine, University of Nottingham, Nottingham, UK
- Department of Primary Care Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Malaysia
| | - Stephen F Weng
- Cardiovascular and Metabolism, Janssen Research & Development , High Wycombe , UK
| | - Joe Kai
- Division of Primary Care, School of Medicine, University of Nottingham, Nottingham, UK
| | - Jo Leonardi-Bee
- Centre for Evidence Based Healthcare, Division of Epidemiology and Public Health, Clinical Sciences Building Phase 2, University of Nottingham, Nottingham, UK
| |
Collapse
|
14
|
Izar MCDO, Giraldez VZR, Bertolami A, Santos Filho RDD, Lottenberg AM, Assad MHV, Saraiva JFK, Chacra APM, Martinez TLR, Bahia LR, Fonseca FAH, Faludi AA, Sposito AC, Chagas ACP, Jannes CE, Amaral CK, Araújo DBD, Cintra DE, Coutinho EDR, Cesena F, Xavier HT, Mota ICP, Giuliano IDCB, Faria Neto JR, Kato JT, Bertolami MC, Miname MH, Castelo MHCG, Lavrador MSF, Machado RM, Souza PGD, Alves RJ, Machado VA, Salgado Filho W. Update of the Brazilian Guideline for Familial Hypercholesterolemia - 2021. Arq Bras Cardiol 2021; 117:782-844. [PMID: 34709306 PMCID: PMC8528358 DOI: 10.36660/abc.20210788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
| | - Viviane Zorzanelli Rocha Giraldez
- Instituto do Coração (InCor) da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP - Brasil
- Grupo Fleury, São Paulo, SP - Brasil
| | | | | | - Ana Maria Lottenberg
- Hospital Israelita Albert Einstein (HIAE) - Faculdade Israelita de Ciências da Saúde Albert Einstein (FICSAE), São Paulo, SP - Brasil
- Faculdade de Medicina da Universidade de São Paulo, Laboratório de Lípides (LIM10), São Paulo, São Paulo, SP - Brasil
| | | | | | - Ana Paula M Chacra
- Instituto do Coração (InCor) da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP - Brasil
| | | | | | | | | | - Andrei C Sposito
- Universidade Estadual de Campinas (UNICAMP), Campinas, SP - Brasil
| | | | - Cinthia Elim Jannes
- Instituto do Coração (InCor) da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP - Brasil
| | | | | | | | | | - Fernando Cesena
- Hospital Israelita Albert Einstein (HIAE), São Paulo, SP - Brasil
| | | | | | | | | | | | | | - Marcio Hiroshi Miname
- Instituto do Coração (InCor) da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP - Brasil
| | - Maria Helane Costa Gurgel Castelo
- Universidade Federal do Ceará (UFC), Fortaleza, CE - Brasil
- Hospital do Coração de Messejana, Fortaleza, CE - Brasil
- Professora da Faculdade Unichristus, Fortaleza, CE - Brasil
| | - Maria Sílvia Ferrari Lavrador
- Hospital Israelita Albert Einstein (HIAE) - Faculdade Israelita de Ciências da Saúde Albert Einstein (FICSAE), São Paulo, SP - Brasil
| | - Roberta Marcondes Machado
- Faculdade de Medicina da Universidade de São Paulo, Laboratório de Lípides (LIM10), São Paulo, São Paulo, SP - Brasil
| | - Patrícia Guedes de Souza
- Hospital Universitário Professor Edgard Santos da Universidade Federal da Bahia (UFBA), Salvador, BA - Brasil
| | | | | | - Wilson Salgado Filho
- Instituto do Coração (InCor) da Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP - Brasil
| |
Collapse
|
15
|
Yeung J, Chisholm K, Spinks C, Srinivasan S. Familial hypercholesterolaemia: Experience of a tertiary paediatric lipid clinic. J Paediatr Child Health 2021; 57:1201-1207. [PMID: 33830584 DOI: 10.1111/jpc.15426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 01/02/2021] [Accepted: 02/14/2021] [Indexed: 11/28/2022]
Abstract
AIM To review the experience of a dedicated paediatric multidisciplinary lipid clinic in the management of familial hypercholesterolaemia (FH) by studying the demographics, clinical presentations as well as statin therapy and outcomes. METHODS Retrospective database review of all patients under 18 years old seen in the lipid clinic at an Australian tertiary paediatric hospital between April 1999 and August 2017. Outcome measures collected included patient demographics, family history, lipid profile, age at treatment commencement, treatment outcomes and complications. RESULTS One hundred and eight patients (53 males) were seen in the lipid clinic. Eighty-five had low-density lipoprotein cholesterol (LDL-C) levels at or above the 75th percentile for sex prior to treatment. Of these, 75 had a first-degree relative with hypercholesterolaemia and/or early cardiac death. Four patients had clinical manifestations. Thirty-two patients (14 males) were started on statin therapy for likely FH. LDL-C levels reduced by 2.4 mmol/L (1.4 to 2.7) in boys and 1.9 mmol/L (0.8 to 2.8) in girls at 12 month follow-up. Five patients reported side effects requiring adjustment in therapy. Main reasons for not starting statin therapy in eligible patients were parental refusal and/or lost to follow up (77%). CONCLUSION A dedicated multidisciplinary lipid clinic is helpful for streamlining and monitoring management of paediatric FH. Clinical manifestations of FH are rare in children and may represent more severe form of FH or other lipid disorder. Statin therapy is efficacious and well tolerated but current recommended targets of treatment are difficult to attain. Greater awareness and coordinated services are required to overcome poor family engagement.
Collapse
Affiliation(s)
- Jeffrey Yeung
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Kerryn Chisholm
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Catherine Spinks
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Clinical Genetics Unit. Department of Medical Genomics, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Shubha Srinivasan
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| |
Collapse
|
16
|
McGowan MP, Cuchel M, Ahmed CD, Khera A, Weintraub WS, Wilemon KA, Ahmad Z. A proof-of-concept study of cascade screening for Familial Hypercholesterolemia in the US, adapted from the Dutch model. Am J Prev Cardiol 2021; 6:100170. [PMID: 34327496 PMCID: PMC8315349 DOI: 10.1016/j.ajpc.2021.100170] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/27/2021] [Accepted: 03/04/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The Dutch cascade screening model for FH was the most successful of such programs in the world. It remains unclear whether aspects of the Dutch model (i.e. direct engagement with FH probands and relatives outside usual healthcare settings) are feasible in the US. This is especially important since prior attempts at cascade screening in the US have had very low screening rates (<10% of families screened). METHODS We conducted a multi-site single-arm proof-of-concept study in which the US-based FH Foundation (a 501c3 research and advocacy organization) directly engaged with FH probands and relatives similar to the approach taken by the Dutch "Foundation for Tracing FH." RESULTS Eleven unrelated probands with genetically confirmed FH were enrolled. Mean age was 43 years; 82% were women, and 82% were of European ancestry. Prior to enrolling into the study, only 2 families (18% screening rate) were screened for FH with both lipid measurements and genetic testing. Two probands declined cascade screening due to fear over genetic discrimination. Nine total relatives engaged with the FH Foundation. Mean age was 43 years and 44% were women. Seven of those relatives (from 6 families; 55% screening rate) consented to be screened for FH with lipid measurement and genetic testing. The two additional relatives - men ages 39 and 49 - agreed to lipid measurements but not genetic testing, each noting he would like to think more about genetic testing. CONCLUSIONS Our proof-of-concept study demonstrates the feasibility of the FH Foundation engaging FH probands and their relatives outside the usual healthcare settings for cascade screening, similar to the Dutch model. We found only 18% of families had already been screened, and after engaging with the FH Foundation, 55% of families were willing to participate in cascade screening. These findings suggest the methods described here may improve cascade screening rates in the US.
Collapse
Affiliation(s)
- Mary P. McGowan
- The FH Foundation, Winter Park, FL, United States, Division of Cardiology, Department of Medicine Dartmouth Hitchcock Medical Center, Lebanon, NH, United States
| | - Marina Cuchel
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Amit Khera
- Division of Cardiology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
| | - William S. Weintraub
- MedStar Washington Hospital Center, Department of Medicine, Georgetown University, United States
| | | | - Zahid Ahmad
- Division of Nutrition and Metabolic Disease, Department of Internal Medicine, UT Southwestern Medical Center, 5232 Harry Hines Blvd, MC 8537, Dallas, TX 75390, United States
| |
Collapse
|
17
|
Silva L, Qureshi N, Abdul-Hamid H, Weng S, Kai J, Leonardi-Bee J. Systematic Identification of Familial Hypercholesterolaemia in Primary Care-A Systematic Review. J Pers Med 2021; 11:302. [PMID: 33920869 PMCID: PMC8071332 DOI: 10.3390/jpm11040302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/24/2021] [Accepted: 04/10/2021] [Indexed: 12/19/2022] Open
Abstract
Familial hypercholesterolaemia (FH) is a common inherited cause of premature cardiovascular disease, but the majority of patients remain undiagnosed. The aim of this systematic review was to assess the effectiveness of interventions to systematically identify FH in primary care. No randomised, controlled studies were identified; however, three non-randomised intervention studies were eligible for inclusion. All three studies systematically identified FH using reminders (on-screen prompts) in electronic health records. There was insufficient evidence that providing comments on laboratory test results increased the identification of FH using the Dutch Lipid Clinic Network (DLCN) criteria. Similarly, using prompts combined with postal invitation demonstrated no significant increase in definite FH identification using Simon-Broome (SB) criteria; however, the identification of possible FH increased by 25.4% (CI 17.75 to 33.97%). Using on-screen prompts alone demonstrated a small increase of 0.05% (95% CI 0.03 to 0.07%) in identifying definite FH using SB criteria; however, when the intervention was combined with an outreach FH nurse assessment, the result was no significant increase in FH identification using a combination of SB and DLCN criteria. None of the included studies reported adverse effects associated with the interventions. Currently, there is insufficient evidence to determine which is the most effective method of systematically identifying FH in non-specialist settings.
Collapse
Affiliation(s)
- Luisa Silva
- Primary Care Stratified Medicine (PRISM) Group, NIHR School of Primary Care Research, University of Nottingham, Nottingham NG7 2RD, UK; (L.S.); (H.A.-H.); (S.W.); (J.K.)
| | - Nadeem Qureshi
- Primary Care Stratified Medicine (PRISM) Group, NIHR School of Primary Care Research, University of Nottingham, Nottingham NG7 2RD, UK; (L.S.); (H.A.-H.); (S.W.); (J.K.)
| | - Hasidah Abdul-Hamid
- Primary Care Stratified Medicine (PRISM) Group, NIHR School of Primary Care Research, University of Nottingham, Nottingham NG7 2RD, UK; (L.S.); (H.A.-H.); (S.W.); (J.K.)
- Department of Primary Care Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Malaysia
| | - Stephen Weng
- Primary Care Stratified Medicine (PRISM) Group, NIHR School of Primary Care Research, University of Nottingham, Nottingham NG7 2RD, UK; (L.S.); (H.A.-H.); (S.W.); (J.K.)
| | - Joe Kai
- Primary Care Stratified Medicine (PRISM) Group, NIHR School of Primary Care Research, University of Nottingham, Nottingham NG7 2RD, UK; (L.S.); (H.A.-H.); (S.W.); (J.K.)
| | - Jo Leonardi-Bee
- Centre for Evidence Based Healthcare, Division of Epidemiology and Public Health, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK;
| |
Collapse
|
18
|
Rosenson RS. Existing and emerging therapies for the treatment of familial hypercholesterolemia. J Lipid Res 2021; 62:100060. [PMID: 33716107 PMCID: PMC8065289 DOI: 10.1016/j.jlr.2021.100060] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/12/2021] [Accepted: 02/21/2021] [Indexed: 12/30/2022] Open
Abstract
Familial hypercholesterolemia (FH), an autosomal dominant disorder of LDL metabolism that is characterized by elevated LDL-cholesterol, is commonly encountered in patients with atherosclerotic coronary heart disease. Combinations of cholesterol-lowering therapies are often used to lower LDL-cholesterol in patients with FH; however, current treatment goals for LDL-cholesterol are rarely achieved in patients with homozygous FH (HoFH) and are difficult to achieve in patients with heterozygous FH (HeFH). Therapies that lower LDL-cholesterol through LDL receptor-mediated mechanisms have thus far been largely ineffective in patients with HoFH, particularly in those with negligible (<2%) LDL receptor activity. Among patients with HeFH who were at very high risk for atherosclerotic cardiovascular disease events, combined therapy consisting of a high dose of high-intensity statin, ezetimibe, and proprotein convertase subtilisin Kexin type 9 inhibitor failed to lower LDL-cholesterol to minimal acceptable goals in more than 50%. This article provides a framework for the use of available and emerging treatments that lower LDL-cholesterol in adult patients with HoFH and HeFH. A framework is provided for the use of angiopoietin-like protein 3 inhibitors in the treatment of HoFH and HeFH.
Collapse
Affiliation(s)
- Robert S Rosenson
- Zena and Michael A. Wiener Cardiovascular Institute, Marie-Josee and Henry R. Kravis Center for Cardiovascular Health. Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
19
|
Birnbaum RA, Horton BH, Gidding SS, Brenman LM, Macapinlac BA, Avins AL. Closing the gap: Identification and management of familial hypercholesterolemia in an integrated healthcare delivery system. J Clin Lipidol 2021; 15:347-357. [PMID: 33583725 DOI: 10.1016/j.jacl.2021.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/16/2021] [Accepted: 01/22/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Familial hypercholesterolemia (FH) is an autosomal dominant genetic disorder that causes markedly elevated risk for early onset coronary artery disease. Despite availability of effective therapy, only 5-10% of affected individuals worldwide are diagnosed. OBJECTIVE To develop and evaluate a novel approach for identifying and managing patients with FH in a large integrated health system with a diverse patient population, using inexpensive methods. METHODS Using Make Early Diagnosis/Prevent Early Death (MEDPED) criteria, we created a method for identifying patients at high risk for FH within the Kaiser Permanente Northern California electronic medical record. This led to a pragmatic workflow for contacting patients, establishing a diagnosis in a dedicated FH clinic, and initiating management. We prospectively collected data on the first 100 patients to assess implementation effectiveness. RESULTS Ninety-three (93.0%, 95%CI: 86.1%-97.1%) of the first 100 evaluated patients were diagnosed with FH (median age = 38 years) of whom only 5% were previously recognized; 48% were taking no lipid-lowering therapy, and 7% had acute coronary symptoms. 82 underwent successful genetic testing of whom 55 (67.1%; 95%CI: 55.8%-77.1%) had a pathogenic mutation. Following clinic evaluation, 83 of 85 (97.6%) medication-eligible patients were prescribed combination lipid-lowering therapy. 20 family members in the healthcare system were diagnosed with FH through cascade testing. CONCLUSIONS This novel approach was effective for identifying and managing patients with undiagnosed FH. Care gaps in providing appropriate lipid-lowering therapy were successfully addressed. Further development and dissemination of integrated approaches to FH care are warranted.
