1
|
Sbrana F, Dal Pino B, Corciulo C, Ripoli A, Bigazzi F, Sampietro T. Pediatrics cascade screening in inherited dyslipidemias: a lipoprotein apheresis center experience. Endocrine 2025; 88:122-126. [PMID: 39718701 DOI: 10.1007/s12020-024-04144-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/15/2024] [Indexed: 12/25/2024]
Abstract
Familial hypercholesterolemia (FH) is less rare than one might think and, despite highly effective lipid-lowering therapies (LLT), more than half of the patients treated do not reach the lipid target indicated by the guidelines. In these patients, lipoprotein apheresis (LA) is the most effective tool to lowering apo-B containing atherogenic lipoproteins. In own center, since 1994, thanks to routinely cascade testing performed in patients who start LA, we have identified a pediatric population (30 subjects) that we analyzed retrospectively. Cascade screening, performed in subject with premature cardiovascular events or inherited dyslipidemias, is an effective approach to identified pediatric FH, a condition that pediatricians should also be aware. A dedicate network is required to investigate the involved genetic mutations and to set up a management program, including lipoprotein (a) measurement and subclinical atherosclerosis evaluation. Moreover, it is important that medical staff use a therapeutic pathway to help patients overcome discomfort associated with disease and chronic LLT, as well as improve adherence to lipid-lowering drugs.
Collapse
Affiliation(s)
- Francesco Sbrana
- U.O. Lipoapheresis and Center for Inherited Dyslipidemias, Fondazione Toscana Gabriele Monasterio, Via Moruzzi, Pisa, Italy.
| | - Beatrice Dal Pino
- U.O. Lipoapheresis and Center for Inherited Dyslipidemias, Fondazione Toscana Gabriele Monasterio, Via Moruzzi, Pisa, Italy
| | - Carmen Corciulo
- U.O. Lipoapheresis and Center for Inherited Dyslipidemias, Fondazione Toscana Gabriele Monasterio, Via Moruzzi, Pisa, Italy
| | - Andrea Ripoli
- U.O. Lipoapheresis and Center for Inherited Dyslipidemias, Fondazione Toscana Gabriele Monasterio, Via Moruzzi, Pisa, Italy
| | - Federico Bigazzi
- U.O. Lipoapheresis and Center for Inherited Dyslipidemias, Fondazione Toscana Gabriele Monasterio, Via Moruzzi, Pisa, Italy
| | - Tiziana Sampietro
- U.O. Lipoapheresis and Center for Inherited Dyslipidemias, Fondazione Toscana Gabriele Monasterio, Via Moruzzi, Pisa, Italy
| |
Collapse
|
2
|
Baragetti A, Alieva AS, Grigore L, Pellegatta F, Lupi A, Scrimali C, Cefalù AB, Hutten BA, Wiegman A, Knaapen P, Bom MJ, Nurmohamed NS, Reutova O, Konradi A, Shlyakhto E, Stroes ESG, Averna M, Catapano AL. Fibroblast growth factor 5: a novel biomarker for familial hypercholesterolaemia. Eur Heart J 2025:ehaf045. [PMID: 39928422 DOI: 10.1093/eurheartj/ehaf045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/25/2024] [Accepted: 01/21/2025] [Indexed: 02/12/2025] Open
Abstract
BACKGROUND AND AIMS Identification of individuals affected by familial hypercholesterolaemia (FH) is suboptimal when genetic tests are unavailable. Relying only on low-density lipoprotein cholesterol (LDL-C) is challenging as it may not allow distinguishing individuals with FH from hypercholesterolaemic (HC) individuals from the general population. The aim of this study was to determine whether biomarkers associated with cardiovascular disease and/or inflammation identify FH individuals and distinguish them from HC individuals. METHODS A panel of 264 proteins in plasma was measured and machine learning was used to search for those that can distinguish FH individuals, either genetically proven (genFH) or clinically diagnosed (clinFH) from HC and control individuals. RESULTS Both genFH and clinFH had elevated plasma levels of fibroblast growth factor 5 (FGF-5) compared with controls (mean area under the curve [AUC] > .990 for both, P < .001) or HC individuals (mean AUC >.990, P < .001), even after matching for LDL-C levels. An immunoenzymatic assay confirmed that FGF-5 was elevated in genFH and clinFH in all cohorts analysed. CONCLUSIONS This analysis suggests that FGF-5 could be a biomarker to discriminate individuals living with FH from HC individuals.
Collapse
Affiliation(s)
- Andrea Baragetti
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzarett 9, 20133 Milan, Italy
- Center for the Study of Atherosclerosis, IRCCS MultiMedica, Via Milanese 300, 20099 Sesto San Giovanni, Milan, Italy
| | - Asiiat S Alieva
- Research Laboratory of Lipid Metabolism Disorders and Atherosclerosis, Almazov National Medical Research Centre, St. Petersburg, The Russian Federation
| | - Liliana Grigore
- Center for the Study of Atherosclerosis, IRCCS MultiMedica, Via Milanese 300, 20099 Sesto San Giovanni, Milan, Italy
| | - Fabio Pellegatta
- Center for the Study of Atherosclerosis, IRCCS MultiMedica, Via Milanese 300, 20099 Sesto San Giovanni, Milan, Italy
| | - Andrea Lupi
- S.I.S.A. Centre for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, Milan, Italy
| | - Chiara Scrimali
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo-School of Medicine, Palermo, Italy
| | - Angelo B Cefalù
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo-School of Medicine, Palermo, Italy
| | - Barbara A Hutten
- Department of Epidemiology and Data Science, Amsterdam University Medical Center, Location University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences Research Institute, Diabetes and Metabolism, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Albert Wiegman
- Department of Pediatrics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Paul Knaapen
- Department of Cardiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Michiel J Bom
- Department of Cardiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Nick S Nurmohamed
- Department of Cardiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Olga Reutova
- Research Laboratory of Lipid Metabolism Disorders and Atherosclerosis, Almazov National Medical Research Centre, St. Petersburg, The Russian Federation
| | - Alexandra Konradi
- Research Laboratory of Lipid Metabolism Disorders and Atherosclerosis, Almazov National Medical Research Centre, St. Petersburg, The Russian Federation
| | - Evgeny Shlyakhto
- Research Laboratory of Lipid Metabolism Disorders and Atherosclerosis, Almazov National Medical Research Centre, St. Petersburg, The Russian Federation
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Maurizio Averna
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo-School of Medicine, Palermo, Italy
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzarett 9, 20133 Milan, Italy
- Center for the Study of Atherosclerosis, IRCCS MultiMedica, Via Milanese 300, 20099 Sesto San Giovanni, Milan, Italy
| |
Collapse
|
3
|
Lewek J, Sosnowska B, Starostecka E, Konopka A, Gach A, Rutkowska L, Adach W, Mierczak K, Bielecka-Dąbrowa A, Banach M. Clinical reality and challenges with familial hypercholesterolemia patients' management. 2024 results from the Regional Center for Rare Diseases (RCRD) Registry in Poland. Int J Cardiol 2025; 419:132667. [PMID: 39442759 DOI: 10.1016/j.ijcard.2024.132667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/13/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Despite advancements in early diagnosis and effective medications in last decade, most heterozygous familial hypercholesterolemia (heFH) patients still fail to achieve their low-density lipoprotein cholesterol (LDL-C) goals and remain at residual cardiovascular disease risk. We present recent data from the regional FH registry in Poland, highlighting the challenges and real-life clinical management of FH patients. METHODS The registry is held at the Regional Centre for Rare Diseases, founded in 2016, at the 2nd largest, supraregional hospital in Poland, where >80 different rare diseases in patients from all over Poland are diagnosed and treated, including phenotypically or genetically diagnosed FH patients. Our analysis focused on both children and adult FH patients, excluding those treated with inclisiran due to a small sample size (n = 5). RESULTS We studied 173 consecutive heFH patients, median age for adult population was 40 years (range: 27-57), of whom 56.14 % were women. Among the population, 82.1 % were adults (n = 142), and 31 were children (17.92 %; median age 9 (8-13), females 58.16 %). Children exhibited lower total cholesterol and triglyceride levels compared to adults, with no significant differences in LDL-C and high-density lipoprotein cholesterol (HDL-C) levels. Molecular diagnosis in the whole population revealed that 76.6 % had an LDL receptor (LDLR) mutation, while 23.4 % had an apolipoprotein B (APOB) mutation. Risk assessment categorized patients into high (70.7 %), very high (22.1 %), and extremely high (7.1 %) risk groups. Triple therapy achieved treatment goals in 61.76 % of adults and 70.97 % of children. At baseline, 36.62 % of adult patients were not using statins. High-intensity statin therapy combined with ezetimibe was initiated for the remaining patients. Only 3.33 % of patients avoided statins due to complete intolerance. Ezetimibe was used in 57.27 % of patients (mostly in combination therapy), and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors were prescribed for 28.17 % FH patients. In adults receiving statin and ezetimibe therapy, median achieved LDL-C was 141 mg/dl (107-184). For triple therapy, median achieved LDL-C was 52.5 mg/dL (32-86.5). Overall median achieved LDL-C in the study population was 99.5 mg/dl (57.5-145.4). PCSK9 inhibitors reduced LDL-C by 165.6 mg/dl. Combination therapy did not significantly alter baseline lipoprotein(a) (Lp(a)) levels (p = 0.134), and PCSK9 inhibitors led to a mean Lp(a) reduction of 18.66 mg/dl (45 % reduction; p = 0.013). Multivariable regression analysis identified key factors for achieving LDL-C targets in FH patients: DLCN total score, DLCN category, ezetimibe use, and PCSK9 inhibitors. CONCLUSIONS In Poland, FH patients are often diagnosed too late (usually over 40 years of age), and many still do not reach their LDL-C goals. Combination LLT double or triple therapy significantly increases the likelihood of achieving LDL-C targets - even up to fivefold. Therefore, unrestricted access to PCSK9 inhibitors for all FH patients is crucial, without the current limitations imposed by drug reimbursement programs like B101.
Collapse
Affiliation(s)
- Joanna Lewek
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, Poland; Department of Cardiology and Adult Congenital Heart Diseases, Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Bożena Sosnowska
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, Poland
| | - Ewa Starostecka
- Regional Rare Disease Centre, Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Agnieszka Konopka
- Regional Rare Disease Centre, Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Agnieszka Gach
- Department of Genetics, Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Lena Rutkowska
- Department of Genetics, Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Weronika Adach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, Poland
| | - Karina Mierczak
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, Poland
| | - Agata Bielecka-Dąbrowa
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, Poland; Department of Cardiology and Adult Congenital Heart Diseases, Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, Poland; Department of Cardiology and Adult Congenital Heart Diseases, Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| |
Collapse
|
4
|
Azar Y, Ludwig TE, Le Bon H, Strøm TB, Bluteau O, Di-Filippo M, Carrié A, Chtioui H, Béliard S, Marmontel O, Fonteille A, Gebhart M, Peretti N, Moulin P, Ferrières J, Pradignac A, Farnier M, Gallo A, Yelnik C, Blom D, Génin E, Bogsrud MP, Leren TP, Boileau C, Abifadel M, Rabès JP, Varret M. The singular French PCSK9-p.Ser127Arg gain-of-function variant: A significant player in cholesterol levels from a 775-year-old common ancestor. Atherosclerosis 2024; 399:118596. [PMID: 39500114 DOI: 10.1016/j.atherosclerosis.2024.118596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND AND AIMS PCSK9 is a key regulator of LDL-cholesterol levels. PCSK9 gain of function variants (GOFVs) cause autosomal dominant hypercholesterolemia (ADH). The first described PCSK9-GOFV, p.Ser127Arg, almost exclusively reported in France, represents 67 % of the PCSK9 French GOFVs due to a founder effect. Few other carriers are reported in South Africa and Norway. This study aims to estimate when the common ancestor lived and to describe a cohort of p.Ser127Arg carriers. METHODS Eight families and 14 p.Ser127Arg carriers were genotyped and phenotyped. Haplotypes were constructed using 11 microsatellites around PCSK9 and 6 intragenic single nucleotide polymorphisms (SNPs). To add to the biological analysis, eight additional p.Ser127Arg carriers, 12 carriers of other PCSK9-GOFVs, 93 LDLR loss of function variant (LOFV) carriers and 49 non-carriers subjects were phenotyped. RESULTS The most common ancestor of p.Ser127Arg was estimated to have lived 775 years ago [95 % CI: 575-1075]. French Protestants exiled after the revocation of the Edict of Nantes in 1685 AD likely brought the variant to South Africa and Norway. As expected for ADH subjects, carriers of LDLR-LOFV, the p.Ser127Arg, or other PCSK9-GOFVs showed significantly higher LDL-C levels than that of the non-carriers. Interestingly, LDL-C levels are higher for LDLR-LOFVs and for the reduced secreted p.Ser127Arg than for secreted PCSK9-GOFVs, suggesting a greater effect of the p.Ser127Arg. Conversely, HDL-C was significantly lower for LDLR-LOFV and p.Ser127Arg carriers. CONCLUSIONS This first report from a large cohort of PCSK9-p.Ser127Arg carriers provides observations suggesting a stronger hypercholesterolemic potential of the mutated pro-PCSK9 compared with the secreted mature protein. This work also provides additional data to support the association between PCSK9 and HDL metabolism, and molecular evidence that this variant appeared in France around 1248 AD (Graphical Abstract = Fig. 1).