Collapse
Affiliation(s)
- Richard A Birnbaum
- Department of Cardiology, Northern California Kaiser Permanente, San Leandro, California, USA.
| | - Brandon H Horton
- Division of Research, Northern California Kaiser Permanente, Oakland, California, USA
| | - Samuel S Gidding
- Geisinger Genomic Medicine, Geisinger Health System, Danville, PA
| | - Leslie Manace Brenman
- Department of Genetics, Northern California Kaiser Permanente, Oakland, California, USA
| | - Brian A Macapinlac
- Department of Cardiology, Northern California Kaiser Permanente, San Leandro, California, USA
| | - Andrew L Avins
- Division of Research, Northern California Kaiser Permanente, Oakland, California, USA; Departments of Medicine and Epidemiology & Biostatistics, University of California, San Francisco; San Francisco, California, USA
| |
Collapse
|
20
|
Watts GF, Sullivan DR, Hare DL, Kostner KM, Horton AE, Bell DA, Brett T, Trent RJ, Poplawski NK, Martin AC, Srinivasan S, Justo RN, Chow CK, Pang J. Synopsis of an integrated guidance for enhancing the care of familial hypercholesterolaemia: an Australian perspective. Am J Prev Cardiol 2021; 6:100151. [PMID: 34327493 PMCID: PMC8315409 DOI: 10.1016/j.ajpc.2021.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/15/2021] [Accepted: 01/28/2021] [Indexed: 11/27/2022] Open
Abstract
Introduction Familial hypercholesterolaemia (FH) is a common, heritable and preventable cause of premature coronary artery disease, with significant potential for positive impact on public health and healthcare savings. New clinical practice recommendations are presented in an abridged guidance to assist practitioners in enhancing the care of all patients with FH. Main recommendations Core recommendations are made on the detection, diagnosis, assessment and management of adults, children and adolescents with FH. There is a key role for general practitioners (GPs) working in collaboration with specialists with expertise in lipidology. Advice is given on genetic and cholesterol testing and risk notification of biological relatives undergoing cascade testing for FH; all healthcare professionals should develop skills in genomic medicine. Management is under-pinned by the precepts of risk stratification, adherence to healthy lifestyles, treatment of non-cholesterol risk factors, and appropriate use of low-density lipoprotein (LDL)-cholesterol lowering therapies, including statins, ezetimibe and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors. Recommendations on service design are provided in the full guidance. Potential impact on care of FH These recommendations need to be utilised using judicious clinical judgement and shared decision making with patients and families. Models of care need to be adapted to both local and regional needs and resources. In Australia new government funded schemes for genetic testing and use of PCSK9 inhibitors, as well as the National Health Genomics Policy Framework, will enable adoption of these recommendations. A broad implementation science strategy is, however, required to ensure that the guidance translates into benefit for all families with FH.
Collapse
Affiliation(s)
- Gerald F Watts
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia.,Lipid Disorders Clinic, Cardiometabolic Service, Departments of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| | - David R Sullivan
- Department of Chemical Pathology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.,Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - David L Hare
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia.,Department of Cardiology, Austin Health, Melbourne, Australia
| | - Karam M Kostner
- Department of Cardiology, Mater Hospital, University of Queensland, Brisbane, Australia
| | - Ari E Horton
- Monash Heart and Monash Children's Hospital, Monash Health, Melbourne, Victoria, Australia.,Monash Cardiovascular Research Centre, Melbourne, Victoria, Australia.,Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
| | - Damon A Bell
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia.,Lipid Disorders Clinic, Cardiometabolic Service, Departments of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, Western Australia, Australia.,Department of Clinical Biochemistry, PathWest Laboratory Medicine WA, Royal Perth Hospital and Fiona Stanley Hospital Network, Perth, Western Australia, Australia.,Department of Clinical Biochemistry, Clinipath Pathology, Perth, Western Australia, Australia.,Sonic Genetics, Sonic Pathology, Australia
| | - Tom Brett
- General Practice and Primary Health Care Research, School of Medicine, University of Notre Dame Australia, Fremantle, Australia
| | - Ronald J Trent
- Department of Medical Genomics, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia.,Central Clinical School, Faculty of Medicine and Health, University of Sydney, New South Wales, Australia
| | - Nicola K Poplawski
- Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew C Martin
- Department General Paediatrics, Perth Children's Hospital, Perth, Western Australia, Australia.,Division of Paediatrics, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Shubha Srinivasan
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, Australia.,Discipline of Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Robert N Justo
- Department of Paediatric Cardiology, Queensland Children's Hospital, Brisbane, Queensland, Australia.,School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Clara K Chow
- Westmead Applied Research Centre, The University of Sydney, Sydney, New South Wales, Australia.,Department of Cardiology, Westmead Hospital, Sydney, New South Wales, Australia.,George Institute for Global Health, Sydney, New South Wales, Australia
| | - Jing Pang
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | | |
Collapse
|
21
|
Wilemon KA, Patel J, Aguilar-Salinas C, Ahmed CD, Alkhnifsawi M, Almahmeed W, Alonso R, Al-Rasadi K, Badimon L, Bernal LM, Bogsrud MP, Braun LT, Brunham L, Catapano AL, Cillíková K, Corral P, Cuevas R, Defesche JC, Descamps OS, de Ferranti S, Eiselé JL, Elikir G, Folco E, Freiberger T, Fuggetta F, Gaspar IM, Gesztes ÁG, Grošelj U, Hamilton-Craig I, Hanauer-Mader G, Harada-Shiba M, Hastings G, Hovingh GK, Izar MC, Jamison A, Karlsson GN, Kayikçioglu M, Koob S, Koseki M, Lane S, Lima-Martinez MM, López G, Martinez TL, Marais D, Marion L, Mata P, Maurina I, Maxwell D, Mehta R, Mensah GA, Miserez AR, Neely D, Nicholls SJ, Nohara A, Nordestgaard BG, Ose L, Pallidis A, Pang J, Payne J, Peterson AL, Popescu MP, Puri R, Ray KK, Reda A, Sampietro T, Santos RD, Schalkers I, Schreier L, Shapiro MD, Sijbrands E, Soffer D, Stefanutti C, Stoll M, Sy RG, Tamayo ML, Tilney MK, Tokgözoglu L, Tomlinson B, Vallejo-Vaz AJ, Vazquez-Cárdenas A, de Luca PV, Wald DS, Watts GF, Wenger NK, Wolf M, Wood D, Zegerius A, Gaziano TA, Gidding SS. Reducing the Clinical and Public Health Burden of Familial Hypercholesterolemia: A Global Call to Action. JAMA Cardiol 2021; 5:217-229. [PMID: 31895433 DOI: 10.1001/jamacardio.2019.5173] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Importance Familial hypercholesterolemia (FH) is an underdiagnosed and undertreated genetic disorder that leads to premature morbidity and mortality due to atherosclerotic cardiovascular disease. Familial hypercholesterolemia affects 1 in 200 to 250 people around the world of every race and ethnicity. The lack of general awareness of FH among the public and medical community has resulted in only 10% of the FH population being diagnosed and adequately treated. The World Health Organization recognized FH as a public health priority in 1998 during a consultation meeting in Geneva, Switzerland. The World Health Organization report highlighted 11 recommendations to address FH worldwide, from diagnosis and treatment to family screening and education. Research since the 1998 report has increased understanding and awareness of FH, particularly in specialty areas, such as cardiology and lipidology. However, in the past 20 years, there has been little progress in implementing the 11 recommendations to prevent premature atherosclerotic cardiovascular disease in an entire generation of families with FH. Observations In 2018, the Familial Hypercholesterolemia Foundation and the World Heart Federation convened the international FH community to update the 11 recommendations. Two meetings were held: one at the 2018 FH Foundation Global Summit and the other during the 2018 World Congress of Cardiology and Cardiovascular Health. Each meeting served as a platform for the FH community to examine the original recommendations, assess the gaps, and provide commentary on the revised recommendations. The Global Call to Action on Familial Hypercholesterolemia thus represents individuals with FH, advocacy leaders, scientific experts, policy makers, and the original authors of the 1998 World Health Organization report. Attendees from 40 countries brought perspectives on FH from low-, middle-, and high-income regions. Tables listing country-specific government support for FH care, existing country-specific and international FH scientific statements and guidelines, country-specific and international FH registries, and known FH advocacy organizations around the world were created. Conclusions and Relevance By adopting the 9 updated public policy recommendations created for this document, covering awareness; advocacy; screening, testing, and diagnosis; treatment; family-based care; registries; research; and cost and value, individual countries have the opportunity to prevent atherosclerotic heart disease in their citizens carrying a gene associated with FH and, likely, all those with severe hypercholesterolemia as well.
Collapse
Affiliation(s)
| | | | - Jasmine Patel
- Familial Hypercholesterolemia Foundation, Pasadena, California
| | - Carlos Aguilar-Salinas
- Familial Hypercholesterolemia IberoAmericana Network, Madrid, Spain.,Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México.,Departamaento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, México
| | | | - Mutaz Alkhnifsawi
- International Atherosclerosis Society, Milan, Italy.,Faculty of Medicine, University of Al-Qadisiyah, Al Diwaniyah, Iraq
| | - Wael Almahmeed
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Rodrigo Alonso
- Familial Hypercholesterolemia IberoAmericana Network, Madrid, Spain.,International Atherosclerosis Society, Milan, Italy.,Fundación Hipercolesterolemia Familiar, Madrid, Spain.,Nutrition Department, Clínica las Condes, Santiago de Chile, Chile
| | - Khalid Al-Rasadi
- International Atherosclerosis Society, Milan, Italy.,Medical Research Center, Sultan Qaboos University Hospital, Muscat, Oman
| | - Lina Badimon
- Cardiovascular Program-ICCC, IR-Hospital de la Santa Creu I Sant Pau, CiberCV, Barcelona, Spain.,European Society of Cardiology, Biot, France
| | - Luz M Bernal
- Escuela de Ciencias de la Salud, Universidad Nacional Abierta y a Distancia, Bogotá, Colombia
| | - Martin P Bogsrud
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.,Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity, and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Lynne T Braun
- Department of Adult Health and Gerontological Nursing, Rush University, Chicago, Illinois
| | - Liam Brunham
- Centre for Heart Lung Innovation, St Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan and MultiMedica Institute for Research, Hospitalization, and Health Care, Milano, Italy.,European Atherosclerosis Society, Göteborg, Sweden
| | | | - Pablo Corral
- Familial Hypercholesterolemia IberoAmericana Network, Madrid, Spain.,FASTA University School of Medicine, Mar del Plata, Argentina
| | | | - Joep C Defesche
- Department of Clinical Genetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Olivier S Descamps
- FH Europe, Europe.,Centres Hospitaliers Jolimont, Haine Saint-Paul, Belgium.,Belchol, Belgium
| | - Sarah de Ferranti
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts.,Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts
| | | | - Gerardo Elikir
- Familial Hypercholesterolemia IberoAmericana Network, Madrid, Spain.,Sociedad Argentina de Lípidos, Cordoba, Argentina
| | - Emanuela Folco
- International Atherosclerosis Society, Milan, Italy.,Italian Heart Foundation-Fondazione Italiana Per il Cuore, Milan, Italy
| | - Tomas Freiberger
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czech Republic.,Central European Institute of Technology and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Francesco Fuggetta
- FH Europe, Europe.,Associazione Nazionale Ipercolesterolemia Familiare, Rome, Italy
| | - Isabel M Gaspar
- Lisbon Medical School, Centro Hospitalar de Lisboa Ocidental and Genetics Laboratory, Medical Genetics Department, University of Lisbon, Lisbon, Portugal
| | - Ákos G Gesztes
- FH Europe, Europe.,Szivesen Segitünk Neked, FH Hungary Patient Organisation, Budapest, Hungary
| | - Urh Grošelj
- University Medical Centre Ljubljana, University Children's Hospital, Ljubljana, Slovenia
| | - Ian Hamilton-Craig
- Flinders University School of Medicine, Adelaide, South Australia, Australia
| | | | - Mariko Harada-Shiba
- National Cerebral and Cardiovascular Centre Research Institute, Suita, Osaka, Japan
| | - Gloria Hastings
- FH Europe, Europe.,Gruppo Italiano Pazienti-Familial Hypercholesterolemia, Milano, Italy
| | - G Kees Hovingh
- Department of Vascular Medicine, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Maria C Izar
- Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Allison Jamison
- Familial Hypercholesterolemia Foundation, Pasadena, California
| | | | - Meral Kayikçioglu
- FH Europe, Europe.,Department of Cardiology, Medical Faculty, Ege University, Izmir, Turkey.,Ailevi Hiperkolesterolemi Derneği (Association of Familial Hypercholesterolemia), Bayraklı/İzmir, Turkey
| | - Sue Koob
- Preventive Cardiovascular Nurses Association, Madison, Wisconsin
| | - Masahiro Koseki
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Stacey Lane
- Familial Hypercholesterolemia Foundation, Pasadena, California
| | - Marcos M Lima-Martinez