Collapse
Affiliation(s)
- Yara Azar
- Paris Cité University and Sorbonne Paris Nord University, INSERM UMRS 1148, Laboratory for Vascular Translational Science (LVTS), F-75018, Paris, France; Saint-Joseph University of Beirut, Faculty of Pharmacy, Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Beirut, 1004 2020, Lebanon
| | - Thomas E Ludwig
- CHRU and Brest University, Inserm, EFS, INSERM UMR 1078, GGB, F-29200, Brest, France
| | - Hugo Le Bon
- Paris Cité University and Sorbonne Paris Nord University, INSERM UMRS 1148, Laboratory for Vascular Translational Science (LVTS), F-75018, Paris, France
| | - Thea Bismo Strøm
- Oslo University Hospital, Department of Medical Genetics, 0450, Oslo, Norway
| | - Olivier Bluteau
- Sorbonne University, Faculty of Medicine Pitié-Salpêtrière, INSERM UMRS 1166, F-75005, Paris, France
| | - Mathilde Di-Filippo
- Lyon-1 University, INSERM U1060, CarMeN Laboratory, Oullins, F-69600, France; Hospices Civil de Lyon, Department of Biochemistry and Molecular Biology, Bron, F-69002, France
| | - Alain Carrié
- Sorbonne University, Faculty of Medicine Pitié-Salpêtrière, INSERM UMRS 1166, F-75005, Paris, France
| | - Hedi Chtioui
- Aix-Marseille University, La Conception Hospital, Nutrition Department, AP-HM, INSERM, INRAE, C2VN, Marseille, F-13001, France
| | - Sophie Béliard
- Aix-Marseille University, La Conception Hospital, Nutrition Department, AP-HM, INSERM, INRAE, C2VN, Marseille, F-13001, France
| | - Oriane Marmontel
- Lyon-1 University, INSERM U1060, CarMeN Laboratory, Oullins, F-69600, France; Hospices Civil de Lyon, Department of Biochemistry and Molecular Biology, Bron, F-69002, France
| | - Annie Fonteille
- Centre Hospitalier d'Annecy Genevois, Médecine Interne, Epagny Metz-Tessy, F-74370, France
| | | | - Noël Peretti
- Lyon-1 University, INSERM U1060, CarMeN Laboratory, Oullins, F-69600, France; Hospices Civil de Lyon, Department of Pediatric Gastroenterology-Hepatology and Nutrition, Bron, F-69002, France
| | - Philippe Moulin
- Lyon-1 University, INSERM U1060, CarMeN Laboratory, Oullins, F-69600, France; Hospices Civil de Lyon, Department of Endocrinology and Nutrition, Bron, F-69002, France
| | - Jean Ferrières
- Toulouse Rangueil University Hospital, Department of Cardiology, INSERM, UMR 1295, F-31400, Toulouse, France
| | - Alain Pradignac
- CHU of Strasbourg, Department of Internal Medicine, Endocrinology and Nutrition, Strasbourg, F-67000, France
| | - Michel Farnier
- University of Bourgogne Franche-Comté, PEC2 Team, Dijon, Cedex, F-25000, France
| | - Antonio Gallo
- Sorbonne University, Faculty of Medicine Pitié-Salpêtrière, INSERM UMRS 1166, F-75005, Paris, France
| | - Cécile Yelnik
- CHUR of Lille, Department of Internal Medicine and Immunology, Lille, France; INSERM, UMR 1167 RID-AGE, Lille, F-59000, France
| | - Dirk Blom
- University of Cape Town, Division of Lipidology and Cape Heart Institute, Cape Town, 7925, South Africa
| | - Emmanuelle Génin
- CHRU and Brest University, Inserm, EFS, INSERM UMR 1078, GGB, F-29200, Brest, France
| | | | - Trond P Leren
- Oslo University Hospital, Department of Medical Genetics, 0450, Oslo, Norway
| | - Catherine Boileau
- Paris Cité University and Sorbonne Paris Nord University, INSERM UMRS 1148, Laboratory for Vascular Translational Science (LVTS), F-75018, Paris, France; Bichat-Claude Bernard Hospital, Genetic Department, AP-HP, F-75018, Paris, France
| | - Marianne Abifadel
- Paris Cité University and Sorbonne Paris Nord University, INSERM UMRS 1148, Laboratory for Vascular Translational Science (LVTS), F-75018, Paris, France; Saint-Joseph University of Beirut, Faculty of Pharmacy, Laboratory of Biochemistry and Molecular Therapeutics (LBTM), Beirut, 1004 2020, Lebanon
| | - Jean-Pierre Rabès
- Paris Cité University and Sorbonne Paris Nord University, INSERM UMRS 1148, Laboratory for Vascular Translational Science (LVTS), F-75018, Paris, France; Paris-Saclay University and Versailles-Saint-Quentin-en-Yvelines University, Ambroise Paré University Hospital, Biochemistry and Molecular Genetics Department, AP-HP, F-92104, Boulogne-Billancourt, France
| | - Mathilde Varret
- Paris Cité University and Sorbonne Paris Nord University, INSERM UMRS 1148, Laboratory for Vascular Translational Science (LVTS), F-75018, Paris, France.
| |
Collapse
|
5
|
Civeira F, Martín C, Cenarro A. APOE and familial hypercholesterolemia. Curr Opin Lipidol 2024; 35:195-199. [PMID: 38640077 DOI: 10.1097/mol.0000000000000937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
PURPOSE OF REVIEW Autosomal dominant hypercholesterolemia is a common cause of cardiovascular disease. In addition to the classic genes that cause hypercholesterolemia, LDLR, APOB and PCSK9 , a new locus has emerged as a candidate to be the cause of this hyperlipidemia, the p.(Leu167del) mutation in the APOE gene. RECENT FINDINGS Various studies have demonstrated the involvement of the p.(Leu167del) mutation in the APOE gene in hypercholesterolemia: Studies of family segregation, lipoprotein composition by ultracentrifugation and proteomic techniques, and functional studies of VLDL-carrying p.(Leu167del) internalization with cell cultures have demonstrated the role of this mutation in the cause of hypercholesterolemia. The phenotype of individuals carrying the p.(Leu167del) in APOE is indistinguishable from familial hypercholesterolemia individuals with mutations in the classic genes. However, a better response to lipid-lowering treatment has been demonstrated in these APOE mutation carrier individuals. SUMMARY Therefore, APOE gene should be considered a candidate locus along with LDLR, APOB , and PCSK9 to be investigated in the genetic diagnosis of familial hypercholesterolemia.
Collapse
Affiliation(s)
- Fernando Civeira
- Hospital Universitario Miguel Servet, IIS Aragón, CIBERCV
- Universidad de Zaragoza, Zaragoza
| | - César Martín
- Biofisika Institute (UPV/EHU, CSIC), University of the Basque Country, Leioa
- Department of Biochemistry and Molecular Biology, UPV/EHU, University of the Basque Country, Bilbao
| | - Ana Cenarro
- Hospital Universitario Miguel Servet, IIS Aragón, CIBERCV
- Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
| |
Collapse
|
6
|
Alieva A, Di Costanzo A, Gazzotti M, Reutova O, Usova E, Bakaleiko V, Arca M, D'Erasmo L, Pellegatta F, Galimberti F, Olmastroni E, Catapano AL, Casula M. Genetic heterogeneity of familial hypercholesterolaemia in two populations from two different countries. Eur J Intern Med 2024; 123:65-71. [PMID: 38245461 DOI: 10.1016/j.ejim.2024.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND Familial hypercholesterolemia (FH) is a genetically determined monogenic disorder of predominantly autosomal dominant inheritance. A number of studies on differences in the genetic profile of patients with FH have demonstrated the importance of a more substantive evaluation of genetic features. The aim of this study was to evaluate the genetic profile of patients with clinical FH among Italian and Russian patients. METHODS We included 144 Italian and 79 Russian FH patients; clinical diagnosis was based on the same criteria. Patients were divided in: positive to genetic test (one causative variant), inconclusive (only variants of uncertain clinical significance [VUS]), and negative (with likely benign/benign variants, heterozygous variants in LDLRAP1 gene, or without causative variants). RESULTS The genetic test was positive in 76.4 % of the Italian patients and in 49.4 % of the Russian patients. The presence of VUS alone was detected in 7.6 % and in 19.0 % (p < 0.001), respectively. Among patients with positive genetic diagnosis, pre-treatment LDL-C levels were higher in the Russian cohort (353.5 ± 111.3 vs. 302.7 ± 52.1 mg/dL, p = 0.009), as well as the percentage of treated patients (53.8 % vs. 14.5 %, p < 0.001) and the prevalence of premature coronary heart disease (12.8 % vs. 3.6 %, p = 0.039). Among patients carrying only VUS, mean pre-treatment LDL-C levels were similar between the cohorts (299.5 ± 68.1 vs. 295.3 ± 46.8 mg/dL, p = 0.863). Among pathogenic/likely pathogenic variants and VUS, only 5 % and 4 % was shared between the two cohorts, respectively. CONCLUSION The genetic background of patients clinically diagnosed with FH in two different countries is characterized by high variability.
Collapse
Affiliation(s)
- Asiiat Alieva
- Almazov National Medical Research Centre, Saint Petersburg, Russia.
| | - Alessia Di Costanzo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Olga Reutova
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Elena Usova
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | | | - Marcello Arca
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Laura D'Erasmo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | | | | | - Elena Olmastroni
- IRCCS MultiMedica, Sesto San Giovanni, Milan, Italy; Epidemiology and Preventive Pharmacology Service (SEFAP), Department of Pharmacological and Biomolecular Sciences (DisFeB), University of Milan, Milan, Italy
| | - Alberico L Catapano
- IRCCS MultiMedica, Sesto San Giovanni, Milan, Italy; Epidemiology and Preventive Pharmacology Service (SEFAP), Department of Pharmacological and Biomolecular Sciences (DisFeB), University of Milan, Milan, Italy
| | - Manuela Casula
- IRCCS MultiMedica, Sesto San Giovanni, Milan, Italy; Epidemiology and Preventive Pharmacology Service (SEFAP), Department of Pharmacological and Biomolecular Sciences (DisFeB), University of Milan, Milan, Italy
| |
Collapse
|
7
|
Buganza R, Massini G, Di Taranto MD, Cardiero G, de Sanctis L, Guardamagna O. Simplified Criteria for Identification of Familial Hypercholesterolemia in Children: Application in Real Life. J Cardiovasc Dev Dis 2024; 11:123. [PMID: 38667741 PMCID: PMC11050898 DOI: 10.3390/jcdd11040123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The diagnosis of familial hypercholesterolemia (FH) in children is primarily based on main criteria including low-density lipoprotein cholesterol (LDL-C) levels, increased in the proband and relatives, and its inheritance. Two other relevant parameters are symptoms, rarely occurring in children, as rare are the FH homozygous patients, and the mutation detection of related genes. The latter allows the final diagnosis, although it is not commonly available. Moreover, the application of diagnostic scores, useful in adults, is poorly applied in children. The aim of this study was to compare the reliability of criteria here applied with different scores, apart from genetic analysis, for FH diagnosis. The latter was then confirmed by genetic analysis. METHODS n. 180 hypercholesterolemic children (age 10.2 ± 4.6 years) showing LDL-C levels ≥95th percentile (age- and sex-related), the dominant inheritance pattern of hypercholesterolemia (including LDL-C ≥95th percentile in one parent), were considered potentially affected by FH and included in the study. The molecular analysis of the LDLR, APOB and PCSK9 genes was applied to verify the diagnostic accuracy. Biochemical and family history data were also retrospectively categorized according to European Atherosclerosis Society (EAS), Simon Broome Register (SBR), Pediatric group of the Italian LIPIGEN (LIPIGEN-FH-PED) and Dutch Lipid Clinic Network (DLCN) criteria. Detailed kindred biochemical and clinical assessments were extended to three generations. The lipid profile was detected by standard laboratory kits, and gene analysis was performed by traditional sequencing or Next-Generation Sequencing (NGS). RESULTS Among 180 hypercholesterolemic subjects, FH suspected based on the above criteria, 164/180 had the diagnosis confirmed, showing causative mutations. The mutation detection rate (MDR) was 91.1%. The scoring criteria proposed by the EAS, SBR and LIPIGEN-FH-PED (resulting in high probable, possible-defined and probable-defined, respectively) showed high sensitivity (~90%), low specificity (~6%) and high MDR (~91%). It is noteworthy that their application, as a discriminant for the execution of the molecular investigation, would lead to a loss of 9.1%, 9.8% and 9.1%, respectively, of FH-affected patients, as confirmed by the genetic analysis. DLCN criteria, for which LDL-C cut-offs are not specific for childhood, would lead to a loss of 53% of patients with mutations. CONCLUSIONS In the pediatric population, the combination of LDL-C ≥95th percentile in the proband and the dominant inheritance pattern of hypercholesterolemia, with LDL-C ≥95th percentile in one parent, is a simple, useful and effective diagnostic criterion, showing high MDR. This pattern is crucial for early FH diagnosis. EAS, SBR and LIPIGEN-FH-PED criteria can underestimate the real number of patients with gene mutations and cannot be considered strictly discriminant for the execution of molecular analysis.