- Familial Hypercholesterolemia IberoAmericana Network, Madrid, Spain.,Department of Physiological Sciences, Universidad de Oriente, Ciudad Bolivar, Venezuela.,Endocrinology, Diabetes, Metabolism, and Nutrition Unit, Ciudad Bolivar, Venezuela
| | - Greizy López
- Instituto de Genética Humana, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - David Marais
- Division of Chemical Pathology, Health Science Faculty, University of Cape Town, Cape Town, South Africa
| | - Letrillart Marion
- FH Europe, Europe.,Association Nationale des Hypercholestérolémies Familiales, Reims, France
| | - Pedro Mata
- Familial Hypercholesterolemia IberoAmericana Network, Madrid, Spain.,Fundación Hipercolesterolemia Familiar, Madrid, Spain.,FH Europe, Europe
| | - Inese Maurina
- FH Europe, Europe.,ParSirdi.lv Patient Society, Riga, Latvia
| | | | - Roopa Mehta
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México.,Departamaento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México
| | - George A Mensah
- Center for Translation Research and Implementation Science, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - André R Miserez
- Diagene Research Institute, Swiss FH Center, Reinach, Switzerland.,Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Dermot Neely
- Department of Blood Sciences, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom.,HEART UK, Berkshire, United Kingdom
| | - Stephen J Nicholls
- Monash Cardiovascular Research Centre, Monash University, Melbourne, Victoria, Australia
| | - Atsushi Nohara
- Department of Cardiovascular and Internal Medicine, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Børge G Nordestgaard
- Copenhagen General Population Study, Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Leiv Ose
- Lipid Clinic, Department of Endocrinology, Morbid Obesity, and Preventive Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Basic Medical Sciences, Department of Nutrition, University of Oslo, Oslo, Norway
| | - Athanasios Pallidis
- FH Europe, Europe.,Association of Familial Hypercholesterolemia, LDL Greece, Greece
| | - Jing Pang
- Faculty of Health and Medical Sciences, University of Western Australia School of Medicine, Perth, Western Australia, Australia
| | - Jules Payne
- FH Europe, Europe.,HEART UK, Berkshire, United Kingdom
| | - Amy L Peterson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Monica P Popescu
- FH Europe, Europe.,Fundația pentru Ocrotirea Bolnavilor cu Afectuni Cardiovasculare, Bucharest, Romania
| | - Raman Puri
- Department of Cardiology, Apollo Hospital, New Delhi, India.,Lipid Association of India, New Delhi, India
| | - Kausik K Ray
- European Atherosclerosis Society, Göteborg, Sweden.,Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, Imperial College of London School of Public Health, London, United Kingdom
| | - Ashraf Reda
- Cardiology Department, Menofia University, Shibin Al Kawm, Al Minufiyah, Egypt.,Egyptian Association of Vascular Biology and Atherosclerosis, Cairo, Egypt
| | - Tiziana Sampietro
- Lipoapheresis Unit, Reference Center for Inherited Dyslipidemias, Fondazione CRN-Toscana Gabriele Monasterio, Pisa, Italy.,Italian Association of Inherited Dyslipidemias, Cascina Pisa, Italy
| | - Raul D Santos
- Familial Hypercholesterolemia IberoAmericana Network, Madrid, Spain.,International Atherosclerosis Society, Milan, Italy.,Lipid Clinic Heart Institute, Hospital Israelita Albert Einstein, University of São Paulo Medical School Hospital, São Paulo, Brazil
| | - Inge Schalkers
- FH Europe, Europe.,Harteraad, the Hague, the Netherlands
| | - Laura Schreier
- Familial Hypercholesterolemia IberoAmericana Network, Madrid, Spain.,Laboratorio de Lípidos y Aterosclerosis, Departamento de Bioquímica Clínica, IndianaFIBIOC-UBA, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Michael D Shapiro
- Familial Hypercholesterolemia Foundation, Pasadena, California.,Section of Cardiovascular Medicine, Center for Preventive Cardiology, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| | - Eric Sijbrands
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Daniel Soffer
- University of Pennsylvania Health System, Philadelphia, Pennsylvania
| | - Claudia Stefanutti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.,Extracorporeal Therapeutic Techniques Unit, Lipid Clinic, Regional Centre for Rare Metabolic Diseases, Umberto I Hospital, Rome, Italy
| | - Mario Stoll
- Familial Hypercholesterolemia IberoAmericana Network, Madrid, Spain.,Honorary Commission for Cardiovascular Health, Montevideo, Uruguay
| | - Rody G Sy
- Department of Medicine, University of the Philippines-Philippine General Hospital, Manila, Philippines
| | - Martha L Tamayo
- Instituto de Genética Humana, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Myra K Tilney
- Department of Medicine, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.,Lipid Clinic, Mater Dei Hospital, Msida, Malta
| | - Lale Tokgözoglu
- European Atherosclerosis Society, Göteborg, Sweden.,Department of Cardiology of Cardiology, Hacettepe Univeristy, Ankara, Turkey
| | - Brian Tomlinson
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Antonio J Vallejo-Vaz
- Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, Imperial College of London School of Public Health, London, United Kingdom
| | - Alejandra Vazquez-Cárdenas
- Familial Hypercholesterolemia IberoAmericana Network, Madrid, Spain.,Facultad de Medicina, Universidad Autónoma de Guadalajara, Zapopan, Jalisco, México.,Associación Mexícana de Hipercolesterolemia Familiar, México
| | | | - David S Wald
- Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, United Kingdom
| | - Gerald F Watts
- Faculty of Health and Medical Sciences, University of Western Australia School of Medicine, Perth, Western Australia, Australia.,Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Nanette K Wenger
- Emory Women's Heart Center, Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia
| | - Michaela Wolf
- FASTA University School of Medicine, Mar del Plata, Argentina.,Patients' Organization for Patients with Familial Hypercholesterolaemia or Related Genetic Lipid Disorders, Frankfurt, Germany
| | - David Wood
- World Heart Federation, Geneva, Switzerland
| | - Aram Zegerius
- Individuals With Familial Hypercholesterolemia, the Hague, the Netherlands
| | - Thomas A Gaziano
- Sociedad Argentina de Lípidos, Cordoba, Argentina.,Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Department of Health Policy and Management, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | | |
Collapse
|
22
|
Futema M, Ramaswami U, Tichy L, Bogsrud MP, Holven KB, Roeters van Lennep J, Wiegman A, Descamps OS, De Leener A, Fastre E, Vrablik M, Freiberger T, Esterbauer H, Dieplinger H, Greber-Platzer S, Medeiros AM, Bourbon M, Mollaki V, Drogari E, Humphries SE. Comparison of the mutation spectrum and association with pre and post treatment lipid measures of children with heterozygous familial hypercholesterolaemia (FH) from eight European countries. Atherosclerosis 2021; 319:108-117. [PMID: 33508743 DOI: 10.1016/j.atherosclerosis.2021.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 12/21/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND AND AIMS Familial hypercholesterolaemia (FH) is commonly caused by mutations in the LDLR, APOB or PCSK9 genes, with untreated mean low density lipoprotein-cholesterol (LDL-C) concentrations being elevated in APOB mutation carriers, even higher in LDLR mutation and highest in those with a PCSK9 mutation. Here we examine this in children with FH from Norway, UK, The Netherlands, Belgium, Czech Republic, Austria, Portugal and Greece. METHODS Differences in characteristics and pre- and post-treatment lipid concentrations in those with different molecular causes were compared by standard statistical tests. RESULTS Data were obtained from 2866 children, of whom 2531 (88%) carried a reported LDLR/APOB/PCSK9 variant. In all countries, the most common cause of FH was an LDLR mutation (79% of children, 297 different), but the prevalence of the APOB p.(Arg3527Gln) mutation varied significantly (ranging from 0% in Greece to 39% in Czech Republic, p < 2.2 × 10-16). The prevalence of a family history of premature CHD was significantly higher in children with an LDLR vs APOB mutation (16% vs 7% p=0.0005). Compared to the LDLR mutation group, mean (±SD) concentrations of pre-treatment LDL-C were significantly lower in those with an APOB mutation (n = 2260 vs n = 264, 4.96 (1.08)mmol/l vs 5.88 (1.41)mmol/l, p < 2.2 × 10-16) and lowest in those with a PCSK9 mutation (n = 7, 4.71 (1.22)mmol/l). CONCLUSIONS The most common cause of FH in children from eight European countries was an LDLR mutation, with the prevalence of the APOB p.(Arg3527Gln) mutation varying significantly across countries. In children, LDLR-FH is associated with higher concentrations of LDL-C and family history of CHD compared to those with APOB-FH.
Collapse
Affiliation(s)
- Marta Futema
- Centre for Heart Muscle Disease, Institute for Cardiovascular Science, University College London, London, United Kingdom
| | - Uma Ramaswami
- Lysosomal Disorders Unit, Royal Free Hospital, London, United Kingdom
| | - Lukas Tichy
- Centre of Molecular Biology and Gene Therapy, University Hospital Brno, Brno, Czech Republic
| | - Martin P Bogsrud
- National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway; Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | | | | | - Albert Wiegman
- Department of Pediatrics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | | | - Anne De Leener
- Centre de Génétique Humaine, UCL Cliniques Universitaires Saint-Luc, Bruxelles, Belgium
| | - Elodie Fastre
- Centre de Génétique Humaine, UCL Cliniques Universitaires Saint-Luc, Bruxelles, Belgium
| | - Michal Vrablik
- Third Department of Internal Medicine, General University Hospital and First Faculty of Medicine, Charles University, U Nemocnice 1, Prague 2, 128 08, Czech Republic
| | - Tomas Freiberger
- Centre for Cardiovascular Surgery and Transplantation, Czech Republic, and Medical Faculty, Masaryk University, Pekarska 53, 656 91 Brno, Brno, Czech Republic
| | - Harald Esterbauer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Hans Dieplinger
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Schöpfstraße 41, 6020, Innsbruck, Austria
| | - Susanne Greber-Platzer
- Division of Pediatric Pulmonology, Allergology and Endocrinology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center Pediatrics, Medical University Vienna, Austria
| | - Ana M Medeiros
- Cardiovascular Research Group, Research and Development Unit, Department of Health Promotion and Chronic Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal and University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Mafalda Bourbon
- Cardiovascular Research Group, Research and Development Unit, Department of Health Promotion and Chronic Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal and University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Lisboa, Portugal
| | - Vasiliki Mollaki
- First Department of Pediatrics, National and Kapodistrian University of Athens, Greece
| | - Euridiki Drogari
- First Department of Pediatrics, National and Kapodistrian University of Athens and Department of Inborn Errors of Metabolism and Inherited Dyslipidemias, "MITERA" Children's Hospital, Athens, Greece
| | - Steve E Humphries
- Centre for Cardiovascular Genetics, Institute for Cardiovascular Science, University College London, London, United Kingdom.
| |
Collapse
|
23
|
Watts GF, Sullivan DR, Hare DL, Kostner KM, Horton AE, Bell DA, Brett T, Trent RJ, Poplawski NK, Martin AC, Srinivasan S, Justo RN, Chow CK, Pang J. Integrated Guidance for Enhancing the Care of Familial Hypercholesterolaemia in Australia. Heart Lung Circ 2020; 30:324-349. [PMID: 33309206 DOI: 10.1016/j.hlc.2020.09.943] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022]
Abstract
Familial hypercholesterolaemia (FH) is a dominant and highly penetrant monogenic disorder present from birth that markedly elevates plasma low-density lipoprotein (LDL)-cholesterol concentration and, if untreated, leads to premature atherosclerosis and coronary artery disease (CAD). There are approximately 100,000 people with FH in Australia. However, an overwhelming majority of those affected remain undetected and inadequately treated, consistent with FH being a leading challenge for public health genomics. To further address the unmet need, we provide an updated guidance, presented as a series of systematically collated recommendations, on the care of patients and families with FH. These recommendations have been informed by an exponential growth in published works and new evidence over the last 5 years and are compatible with a contemporary global call to action on FH. Recommendations are given on the detection, diagnosis, assessment and management of FH in adults and children. Recommendations are also made on genetic testing and risk notification of biological relatives who should undergo cascade testing for FH. Guidance on management is based on the concepts of risk re-stratification, adherence to heart healthy lifestyles, treatment of non-cholesterol risk factors, and safe and appropriate use of LDL-cholesterol lowering therapies, including statins, ezetimibe, proprotein convertase subtilisin/kexin type 9 inhibitors and lipoprotein apheresis. Broad recommendations are also provided for the organisation and development of health care services. Recommendations on best practice need to be underpinned by good clinical judgment and shared decision making with patients and families. Models of care for FH need to be adapted to local and regional health care needs and available resources. A comprehensive and realistic implementation strategy, informed by further research, including assessments of cost-benefit, will be required to ensure that this new guidance benefits all Australian families with or at risk of FH.
Collapse
Affiliation(s)
- Gerald F Watts
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia; Lipid Disorders Clinic, Cardiometabolic Service, Departments of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, WA, Australia.