Collapse
Affiliation(s)
- Raffaele Buganza
- Department of Public Health and Pediatric Sciences, University of Torino, 10133 Torino, Italy; (G.M.); (L.d.S.); (O.G.)
- Pediatric Endocrinology, Ospedale Infantile Regina Margherita, 10126 Torino, Italy
| | - Giulia Massini
- Department of Public Health and Pediatric Sciences, University of Torino, 10133 Torino, Italy; (G.M.); (L.d.S.); (O.G.)
- Pediatric Endocrinology, Ospedale Infantile Regina Margherita, 10126 Torino, Italy
| | - Maria Donata Di Taranto
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80131 Naples, Italy; (M.D.D.T.); (G.C.)
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy
| | - Giovanna Cardiero
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, 80131 Naples, Italy; (M.D.D.T.); (G.C.)
- CEINGE-Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy
| | - Luisa de Sanctis
- Department of Public Health and Pediatric Sciences, University of Torino, 10133 Torino, Italy; (G.M.); (L.d.S.); (O.G.)
- Pediatric Endocrinology, Ospedale Infantile Regina Margherita, 10126 Torino, Italy
| | - Ornella Guardamagna
- Department of Public Health and Pediatric Sciences, University of Torino, 10133 Torino, Italy; (G.M.); (L.d.S.); (O.G.)
- Pediatric Endocrinology, Ospedale Infantile Regina Margherita, 10126 Torino, Italy
| |
Collapse
|
8
|
Medeiros AM, Alves AC, Miranda B, Chora JR, Bourbon M. Unraveling the genetic background of individuals with a clinical familial hypercholesterolemia phenotype. J Lipid Res 2024; 65:100490. [PMID: 38122934 PMCID: PMC10832474 DOI: 10.1016/j.jlr.2023.100490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Familial hypercholesterolemia (FH) is a common genetic disorder of lipid metabolism caused by pathogenic/likely pathogenic variants in LDLR, APOB, and PCSK9 genes. Variants in FH-phenocopy genes (LDLRAP1, APOE, LIPA, ABCG5, and ABCG8), polygenic hypercholesterolemia, and hyperlipoprotein (a) [Lp(a)] can also mimic a clinical FH phenotype. We aim to present a new diagnostic tool to unravel the genetic background of clinical FH phenotype. Biochemical and genetic study was performed in 1,005 individuals with clinical diagnosis of FH, referred to the Portuguese FH Study. A next-generation sequencing panel, covering eight genes and eight SNPs to determine LDL-C polygenic risk score and LPA genetic score, was validated, and used in this study. FH was genetically confirmed in 417 index cases: 408 heterozygotes and 9 homozygotes. Cascade screening increased the identification to 1,000 FH individuals, including 11 homozygotes. FH-negative individuals (phenotype positive and genotype negative) have Lp(a) >50 mg/dl (30%), high polygenic risk score (16%), other monogenic lipid metabolism disorders (1%), and heterozygous pathogenic variants in FH-phenocopy genes (2%). Heterozygous variants of uncertain significance were identified in primary genes (12%) and phenocopy genes (7%). Overall, 42% of our cohort was genetically confirmed with FH. In the remaining individuals, other causes for high LDL-C were identified in 68%. Hyper-Lp(a) or polygenic hypercholesterolemia may be the cause of the clinical FH phenotype in almost half of FH-negative individuals. A small part has pathogenic variants in ABCG5/ABCG8 in heterozygosity that can cause hypercholesterolemia and should be further investigated. This extended next-generation sequencing panel identifies individuals with FH and FH-phenocopies, allowing to personalize each person's treatment according to the affected pathway.
Collapse
Affiliation(s)
- Ana Margarida Medeiros
- Unidade de I&D, Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Catarina Alves
- Unidade de I&D, Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Beatriz Miranda
- Unidade de I&D, Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Joana Rita Chora
- Unidade de I&D, Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Mafalda Bourbon
- Unidade de I&D, Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisboa, Portugal; BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
9
|
Scicali R, Bosco G, Scamporrino A, Di Mauro S, Filippello A, Di Giacomo Barbagallo F, Spampinato S, Pavanello C, Ossoli A, Di Pino A, Calabresi L, Purrello F, Piro S. Evaluation of high-density lipoprotein-bound long non-coding RNAs in subjects with familial hypercholesterolaemia. Eur J Clin Invest 2024; 54:e14083. [PMID: 37571980 DOI: 10.1111/eci.14083] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/27/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) could be attractive circulating biomarkers for cardiovascular risk stratification in subjects at high atherosclerotic cardiovascular disease risk such as familial hypercholesterolaemia (FH). Our aim was to investigate the presence of lncRNAs carried by high-density lipoprotein (HDL) in FH subjects and to evaluate the associations of HDL-lncRNAs with lipoproteins and mechanical vascular impairment assessed by pulse wave velocity (PWV). METHODS This was a retrospective observational study involving 94 FH subjects on statin treatment. Biochemical assays, HDL purification, lncRNA and PWV analyses were performed in all subjects. RESULTS LncRNA HIF1A-AS2, LASER and LEXIS were transported by HDL; moreover, HDL-lncRNA LEXIS was associated with Lp(a) plasma levels (p < .01). In a secondary analysis, the study population was stratified into two groups based on the Lp(a) median value. The high-Lp(a) group exhibited a significant increase of PWV compared to the low-Lp(a) group (9.23 ± .61 vs. 7.67 ± .56, p < .01). While HDL-lncRNA HIF1A-AS2 and LASER were similar in the two groups, the high-Lp(a) group exhibited a significant downregulation of HDL-lncRNA LEXIS compared to the low-Lp(a) group (fold change -4.4, p < .0001). Finally, Lp(a) and HDL-lncRNA LEXIS were associated with PWV (for Lp(a) p < .01; for HDL-lncRNA LEXIS p < .05). CONCLUSIONS LncRNA HIF1A-AS2, LASER and LEXIS were transported by HDL; moreover, significant relationships of HDL-lncRNA LEXIS with Lp(a) levels and PWV were found. Our study suggests that HDL-lncRNA LEXIS may be useful to better identify FH subjects with more pronounced vascular damage.
Collapse
Affiliation(s)
- Roberto Scicali
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Giosiana Bosco
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Stefania Di Mauro
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Agnese Filippello
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Salvatore Spampinato
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Chiara Pavanello
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Catania, Italy
| | - Alice Ossoli
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Catania, Italy
| | - Antonino Di Pino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura Calabresi
- Centro E. Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Catania, Italy
| | - Francesco Purrello
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Salvatore Piro
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
10
|
Albuquerque J, Medeiros AM, Alves AC, Jannes CE, Mancina RM, Pavanello C, Chora JR, Mombelli G, Calabresi L, Pereira ADC, Krieger JE, Romeo S, Bourbon M, Antunes M. Generation and validation of a classification model to diagnose familial hypercholesterolaemia in adults. Atherosclerosis 2023; 383:117314. [PMID: 37813054 DOI: 10.1016/j.atherosclerosis.2023.117314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND AND AIMS The early diagnosis of familial hypercholesterolaemia is associated with a significant reduction in cardiovascular disease (CVD) risk. While the recent use of statistical and machine learning algorithms has shown promising results in comparison with traditional clinical criteria, when applied to screening of potential FH cases in large cohorts, most studies in this field are developed using a single cohort of patients, which may hamper the application of such algorithms to other populations. In the current study, a logistic regression (LR) based algorithm was developed combining observations from three different national FH cohorts, from Portugal, Brazil and Sweden. Independent samples from these cohorts were then used to test the model, as well as an external dataset from Italy. METHODS The area under the receiver operating characteristics (AUROC) and precision-recall (AUPRC) curves was used to assess the discriminatory ability among the different samples. Comparisons between the LR model and Dutch Lipid Clinic Network (DLCN) clinical criteria were performed by means of McNemar tests, and by the calculation of several operating characteristics. RESULTS AUROC and AUPRC values were generally higher for all testing sets when compared to the training set. Compared with DLCN criteria, a significantly higher number of correctly classified observations were identified for the Brazilian (p < 0.01), Swedish (p < 0.01), and Italian testing sets (p < 0.01). Higher accuracy (Acc), G mean and F1 score values were also observed for all testing sets. CONCLUSIONS Compared to DLCN criteria, the LR model revealed improved ability to correctly classify observations, and was able to retain a similar number of FH cases, with less false positive retention. Generalization of the LR model was very good across all testing samples, suggesting it can be an effective screening tool if applied to different populations.
Collapse
Affiliation(s)
- João Albuquerque
- Departamento de Biomedicina, Unidade de Bioquímica, Faculdade de Medicina, Universidade do Porto, 4200-319, Porto, Portugal; Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal; Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016, Lisboa, Portugal.
| | - Ana Margarida Medeiros
- Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016, Lisboa, Portugal; Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Ana Catarina Alves
- Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016, Lisboa, Portugal; Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Cinthia Elim Jannes
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração, São Paulo, Brazil
| | - Rosellina M Mancina
- Sahlgrenska Academy, Institute of Medicine, Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, Sweden
| | - Chiara Pavanello
- Centro Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133, Milano, Italy
| | - Joana Rita Chora
- Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016, Lisboa, Portugal; Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Giuliana Mombelli
- Centro Dislipidemie, ASST Grande Ospedale Metropolitano Niguarda, 20162, Milano, Italy
| | - Laura Calabresi
- Centro Grossi Paoletti, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133, Milano, Italy
| | | | - José Eduardo Krieger
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração, São Paulo, Brazil
| | - Stefano Romeo
- Sahlgrenska Academy, Institute of Medicine, Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, Sweden; Cardiology Department, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Clinical and Surgical Sciences, Nutrition Unit, University Magna Graecia, Catanzaro, Italy
| | - Mafalda Bourbon
- Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016, Lisboa, Portugal; Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Marília Antunes
- Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal; Departamento de Estatística e Investigação Operacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| |
Collapse
|
11
|
Heshmatzad K, Naderi N, Maleki M, Abbasi S, Ghasemi S, Ashrafi N, Fazelifar AF, Mahdavi M, Kalayinia S. Role of non-coding variants in cardiovascular disease. J Cell Mol Med 2023; 27:1621-1636. [PMID: 37183561 PMCID: PMC10273088 DOI: 10.1111/jcmm.17762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/29/2023] [Accepted: 04/25/2023] [Indexed: 05/16/2023] Open
Abstract
Cardiovascular diseases (CVDs) constitute one of the significant causes of death worldwide. Different pathological states are linked to CVDs, which despite interventions and treatments, still have poor prognoses. The genetic component, as a beneficial tool in the risk stratification of CVD development, plays a role in the pathogenesis of this group of diseases. The emergence of genome-wide association studies (GWAS) have led to the identification of non-coding parts associated with cardiovascular traits and disorders. Variants located in functional non-coding regions, including promoters/enhancers, introns, miRNAs and 5'/3' UTRs, account for 90% of all identified single-nucleotide polymorphisms associated with CVDs. Here, for the first time, we conducted a comprehensive review on the reported non-coding variants for different CVDs, including hypercholesterolemia, cardiomyopathies, congenital heart diseases, thoracic aortic aneurysms/dissections and coronary artery diseases. Additionally, we present the most commonly reported genes involved in each CVD. In total, 1469 non-coding variants constitute most reports on familial hypercholesterolemia, hypertrophic cardiomyopathy and dilated cardiomyopathy. The application and identification of non-coding variants are beneficial for the genetic diagnosis and better therapeutic management of CVDs.
Collapse
Affiliation(s)
- Katayoun Heshmatzad
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Niloofar Naderi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Majid Maleki
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Shiva Abbasi
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Serwa Ghasemi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Nooshin Ashrafi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Amir Farjam Fazelifar
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Mohammad Mahdavi
- Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| | - Samira Kalayinia
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran
| |
Collapse
|
12
|
Medeiros AM, Bourbon M. Genetic Testing in Familial Hypercholesterolemia: Is It for Everyone? Curr Atheroscler Rep 2023; 25:127-132. [PMID: 36862327 PMCID: PMC10027780 DOI: 10.1007/s11883-023-01091-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2023] [Indexed: 03/03/2023]
Abstract
PURPOSE OF REVIEW Lipid measurements and genetic testing are the main diagnostic tools for FH screening that are available in many countries. A lipid profile is widely accessible, and genetic testing, although available worldwide, in some countries is only performed in a research context. Still FH is diagnosed late, showing lack of early screening programs worldwide. RECENT FINDINGS Pediatric screening of FH was recently recognized by the European Commission Public Health Best Practice Portal as one on the best practices in non-communicable disease prevention. The early diagnosis of FH and the lowering of LDL-C values over lifespan can reduce the risk of coronary artery disease and offer health and socioeconomic gains. Current knowledge about FH shows that early detection through appropriate screening needs to become a priority in healthcare systems worldwide. Governmental programs for FH identification should be implemented to unify the diagnosis and increase patient identification.
Collapse
Affiliation(s)
- A M Medeiros
- Unidade de I&D, Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde E Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
- BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - M Bourbon
- Unidade de I&D, Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde E Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal.
- BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
13
|
Mansilla-Rodríguez ME, Romero-Jimenez MJ, Rigabert Sánchez-Junco A, Gutierrez-Cortizo EN, Sánchez-Ramos JL, Mata P, Pang J, Watts GF. Risk factors for cardiovascular events in patients with heterozygous familial hypercholesterolaemia: protocol for a systematic review. BMJ Open 2023; 13:e065551. [PMID: 36990476 PMCID: PMC10069512 DOI: 10.1136/bmjopen-2022-065551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
INTRODUCTION Heterozygous familial hypercholesterolaemia (heFH) is the most common monogenic cause of premature atherosclerotic cardiovascular disease. The precise diagnosis of heFH is established by genetic testing. This systematic review will investigate the risk factors that predict cardiovascular events in patients with a genetic diagnosis of heFH. METHODS AND ANALYSIS Our literature search will cover publications from database inception until June 2023. We will undertake a search of CINAHL (trial), clinicalKey, Cochrane Library, DynaMed, Embase, Espacenet, Experiments (trial), Fisterra, ÍnDICEs CSIC, LILACS, LISTA, Medline, Micromedex, NEJM Resident 360, OpenDissertations, PEDro, Trip Database, PubPsych, Scopus, TESEO, UpToDate, Web of Science and the grey literature for eligible studies. We will screen the title, abstract and full-text papers for potential inclusion and assess the risk of bias. We will employ the Cochrane tool for randomised controlled trials and non-randomised clinical studies and the Newcastle-Ottawa Scale for assessing the risk of bias in observational studies. We will include full-text peer-reviewed publications, reports of a cohort/registry, case-control and cross-sectional studies, case report/series and surveys related to adults (≥18 years of age) with a genetic diagnostic heFH. The language of the searched studies will be restricted to English or Spanish. The Grading of Recommendations, Assessment, Development and Evaluation approach will be used to assess the quality of the evidence. Based on the data available, the authors will determine whether the data can be pooled in meta-analyses. ETHICS AND DISSEMINATION All data will be extracted from published literature. Hence, ethical approval and patient informed consent are not required. The findings of the systematic review will be submitted for publication in a peer-reviewed journal and presentation at international conferences. PROSPERO REGISTRATION NUMBER CRD42022304273.
Collapse
Affiliation(s)
| | | | | | | | | | - Pedro Mata
- Fundación de Hipercolesterolemia Familiar, Madrid, Spain
| | - Jing Pang
- School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia
| | - Gerald F Watts
- Cardiometabolic Service, Department of Cardiology and Internal Medicine, Royal Perth Hospital, School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
14
|
Genetic Heterogeneity of Familial Hypercholesterolemia: Repercussions for Molecular Diagnosis. Int J Mol Sci 2023; 24:ijms24043224. [PMID: 36834635 PMCID: PMC9961636 DOI: 10.3390/ijms24043224] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Genetics of Familial Hypercholesterolemia (FH) is ascribable to pathogenic variants in genes encoding proteins leading to an impaired LDL uptake by the LDL receptor (LDLR). Two forms of the disease are possible, heterozygous (HeFH) and homozygous (HoFH), caused by one or two pathogenic variants, respectively, in the three main genes that are responsible for the autosomal dominant disease: LDLR, APOB and PCSK9 genes. The HeFH is the most common genetic disease in humans, being the prevalence about 1:300. Variants in the LDLRAP1 gene causes FH with a recessive inheritance and a specific APOE variant was described as causative of FH, contributing to increase FH genetic heterogeneity. In addition, variants in genes causing other dyslipidemias showing phenotypes overlapping with FH may mimic FH in patients without causative variants (FH-phenocopies; ABCG5, ABCG8, CYP27A1 and LIPA genes) or act as phenotype modifiers in patients with a pathogenic variant in a causative gene. The presence of several common variants was also considered a genetic basis of FH and several polygenic risk scores (PRS) have been described. The presence of a variant in modifier genes or high PRS in HeFH further exacerbates the phenotype, partially justifying its variability among patients. This review aims to report the updates on the genetic and molecular bases of FH with their implication for molecular diagnosis.
Collapse
|
15
|
Tromp TR, Ibrahim S, Nurmohamed NS, Peter J, Zuurbier L, Defesche JC, Reeskamp LF, Hovingh GK, Stroes ESG. Use of Lipoprotein(a) to improve diagnosis and management in clinical familial hypercholesterolemia. Atherosclerosis 2023; 365:27-33. [PMID: 36473758 DOI: 10.1016/j.atherosclerosis.2022.11.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/08/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND AIMS Lipoprotein(a) (Lp(a)) is an LDL-like particle whose plasma levels are largely genetically determined. The impact of measuring Lp(a) in patients with clinical familial hypercholesterolemia (FH) referred for genetic testing is largely unknown. We set out to evaluate the contribution of (genetically estimated) Lp(a) in a large nation-wide referral population of clinical FH. METHODS In 1504 patients referred for FH genotyping, we used an LPA genetic instrument (rs10455872 and rs3798220) as a proxy for plasma Lp(a) levels. The genetic Lp(a) proxy was used to correct LDL-cholesterol and reclassify patients with clinical FH based on Dutch Lipid Criteria Network (DLCN) scoring. Finally, we used estimated Lp(a) levels to reclassify ASCVD risk using the SCORE and SMART risk scores. RESULTS LPA SNPs were more prevalent among mutation-negative compared with mutation-positive patients (296/1280 (23.1%) vs 35/224 (15.6%), p = 0.016). Among patients with genetically defined high Lp(a) levels, 9% were reclassified to the DLCN category 'unlikely FH' using Lp(a)-corrected LDL-cholesterol (LDL-Ccor) and all but one of these patients indeed carried no FH variant. Furthermore, elevated Lp(a) reclassified predicted ASCVD risk into a higher category in up to 18% of patients. CONCLUSIONS In patients referred for FH molecular testing, we show that taking into account (genetically estimated) Lp(a) levels not only results in reclassification of probability of genetic FH, but also has an impact on individual cardiovascular risk evaluation. However, to avoid missing the diagnosis of an FH variant, clear thresholds for the use of Lp(a)-cholesterol adjusted LDL-cholesterol levels in patients referred for genetic testing of FH must be established.
Collapse
Affiliation(s)
- Tycho R Tromp
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Shirin Ibrahim
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Nick S Nurmohamed
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands; Department of Cardiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands
| | - Jorge Peter
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Linda Zuurbier
- Department of Human Genetics, Amsterdam UMC, Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Joep C Defesche
- Department of Human Genetics, Amsterdam UMC, Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Laurens F Reeskamp
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands; Department of Internal Medicine, OLVG Oost, Amsterdam, the Netherlands
| | - G Kees Hovingh
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands; Novo Nordisk A/S, Copenhagen, Denmark
| | - Erik S G Stroes
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands.
| |
Collapse
|
16
|
Scicali R, Mandraffino G, Scuruchi M, Lo Gullo A, Di Pino A, Ferrara V, Morace C, Aragona CO, Squadrito G, Purrello F, Piro S. Effects of Lipid Lowering Therapy Optimization by PCSK9 Inhibitors on Circulating CD34+ Cells and Pulse Wave Velocity in Familial Hypercholesterolemia Subjects without Atherosclerotic Cardiovascular Disease: Real-World Data from Two Lipid Units. Biomedicines 2022; 10:1715. [PMID: 35885020 PMCID: PMC9312801 DOI: 10.3390/biomedicines10071715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/06/2022] [Accepted: 07/13/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Circulating CD34+ progenitor cells (CD34+CPCs) are characterized by pronounced tissue regeneration activity. Dyslipidemic subjects seemed to have reduced CD34+CPCs, and statin therapy appeared to restore their levels. We aimed to evaluate the effects of PCSK9 inhibitors (PCSK9-i) on CD34+CPCs and pulse wave velocity (PWV) in a cohort of heterozygous familial hypercholesterolemia (HeFH) subjects. Methods: We determined CD34+ cell count and its change after PCSK9-i in 30 selected HeFH subjects and 30 healthy controls. Lipid profile and PWV were evaluated at baseline (T0), 6 months after intensive lipid lowering strategy (statin plus ezetimibe, T1), and after 6 months of optimized therapy with PCSK9-i (T2); CD34+ cell count was reported at T1 and T2. Results: At T1, the median value of CD34+ cells was not significantly different between HeFH subjects and controls, and the same result was obtained at T2. PWV was significantly reduced at T1 (ΔPWV − 14.8%, p < 0.001 vs. T0) and T2 (ΔPWV − 10.96%, p < 0.001 vs. T1). Dividing HeFH subjects into two groups of high- and low-CD34+ cell count, CD34+CPCs appeared to be polarized with a significant difference between the two groups (1.2 (0.46) vs. 4.74 (1.92), p < 0.001), also with respect to controls (both p < 0.001). This polarization was no longer observed at T2, and neither with respect to controls. ΔCD34+ was +67.4% in the low-CD34+ group and −39.24% in the high-CD34+ group (p < 0.001). Lastly, we found a significant correlation between ΔCD34+ cell number and ΔPWV in HeFH subjects (rho = −0.365, p < 0.05), particularly in the low-CD34+ group (rho = −0.681, p < 0.001). Conclusion: PCSK9-i exhibited favorable effects on CD34 + CPCs as was on PWV values in a cohort of FH subjects. Our preliminary findings suggest a possible positive role of this novel lipid-lowering strategy on vascular homeostasis.