| | - David R Sullivan
- Department of Chemical Pathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - David L Hare
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Vic, Australia; Department of Cardiology, Austin Health, Melbourne, Vic, Australia
| | - Karam M Kostner
- Department of Cardiology, Mater Hospital, University of Queensland, Brisbane, Qld, Australia
| | - Ari E Horton
- Monash Heart and Monash Children's Hospital, Monash Health, Melbourne, Vic, Australia; Monash Cardiovascular Research Centre, Melbourne, Vic, Australia; Department of Paediatrics, Monash University, Melbourne, Vic, Australia
| | - Damon A Bell
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia; Lipid Disorders Clinic, Cardiometabolic Service, Departments of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, WA, Australia; Department of Clinical Biochemistry, PathWest Laboratory Medicine WA, Royal Perth Hospital and Fiona Stanley Hospital Network, Perth, WA, Australia; Department of Clinical Biochemistry, Clinipath Pathology, Perth, WA, Australia; Sonic Genetics, Sonic Pathology, Sydney, NSW, Australia
| | - Tom Brett
- General Practice and Primary Health Care Research, School of Medicine, University of Notre Dame Australia, Fremantle, WA, Australia
| | - Ronald J Trent
- Department of Medical Genomics, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Central Clinical School, Faculty of Medicine and Health, University of Sydney, NSW, Australia
| | - Nicola K Poplawski
- Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, SA, Australia; Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Andrew C Martin
- Department General Paediatrics, Perth Children's Hospital, Perth, WA, Australia; Division of Paediatrics, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia
| | - Shubha Srinivasan
- Institute of Endocrinology and Diabetes, The Children's Hospital at Westmead, Sydney, NSW, Australia; Discipline of Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Robert N Justo
- Department of Paediatric Cardiology, Queensland Children's Hospital, Brisbane, Qld, Australia; School of Medicine, University of Queensland, Brisbane, Qld, Australia
| | - Clara K Chow
- Westmead Applied Research Centre, The University of Sydney, Sydney, NSW, Australia; Department of Cardiology, Westmead Hospital, Sydney, NSW, Australia; George Institute for Global Health, Sydney, NSW, Australia
| | - Jing Pang
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia
| | | |
Collapse
|
24
|
Miroshnikova VV, Romanova OV, Ivanova ON, Fedyakov MA, Panteleeva AA, Barbitoff YA, Muzalevskaya MV, Urazgildeeva SA, Gurevich VS, Urazov SP, Scherbak SG, Sarana AM, Semenova NA, Anisimova IV, Guseva DM, Pchelina SN, Glotov AS, Zakharova EY, Glotov OS. Identification of novel variants in the LDLR gene in Russian patients with familial hypercholesterolemia using targeted sequencing. Biomed Rep 2020; 14:15. [PMID: 33269076 PMCID: PMC7694592 DOI: 10.3892/br.2020.1391] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Familial hypercholesterolemia (FH) is caused by mutations in various genes, including the LDLR, APOB and PSCK9 genes; however, the spectrum of these mutations in Russian individuals has not been fully investigated. In the present study, mutation screening was performed on the LDLR gene and other FH-associated genes in patients with definite or possible FH, using next-generation sequencing. In total, 59 unrelated patients were recruited and sorted into two separate groups depending on their age: Adult (n=31; median age, 49; age range, 23-70) and children/adolescent (n=28; median age, 11; age range, 2-21). FH-associated variants were identified in 18 adults and 25 children, demonstrating mutation detection rates of 58 and 89% for the adult and children/adolescent groups, respectively. In the adult group, 13 patients had FH-associated mutations in the LDLR gene, including two novel variants [NM_000527.4: c.433_434dupG p.(Val145Glyfs*35) and c.1186G>C p.(Gly396Arg)], 3 patients had APOB mutations and two had ABCG5/G8 mutations. In the children/adolescent group, 21 patients had FH-causing mutations in the LDLR gene, including five novel variants [NM_000527.4: c.325T>G p.(Cys109Gly), c.401G>C p.(Cys134Ser), c.616A>C p.(Ser206Arg), c.1684_1691delTGGCCCAA p.(Pro563Hisfs*14) and c.940+1_c.940+4delGTGA], and 2 patients had APOB mutations, as well as ABCG8 and LIPA mutations, being found in different patients. The present study reported seven novel LDLR variants considered to be pathogenic or likely pathogenic. Among them, four missense variants were located in the coding regions, which corresponded to functional protein domains, and two frameshifts were identified that produced truncated proteins. These variants were observed only once in different patients, whereas a splicing variant in intron 6 (c.940+1_c.940+4delGTGA) was detected in four unrelated individuals. Previously reported variants in the LDLR, APOB, ABCG5/8 and LIPA genes were observed in 33 patients. The LDLR p.(Gly592Glu) variant was detected in 6 patients, representing 10% of the FH cases reported in the present study, thus it may be a major variant present in the Russian population. In conclusion, the present study identified seven novel variants of the LDLR gene and broadens the spectrum of mutations in FH-related genes in the Russian Federation.
Collapse
Affiliation(s)
- Valentina V Miroshnikova
- Laboratory of Human Molecular Genetics, Molecular and Radiation Biophysics Department, Petersburg Nuclear Physics Institute, National Research Center 'Kurchatov Institute', Gatchina 188300, Russian Federation
| | - Olga V Romanova
- Genetic Laboratory of City Hospital No. 40, Saint-Petersburg, 197706, Russian Federation.,Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology and Reproduction, Saint-Petersburg 199034, Russian Federation
| | - Olga N Ivanova
- Laboratory of Hereditary Metabolic Diseases and Counselling Unit of Federal State Budgetary Institution 'Research Centre for Medical Genetics', Moscow 115522, Russian Federation
| | - Mikhail A Fedyakov
- Genetic Laboratory of City Hospital No. 40, Saint-Petersburg, 197706, Russian Federation
| | - Alexandra A Panteleeva
- Laboratory of Human Molecular Genetics, Molecular and Radiation Biophysics Department, Petersburg Nuclear Physics Institute, National Research Center 'Kurchatov Institute', Gatchina 188300, Russian Federation.,Kurchatov Complex of NBICS Nature-Like Technologies of National Research Center 'Kurchatov Institute', Moscow 123182, Russian Federation.,Molecular-Genetic and Nanobiological Technology Department of Scientific Research Center, Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg 197022, Russian Federation.,Bioinformatics Institute, Saint-Petersburg 197342, Russian Federation
| | - Yury A Barbitoff
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology and Reproduction, Saint-Petersburg 199034, Russian Federation.,Bioinformatics Institute, Saint-Petersburg 197342, Russian Federation
| | - Maria V Muzalevskaya
- Department for Atherosclerosis and Lipid Disorders of North-Western District Scientific and Clinical Center Named After L.G. Sokolov FMBA, Saint-Petersburg 194291, Russian Federation.,Medical Faculty of Saint-Petersburg State University, Saint-Petersburg 199034, Russian Federation
| | - Sorejya A Urazgildeeva
- Department for Atherosclerosis and Lipid Disorders of North-Western District Scientific and Clinical Center Named After L.G. Sokolov FMBA, Saint-Petersburg 194291, Russian Federation.,Medical Faculty of Saint-Petersburg State University, Saint-Petersburg 199034, Russian Federation
| | - Victor S Gurevich
- Department for Atherosclerosis and Lipid Disorders of North-Western District Scientific and Clinical Center Named After L.G. Sokolov FMBA, Saint-Petersburg 194291, Russian Federation.,Medical Faculty of Saint-Petersburg State University, Saint-Petersburg 199034, Russian Federation
| | - Stanislav P Urazov
- Genetic Laboratory of City Hospital No. 40, Saint-Petersburg, 197706, Russian Federation
| | - Sergey G Scherbak
- Genetic Laboratory of City Hospital No. 40, Saint-Petersburg, 197706, Russian Federation
| | - Andrey M Sarana
- Medical Faculty of Saint-Petersburg State University, Saint-Petersburg 199034, Russian Federation
| | - Natalia A Semenova
- Laboratory of Hereditary Metabolic Diseases and Counselling Unit of Federal State Budgetary Institution 'Research Centre for Medical Genetics', Moscow 115522, Russian Federation
| | - Inga V Anisimova
- Laboratory of Hereditary Metabolic Diseases and Counselling Unit of Federal State Budgetary Institution 'Research Centre for Medical Genetics', Moscow 115522, Russian Federation
| | - Darya M Guseva
- Laboratory of Hereditary Metabolic Diseases and Counselling Unit of Federal State Budgetary Institution 'Research Centre for Medical Genetics', Moscow 115522, Russian Federation
| | - Sofya N Pchelina
- Laboratory of Human Molecular Genetics, Molecular and Radiation Biophysics Department, Petersburg Nuclear Physics Institute, National Research Center 'Kurchatov Institute', Gatchina 188300, Russian Federation.,Kurchatov Complex of NBICS Nature-Like Technologies of National Research Center 'Kurchatov Institute', Moscow 123182, Russian Federation.,Molecular-Genetic and Nanobiological Technology Department of Scientific Research Center, Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg 197022, Russian Federation
| | - Andrey S Glotov
- Genetic Laboratory of City Hospital No. 40, Saint-Petersburg, 197706, Russian Federation.,Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology and Reproduction, Saint-Petersburg 199034, Russian Federation
| | - Ekaterina Y Zakharova
- Laboratory of Hereditary Metabolic Diseases and Counselling Unit of Federal State Budgetary Institution 'Research Centre for Medical Genetics', Moscow 115522, Russian Federation
| | - Oleg S Glotov
- Genetic Laboratory of City Hospital No. 40, Saint-Petersburg, 197706, Russian Federation.,Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology and Reproduction, Saint-Petersburg 199034, Russian Federation
| |
Collapse
|
25
|
Evaluating a clinical tool (FAMCAT) for identifying familial hypercholesterolaemia in primary care: a retrospective cohort study. BJGP Open 2020; 4:bjgpopen20X101114. [PMID: 33144363 PMCID: PMC7880189 DOI: 10.3399/bjgpopen20x101114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 01/18/2023] Open
Abstract
Background Familial hypercholesterolaemia (FH) is an inherited lipid disorder causing premature heart disease, which is severely underdiagnosed. Improving the identification of people with FH in primary care settings would help to reduce avoidable heart attacks and early deaths. Aim To evaluate the accuracy of the familial hypercholesterolaemia case ascertainment identifcation tool (FAMCAT) for identifying FH in primary care. Design & setting A retrospective cohort study of 1 030 183 patients was undertaken. Data were extracted from the UK Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) database. Patient were aged >16 years. Method The FAMCAT algorithm was compared with methods of FH detection recommended by national guidelines (Simon Broome diagnostic criteria, Dutch Lipid Clinic Network [DLCN] Score, and cholesterol levels >99th centile). Discrimination and calibration were assessed by area under the receiver operating curve (AUC) and by comparing observed versus predicted cases. Results A total of 1707 patients had a diagnosis of FH. FAMCAT showed a high level of discrimination (AUC = 0.844, 95% confidence interval [CI] = 0.834 to 0.854), performing significantly better than Simon Broome criteria (AUC = 0.730, 95% CI = 0.719 to 0.741), DLCN Score (AUC = 0.766, 95% CI = 0.755 to 0.778), and screening cholesterols >99 th centile (AUC = 0.579, 95% CI = 0.571 to 0.588). Inclusion of premature myocardial infarction (MI) and fitting cholesterol as a continuous variable improved the accuracy of FAMCAT (AUC = 0.894, 95% CI = 0.885 to 0.903). Conclusion Better performance of the FAMCAT algorithm, compared with other approaches for case finding of FH in primary care, such as Simon Broome criteria, DLCN criteria or very high cholesterol levels, has been confirmed in a large population cohort.
Collapse
|
26
|
Samuel R, Birdsey G, Amerena J. Prevalence of Familial Hypercholesterolaemia in Acute Coronary Syndrome Patients in a Large Regional Coronary Care Unit. Heart Lung Circ 2020; 30:730-733. [PMID: 33132051 DOI: 10.1016/j.hlc.2020.09.929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 08/26/2020] [Accepted: 09/16/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Familial hypercholesterolaemia (FH) is an under recognised cause of coronary artery disease, despite the proven reductions in risk with early detection and treatment. METHODS Data from 180 consecutive patients presenting to a large regional hospital with acute coronary syndrome were collected. Potential FH was assessed using the Dutch Lipid Clinic Network Criteria (DLCNC), and if patients were on statins, pre-treatment cholesterol was estimated according to a validated algorithm. RESULTS Ninety per cent (90%) of patients presented with non-ST elevation myocardial infarction (NSTEMI) or ST elevation myocardial infarction (STEMI). A total of 11 patients (6%) were classified as having phenotypic FH. The phenotypic FH cohort was younger (mean age 53.1 vs 62.0, p=0.011); and more likely to have documented ischaemic heart disease (63.6% vs 20.7%, p=0.001). PHENOTYPIC FH PATIENTS Familial hypercholesterolaemia patients had a higher rate of ezetimibe use (18.2% vs 2.4%, p=0.005), but fibrate use was not significantly different. Phenotypic FH patients also had higher levels of total cholesterol, corrected LDL and triglycerides, but no statistically significant difference in HDL levels compared with non-FH counterparts. CONCLUSIONS The prevalence of FH is relatively high among patients presenting with acute coronary syndromes. This has now been established in a regional Australian population, with similar prevalence to large European registries. This highlights the need for improved access to specialised services in regional and rural areas to reduce adverse cardiovascular (CV) outcomes.
Collapse
Affiliation(s)
- Rohit Samuel
- Department of Cardiology, Barwon Heath, Geelong, Vic, Australia.
| | - Garth Birdsey
- Department of Cardiology, Barwon Heath, Geelong, Vic, Australia; Faculty of Health, Deakin University, Melbourne, Vic, Australia
| | - John Amerena
- Department of Cardiology, Barwon Heath, Geelong, Vic, Australia; Faculty of Health, Deakin University, Melbourne, Vic, Australia
| |
Collapse
|
27
|
Ademi Z, Marquina C, Zomer E, Bailey C, Owen A, Pang J, Norman R, Watts GF, Liew D. The economic impact of familial hypercholesterolemia on productivity. J Clin Lipidol 2020; 14:799-806.e3. [DOI: 10.1016/j.jacl.2020.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 12/23/2022]
|
28
|
Mlinaric M, Bratanic N, Dragos V, Skarlovnik A, Cevc M, Battelino T, Groselj U. Case Report: Liver Transplantation in Homozygous Familial Hypercholesterolemia (HoFH)-Long-Term Follow-Up of a Patient and Literature Review. Front Pediatr 2020; 8:567895. [PMID: 33163465 PMCID: PMC7581712 DOI: 10.3389/fped.2020.567895] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/28/2020] [Indexed: 01/15/2023] Open
Abstract
Homozygous familial hypercholesterolemia (HoFH) is a rare inherited metabolic disorder, frequently leading to an early cardiovascular death if not adequately treated. Since standard medications usually fail to reduce LDL-cholesterol (LDL-C) levels satisfactorily, LDL-apheresis is a mainstay of managing HoFH patients but, at the same time, very burdensome and suboptimally effective. Liver transplantation (LT) has been previously shown to be a promising alternative. We report on a 14 year-long follow-up after LT in a HoFH patient. At the age of 4, the patient was referred to our institution because of the gradually increasing number of xanthomas on the knees, elbows, buttocks, and later the homozygous mutation c.1754T>C (p.Ile585Thr) on the LDL-receptor gene was confirmed. Despite subsequent intensive treatment with the combination of diet, statins, bile acid sequestrant, probucol, and LDL-apheresis, the patient developed valvular aortic stenosis and aortic regurgitation by 12 years. At 16 years, the patient successfully underwent deceased-donor orthotopic LT. Nine years post-LT, we found total regression of the cutaneous xanthomas and atherosclerotic plaques and with normal endothelial function. Fourteen years post-LT, his clinical condition remained stable, but LDL-C levels have progressively risen. In addition, a systematic review of the literature and guidelines on the LT for HoFH patients was performed. Six of the 17 identified guidelines did not take LT as a treatment option in consideration at all. But still the majority of guidelines suggest LT as an exceptional therapeutic option or as the last resort option when all the other treatment options are inadequate or not tolerated. Most of the observed patients had some kind of cardiovascular disease before the LT. In 76% of LT, the cardiovascular burden did not progress after LT. According to our experience and in several other reported cases, the LDL-C levels are slowly increasing over time post LT. Most of the follow-up data were short termed; only a few case reports have followed patients for 10 or more years after LT. LT is a feasible therapeutic option for HoFH patients, reversing atherosclerotic changes uncontrollable by conservative therapy, thus importantly improving the HoFH patient's prognosis and quality of life.
Collapse
Affiliation(s)
- Matej Mlinaric
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Nevenka Bratanic
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Vlasta Dragos
- Department of Dermatovenereology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Ajda Skarlovnik
- Department of Vascular Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Matija Cevc
- Department of Vascular Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tadej Battelino
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Urh Groselj
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
29
|
Page MM, Ekinci EI, Burnett JR, Hooper AJ, Reid N, Bishop W, Florkowski CM, Scott R, O'Brien RC, Watts GF. Lipoprotein apheresis and PCSK9 inhibitors for severe familial hypercholesterolaemia: Experience from Australia and New Zealand. J Clin Apher 2020; 36:48-58. [PMID: 32911577 DOI: 10.1002/jca.21839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Severe familial hypercholesterolaemia (FH) causes premature disability and death due to atherosclerotic cardiovascular disease and is refractory to standard lipid-lowering therapies. Lipoprotein apheresis (LA) has long been a standard of care for patients with severe FH, but is invasive, expensive and time-consuming for patients and their caregivers. Newer drug therapies, including the proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, may reduce the need for LA. MATERIALS AND METHODS We audited the records of 16 patients (eight homozygous, eight heterozygous) treated with LA in Australia and New Zealand, 14 of whom subsequently commenced PCSK9 inhibitor therapy. LA was performed by cascade filtration in all centres. RESULTS LDL-cholesterol was acutely lowered by 69 ± 7% in patients with homozygous FH and by 72 ± 9% in those with heterozygous FH, representing time-averaged reductions of 36 ± 12% and 34 ± 5%, respectively. LA was well-tolerated, and patients reported comparable quality of life to population and disease-related norms. After commencement of PCSK9 inhibitors, four of seven patients with homozygous FH had meaningful biochemical responses, with a reduction in the frequency of LA permitted in one patient and complete cessation in another. Four of seven patients with heterozygous FH were able to be managed without LA after commencing PCSK9 inhibitors. CONCLUSION While PCSK9 inhibitors have reduced the need for LA, some patients with severe FH continue to require LA, and will require it for the foreseeable future. However, emerging therapies, including angiopoetin-like 3 inhibitors, may further reduce the need for LA.
Collapse
Affiliation(s)
- Michael M Page
- School of Medicine, University of Western Australia, Crawley, Western Australia, Australia.,Western Diagnostic Pathology, Myaree, Western Australia, Australia
| | - Elif I Ekinci
- Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia.,Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - John R Burnett
- School of Medicine, University of Western Australia, Crawley, Western Australia, Australia.,Department of Clinical Biochemistry, PathWest Laboratory Medicine, Royal Perth Hospital and Fiona Stanley Hospital, Perth, Western Australia, Australia.,Lipid Disorders Clinic, Cardiovascular Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Amanda J Hooper
- School of Medicine, University of Western Australia, Crawley, Western Australia, Australia.,Department of Clinical Biochemistry, PathWest Laboratory Medicine, Royal Perth Hospital and Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Nicola Reid
- Cardiovascular Prevention and Lipid Disorders Clinic, Christchurch Hospital, Christchurch, New Zealand
| | - Warrick Bishop
- Calvary Cardiac Centre, Calvary Hospital, Lenah Valley, Tasmania, Australia
| | - Chris M Florkowski
- Cardiovascular Prevention and Lipid Disorders Clinic, Christchurch Hospital, Christchurch, New Zealand.,Canterbury Health Laboratories, Christchurch, New Zealand
| | - Russell Scott
- Cardiovascular Prevention and Lipid Disorders Clinic, Christchurch Hospital, Christchurch, New Zealand
| | - Richard C O'Brien
- Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia.,Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Gerald F Watts
- School of Medicine, University of Western Australia, Crawley, Western Australia, Australia.,Lipid Disorders Clinic, Cardiovascular Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
30
|
Pang J, Sullivan DR, Hare DL, Colquhoun DM, Bates TR, Ryan JDM, Bishop W, Burnett JR, Bell DA, Simons LA, Mirzaee S, Kostner KM, Nestel PJ, Wilson AM, O'Brien RC, Janus ED, Clifton PM, Ardill JJ, Chan DC, van Bockxmeer F, Watts GF. Gaps in the Care of Familial Hypercholesterolaemia in Australia: First Report From the National Registry. Heart Lung Circ 2020; 30:372-379. [PMID: 32873489 DOI: 10.1016/j.hlc.2020.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/26/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Familial hypercholesterolaemia (FH) is under-diagnosed and under-treated worldwide, including Australia. National registries play a key role in identifying patients with FH, understanding gaps in care and advancing the science of FH to improve care for these patients. METHODS The FH Australasia Network has established a national web-based registry to raise awareness of the condition, facilitate service planning and inform best practice and care services in Australia. We conducted a cross-sectional analysis of 1,528 FH adults enrolled in the registry from 28 lipid clinics. RESULTS The mean age at enrolment was 53.4±15.1 years, 50.5% were male and 54.3% had undergone FH genetic testing, of which 61.8% had a pathogenic FH-causing gene variant. Only 14.0% of the cohort were family members identified through cascade testing. Coronary artery disease (CAD) was reported in 28.0% of patients (age of onset 49.0±10.5 years) and 64.9% had at least one modifiable cardiovascular risk factor. The mean untreated LDL-cholesterol was 7.4±2.5 mmol/L. 80.8% of patients were on lipid-lowering therapy with a mean treated LDL-cholesterol of 3.3±1.7 mmol/L. Among patients receiving lipid-lowering therapies, 25.6% achieved an LDL-cholesterol target of <2.5 mmol/L without CAD or <1.8 mmol/L with CAD. CONCLUSION Patients in the national FH registry are detected later in life, have a high burden of CAD and risk factors, and do not achieve guideline-recommended LDL-cholesterol targets. Genetic and cascade testing are under-utilised. These deficiencies in care need to be addressed as a public health priority.
Collapse
Affiliation(s)
- Jing Pang
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia
| | - David R Sullivan
- Department of Chemical Pathology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - David L Hare
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Vic, Australia; Department of Cardiology, Austin Health, Melbourne, Vic, Australia
| | - David M Colquhoun
- School of Medicine, University of Queensland, Brisbane, Qld, Australia; Wesley Medical Centre, Wesley Hospital and Greenslopes Private Hospital, Brisbane, Qld, Australia
| | - Timothy R Bates
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia; Department of Medicine, St John of God Hospital Midland, Perth, WA, Australia; Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
| | | | - Warrick Bishop
- Department of Cardiology, Calvary Cardiac Centre, Calvary Health Care, Hobart, Tas, Australia
| | - John R Burnett
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia; Lipid Disorders Clinic, Cardiometabolic Services, Department of Cardiology, Royal Perth Hospital, Perth, WA, Australia; Department of Clinical Biochemistry, PathWest Laboratory Medicine WA, Royal Perth Hospital and Fiona Stanley Hospital Network, Perth, WA, Australia
| | - Damon A Bell
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia; Lipid Disorders Clinic, Cardiometabolic Services, Department of Cardiology, Royal Perth Hospital, Perth, WA, Australia; Department of Clinical Biochemistry, PathWest Laboratory Medicine WA, Royal Perth Hospital and Fiona Stanley Hospital Network, Perth, WA, Australia
| | - Leon A Simons
- University of New South Wales and St Vincent's Hospital, Sydney, NSW, Australia
| | - Sam Mirzaee
- Monash Cardiovascular Research Centre, MonashHeart, Melbourne, Vic, Australia
| | - Karam M Kostner
- Department of Cardiology, Mater Hospital, University of Queensland, Brisbane, Qld, Australia
| | - Paul J Nestel
- Baker Heart & Diabetes Institute, Melbourne, Vic, Australia; Department of Cardiology, The Alfred Hospital, Melbourne, Vic, Australia
| | - Andrew M Wilson
- Department of Cardiology, St. Vincent's Hospital, Melbourne, Vic, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Vic, Australia
| | - Richard C O'Brien
- Austin Clinical School, University of Melbourne, Melbourne, Vic, Australia; Department of Endocrinology, Austin Health, Melbourne, Vic, Australia
| | - Edward D Janus
- Western Health Chronic Disease Alliance, Western Health, Melbourne, Vic, Australia; Department of Medicine, Western Health Melbourne Medical School, University of Melbourne, Melbourne, Vic, Australia
| | - Peter M Clifton
- Department of Endocrinology, Royal Adelaide Hospital, Adelaide, SA, Australia
| | | | - Dick C Chan
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia
| | - Frank van Bockxmeer
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia
| | - Gerald F Watts
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia; Department of Cardiology, Calvary Cardiac Centre, Calvary Health Care, Hobart, Tas, Australia.
| | | |
Collapse
|
31
|
Alzahrani SH, Bima A, Algethami MR, Awan Z. Assessment of medical intern's knowledge, awareness and practice of familial hypercholesterolemia at academic institutes in Jeddah, Saudi Arabia. Lipids Health Dis 2020; 19:101. [PMID: 32438925 PMCID: PMC7243307 DOI: 10.1186/s12944-020-01266-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 04/22/2020] [Indexed: 12/27/2022] Open
Abstract
Background Familial Hypercholesterolemia (FH) is a serious under-diagnosed disease characterized by raised low-density lipoprotein cholesterol (LDL-C) and premature coronary artery diseases (CAD). The scarcity of FH reported patients in Saudi Arabia indicates lack of FH awareness among physicians. Objective The goal of this research was to assess knowledge, awareness, and practice (KAP) about FH disorder among Saudi medical interns and to identify areas that need educational attention. Methods This cross-sectional study involved 170 Saudi medical interns (83 males and 87 females) from academic institutes in Jeddah, Saudi Arabia. The interns were asked to fill an online FH-KAP questionnaire. Total score for each separate domain measured by adding correct answers. Results Although, knowledge of FH definition (76.5%) and classical lipid profile (52.4%) were reasonable; knowledge on inheritance (43.5%), prevalence (12.4%) and CAD risks (7.1%) were poor. Knowledge score was significantly higher in female than male (7.5 ± 3 vs. 5.3 ± 2.6, P < 0.001). Regarding awareness, 54.1% were familiar with FH disorder, 50.6% with the presence of lipid clinic but only 16.5% were acquainted with guidelines. Furthermore, in the practice domain 82.9% selected statin as first line treatment and 62.9% chose routinely checking the rest of the family, while 15.3% chose ages 13–18 years to screen for hypercholesterolemia in patients with a positive family history of premature CAD. Conclusion Substantial defects in FH-KAP among Saudi medical interns were found, emphasizing the importance of professional training. Extensive and constant medical education programs as early as an internship are required to close the gap in CAD prevention.
Collapse
Affiliation(s)
- Sami H Alzahrani
- Family Medicine Department, Faculty of Medicine, King Abdulaziz University, PO Box 80205, Jeddah, 21589, Saudi Arabia.
| | - Abdulhadi Bima
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Zuhier Awan
- Clinical Biochemistry Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
32
|
Schwiter R, Brown E, Murray B, Kindt I, Van Enkevort E, Pollin TI, Sturm AC. Perspectives from individuals with familial hypercholesterolemia on direct contact in cascade screening. J Genet Couns 2020; 29:1142-1150. [DOI: 10.1002/jgc4.1266] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 01/02/2023]
Affiliation(s)
| | - Emily Brown
- Division of Cardiology School of Medicine Johns Hopkins University Baltimore MD USA
| | - Brittney Murray
- Division of Cardiology School of Medicine Johns Hopkins University Baltimore MD USA
| | | | | | - Toni I. Pollin
- School of Medicine University of Maryland Baltimore Baltimore MD USA
| | - Amy C. Sturm
- Genomic Medicine Institute Geisinger Danville PA USA
| |
Collapse
|
33
|
Pang J, Abraham A, Vargas-García C, Bates TR, Chan DC, Hooper AJ, Bell DA, Burnett JR, Schultz CJ, Watts GF. An age-matched computed tomography angiographic study of coronary atherosclerotic plaques in patients with familial hypercholesterolaemia. Atherosclerosis 2020; 298:52-57. [PMID: 32171980 DOI: 10.1016/j.atherosclerosis.2020.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Familial hypercholesterolaemia (FH) is characterised by a high, but variable risk of premature coronary artery disease (CAD). Cardiac computed tomography angiography (CCTA) can be employed to assess subclinical coronary atherosclerosis. We investigated the features and distribution of coronary artery plaques in asymptomatic patients with and without genetically confirmed heterozygous FH. METHODS We undertook an aged-matched case-control study of asymptomatic phenotypic FH patients with (cases, M+) and without (controls, M-) an FH-causing mutation. Coronary atherosclerosis was assessed by CCTA and calcium scoring. Coronary segments were evaluated for global and vessel-level coronary plaques and degree of stenosis. RESULTS We studied 104 cases and 104 controls (mean age 49.9 ± 10.4 years), who had a similar spectrum of non-cardiovascular risk factors. Pre-treatment plasma LDL-cholesterol was higher in the M+ than M- group (7.8 ± 2.1 vs 6.2 ± 1.2 mmol/L, p<0.001). There was a greater proportion of patients with mixed and calcified plaque, as well as a higher coronary artery calcium score and segment stenosis score (all p<0.05), in the M+ compared with the M- group. M+ patients also had a significantly higher frequency of coronary artery calcium in the left main and anterior descending and right coronary arteries (all p<0.05), but not in the left circumflex. CONCLUSIONS Among patients with phenotypic FH, those with a genetically confirmed diagnosis had a higher frequency and severity of coronary atherosclerotic plaques, and specifically more advanced calcified plaques.