Collapse
Affiliation(s)
- Roberto Scicali
- Department of Clinical and Experimental Medicine, University of Catania, 95100 Catania, Italy; (A.D.P.); (V.F.); (F.P.); (S.P.)
| | - Giuseppe Mandraffino
- Department of Clinical and Experimental Medicine, University of Messina, University Hospital G. Martino, Lipid Center, 98100 Messina, Italy; (M.S.); (C.M.); (C.O.A.); (G.S.)
| | - Michele Scuruchi
- Department of Clinical and Experimental Medicine, University of Messina, University Hospital G. Martino, Lipid Center, 98100 Messina, Italy; (M.S.); (C.M.); (C.O.A.); (G.S.)
| | - Alberto Lo Gullo
- Unit of Rheumatology, Department of Medicine, ARNAS Garibaldi Hospital, 95100 Catania, Italy;
| | - Antonino Di Pino
- Department of Clinical and Experimental Medicine, University of Catania, 95100 Catania, Italy; (A.D.P.); (V.F.); (F.P.); (S.P.)
| | - Viviana Ferrara
- Department of Clinical and Experimental Medicine, University of Catania, 95100 Catania, Italy; (A.D.P.); (V.F.); (F.P.); (S.P.)
| | - Carmela Morace
- Department of Clinical and Experimental Medicine, University of Messina, University Hospital G. Martino, Lipid Center, 98100 Messina, Italy; (M.S.); (C.M.); (C.O.A.); (G.S.)
| | - Caterina Oriana Aragona
- Department of Clinical and Experimental Medicine, University of Messina, University Hospital G. Martino, Lipid Center, 98100 Messina, Italy; (M.S.); (C.M.); (C.O.A.); (G.S.)
| | - Giovanni Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, University Hospital G. Martino, Lipid Center, 98100 Messina, Italy; (M.S.); (C.M.); (C.O.A.); (G.S.)
| | - Francesco Purrello
- Department of Clinical and Experimental Medicine, University of Catania, 95100 Catania, Italy; (A.D.P.); (V.F.); (F.P.); (S.P.)
| | - Salvatore Piro
- Department of Clinical and Experimental Medicine, University of Catania, 95100 Catania, Italy; (A.D.P.); (V.F.); (F.P.); (S.P.)
| |
Collapse
|
17
|
Qiuju H, Jianlong Z, Qi W, Zhifa L, Ding W, Xiaofang S, Yingjun X. Epilepsy Combined With Multiple Gene Heterozygous Mutation. Front Pediatr 2022; 10:763642. [PMID: 35299674 PMCID: PMC8921529 DOI: 10.3389/fped.2022.763642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
The fast pace of gene discovery has resulted in groundbreaking advances in the field of epilepsy genetics. Clinical testing using comprehensive gene panels, exomes, or genomes is now increasingly available and has significantly increased the diagnostic yield for early-onset epilepsies and enabled precision medicine approaches. In this paper, we report a case of epilepsy in a pedigree. The proband had heterozygous mutations in KCNC1 (NM_001112741.1:c.959G>A, p. Arg320His), CAPN3 (NM_000070.2:c.526G>A, p. Val176Met), and NEFH (NM_021076.3:c. 2595 delC, p. Lys866Argfs*51). Sanger sequencing verification was consistent with the results of whole-exome sequencing. The KCNC1 mutation was a de novo mutation, and the CAPN3 and NEFH mutations were inherited from their father and mother, respectively. Based on the American College of Medical Genetics and Genomics (ACMG) guidelines, a heterozygous mutation was found for APOB (NM_000384.2: c.10579C > T, p. Arg3527Trp). The heterozygous mutation at this site was inherent in the pedigree. Coexpression analysis indicated that heterozygous mutations of KCNC1, CAPN3, NEFH, and APOB were closely related to the clinical phenotypes of the patient, and the clinical phenotypic heterogeneity of the disease may be the result of the interaction of multiple genes.
Collapse
Affiliation(s)
- He Qiuju
- Department of Obstetrics and Gynaecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Zhuang Jianlong
- Prenatal Diagnosis Center, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Wen Qi
- Department of Obstetrics and Gynaecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Li Zhifa
- Gastrointestinal Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wang Ding
- Department of Obstetrics and Gynaecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Sun Xiaofang
- Department of Obstetrics and Gynaecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xie Yingjun
- Department of Obstetrics and Gynaecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
18
|
Todorovova V, Altschmiedova T, Vrablik M, Ceska R. Familial Hypercholesterolemia: Real-World Data of 1236 Patients Attending a Czech Lipid Clinic. A Retrospective Analysis of Experience in More than 50 years. Part I: Genetics and Biochemical Parameters. Front Genet 2022; 13:849008. [PMID: 35295947 PMCID: PMC8918685 DOI: 10.3389/fgene.2022.849008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/02/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction: The cause of familial hypercholesterolemia (FH) is defect in LDL receptor or familial defect of apolipoprotein B-100 (FDB) or, rarely, defect in proprotein convertase subtilisin/kexin type 9. Identification and treatment of patients with FH improves their prognosis. Our data represent retrospective analysis of 50 years of specialised care in our center. Patients and Methods: A group of 1236 FH patients (841 women, 395 men; 993 study subjects and 243 relatives; mean age 44.8 ± 16.7 years) included 154 FDB patients followed at the Lipid Clinic of the General University Hospital in Prague since the mid-1960s to the present. Clinical diagnosis was based on the Dutch Lipid Clinic Network Criteria. Genetic analysis was performed using PCR-RFLP to detect FDB and apolipoprotein E (APOE) polymorphism. Biochemical data were collected and statistically analysed. Results: At baseline, mean LDL-C and total cholesterol (TC) levels of all FH patients combined were 6.49 ± 1.92 mmol/L and 8.95 ± 1.95 mmol/L, respectively. Their LDL-C levels decreased to 3.26 ± 1.57 mmol/L and TC levels to 5.43 ± 1.69 mmol/L during follow-up. In the subgroup of LDL receptor-mediated FH (non-FDB) patients, baseline LDL-C and TC levels of 6.61 ± 1.95 mmol/L and 9.09 ± 1.97 mmol/L declined to 3.21 ± 1.60 mmol/L and 5.39 ± 1.72 mmol/L, respectively, during follow-up. In the FDB subgroup of patients, baseline levels of LDL-C and TC were 5.57 ± 1.46 mmol/L and 7.88 ± 1.58 mmol/L decreasing to 3.45 ± 0.24 mmol/L and 5.58 ± 1.37 mmol/L, respectively, during follow-up. Differences were also found in the effects of various APOE isoforms on lipid lowering. A significant decrease in lipid parameters was observed with the E2E2 isoform whereas a minimal decrease was seen with the E4E4 and E3E3 isoforms. Conclusion: Whereas, overall, non-FDB patients had higher baseline lipid levels, these levels declined more appreciably compared with FDB patients during follow-up. Our retrospective analysis also found different effects of APOE isoforms on the decrease in lipid levels.
Collapse
Affiliation(s)
| | - Tereza Altschmiedova
- Third Department of Medicine—Department of Endocrinology and Metabolism of the First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | | | | |
Collapse
|
19
|
Tada H, Takamura M, Kawashiri MA. Individualized Treatment for Patients With Familial Hypercholesterolemia. J Lipid Atheroscler 2022; 11:39-54. [PMID: 35118021 PMCID: PMC8792816 DOI: 10.12997/jla.2022.11.1.39] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/18/2021] [Accepted: 12/15/2021] [Indexed: 11/24/2022] Open
Abstract
Familial hypercholesterolemia (FH) is one of the most common and, therefore, important inherited disorders in preventive cardiology. This disease is mainly caused by a single pathogenic mutation in the low-density lipoprotein receptor or its associated genes. Moreover, it is correlated with a high risk of cardiovascular disease. However, the phenotype severity even in this monogenic disease significantly varies. Thus, the current study aimed to describe FH and its importance and the factors (inherited and acquired) contributing to differences in phenotype severity. Different lipid-modification therapies according to these factors can lead to individualized treatments, which are also essential in the general populations.
Collapse
Affiliation(s)
- Hayato Tada
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Masayuki Takamura
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Masa-aki Kawashiri
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
20
|
Mercuro G, Cadeddu Dessalvi C, Deidda M. To be or not to be resilient in familial hypercholesterolaemia: implications for the management. Eur J Prev Cardiol 2021; 29:793-794. [PMID: 34864958 DOI: 10.1093/eurjpc/zwab197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Giuseppe Mercuro
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, SS 554, Bivio Sestu, 09042 Monserrato (CA), Sardinia, Italy
| | - Christian Cadeddu Dessalvi
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, SS 554, Bivio Sestu, 09042 Monserrato (CA), Sardinia, Italy
| | - Martino Deidda
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, SS 554, Bivio Sestu, 09042 Monserrato (CA), Sardinia, Italy
| |
Collapse
|
21
|
Di Costanzo A, Minicocci I, D'Erasmo L, Commodari D, Covino S, Bini S, Ghadiri A, Ceci F, Maranghi M, Catapano AL, Gazzotti M, Casula M, Montali A, Arca M. Refinement of pathogenicity classification of variants associated with familial hypercholesterolemia: Implications for clinical diagnosis. J Clin Lipidol 2021; 15:822-831. [PMID: 34756585 DOI: 10.1016/j.jacl.2021.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND The lack of functional evidence for most variants detected during the molecular screening of patients with clinical familial hypercholesterolemia (FH) makes the definitive diagnosis difficult. METHODS A total of 552 variants in LDLR, APOB, PCSK9 and LDLRAP1 genes found in 449 mutation-positive FH (FH/M+) patients were considered. Pathogenicity update was performed following the American College of Medical Genetics and Genomics (ACMG) guidelines with additional specifications on copy number variants, functional studies, in silico prediction and co-segregation criteria for LDLR, APOB and PCSK9 genes. Pathogenicity of LDLRAP1 variants was updated by using ACMG criteria with no change to original scoring. RESULTS After reclassification, the proportion of FH/M+ carriers of pathogenic (P) or likely pathogenic (LP) variants, and FH/M+ carriers of likely benign (LB) or benign (B) variants, was higher than that defined by standard criteria (81.5% vs. 79.7% and 7.1% vs. 2.7%). The refinement of pathogenicity classification also reduced the percentage of FH with variants of uncertain significance (VUS) (17.7% vs. 11.4%). After adjustment, the FH diagnosis by refined criteria best predicted LDL-C levels (Padj <0.001). Notably, FH with VUS variants had higher LDL-C than those with LB (all Padj ≤ 0.033), but similar to those with LP variants. CONCLUSION Accurate variant interpretation best predicts the increase of LDL-C levels and shows its clinical utility in the molecular diagnosis of FH.
Collapse
Affiliation(s)
- Alessia Di Costanzo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy.
| | - Ilenia Minicocci
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Laura D'Erasmo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Daniela Commodari
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Stella Covino
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Simone Bini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Ameneh Ghadiri
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Fabrizio Ceci
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Marianna Maranghi
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; I.R.C.C.S. Multimedica, Sesto S. Giovanni, Milan, Italy
| | - Marta Gazzotti
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Manuela Casula
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; I.R.C.C.S. Multimedica, Sesto S. Giovanni, Milan, Italy
| | - Anna Montali
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Marcello Arca
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
22
|
Di Taranto MD, Giacobbe C, Palma D, Iannuzzo G, Gentile M, Calcaterra I, Guardamagna O, Auricchio R, Di Minno MND, Fortunato G. Genetic spectrum of familial hypercholesterolemia and correlations with clinical expression: Implications for diagnosis improvement. Clin Genet 2021; 100:529-541. [PMID: 34297352 PMCID: PMC9291778 DOI: 10.1111/cge.14036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/26/2022]
Abstract
Familial hypercholesterolemia (FH) is the most common genetic disease caused by variants in LDLR, APOB, PCSK9 genes; it is characterized by high levels of LDL-cholesterol and premature cardiovascular disease. We aim to perform a retrospective analysis of a genetically screened population (528 unrelated patients-342 adults and 186 children) to evaluate the biochemical and clinical correlations with the different genetic statuses. Genetic screening was performed by traditional sequencing and some patients were re-analyzed by next-generation-sequencing. Pathogenic variants, mainly missense in the LDLR gene, were identified in 402/528 patients (76.1%), including 4 homozygotes, 17 compound heterozygotes and 1 double heterozygotes. A gradual increase of LDL-cholesterol was observed from patients without pathogenic variants to patients with a defective variant, to patients with a null variant and to patients with two variants. Six variants accounted for 51% of patients; a large variability of LDL-cholesterol was observed among patients carrying the same variant. The frequency of pathogenic variants gradually increased from unlikely FH to definite FH, according to the Dutch Lipid Clinic Network criteria. Genetic diagnosis can help prognostic evaluation of FH patients, discriminating between the different genetic statuses or variant types. Clinical suspicion of FH should be considered even if few symptoms are present or if LDL-cholesterol is only mildly increased.