Collapse
Affiliation(s)
- Jing Pang
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Arun Abraham
- Department of Diagnostic Imaging, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Cristian Vargas-García
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Timothy R Bates
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia; St John of God Midland Public and Private Hospitals, Midland, Western Australia, Australia; Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia
| | - Dick C Chan
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Amanda J Hooper
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia; Department of Clinical Biochemistry, PathWest Laboratory Medicine WA, Royal Perth Hospital and Fiona Stanley Hospital Network, Perth, Western Australia, Australia
| | - Damon A Bell
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia; Department of Clinical Biochemistry, PathWest Laboratory Medicine WA, Royal Perth Hospital and Fiona Stanley Hospital Network, Perth, Western Australia, Australia; Department of Cardiology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - John R Burnett
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia; Department of Clinical Biochemistry, PathWest Laboratory Medicine WA, Royal Perth Hospital and Fiona Stanley Hospital Network, Perth, Western Australia, Australia; Department of Cardiology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Carl J Schultz
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia; Department of Cardiology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Gerald F Watts
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia; Department of Cardiology, Royal Perth Hospital, Perth, Western Australia, Australia.
| |
Collapse
|
34
|
Familial hypercholesterolaemia: evolving knowledge for designing adaptive models of care. Nat Rev Cardiol 2020; 17:360-377. [DOI: 10.1038/s41569-019-0325-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/29/2019] [Indexed: 01/05/2023]
|
35
|
Familial Hypercholesterolaemia in 2020: A Leading Tier 1 Genomic Application. Heart Lung Circ 2019; 29:619-633. [PMID: 31974028 DOI: 10.1016/j.hlc.2019.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 12/15/2022]
Abstract
Familial hypercholesterolaemia (FH) is caused by a major genetic defect in the low-density lipoprotein (LDL) clearance pathway. Characterised by LDL-cholesterol elevation from birth, FH confers a significant risk for premature coronary artery disease (CAD) if overlooked and untreated. With risk exposure beginning at birth, early detection and intervention is crucial for the prevention of CAD. Lowering LDL-cholesterol with lifestyle and statin therapy can reduce the risk of CAD. However, most individuals with FH will not reach guideline recommended LDL-cholesterol targets. FH has an estimated prevalence of approximately 1:250 in the community. Multiple strategies are required for screening, diagnosing and treating FH. Recent publications on FH provide new data for developing models of care, including new therapies. This review provides an overview of FH and outlines some recent advances in the care of FH for the prevention of CAD in affected families. The future care of FH in Australia should be developed within the context of the National Health Genomics Policy Framework.
Collapse
|
36
|
Kolovou G, Watts GF. Familial Hypercholesterolaemia Registry in the MENA Region. Curr Vasc Pharmacol 2019; 18:65-67. [DOI: 10.2174/1570161117999190115151525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Genovefa Kolovou
- Department of Cardiology, Onassis Cardiac Surgery Center, Athens, Greece
| | - Gerald F. Watts
- Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, School of Medicine and Pharmacology, University of Western Australia, Crawley, Australia
| |
Collapse
|
37
|
Gulsoy Kirnap N, Kirnap M, Bascil Tutuncu N, Moray G, Haberal M. The curative treatment of familial hypercholesterolemia: Liver transplantation. Clin Transplant 2019; 33:e13730. [PMID: 31626710 DOI: 10.1111/ctr.13730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/11/2019] [Accepted: 10/06/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Familial hypercholesterolemia (FH) is an autosomal dominant genetic disorder characterized by premature mortal cardiovascular complications. Liver transplantation (LT) is the only curative treatment option. In this study, the long-term clinical follow-up data of 8 patients who underwent LT with a diagnosis of FH in our center are presented. MATERIALS AND METHODS A total of 638 LT were performed between December 1985 and June 2019 at Baskent University, of which 8 patients underwent LT with a diagnosis of FH and were evaluated retrospectively. RESULTS Of the 8 patients, 4 underwent deceased donor and 4 living donor transplantation. Five patients had preoperative cardiovascular disease and consequent interventional operations. There was significant reduction in postoperative LDL-C and TC levels starting from the first week, and stabilizing at the first month and first year. The median survival time of patients was 5 years (2-12 years). All patients are still alive. None of the complications of patients with preoperative cardiovascular complications had progressed. CONCLUSION Liver transplantation is the preferred curative treatment for the pathophysiology of FH. In our study, LDL-C levels were brought under control with LT performed on patients with FH. Median 5-year follow-up of patients showed that the progression of cardiac complications was abated.
Collapse
Affiliation(s)
| | - Mahir Kirnap
- Department of General Surgery Division of Transplantation, Baskent University, Ankara, Turkey
| | | | - Gokhan Moray
- Department of General Surgery Division of Transplantation, Baskent University, Ankara, Turkey
| | - Mehmet Haberal
- Department of General Surgery Division of Transplantation, Baskent University, Ankara, Turkey
| |
Collapse
|
38
|
Hagger MS, Hamilton K, Hardcastle SJ, Hu M, Kwok S, Lin J, Nawawi HM, Pang J, Santos RD, Soran H, Su TC, Tomlinson B, Watts GF. Predicting intention to participate in self-management behaviors in patients with Familial Hypercholesterolemia: A cross-national study. Soc Sci Med 2019; 242:112591. [PMID: 31630009 DOI: 10.1016/j.socscimed.2019.112591] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 09/30/2019] [Accepted: 10/04/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Martin S Hagger
- Psychological Sciences, University of California, Merced, USA; Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland; School of Applied Psychology, Griffith University, Brisbane, Australia.
| | - Kyra Hamilton
- School of Applied Psychology, Griffith University, Brisbane, Australia
| | - Sarah J Hardcastle
- School of Health and Human Performance, Dublin City University, Ireland; Institute for Health Research, University of Notre Dame, Fremantle, Australia; School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia
| | - Miao Hu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong,Special Administrative Region
| | - See Kwok
- Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, UK; Lipoprotein Research Group, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK
| | - Jie Lin
- Department of Atherosclerosis, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hapizah M Nawawi
- Institute for Pathology, Laboratory and Forensic Medicine (I-PPerForM) and Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor, Malaysia
| | - Jing Pang
- School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia
| | - Raul D Santos
- Lipid Clinic Heart Institute (InCor), University of São Paulo Medical School Hospital, and Preventive Medicine Centre and Cardiology Program Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Handrean Soran
- Cardiovascular Trials Unit, Manchester University NHS Foundation Trust, Manchester, UK
| | - Ta-Chen Su
- Department of Internal Medicine and Cardiovascular Centre and College of Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Brian Tomlinson
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong,Special Administrative Region
| | - Gerald F Watts
- School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia; Lipid Disorders Clinic, Cardiometabolic Service, Department of Cardiology, Royal Perth Hospital, Perth, Australia
| |
Collapse
|
39
|
Comparison of the characteristics at diagnosis and treatment of children with heterozygous familial hypercholesterolaemia (FH) from eight European countries. Atherosclerosis 2019; 292:178-187. [PMID: 31809987 PMCID: PMC6949888 DOI: 10.1016/j.atherosclerosis.2019.11.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022]
Abstract
Background and aims For children with heterozygous familial hypercholesterolaemia (HeFH), European guidelines recommend consideration of statin therapy by age 8–10 years for those with a low density lipoprotein cholesterol (LDL-C) >3.5 mmol/l, and dietary and lifestyle advice. Here we compare the characteristics and lipid levels in HeFH children from Norway, UK, Netherlands, Belgium, Czech Republic, Austria, Portugal and Greece. Methods Fully-anonymized data were analysed at the London centre. Differences in registration and on treatment characteristics were compared by standard statistical tests. Results Data was obtained from 3064 children. The median age at diagnosis differed significantly between countries (range 3–11 years) reflecting differences in diagnostic strategies. Mean (SD) LDL-C at diagnosis was 5.70 (±1.4) mmol/l, with 88% having LDL-C>4.0 mmol/l. The proportion of children older than 10 years at follow-up who were receiving statins varied significantly (99% in Greece, 56% in UK), as did the proportion taking Ezetimibe (0% in UK, 78% in Greece). Overall, treatment reduced LDL-C by between 28 and 57%, however, in those >10 years, 23% of on-treatment children still had LDL-C>3.5 mmol/l and 66% of those not on a statin had LDL-C>3.5 mmol/l. Conclusions The age of HeFH diagnosis in children varies significantly across 8 countries, as does the proportion of those >10 years being treated with statin and/or ezetimibe. Approximately a quarter of the treated children and almost three quarters of the untreated children older than 10 years still have LDL-C concentrations over 3.5 mmol/l. These data suggest that many children with FH are not receiving the full potential benefit of early identification and appropriate lipid-lowering treatment according to recommendations. The age of HeFH diagnosis varies significantly between 8 European countries. The proportion of HeFH children being treated varies across 8 European countries. A quarter of FH children on statins have LDL-C above the target (>3.5 mmol/L). Many FH children are not getting the full benefit of early diagnosis and treatment.
Collapse
|
40
|
Clinical utility of the polygenic LDL-C SNP score in familial hypercholesterolemia. Atherosclerosis 2019; 277:457-463. [PMID: 30270085 DOI: 10.1016/j.atherosclerosis.2018.06.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/16/2018] [Accepted: 06/07/2018] [Indexed: 01/28/2023]
Abstract
Mutations in any of three genes (LDLR, APOB and PCSK9) are known to cause autosomal dominant FH, but a mutation can be found in only ∼40% of patients with a clinical diagnosis of FH. In the remainder, a polygenic aetiology may be the cause of the phenotype, due to the co-inheritance of common LDL-C raising variants. In 2013, we reported the development of a 12-SNP LDL-C "SNP-Score" based on common variants identified as LDL-C raising from genome wide association consortium studies, and have confirmed the validity of this score in samples of no-mutation FH adults and children from more than six countries with European-Caucasian populations. In more than 80% of those with a clinical diagnosis of FH but with no detectable mutation in LDLR/APOB/PCSK9, the polygenic explanation is the most likely for their hypercholesterolaemia. Those with a low score (in the bottom two deciles) may have a mutation in a novel gene, and further research including whole exome or whole genome sequencing is warranted. Only in families where the index case has a monogenic cause should cascade testing be carried out, using DNA tests for an unambiguous identification of affected relatives. The clinical utility of the polygenic explanation is that it supports a more conservative (less aggressive) treatment care pathway for those with no mutation. The ability to distinguish those with a clinical diagnosis of FH who have a monogenic or a polygenic cause of their hypercholesterolaemia is a paradigm example of the use of genomic information to inform Precision Medicine using lipid lowering agents with different efficacy and costs.
Collapse
|
41
|
Groselj U, Kovac J, Sustar U, Mlinaric M, Fras Z, Podkrajsek KT, Battelino T. Universal screening for familial hypercholesterolemia in children: The Slovenian model and literature review. Atherosclerosis 2019; 277:383-391. [PMID: 30270075 DOI: 10.1016/j.atherosclerosis.2018.06.858] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/06/2018] [Accepted: 06/14/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND AIMS Familial hypercholesterolemia (FH) is arguably the most common monogenic disorder in humans, but severely under-diagnosed. Individuals with untreated FH have an over 10-fold elevated risk of cardiovascular complications as compared to unaffected individuals; early diagnosis and timely management substantially reduce this risk. Slovenia has gradually implemented the program of universal FH screening in pre-school children, consisting of a two step approach: (1) universal hypercholesterolemia screening in pre-school children at the primary care level; (2) genetic FH screening in children referred to the tertiary care level according to clinical guidelines (with additional cascade screening of family members). The program is presented in detail. METHODS We analyzed retrospective data (2012-2016), to assess the efficiency of the universal FH screening program. In that period, 280 children (59.3% female) were referred to our center through the program for having TC > 6 mmol/L (231.7 mg/dL) or >5 mmol/L (193.1 mg/dL), with a positive family history of premature cardiovascular complications at the universal hypercholesterolemia screening. RESULTS 170 (57.1% female) of them were fully genotyped, 44.7% had an FH disease-causing variant (28.8% in LDLR gene, 15.9% in APOB, none in PCSK9), one patient was LIPA positive, and 40.9% of the remaining patients carried an ApoE4 isoform; genetic analysis is still ongoing for one-third of the referred patients. For almost every child with confirmed FH, one parent had highly probable FH. CONCLUSIONS FH was confirmed in almost half of the referred children, detected through the universal screening for hypercholesterolemia.
Collapse
Affiliation(s)
- Urh Groselj
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Jernej Kovac
- Unit for Special Laboratory Diagnostics, University Children's Hospital, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Ursa Sustar
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, University Medical Center Ljubljana, Ljubljana, Slovenia; Unit for Special Laboratory Diagnostics, University Children's Hospital, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Matej Mlinaric
- Department of Internal Medicine, General Hospital Murska Sobota, Murska Sobota, Slovenia
| | - Zlatko Fras
- Department of Vascular Diseases, Division of Internal Medicine, University Medical Center Ljubljana, Ljubljana, Slovenia; Department of Internal Medicine, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Katarina Trebusak Podkrajsek
- Unit for Special Laboratory Diagnostics, University Children's Hospital, University Medical Center Ljubljana, Ljubljana, Slovenia; Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tadej Battelino
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, University Medical Center Ljubljana, Ljubljana, Slovenia; Department of Pediatrics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
42
|
Henrikson NB, Blasi PR, Fullerton SM, Grafton J, Leppig KA, Jarvik GP, Larson EB. "It would be so much easier": health system-led genetic risk notification-feasibility and acceptability of cascade screening in an integrated system. J Community Genet 2019; 10:461-470. [PMID: 30843145 PMCID: PMC6754469 DOI: 10.1007/s12687-019-00412-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/04/2019] [Accepted: 02/07/2019] [Indexed: 11/02/2022] Open
Abstract
Assess the feasibility and acceptability of health system-led genetic risk notification in a US integrated health system. We conducted semi-structured phone interviews with individuals age 40-64 years who had undergone genetic sequencing, but had not yet received their results, assessing attitudes to direct outreach to relatives. During each interview, we collected contact information for adult relatives identified as members of the same system and attempted to identify each relative in administrative data. We conducted 20 interviews. Most participants expressed support for Kaiser Permanente Washington involvement in familial risk notification. Direct outreach to relatives received the most unqualified support; outreach to the relatives' physician or interaction with the relatives' electronic medical record received more tempered support. Support was motivated by the desire to have risk communicated accurately and quickly. The most common caveat was a desire to alert relatives before the health system contacted them. Of 57 named relatives who were members of the same health system, we retrieved a single match for 40 (70.2%) based on name or birthdate. Health system involvement in familial risk notification received support in a sample of patients in a US integrated health system, and identification of relatives is feasible.