Collapse
Affiliation(s)
- Maria Donata Di Taranto
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli Federico II, CEINGE Biotecnologie Avanzate s.c. a r.l.NaplesItaly
| | - Carola Giacobbe
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli Federico II, CEINGE Biotecnologie Avanzate s.c. a r.l.NaplesItaly
| | - Daniela Palma
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli Federico II, CEINGE Biotecnologie Avanzate s.c. a r.l.NaplesItaly
| | - Gabriella Iannuzzo
- Dipartimento di Medicina Clinica e ChirurgiaUniversità degli Studi di Napoli Federico IINaplesItaly
| | - Marco Gentile
- Dipartimento di Medicina Clinica e ChirurgiaUniversità degli Studi di Napoli Federico IINaplesItaly
| | - Ilenia Calcaterra
- Dipartimento di Medicina Clinica e ChirurgiaUniversità degli Studi di Napoli Federico IINaplesItaly
| | - Ornella Guardamagna
- Dipartimento di Scienze della Sanità Pubblica e PediatricheUniversità degli Studi di TorinoTurinItaly
| | - Renata Auricchio
- Dipartimento di Scienze Mediche TraslazionaliUniversità degli Studi di Napoli Federico IINaplesItaly
| | | | - Giuliana Fortunato
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi di Napoli Federico II, CEINGE Biotecnologie Avanzate s.c. a r.l.NaplesItaly
| |
Collapse
|
23
|
Usova EII, Alieva AS, Yakovlev AN, Alieva MS, Prokhorikhin AA, Konradi AO, Shlyakhto EV, Magni P, Catapano AL, Baragetti A. Integrative Analysis of Multi-Omics and Genetic Approaches-A New Level in Atherosclerotic Cardiovascular Risk Prediction. Biomolecules 2021; 11:1597. [PMID: 34827594 PMCID: PMC8615817 DOI: 10.3390/biom11111597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 12/18/2022] Open
Abstract
Genetics and environmental and lifestyle factors deeply affect cardiovascular diseases, with atherosclerosis as the etiopathological factor (ACVD) and their early recognition can significantly contribute to an efficient prevention and treatment of the disease. Due to the vast number of these factors, only the novel "omic" approaches are surmised. In addition to genomics, which extended the effective therapeutic potential for complex and rarer diseases, the use of "omics" presents a step-forward that can be harnessed for more accurate ACVD prediction and risk assessment in larger populations. The analysis of these data by artificial intelligence (AI)/machine learning (ML) strategies makes is possible to decipher the large amount of data that derives from such techniques, in order to provide an unbiased assessment of pathophysiological correlations and to develop a better understanding of the molecular background of ACVD. The predictive models implementing data from these "omics", are based on consolidated AI best practices for classical ML and deep learning paradigms that employ methods (e.g., Integrative Network Fusion method, using an AI/ML supervised strategy and cross-validation) to validate the reproducibility of the results. Here, we highlight the proposed integrated approach for the prediction and diagnosis of ACVD with the presentation of the key elements of a joint scientific project of the University of Milan and the Almazov National Medical Research Centre.
Collapse
Affiliation(s)
- EIena I. Usova
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (E.I.U.); (A.N.Y.); (M.S.A.); (A.A.P.); (A.O.K.); (E.V.S.)
| | - Asiiat S. Alieva
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (E.I.U.); (A.N.Y.); (M.S.A.); (A.A.P.); (A.O.K.); (E.V.S.)
| | - Alexey N. Yakovlev
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (E.I.U.); (A.N.Y.); (M.S.A.); (A.A.P.); (A.O.K.); (E.V.S.)
| | - Madina S. Alieva
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (E.I.U.); (A.N.Y.); (M.S.A.); (A.A.P.); (A.O.K.); (E.V.S.)
| | - Alexey A. Prokhorikhin
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (E.I.U.); (A.N.Y.); (M.S.A.); (A.A.P.); (A.O.K.); (E.V.S.)
| | - Alexandra O. Konradi
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (E.I.U.); (A.N.Y.); (M.S.A.); (A.A.P.); (A.O.K.); (E.V.S.)
| | - Evgeny V. Shlyakhto
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (E.I.U.); (A.N.Y.); (M.S.A.); (A.A.P.); (A.O.K.); (E.V.S.)
| | - Paolo Magni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.L.C.); (A.B.)
- IRCCS Multimedica Hospital, Sesto San Giovanni, 20099 Milan, Italy
| | - Alberico L. Catapano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.L.C.); (A.B.)
- IRCCS Multimedica Hospital, Sesto San Giovanni, 20099 Milan, Italy
| | - Andrea Baragetti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (A.L.C.); (A.B.)
- IRCCS Multimedica Hospital, Sesto San Giovanni, 20099 Milan, Italy
| |
Collapse
|
24
|
Fath F, Bengeser A, Barresi M, Binner P, Schwab S, Ray KK, Krämer BK, Fraass U, März W. FH ALERT: efficacy of a novel approach to identify patients with familial hypercholesterolemia. Sci Rep 2021; 11:20421. [PMID: 34650182 PMCID: PMC8516913 DOI: 10.1038/s41598-021-99961-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 09/27/2021] [Indexed: 01/22/2023] Open
Abstract
Diagnosis rates of familial hypercholesterolemia (FH) remain low. We implemented FH ALERT to assess whether alerting physicians for the possibility of FH impacted additional diagnostic activity. The study was conducted from SYNLAB laboratory Weiden (Bavaria). Beyond common reporting of LDL-C or TC, 1411 physicians covering approximately a population of 1.5 million people were eligible to receive an alert letter (AL) including information on FH, if laboratory results exceeded thresholds as follows: adults LDL-C ≥ 190–250 mg/dl (to convert into mmol/l multiply with 0.0259), TC ≥ 250 to ≤ 310 mg/dl (probable suspicion); LDL-C > 250 mg/dl and TC > 310 mg/dl (strong suspicion). Persons below 18 years were alerted for LDL-C 140 mg/dl and TC ≥ 200 mg/dl (strong suspicion). Patients above 60 years were excluded. Our readouts were characteristics of involved physicians, rate of ALs issued, acceptance, and subsequent diagnostic activity. Physicians were mainly general practitioners in ambulatory care. 75% of the ordered tests were for TC, 25% for LDL-C. We issued 3512 ALs (~ 5% of tests) triggered by 2846 patients. 86% of eligible physicians stayed with the initiative, 32.7% were alerted, and 70% were positive upon call-center survey. We registered 101 new visitors of www.fhscore.eu and sent out 93 kits for genetics. Thereof, 26 were returned and 5 patients were positive for FH. Physicians were in general open to our approach. Although genetic testing was taken up with caution, this 3-months pilot examination resulted in a greater rate of patients with FH diagnosed than previous screening projects. Further education on FH in primary care is required to improve FH detection in the community.
Collapse
Affiliation(s)
- Felix Fath
- SYNLAB Holding Germany GmbH, SYNLAB Academy, Mannheim, Germany. .,Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | | | | | | | | | - Kausik K Ray
- Imperial Centre for Cardiovascular Disease Prevention, Department of Primary Care and Public Health, Imperial College London, London, UK
| | - Bernhard K Krämer
- Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,European Center for Angioscience ECAS, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | | - Winfried März
- SYNLAB Holding Germany GmbH, SYNLAB Academy, Mannheim, Germany.,Vth Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Clinical Institute of Medical and Chemical Laboratory Diagnostics Medical, University of Graz, Graz, Austria.,D A CH Society Prevention of Cardiovascular Diseases e.V., Hamburg, Germany
| |
Collapse
|
25
|
Direct and Indirect Effects of SARS-CoV-2 Pandemic in Subjects with Familial Hypercholesterolemia: A Single Lipid-Center Real-World Evaluation. J Clin Med 2021; 10:jcm10194363. [PMID: 34640388 PMCID: PMC8509350 DOI: 10.3390/jcm10194363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 01/08/2023] Open
Abstract
We evaluated the impact of direct and indirect effects of SARS-CoV-2 infection in subjects with familial hypercholesterolemia (FH). In this observational, retrospective study, 260 FH subjects participated in a telephone survey concerning lipid profile values, lipidologist and cardiologist consultations and vascular imaging evaluation during the 12 months before and after the Italian lockdown. The direct effect was defined as SARS-CoV-2 infection; the indirect effect was defined as the difference in one of the parameters evaluated by the telephone survey before and after lockdown. Among FH subjects, the percentage of the lipid profile evaluation was lower after lockdown than before lockdown (56.5% vs. 100.0%, p < 0.01), HDL-C was significantly reduced (47.78 ± 10.12 vs. 53.2 ± 10.38 mg/dL, p < 0.05) and a significant increase in non-HDL-C was found (117.24 ± 18.83 vs. 133.09 ± 19.01 mg/dL, p < 0.05). The proportions of lipidologist and/or cardiologist consultations and/or vascular imaging were lower after lockdown than before lockdown (for lipidologist consultation 33.5% vs. 100.0%, p < 0.001; for cardiologist consultation 22.3% vs. 60.8%, p < 0.01; for vascular imaging 19.6% vs. 100.0%, p < 0.001); the main cause of missed lipid profile analysis and/or healthcare consultation was the fear of SARS-CoV-2 contagion. The percentage of FH subjects affected by SARS-CoV-2 was 7.3%. In conclusion, a lower percentage of FH subjects underwent a lipid profile analysis, lipidologist and cardiologist consultations and vascular imaging evaluation after SARS-CoV-2 Italian lockdown.
Collapse
|
26
|
Di Minno A, Orsini RC, Chiesa M, Cavalca V, Calcaterra I, Tripaldella M, Anesi A, Fiorelli S, Eligini S, Colombo GI, Tremoli E, Porro B, Di Minno MND. Treatment with PCSK9 Inhibitors in Patients with Familial Hypercholesterolemia Lowers Plasma Levels of Platelet-Activating Factor and Its Precursors: A Combined Metabolomic and Lipidomic Approach. Biomedicines 2021; 9:biomedicines9081073. [PMID: 34440277 PMCID: PMC8391636 DOI: 10.3390/biomedicines9081073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Familial hypercholesterolemia (FH) is characterized by extremely high levels of circulating low-density lipoprotein cholesterol (LDL-C) and is caused by mutations of genes involved in LDL-C metabolism, including LDL receptor (LDLR), apolipoprotein B (APOB), or proprotein convertase subtilisin/Kexin type 9 (PCSK9). Accordingly, PCSK9 inhibitors (PCSK9i) are effective in LDL-C reduction. However, no data are available on the pleiotropic effect of PCSK9i. To this end, we performed an untargeted metabolomics approach to gather a global view on changes in metabolic pathways in patients receiving treatment with PCSK9i. METHODS Twenty-five FH patients starting treatment with PCSK-9i were evaluated by an untargeted metabolomics approach at baseline (before PCSK9i treatment) and after 12 weeks of treatment. RESULTS All the 25 FH subjects enrolled were on maximal tolerated lipid-lowering therapy prior to study entry. After a 12 week treatment with PCSK9i, we observed an expected significant reduction in LDL-cholesterol levels (from 201.0 ± 69.5 mg/dL to 103.0 ± 58.0 mg/dL, p < 0.001). The LDL-C target was achieved in 36% of patients. After peak validation and correction, after 12 weeks of PCSK9i treatment as compared to baseline, we observed increments in creatine (p-value = 0.041), indole (p-value = 0.045), and indoleacrylic acid (p-value= 0.045) concentrations. Conversely, significant decreases in choline (p-value = 0.045) and phosphatidylcholine (p-value < 0.01) together with a reduction in platelet activating factor (p-value = 0.041) were observed. CONCLUSIONS Taking advantage of untargeted metabolomics, we first provided evidence of concomitant reductions in inflammation and platelet activation metabolites in FH patients receiving a 12 week treatment with PCSK9i.
Collapse
Affiliation(s)
- Alessandro Di Minno
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy
- CEINGE-Biotecnologie Avanzate, Università degli Studi di Napoli, 80131 Napoli, Italy
- Correspondence:
| | - Roberta Clara Orsini
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (R.C.O.); (I.C.); (M.T.)
| | - Mattia Chiesa
- Bioinformatics and Artificial Intelligence Facility, Centro Cardiologico Monzino IRCCS, 38010 Milano, Italy;
- Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, 38010 Milano, Italy
| | - Viviana Cavalca
- Centro Cardiologico Monzino, IRCCS, 38010 Milano, Italy; (V.C.); (S.F.); (S.E.); (G.I.C.); (E.T.); (B.P.)
| | - Ilenia Calcaterra
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (R.C.O.); (I.C.); (M.T.)
| | - Maria Tripaldella
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (R.C.O.); (I.C.); (M.T.)
| | - Andrea Anesi
- Fondazione Edmund Mach Research and Innovation Centre, Food Quality and Nutrition Department, Via E. Mach, 1, 38010 S. Michele all’ Adige, Italy;
| | - Susanna Fiorelli
- Centro Cardiologico Monzino, IRCCS, 38010 Milano, Italy; (V.C.); (S.F.); (S.E.); (G.I.C.); (E.T.); (B.P.)
| | - Sonia Eligini
- Centro Cardiologico Monzino, IRCCS, 38010 Milano, Italy; (V.C.); (S.F.); (S.E.); (G.I.C.); (E.T.); (B.P.)
| | - Gualtiero I. Colombo
- Centro Cardiologico Monzino, IRCCS, 38010 Milano, Italy; (V.C.); (S.F.); (S.E.); (G.I.C.); (E.T.); (B.P.)
| | - Elena Tremoli
- Centro Cardiologico Monzino, IRCCS, 38010 Milano, Italy; (V.C.); (S.F.); (S.E.); (G.I.C.); (E.T.); (B.P.)
| | - Benedetta Porro
- Centro Cardiologico Monzino, IRCCS, 38010 Milano, Italy; (V.C.); (S.F.); (S.E.); (G.I.C.); (E.T.); (B.P.)
| | - Matteo Nicola Dario Di Minno
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy;
| |
Collapse
|
27
|
Tung H, Lin HJ, Chen PL, Lu TJ, Jhan PP, Chen JP, Chen YM, Wu CC, Lin YY, Hsiao TH. Characterization of familial hypercholesterolemia in Taiwanese ischemic stroke patients. Aging (Albany NY) 2021; 13:19339-19351. [PMID: 34314377 PMCID: PMC8386562 DOI: 10.18632/aging.203320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/29/2021] [Indexed: 11/25/2022]
Abstract
Familial hypercholesterolemia (FH) is a common genetic disorder characterized by a lifelong elevated low-density lipoprotein cholesterol (LDL-C) level. The relationship between FH and ischemic stroke is still controversial. We enrolled ischemic stroke patients prospectively in our neurological ward, and divided them into two groups according to LDL-C levels with a threshold of 130 mg/dl. Targeted sequencing was performed in all stroke patients for LDLR, APOB, and PCSK9 genes. The fifty-eight high-LDL subjects were older, prevalence of previous myocardial infarction/stroke history was lower, and the first stroke age was older compared with values in the sixty-three low-LDL cases. The prevalence of FH in Han-Chinese stroke patients was 5.0%, and was 10.3% in those with a higher LDL-C level. We identified six carriers, who had higher percentages of large vessel stroke subtype (66.7% vs. 15.4%) and transient ischemic attack (33.3% vs. 3.8%), previous myocardial infarction/stroke history (50.0% vs. 11.5%), statin use (50.0% vs. 11.5%), and increased carotid intima-media thickness (IMT) (0.9-1.2mm vs.0.7-9.0mm) compared with the other hypercholesterolemic patients without pathogenic variants. Ischemic stroke patients carrying FH pathogenic variants seemed to have a higher risk for large artery stroke and transient ischemic attack. The IMT exam could be useful to screen for FH in hypercholesterolemic stroke patients.
Collapse
Affiliation(s)
- Hsin Tung
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Center of Faculty Development, Taichung Veterans General Hospital, Taichung, Taiwan.,Division of Epilepsy, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hsueh-Ju Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Po-Lin Chen
- Division of General Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Tsai-Jung Lu
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Pei-Pei Jhan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jun-Peng Chen
- Biostatistics Task Force of Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Ming Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chen-Chin Wu
- Division of Epilepsy, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan.,Division of General Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yung-Yang Lin
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tzu-Hung Hsiao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Public Health, Fu Jen Catholic University, New Taipei City, Taiwan.,Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
28
|
Scicali R, Di Pino A, Ferrara V, Rabuazzo AM, Purrello F, Piro S. Effect of PCSK9 inhibitors on pulse wave velocity and monocyte-to-HDL-cholesterol ratio in familial hypercholesterolemia subjects: results from a single-lipid-unit real-life setting. Acta Diabetol 2021; 58:949-957. [PMID: 33745063 PMCID: PMC8187232 DOI: 10.1007/s00592-021-01703-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/03/2021] [Indexed: 02/08/2023]
Abstract
AIMS Subjects with familial hypercholesterolemia (FH) are characterized by an increased amount of low-density lipoprotein cholesterol (LDL-C) that promotes a continuous inflammatory stimulus. Our aim was to evaluate the effect of PCSK9-i on inflammatory biomarkers, neutrophil-to-lymphocyte ratio, monocyte-to-high-density lipoprotein ratio (MHR), and on early atherosclerosis damage analyzed by pulse wave velocity (PWV) in a cohort of FH subjects. METHODS In this prospective observational study, we evaluated 56 FH subjects on high-intensity statins plus ezetimibe and with an off-target LDL-C. All subjects were placed on PCSK9-i therapy and obtained biochemical analysis as well as PWV evaluation at baseline and after six months of PCSK9-i therapy. RESULTS After six months of add-on PCSK9-i therapy, only 42.9% of FH subjects attained LDL-C targets. As expected, a significant reduction of LDL-C (- 49.61%, p < 0.001) was observed after PCSK9-i therapy. Neutrophil count (NC) and MHR were reduced by PCSK9-i (-13.82% and -10.47%, respectively, p value for both < 0.05) and PWV significantly decreased after PCSK9-i therapy (- 20.4%, p < 0.05). Finally, simple regression analyses showed that ∆ PWV was significantly associated with ∆ LDL-C (p < 0.01), ∆ NC and ∆ MHR (p value for both < 0.05). CONCLUSIONS In conclusion, PCSK9-i therapy significantly improved lipid and inflammatory profiles and PWV values in FH subjects; our results support the positive effect of PCSK9-i in clinical practice.
Collapse
Affiliation(s)
- Roberto Scicali
- Department of Clinical and Experimental Medicine, University of Catania, Internal Medicine, Garibaldi Hospital, Via Palermo 636, 95122, Catania, Italy
| | - Antonino Di Pino
- Department of Clinical and Experimental Medicine, University of Catania, Internal Medicine, Garibaldi Hospital, Via Palermo 636, 95122, Catania, Italy
| | - Viviana Ferrara
- Department of Clinical and Experimental Medicine, University of Catania, Internal Medicine, Garibaldi Hospital, Via Palermo 636, 95122, Catania, Italy
| | - Agata Maria Rabuazzo
- Department of Clinical and Experimental Medicine, University of Catania, Internal Medicine, Garibaldi Hospital, Via Palermo 636, 95122, Catania, Italy
| | - Francesco Purrello
- Department of Clinical and Experimental Medicine, University of Catania, Internal Medicine, Garibaldi Hospital, Via Palermo 636, 95122, Catania, Italy.
| | - Salvatore Piro
- Department of Clinical and Experimental Medicine, University of Catania, Internal Medicine, Garibaldi Hospital, Via Palermo 636, 95122, Catania, Italy
| |
Collapse
|
29
|
Vickers KC, Michell DL. HDL-small RNA Export, Transport, and Functional Delivery in Atherosclerosis. Curr Atheroscler Rep 2021; 23:38. [PMID: 33983531 DOI: 10.1007/s11883-021-00930-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW This review highlights recent advances on the mechanisms and impact of HDL-small non-coding RNAs (sRNA) on intercellular communication in atherosclerosis. RECENT FINDINGS Studies demonstrate that HDL-microRNAs (miRNA) are significantly altered in atherosclerotic cardiovascular disease (ASCVD), and are responsive to diet, obesity, and diabetes. Immune cells, pancreatic beta cells, and neurons are shown to export miRNAs to HDL. In turn, HDL can deliver functional miRNAs to recipient hepatocytes and endothelial cells regulating adhesion molecule expression, cytokines, and angiogenesis. With high-throughput sRNA sequencing, we now appreciate the full sRNA signature on circulating HDL, including the transport of rRNA and tRNA-derived fragments. Strikingly, HDL were highly enriched with exogenous microbial sRNAs. HDL transport a diverse set of host and non-host sRNAs that are altered in cardiometabolic diseases. Given the bioactivity of these sRNAs, they likely contribute to cellular communication within atherosclerotic lesions, and are potential disease biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Kasey C Vickers
- Department of Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave. 312 Preston Research Building, Nashville, TN, 37232, USA.
| | - Danielle L Michell
- Department of Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave. 312 Preston Research Building, Nashville, TN, 37232, USA
| |
Collapse
|
30
|
D'Erasmo L, Minicocci I, Di Costanzo A, Pigna G, Commodari D, Ceci F, Montali A, Brancato F, Stanca I, Nicolucci A, Ascione A, Galea N, Carbone I, Francone M, Maranghi M, Arca M. Clinical Implications of Monogenic Versus Polygenic Hypercholesterolemia: Long-Term Response to Treatment, Coronary Atherosclerosis Burden, and Cardiovascular Events. J Am Heart Assoc 2021; 10:e018932. [PMID: 33890476 PMCID: PMC8200757 DOI: 10.1161/jaha.120.018932] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Background Familial hypercholesterolemia (FH) may arise from deleterious monogenic variants in FH‐causing genes as well as from a polygenic cause. We evaluated the relationships between monogenic FH and polygenic hypercholesterolemia in influencing the long‐term response to therapy and the risk of atherosclerosis. Methods and Results A cohort of 370 patients with clinically diagnosed FH were screened for monogenic mutations and a low‐density lipoprotein‐rising genetic risk score >0.69 to identify polygenic cause. Medical records were reviewed to estimate the response to lipid‐lowering therapies and the occurrence of major atherosclerotic cardiovascular events during a median follow‐up of 31.0 months. A subgroup of patients (n=119) also underwent coronary computed tomographic angiography for the evaluation of coronary artery calcium score and severity of coronary stenosis as compared with 135 controls. Two hundred nine (56.5%) patients with hypercholesterolemia were classified as monogenic (FH/M+), 89 (24.1%) as polygenic, and 72 (19.5%) genetically undefined (FH/M−). The response to lipid‐lowering therapy was poorest in monogenic, whereas it was comparable in patients with polygenic hypercholesterolemia and genetically undetermined. Mean coronary artery calcium score and the prevalence of coronary artery calcium >100 units were significantly higher in FH/M+ as compared with both FH/M− and controls. Finally, after adjustments for confounders, we observed a 5‐fold higher risk of incident major atherosclerotic cardiovascular events in FH/M+ (hazard ratio, 4.8; 95% CI, 1.06–21.36; Padj=0.041). Conclusions Monogenic cause of FH is associated with lower response to conventional cholesterol‐lowering therapies as well as with increased burden of coronary atherosclerosis and risk of atherosclerotic‐related events. Genetic testing for hypercholesterolemia is helpful in providing important prognostic information.
Collapse
Affiliation(s)
- Laura D'Erasmo
- Department of Translational and Precision Medicine "Sapienza" University of Rome Rome Italy
| | - Ilenia Minicocci
- Department of Translational and Precision Medicine "Sapienza" University of Rome Rome Italy
| | - Alessia Di Costanzo
- Department of Translational and Precision Medicine "Sapienza" University of Rome Rome Italy
| | - Giovanni Pigna
- Department of Translational and Precision Medicine "Sapienza" University of Rome Rome Italy
| | - Daniela Commodari
- Department of Translational and Precision Medicine "Sapienza" University of Rome Rome Italy
| | - Fabrizio Ceci
- Department of Experimental Medicine "Sapienza" University of Rome Rome Italy
| | - Anna Montali
- Department of Translational and Precision Medicine "Sapienza" University of Rome Rome Italy
| | - Francesca Brancato
- Department of Translational and Precision Medicine "Sapienza" University of Rome Rome Italy
| | - Ilaria Stanca
- Department of Translational and Precision Medicine "Sapienza" University of Rome Rome Italy
| | - Antonio Nicolucci
- CORESEARCH Center for Outcomes Research and Clinical Epidemiology Pescara Italy
| | - Andrea Ascione
- Department of Radiological Sciences, Oncology and Pathology "Sapienza" University of Rome Rome Italy
| | - Nicola Galea
- Department of Radiological Sciences, Oncology and Pathology "Sapienza" University of Rome Rome Italy
| | - Iacopo Carbone
- Department of Radiological Sciences, Oncology and Pathology "Sapienza" University of Rome, I.C.O.T. Hospital Latina Italy
| | - Marco Francone
- Department of Radiological Sciences, Oncology and Pathology "Sapienza" University of Rome Rome Italy
| | - Marianna Maranghi
- Department of Translational and Precision Medicine "Sapienza" University of Rome Rome Italy
| | - Marcello Arca
- Department of Translational and Precision Medicine "Sapienza" University of Rome Rome Italy
| |
Collapse
|
31
|
Pederiva C, Capra ME, Viggiano C, Rovelli V, Banderali G, Biasucci G. Early Prevention of Atherosclerosis: Detection and Management of Hypercholesterolaemia in Children and Adolescents. Life (Basel) 2021; 11:life11040345. [PMID: 33919973 PMCID: PMC8070896 DOI: 10.3390/life11040345] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 11/22/2022] Open
Abstract
Coronary heart disease (CHD) is the main cause of death and morbidity in the world. There is a strong evidence that the atherosclerotic process begins in childhood and that hypercholesterolaemia is a CHD major risk factor. Hypercholesterolaemia is a modifiable CHD risk factor and there is a tracking of hypercholesterolaemia from birth to adulthood. Familial hypercholesterolaemia (FH) is the most common primitive cause of hypercholesterolaemia, affecting 1:200–250 individuals. Early detection and treatment of hypercholesterolaemia in childhood can literally “save decades of life”, as stated in the European Atherosclerosis Society Consensus. Multiple screening strategies have been proposed. In 2008, the American Academy of Pediatrics published the criteria for targeted screening, while some expert panels recommend universal screening particularly in the young, although cost effectiveness has not been fully analysed. Blood lipid profile evaluation [total cholesterol, Low-Density Lipoprotein Cholesterol (LDL-C), High-Density Lipoprotein Cholesterol (HDL-C) and triglycerides] is the first step. It has to be ideally performed between two and ten years of age. Hypercholesterolaemia has to be confirmed with a second sample and followed by the detection of family history for premature (before 55 years in men and 60 years in women) or subsequent cardio-vascular events and/or hypercholesterolaemia in 1st and 2nd degree relatives. The management of hypercholesterolaemia in childhood primarily involves healthy lifestyle and a prudent low-fat diet, emphasising the benefits of the Mediterranean diet. Statins are the cornerstone of the drug therapy approved in USA and in Europe for use in children. Ezetimibe or bile acid sequestrants may be required to attain LDL-C goal in some patients. Early identification of children with severe hypercholesterolaemia or with FH is important to prevent atherosclerosis at the earliest stage of development, when maximum benefit can still be obtained via lifestyle adaptations and therapy. The purpose of our review is to highlight the importance of prevention and treatment of hypercholesterolaemia starting from the earliest stages of life.