Collapse
Affiliation(s)
- Nora B. Henrikson
- Kaiser Permanente Washington Health Research Institute, Seattle, WA USA
| | - Paula R. Blasi
- Kaiser Permanente Washington Health Research Institute, Seattle, WA USA
| | - Stephanie M. Fullerton
- Department of Bioethics and Humanities, School of Medicine, University of Washington, Seattle, WA USA
| | - Jane Grafton
- Kaiser Permanente Washington Health Research Institute, Seattle, WA USA
| | | | - Gail P. Jarvik
- Departments of Medicine (Medical Genetics) and Genome Sciences, University of Washington, Seattle, WA USA
| | - Eric B. Larson
- Kaiser Permanente Washington Health Research Institute, Seattle, WA USA
| |
Collapse
|
43
|
Chan DC, Pang J, Hooper AJ, Bell DA, Burnett JR, Watts GF. Effect of Lipoprotein(a) on the Diagnosis of Familial Hypercholesterolemia: Does It Make a Difference in the Clinic? Clin Chem 2019; 65:1258-1266. [DOI: 10.1373/clinchem.2019.306738] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/10/2019] [Indexed: 11/06/2022]
Abstract
Abstract
BACKGROUND
Diagnostic tools for familial hypercholesterolemia (FH) rely on estimation of LDL cholesterol concentration. However, routine measurement or calculation of LDL cholesterol concentration using the Friedewald equation contains a cholesterol contribution from lipoprotein(a) [Lp(a)]. We investigated whether Lp(a) influences the phenotypic diagnosis of FH by commonly used clinical criteria.
METHODS
A cohort of 907 adult index patients attending a clinic were studied. The Dutch Lipid Clinic Network (DLCN) and Simon Broome (SB) diagnostic criteria were estimated before and after adjusting LDL cholesterol concentration for the cholesterol content (30%) of Lp(a). Diagnostic reclassification rates and area under the ROC (AUROC) curves in predicting an FH mutation were also compared.
RESULTS
Seventy-four patients defined by DLCN criteria (8.2%) and 207 patients defined by SB criteria (22.8%) were reclassified to “unlikely” FH after adjusting LDL cholesterol for Lp(a) cholesterol. The proportion of FH patients defined by DLCN (probable/definite) and SB (possible/definite) criteria decreased significantly in patients with increased Lp(a) (>0.5 g/L; n = 330) after Lp(a) cholesterol adjustment (P < 0.01). The overall reclassification rate was significantly higher in patients with Lp(a) concentration >1.0 g/L (P < 0.001). The AUROC curve for LDL cholesterol concentration ≥191 mg/dL (≥5.0 mmol/L), DLCN criteria, and SB criteria in predicting an FH mutation increased significantly after adjustment (P < 0.001). There was no significant difference in AUROC curve before and after Lp(a) cholesterol adjustment at an LDL cholesterol concentration ≥251 mg/dL (≥6.5 mmol/L).
CONCLUSIONS
Adjusting LDL cholesterol concentration for Lp(a) cholesterol improves the diagnostic accuracy of DLCN and SB criteria, especially with Lp(a) >1.0 g/L and LDL cholesterol <251 mg/dL (<6.5 mmol/L). Lp(a) should be measured in all patients suspected of having FH.
Collapse
Affiliation(s)
- Dick C Chan
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Jing Pang
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Amanda J Hooper
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
- Department of Clinical Biochemistry, PathWest Laboratory Medicine WA, Royal Perth Hospital and Fiona Stanley Hospital Network, Perth, Western Australia, Australia
| | - Damon A Bell
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
- Department of Clinical Biochemistry, PathWest Laboratory Medicine WA, Royal Perth Hospital and Fiona Stanley Hospital Network, Perth, Western Australia, Australia
- Lipid Disorders Clinic, Cardiometabolic Services, Department of Cardiology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - John R Burnett
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
- Department of Clinical Biochemistry, PathWest Laboratory Medicine WA, Royal Perth Hospital and Fiona Stanley Hospital Network, Perth, Western Australia, Australia
- Lipid Disorders Clinic, Cardiometabolic Services, Department of Cardiology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Gerald F Watts
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
- Lipid Disorders Clinic, Cardiometabolic Services, Department of Cardiology, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
44
|
Stefanutti C, Pang J, Di Giacomo S, Wu X, Wang X, Morozzi C, Watts GF, Lin J. A cross-national investigation of cardiovascular survival in homozygous familial hypercholesterolemia: The Sino-Roman Study. J Clin Lipidol 2019; 13:608-617. [DOI: 10.1016/j.jacl.2019.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/02/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022]
|
45
|
Mirzaee S, Rashid HN, Tumur O, Nogic J, Verma K, Cameron JD, Nicholls SJ, Nasis A. Awareness of Familial Hypercholesterolemia Among Healthcare Providers Involved in the Management of Acute Coronary Syndrome in Victoria, Australia. CJC Open 2019; 1:168-172. [PMID: 32159103 PMCID: PMC7063651 DOI: 10.1016/j.cjco.2019.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 05/07/2019] [Indexed: 12/22/2022] Open
Abstract
Background Familial hypercholesterolemia (FH) is a common underdiagnosed autosomal dominant lipid disorder carrying a significant risk of premature coronary artery disease. The aim of this study was to evaluate the awareness and knowledge of heterozygous FH of healthcare providers in coronary care units (CCUs). Methods Medical staff working in CCUs in 4 sizable metropolitan health networks in Melbourne, Australia, were requested to complete a structured anonymised questionnaire with regard to FH. The results were tabulated and analysed with the Statistical Package for the Social Sciences version 23 (IBM, New York, NY). Results A total of 121 participants (67% response rate) completed the survey. Some 76% claimed to be at least modestly familiar with FH, and more than half of them adequately described FH; however, only 16% and 43%, respectively, were aware of the prevalence of FH and existence of lipid guidelines. In regard to epidemiological knowledge and update in the management of FH in CCUs, knowledge was suboptimal. In regard to FH care, General Practitioners were rated by 72% of participants as the first most efficient healthcare provider in the management of FH, and cardiologists were rated by 54% of participants as the second most efficient healthcare provider in the management of FH. Some 36% of respondents advocated a form of alert system in laboratory reports to facilitate the diagnosis of FH. Conclusions This survey identified substantial gaps in the knowledge and awareness of FH among healthcare providers involved in the management of acute coronary syndrome. Focused education and clinical training are warranted to raise awareness of FH among healthcare providers working in CCUs.
Collapse
Affiliation(s)
- Sam Mirzaee
- Monash Cardiovascular Research Centre MonashHeart, Monash Health, Monash University, Melbourne, Australia
- Corresponding author: Dr Sam Mirzaee, 246 Clayton Road, Clayton, Victoria 3168, Australia. Tel.: +61 3 9594 6666; fax: +61 3 9594 6239.
| | - Hashrul N. Rashid
- Monash Cardiovascular Research Centre MonashHeart, Monash Health, Monash University, Melbourne, Australia
| | - Odgerel Tumur
- The Royal Melbourne Hospital, Cardiology Department, Melbourne, Australia
| | - Jason Nogic
- Monash Cardiovascular Research Centre MonashHeart, Monash Health, Monash University, Melbourne, Australia
- Box Hill Hospital, Eastern Health, Cardiology Department, Melbourne, Australia
| | - Kunal Verma
- Western Hospital, Western Health, Cardiology Department, Melbourne, Australia
| | - James D. Cameron
- Monash Cardiovascular Research Centre MonashHeart, Monash Health, Monash University, Melbourne, Australia
| | - Stephen J. Nicholls
- Monash Cardiovascular Research Centre MonashHeart, Monash Health, Monash University, Melbourne, Australia
| | - Arthur Nasis
- Monash Cardiovascular Research Centre MonashHeart, Monash Health, Monash University, Melbourne, Australia
| |
Collapse
|
46
|
Mirzaee S, Choy KW, Doery JCG, Zaman S, Cameron JD, Nasis A. The tertiary hospital laboratory; a novel avenue of opportunistic screening of familial hypercholesterolemia. IJC HEART & VASCULATURE 2019; 23:100354. [PMID: 31080874 PMCID: PMC6503163 DOI: 10.1016/j.ijcha.2019.100354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/09/2019] [Accepted: 03/24/2019] [Indexed: 11/03/2022]
Abstract
Background Familial hypercholesterolemia (FH) is a common monogenic hereditary lipid disorder characterised by increased serum low-density lipoprotein cholesterol (LDL-cholesterol) concentrations and high risk of premature atherosclerotic cardiovascular disease. The prevalence of FH identified in a tertiary hospital laboratory was investigated by performing an opportunistic screen for index cases. Methods The prevalence of likely FH based on LDL-cholesterol thresholds >4.9 mmol/L as employed by the Dutch Lipid Clinic Network Criteria (DLCNC) score was evaluated retrospectively in a single tertiary hospital laboratory over a six-month period (July to December 2016). Results 4943 lipid profiles screened, 106 patients (mean age 53.2 ± 12.9 and 41% male) had LDL-cholesterol of >4.9 mmol/L after exclusion of 5 patients (0.1%) with secondary causes. Possible (n = 90) and probable/definite (n = 16) FH according to DLCNC score was seen in 1.8% and 0.4% of the overall screened population, respectively. Conclusions Point prevalence of screening for FH in patients undergoing lipid profile testing in a tertiary hospital laboratory was comparable with prevalence of FH in general population (based on 1 in 200-250). This supports the benefit of establishing an efficient "alert system" in conjunction with a trigger "reflex testing" to facilitate further formal FH scoring and exclusion of possible secondary causes of hyperlipidemia in potential index FH.
Collapse
Key Words
- AHA, American Heart Association
- APO-B, Apolipoprotein-B
- ASCVD, Atherosclerotic cardiovascular disease
- CAD, Coronary artery disease
- DLCNC, Dutch Lipid Clinic Network Criteria
- FH
- FH, Familial hypercholesterolemia
- Familial hypercholesterolemia
- HDL-C, High density lipoprotein cholesterol
- HIV, Human immunodeficiency virus
- LDL-R, Low density lipoprotein receptor
- LDL-cholesterol, Low-density lipoprotein cholesterol
- Opportunistic screening
- PCSK-9, Proprotein convertase subtilisin/kexin type-9
- Tertiary hospital laboratory
Collapse
Affiliation(s)
- Sam Mirzaee
- Monash Cardiovascular Research Centre, MonashHEART, Monash Health, Monash University, Melbourne, Australia
| | - Kay W Choy
- Monash Health Pathology, Monash Health, Monash University, Melbourne, Australia
| | - James C G Doery
- Monash Health Pathology, Monash Health, Monash University, Melbourne, Australia
| | - Sarah Zaman
- Monash Cardiovascular Research Centre, MonashHEART, Monash Health, Monash University, Melbourne, Australia
| | - James D Cameron
- Monash Cardiovascular Research Centre, MonashHEART, Monash Health, Monash University, Melbourne, Australia
| | - Arthur Nasis
- Monash Cardiovascular Research Centre, MonashHEART, Monash Health, Monash University, Melbourne, Australia
| |
Collapse
|
47
|
Arnous MM, Alghamdi AM, Ghoraba MA. Assessment of family physicians' awareness and knowledge of familial hypercholesterolemia in governmental hospitals in Riyadh, Saudi Arabia. J Family Med Prim Care 2019; 8:1981-1986. [PMID: 31334166 PMCID: PMC6618226 DOI: 10.4103/jfmpc.jfmpc_285_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background Familial Hypercholesterolemia (FH) is an inherited and complex multifactorial disease that can lead to early onset of coronary artery disease (CAD). Diagnosis, treatment, and management of FH require a well-trained physician with high awareness of the disease and different risk factors to avoid complications. Materials and Methods This cross-sectional study evaluated family physicians' awareness and knowledge of FH using self-administered questionnaires in governmental hospitals in Riyadh, Saudi Arabia, during 2018. Results A total of 225 family physicians completed the questionnaire, with a response rate of 58.4%. The mean age of respondents was 31.3 years and more than 59.1% were men. Although 72.4% of physicians rated their familiarity with FH as average and above, 48.4% of all participants had poor FH knowledge, while only 51.6% had acceptable FH knowledge. About 65.8% of physicians reported that they routinely take a detailed family history, perform a physical examination, and screen close relatives. Awareness of various clinical algorithms for diagnosis of patients with FH was very low at 52.0%. The mean FH knowledge and familiarity scores were significantly higher (P < 0.001) among participants who were older, had higher training levels, or longer years in practice. Conclusions The current study revealed significant deficits in FH familiarity, awareness, knowledge, and practice among Saudi physicians. FH educational programs directed at all physicians involved in FH patients' management are necessary to improve physicians' knowledge of all aspects of FH management, including the importance of a mechanism for identifying people at risk for a genetic condition by a process of systematic family tracing.
Collapse
Affiliation(s)
| | | | - Medhat A Ghoraba
- Department of Family Medicine, Security Forces Hospital, Riyadh, Saudi Arabia
| |
Collapse
|
48
|
Lan NSR, Martin AC, Brett T, Watts GF, Bell DA. Improving the detection of familial hypercholesterolaemia. Pathology 2018; 51:213-221. [PMID: 30579649 DOI: 10.1016/j.pathol.2018.10.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/15/2018] [Accepted: 10/15/2018] [Indexed: 02/03/2023]
Abstract
Familial hypercholesterolaemia (FH) is a dominantly inherited disorder of low-density lipoprotein (LDL) catabolism, which if untreated causes lifelong elevated LDL-cholesterol (LDL-c), accelerated atherosclerosis and premature cardiovascular disease. Recent evidence suggests the prevalence of heterozygous FH is ∼1:220, making FH the most common autosomal dominant condition. Lowering LDL-c with statin and lifestyle therapy reduces the risk of cardiovascular events. Furthermore, proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors significantly lower LDL-c in addition to statin therapy, and early outcome data suggest improved vascular outcomes with these agents in FH patients in addition to statins. However, the vast majority of people with FH still remain undiagnosed. The onus is on clinicians to identify kindreds with FH, as PCSK9 inhibitors, although expensive, are funded for patients with FH in Australia. Multiple strategies for detecting FH have been proposed. The detection of index cases can be achieved through applying electronic screening tools to general practice databases, universal screening of children during immunisation, and targeted screening of patients with premature cardiovascular disease. Advances in genomic technology have decreased costs of genetic testing, improved the understanding of the pathogenesis of FH and facilitated cascade screening. However, awareness of FH amongst clinicians and the general public still requires optimisation. This review outlines recent advances in FH detection, including emerging strategies and challenges for the next decade.
Collapse
Affiliation(s)
- Nick S R Lan
- Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Andrew C Martin
- Department of General Paediatrics, Perth Children's Hospital, Nedlands, WA, Australia
| | - Tom Brett
- Department of General Practice and Primary Health Care Research, School of Medicine, The University of Notre Dame Australia, Fremantle, WA, Australia
| | - Gerald F Watts
- Faculty of Health and Medical Sciences, School of Medicine, The University of Western Australia, Crawley, WA, Australia; Department of Cardiology, Lipid Disorders Clinic, Cardiometabolic Service, Royal Perth Hospital, Perth, WA, Australia
| | - Damon A Bell
- Faculty of Health and Medical Sciences, School of Medicine, The University of Western Australia, Crawley, WA, Australia; Department of Cardiology, Lipid Disorders Clinic, Cardiometabolic Service, Royal Perth Hospital, Perth, WA, Australia; Department of Clinical Biochemistry, PathWest Laboratory Medicine, Royal Perth Hospital, Perth, WA, Australia; Department of Clinical Biochemistry, Australian Clinical Laboratories, Perth, WA, Australia.
| |
Collapse
|
49
|
Petrulioniene Z, Gargalskaite U, Kutkiene S, Staigyte J, Cerkauskiene R, Laucevicius A. Establishing a national screening programme for familial hypercholesterolaemia in Lithuania. Atherosclerosis 2018; 277:407-412. [DOI: 10.1016/j.atherosclerosis.2018.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/15/2018] [Accepted: 06/07/2018] [Indexed: 12/27/2022]
|
50
|
Vallejo-Vaz AJ, De Marco M, Stevens CAT, Akram A, Freiberger T, Hovingh GK, Kastelein JJP, Mata P, Raal FJ, Santos RD, Soran H, Watts GF, Abifadel M, Aguilar-Salinas CA, Al-Khnifsawi M, AlKindi FA, Alnouri F, Alonso R, Al-Rasadi K, Al-Sarraf A, Ashavaid TF, Binder CJ, Bogsrud MP, Bourbon M, Bruckert E, Chlebus K, Corral P, Descamps O, Durst R, Ezhov M, Fras Z, Genest J, Groselj U, Harada-Shiba M, Kayikcioglu M, Lalic K, Lam CSP, Latkovskis G, Laufs U, Liberopoulos E, Lin J, Maher V, Majano N, Marais AD, März W, Mirrakhimov E, Miserez AR, Mitchenko O, Nawawi HM, Nordestgaard BG, Paragh G, Petrulioniene Z, Pojskic B, Postadzhiyan A, Reda A, Reiner Ž, Sadoh WE, Sahebkar A, Shehab A, Shek AB, Stoll M, Su TC, Subramaniam T, Susekov AV, Symeonides P, Tilney M, Tomlinson B, Truong TH, Tselepis AD, Tybjærg-Hansen A, Vázquez-Cárdenas A, Viigimaa M, Vohnout B, Widén E, Yamashita S, Banach M, Gaita D, Jiang L, Nilsson L, Santos LE, Schunkert H, Tokgözoğlu L, Car J, Catapano AL, Ray KK. Overview of the current status of familial hypercholesterolaemia care in over 60 countries - The EAS Familial Hypercholesterolaemia Studies Collaboration (FHSC). Atherosclerosis 2018; 277:234-255. [PMID: 30270054 DOI: 10.1016/j.atherosclerosis.2018.08.051] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS Management of familial hypercholesterolaemia (FH) may vary across different settings due to factors related to population characteristics, practice, resources and/or policies. We conducted a survey among the worldwide network of EAS FHSC Lead Investigators to provide an overview of FH status in different countries. METHODS Lead Investigators from countries formally involved in the EAS FHSC by mid-May 2018 were invited to provide a brief report on FH status in their countries, including available information, programmes, initiatives, and management. RESULTS 63 countries provided reports. Data on FH prevalence are lacking in most countries. Where available, data tend to align with recent estimates, suggesting a higher frequency than that traditionally considered. Low rates of FH detection are reported across all regions. National registries and education programmes to improve FH awareness/knowledge are a recognised priority, but funding is often lacking. In most countries, diagnosis primarily relies on the Dutch Lipid Clinics Network criteria. Although available in many countries, genetic testing is not widely implemented (frequent cost issues). There are only a few national official government programmes for FH. Under-treatment is an issue. FH therapy is not universally reimbursed. PCSK9-inhibitors are available in ∼2/3 countries. Lipoprotein-apheresis is offered in ∼60% countries, although access is limited. CONCLUSIONS FH is a recognised public health concern. Management varies widely across countries, with overall suboptimal identification and under-treatment. Efforts and initiatives to improve FH knowledge and management are underway, including development of national registries, but support, particularly from health authorities, and better funding are greatly needed.
Collapse
Affiliation(s)
- Antonio J Vallejo-Vaz
- Imperial Centre for Cardiovascular Disease Prevention (ICCP), Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, United Kingdom.
| | - Martina De Marco
- Imperial Centre for Cardiovascular Disease Prevention (ICCP), Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, United Kingdom.
| | - Christophe A T Stevens
- Imperial Centre for Cardiovascular Disease Prevention (ICCP), Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, United Kingdom
| | | | - Tomas Freiberger
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czech Republic; Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - G Kees Hovingh
- Department of Vascular Medicine, Academic Medical Centre, Amsterdam, the Netherlands
| | - John J P Kastelein
- Department of Vascular Medicine, Academic Medical Centre, Amsterdam, the Netherlands
| | - Pedro Mata
- Fundación Hipercolesterolemia Familiar, Madrid, Spain
| | - Frederick J Raal
- Division of Endocrinology & Metabolism, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Raul D Santos
- Heart Institute (InCor), University of Sao Paulo Medical School Hospital, Sao Paulo, Brazil; Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - Handrean Soran
- University Department of Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Gerald F Watts
- School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia; Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, Perth, Australia; FH Australasia Network (FHAN), Australia
| | - Marianne Abifadel
- Laboratory of Biochemistry and Molecular Therapeutics, Faculty of Pharmacy, Pôle Technologie-Santé, Saint Joseph University, Beirut, Lebanon
| | | | - Mutaz Al-Khnifsawi
- Al-Qadisiyah University, Faculty of Medicine, Department of Internal Medicine, Diwaniya City, Iraq
| | | | - Fahad Alnouri
- Cardiovascular Prevention Unit, Prince Sultan Cardiac Centre Riyadh, Riyadh, Saudi Arabia
| | | | | | - Ahmad Al-Sarraf
- Laboratory Department, Kuwait Cancer Control Centre, Kuwait City, Kuwait
| | - Tester F Ashavaid
- P. D Hinduja National Hospital and Medical Research Centre, Mumbai, India
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Martin P Bogsrud
- Unit for Cardiac and Cardiovascular Genetics, Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Mafalda Bourbon
- Unidade I&D, Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; Faculty of Sciences, Biosystems & Integrative Sciences Institute (BioISI), University of Lisboa, Lisboa, Portugal
| | - Eric Bruckert
- Department of Endocrinology, Institut E3M et IHU Cardiométabolique (ICAN), Hôpital Pitié Salpêtrière, Paris, France
| | - Krzysztof Chlebus
- First Department of Cardiology, Medical University of Gdansk, Gdańsk, Poland; Clinical Centre of Cardiology, University Clinical Centre, Gdańsk, Poland
| | - Pablo Corral
- Pharmacology Department, School of Medicine, FASTA University, Mar del Plata, Argentina
| | | | - Ronen Durst
- Cardiology Department and Centre for Treatment and Prevention of Atherosclerosis, Hadassah Hebrew University Medical Centre, Jerusalem, Israel
| | - Marat Ezhov
- National Cardiology Research Centre, Ministry of Health of the Russian Federation, Russia
| | - Zlatko Fras
- University Medical Centre Ljubljana, Division of Medicine, Preventive Cardiology Unit, Ljubljana, Slovenia; Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jacques Genest
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Urh Groselj
- University Medical Centre Ljubljana, University Children's Hospital, Department of Endocrinology, Diabetes and Metabolism, Ljubljana, Slovenia
| | - Mariko Harada-Shiba
- National Cerebral and Cardiovascular Centre Research Institute, Suita, Osaka, Japan
| | - Meral Kayikcioglu
- Ege University Medical School, Department of Cardiology, Izmir, Turkey
| | - Katarina Lalic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Centre of Serbia, Belgrade, Serbia
| | - Carolyn S P Lam
- National Heart Centre, Singapore; Duke-NUS Medical School, Singapore
| | - Gustavs Latkovskis
- Research Institute of Cardiology and Regenerative Medicine, Faculty of Medicine, University of Latvia, Pauls Stradins Clinical University Hospital, Riga, Latvia
| | - Ulrich Laufs
- Klinik und Poliklinikfür Kardiologie, Universitätsklinikum Leipzig, Germany
| | | | - Jie Lin
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Vincent Maher
- Advanced Lipid Management and Research (ALMAR) Centre, Ireland
| | | | - A David Marais
- University of Cape Town and National Health Laboratory Service, Cape Town, South Africa
| | - Winfried März
- Medizinische Klinik V (Nephrologie, Hypertensiologie, Rheumatologie, Endokrinologie, Diabetologie), Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany; Klinisches Institutfür Medizinische und Chemische Labordiagnostik, Medizinische Universität Graz, Graz, Austria; Synlab Akademie, Synlab Holding Deutschland GmbH, Mannheim und Augsburg, Germany; D-A-CH-Gesellschaft Prävention von Herz-Kreislauf-Erkrankungen e.V., Hamburg, Germany
| | - Erkin Mirrakhimov
- Kyrgyz State Medical Academy, Centre of Cardiology and Internal Diseases, Biskek, Kyrgizstan
| | - André R Miserez
- Diagene Research Institute, Swiss FH Center, Reinach, Switzerland; Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Olena Mitchenko
- Dyslipidemia Department, State Institution National Scientific Centre "The M.D. Strazhesko Institute of Cardiology National Academy of Medical Sciences of Ukraine", Kiev, Ukraine
| | - Hapizah M Nawawi
- Institute of Pathology, Laboratory and Forensic Medicine (I-PPerForM) and Faculty of Medicine Universiti Teknologi MARA, Jalan Hospital, Sungai Buloh, Selangor, Malaysia
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry and the Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - György Paragh
- Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zaneta Petrulioniene
- Vilnius University, Faculty of Medicine, Vilnius, Lithuania; Clinic of Cardiac and Vascular Diseases, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | | | - Arman Postadzhiyan
- Bulgarian Society of Cardiology, Medical University of Sofia, Sofia, Bulgaria
| | - Ashraf Reda
- Cardiology, Menofia University, Egypt; Egyptian Association of Vernacular Biology and Atherosclerosis (EAVA), Egypt
| | - Željko Reiner
- Department of Internal Medicine, Division of Metabolic Diseases, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Wilson E Sadoh
- Cardiology Unit, Department of Child Health, University of Benin Teaching Hospital, Benin City, Edo State, Nigeria
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdullah Shehab
- Department of Internal Medicine, United Arab Emirates University-College of Medicine and Health Sciences, AlAin, United Arab Emirates
| | - Aleksander B Shek
- CAD and Atherosclerosis Laboratory, Republican Specialized Centre of Cardiology (RSCC), Ministry of Health of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Mario Stoll
- Honorary Commission for Cardiovascular Health (CHSCV), Montevideo, Uruguay
| | - Ta-Chen Su
- Departments of Internal Medicine and Environmental & Occupational Medicine, Cardiovascular Centre, National Taiwan University Hospital, Taipei, Taiwan
| | - Tavintharan Subramaniam
- Diabetes Centre, Admiralty Medical Centre, Singapore; Division of Endocrinology, Khoo Teck Puat Hospital, Singapore; Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Andrey V Susekov
- Faculty of Clinical Pharmacology and Therapeutics, Academy for Postgraduate Medical Education and Central Clinical Hospital, Academy of Medical Science, Moscow, Russia
| | | | - Myra Tilney
- Department of Medicine, Faculty of Medicine and Surgery, University of Malta, Malta; Lipid Clinic, Mater Dei Hospital, Malta
| | - Brian Tomlinson
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Thanh-Huong Truong
- Department of Cardiology, Hanoi Medical University, Hanoi, Viet Nam; Vietnam National Heart Institute, Bach Mai Hospital, Hanoi, Viet Nam
| | | | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry and the Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Denmark
| | | | - Margus Viigimaa
- Centre for Cardiovascular Medicine, North Estonia Medical Centre, Tallinn University of Technology, Tallinn, Estonia
| | - Branislav Vohnout
- Institute of Nutrition, FOZOS, Slovak Medical University, Bratislava, Slovakia; Coordination Centre for Familial Hyperlipoproteinemias, Slovak Medical University, Bratislava, Slovakia
| | - Elisabeth Widén
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | - Shizuya Yamashita
- Rinku General Medical Centre and Osaka University Graduate School of Medicine, Osaka, Japan
| | - Maciej Banach
- Department of Hypertension, Medical University of Lodz, Lodz, Poland
| | - Dan Gaita
- Universitatea de Medicina si Farmacie Victor Babes din Timisoara, Romania
| | - Lixin Jiang
- National Clinical Research Centre of Cardiovascular Diseases, Fuwai Hospital, National Centre for Cardiovascular Diseases, Beijing, China
| | - Lennart Nilsson
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Lourdes E Santos
- Cardinal Santos Medical Centre, University of the Philippines - Philippine General Hospital (UP-PGH), Philippines
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Technische Universität München, Deutsches Zentrumfür Herz- und Kreislauferkrankungen (DZHK), Munich Heart Alliance, Germany
| | - Lale Tokgözoğlu
- Department of Cardiology, Hacettepe University, Ankara, Turkey
| | - Josip Car
- Global eHealth Unit, Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, United Kingdom; Centre for Population Health Sciences, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; IRCCS MultiMedica, Sesto S. Giovanni, Milan, Italy
| | - Kausik K Ray
- Imperial Centre for Cardiovascular Disease Prevention (ICCP), Department of Primary Care and Public Health, School of Public Health, Imperial College London, London, United Kingdom
| |
Collapse
|