Collapse
Affiliation(s)
- Cristina Pederiva
- Clinical Service for Dyslipidaemias, Study and Prevention of Atherosclerosis in Childhood, Pediatrics Unit, ASST-Santi Paolo e Carlo, 20142 Milan, Italy; (C.P.); (C.V.); (V.R.); (G.B.)
| | - Maria Elena Capra
- Centre for Paediatric Dyslipidaemias, Paediatrics and Neonatology Unit, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy;
- Correspondence:
| | - Claudia Viggiano
- Clinical Service for Dyslipidaemias, Study and Prevention of Atherosclerosis in Childhood, Pediatrics Unit, ASST-Santi Paolo e Carlo, 20142 Milan, Italy; (C.P.); (C.V.); (V.R.); (G.B.)
| | - Valentina Rovelli
- Clinical Service for Dyslipidaemias, Study and Prevention of Atherosclerosis in Childhood, Pediatrics Unit, ASST-Santi Paolo e Carlo, 20142 Milan, Italy; (C.P.); (C.V.); (V.R.); (G.B.)
| | - Giuseppe Banderali
- Clinical Service for Dyslipidaemias, Study and Prevention of Atherosclerosis in Childhood, Pediatrics Unit, ASST-Santi Paolo e Carlo, 20142 Milan, Italy; (C.P.); (C.V.); (V.R.); (G.B.)
| | - Giacomo Biasucci
- Centre for Paediatric Dyslipidaemias, Paediatrics and Neonatology Unit, Guglielmo da Saliceto Hospital, 29121 Piacenza, Italy;
| |
Collapse
|
32
|
Gelzo M, Di Taranto MD, Bisecco A, D'Amico A, Capuano R, Giacobbe C, Caputo M, Cirillo M, Tedeschi G, Fortunato G, Corso G. A case of Cerebrotendinous Xanthomatosis with spinal cord involvement and without tendon xanthomas: identification of a new mutation of the CYP27A1 gene. Acta Neurol Belg 2021; 121:561-566. [PMID: 31875301 DOI: 10.1007/s13760-019-01267-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/16/2019] [Indexed: 12/25/2022]
Abstract
Cerebrotendinous Xanthomatosis (CTX) is an autosomal recessive defect of the alternative pathway of bile acid biosynthesis, due to the deficiency of mitochondrial cytochrome P450 sterol 27-hydroxylase enzyme encoded by CYP27A1. The deficit of sterol 27-hydroxylase raises cholestanol in plasma and tissues of affected patients. Although there is a marked variability of signs, symptoms, severity and age of onset, the main clinical manifestations of CTX include chronic diarrhea, bilateral cataract, tendon xanthomas and neurological dysfunction. Herein, we report the clinical, biochemical and molecular characterization of a Caucasian female affected by CTX diagnosed at 28 years. The patient's clinical history revealed neurological and behavioral manifestations already at fifth year of life, following by bilateral cataract and chronic diarrhea without xanthomas. At diagnosis, an involvement of the cervical spinal cord was also observed on MRI. Sterols profile analysis in plasma and red blood cell membranes showed very high cholestanol levels. CYP27A1 sequencing revealed a new variant (e.g., c.850_854delinsCTC) at homozygous status. The follow-up after 5 months of chenodeoxycholic acid treatment showed a decrease of plasma cholestanol of 64%. After 1 year, the patient showed normalization of bowel function, reduction of risk of falls, improvement of cognitive function although brain and spine MRI and other instrumental examinations remained unchanged. This case highlights the variability of the CTX phenotype that makes it difficult to reach an early diagnosis. Biochemical and/or molecular screening of CTX should be taken into account to early start the pharmacological treatment limiting neurological damages.
Collapse
Affiliation(s)
- Monica Gelzo
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy, Via Sergio Pansini 5, 80131, Naples, Italy
- CEINGE Advanced Biotechnologies, Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Maria Donata Di Taranto
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy, Via Sergio Pansini 5, 80131, Naples, Italy
- CEINGE Advanced Biotechnologies, Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Alvino Bisecco
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza L. Miraglia 2, 80138, Naples, Italy
| | - Alessandra D'Amico
- Department of Advanced Biomedical Sciences, Neuroradiology Units, Federico II University, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Rocco Capuano
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza L. Miraglia 2, 80138, Naples, Italy
| | - Carola Giacobbe
- CEINGE Advanced Biotechnologies, Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Mafalda Caputo
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Mario Cirillo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza L. Miraglia 2, 80138, Naples, Italy
| | - Gioacchino Tedeschi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza L. Miraglia 2, 80138, Naples, Italy
| | - Giuliana Fortunato
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy, Via Sergio Pansini 5, 80131, Naples, Italy
- CEINGE Advanced Biotechnologies, Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Gaetano Corso
- Department of Clinical and Experimental Medicine, University of Foggia, Viale L. Pinto 1, 71122, Foggia, Italy.
| |
Collapse
|
33
|
Gelzo M, Di Taranto MD, Bisecco A, D'Amico A, Capuano R, Giacobbe C, Caputo M, Cirillo M, Tedeschi G, Fortunato G, Corso G. A case of Cerebrotendinous Xanthomatosis with spinal cord involvement and without tendon xanthomas: identification of a new mutation of the CYP27A1 gene. Acta Neurol Belg 2021; 121:561-566. [PMID: 31875301 DOI: 10.1007/s13760‐019‐01267‐4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/16/2019] [Indexed: 01/29/2023]
Abstract
Cerebrotendinous Xanthomatosis (CTX) is an autosomal recessive defect of the alternative pathway of bile acid biosynthesis, due to the deficiency of mitochondrial cytochrome P450 sterol 27-hydroxylase enzyme encoded by CYP27A1. The deficit of sterol 27-hydroxylase raises cholestanol in plasma and tissues of affected patients. Although there is a marked variability of signs, symptoms, severity and age of onset, the main clinical manifestations of CTX include chronic diarrhea, bilateral cataract, tendon xanthomas and neurological dysfunction. Herein, we report the clinical, biochemical and molecular characterization of a Caucasian female affected by CTX diagnosed at 28 years. The patient's clinical history revealed neurological and behavioral manifestations already at fifth year of life, following by bilateral cataract and chronic diarrhea without xanthomas. At diagnosis, an involvement of the cervical spinal cord was also observed on MRI. Sterols profile analysis in plasma and red blood cell membranes showed very high cholestanol levels. CYP27A1 sequencing revealed a new variant (e.g., c.850_854delinsCTC) at homozygous status. The follow-up after 5 months of chenodeoxycholic acid treatment showed a decrease of plasma cholestanol of 64%. After 1 year, the patient showed normalization of bowel function, reduction of risk of falls, improvement of cognitive function although brain and spine MRI and other instrumental examinations remained unchanged. This case highlights the variability of the CTX phenotype that makes it difficult to reach an early diagnosis. Biochemical and/or molecular screening of CTX should be taken into account to early start the pharmacological treatment limiting neurological damages.
Collapse
Affiliation(s)
- Monica Gelzo
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy, Via Sergio Pansini 5, 80131, Naples, Italy
- CEINGE Advanced Biotechnologies, Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Maria Donata Di Taranto
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy, Via Sergio Pansini 5, 80131, Naples, Italy
- CEINGE Advanced Biotechnologies, Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Alvino Bisecco
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza L. Miraglia 2, 80138, Naples, Italy
| | - Alessandra D'Amico
- Department of Advanced Biomedical Sciences, Neuroradiology Units, Federico II University, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Rocco Capuano
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza L. Miraglia 2, 80138, Naples, Italy
| | - Carola Giacobbe
- CEINGE Advanced Biotechnologies, Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Mafalda Caputo
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Mario Cirillo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza L. Miraglia 2, 80138, Naples, Italy
| | - Gioacchino Tedeschi
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Piazza L. Miraglia 2, 80138, Naples, Italy
| | - Giuliana Fortunato
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy, Via Sergio Pansini 5, 80131, Naples, Italy
- CEINGE Advanced Biotechnologies, Via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Gaetano Corso
- Department of Clinical and Experimental Medicine, University of Foggia, Viale L. Pinto 1, 71122, Foggia, Italy.
| |
Collapse
|
34
|
Scicali R, Di Pino A, Urbano F, Ferrara V, Marchisello S, Di Mauro S, Scamporrino A, Filippello A, Rabuazzo AM, Purrello F, Piro S. Analysis of steatosis biomarkers and inflammatory profile after adding on PCSK9 inhibitor treatment in familial hypercholesterolemia subjects with nonalcoholic fatty liver disease: A single lipid center real-world experience. Nutr Metab Cardiovasc Dis 2021; 31:869-879. [PMID: 33549441 DOI: 10.1016/j.numecd.2020.11.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/24/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Nonalcoholic fatty liver disease (NAFLD) may be crucial in subjects with familial hypercholesterolemia (FH). We aimed to evaluate the effect of the inhibitors of proprotein convertase subtilisin/kexin type 9 (PCSK9-i) on steatosis biomarkers such as triglyceride-glucose index (TyG) and hepatic steatosis index (HSI) and analyse the role of TG/HDL in this population before and after adding-on PCSK9-i. METHODS AND RESULTS In this observational study, we evaluated 26 genetically confirmed FH patients with NAFLD and an LDL-C off-target despite high-intensity statins plus ezetimibe. All patients added PCSK9-i treatment and obtained biochemical analysis and TyG and HSI evaluation at baseline and after six months of PCSK9-i. No difference of steatosis biomarkers was found after adding-on PCSK9-i therapy. In a secondary analysis, we divided the study population in two groups according to TG/HDL median value: high TG/HDL group (H-TG/HDL) and low TG/HDL group (L-TG/HDL). TyG and HSI were significantly lower in the L-TG/HDL than H-TG/HDL group (for TyG 9.05 ± 0.34 vs 9.51 ± 0.32; for HSI 38.43 ± 1.35 vs 41.35 ± 1.83, p value for both < 0.05). After six months of PCSK9-i therapy, TyG and HSI were significantly reduced in the L-TG/HDL group after PCSK9-i therapy (-7.5% and -8.4% respectively, p value for both < 0.05) and these biomarkers were lower compared to H-TG/HDL group (for TyG 8.37 ± 0.14 vs 9.19 ± 0.12; for HSI 35.19 ± 1.32 vs 39.48 ± 1.33, p value for both < 0.05). CONCLUSION In conclusion, PCSK9-i therapy significantly ameliorate steatosis biomarkers in FH patients with low TG/HDL; our results appear to be consistent with a beneficial role of PCSK9-i on steatosis biomarkers in FH subjects with NAFLD.
Collapse
Affiliation(s)
- Roberto Scicali
- Department of Clinical and Experimental Medicine, University of Catania, Italy
| | - Antonino Di Pino
- Department of Clinical and Experimental Medicine, University of Catania, Italy
| | - Francesca Urbano
- Department of Clinical and Experimental Medicine, University of Catania, Italy
| | - Viviana Ferrara
- Department of Clinical and Experimental Medicine, University of Catania, Italy
| | - Simona Marchisello
- Department of Clinical and Experimental Medicine, University of Catania, Italy
| | - Stefania Di Mauro
- Department of Clinical and Experimental Medicine, University of Catania, Italy
| | | | - Agnese Filippello
- Department of Clinical and Experimental Medicine, University of Catania, Italy
| | - Agata M Rabuazzo
- Department of Clinical and Experimental Medicine, University of Catania, Italy
| | - Francesco Purrello
- Department of Clinical and Experimental Medicine, University of Catania, Italy.
| | - Salvatore Piro
- Department of Clinical and Experimental Medicine, University of Catania, Italy
| |
Collapse
|
35
|
Camacho OFC, Molina GP, Catalá CFM, Reali JR, Cruz RM, Zenteno JC. Familial Hypercholesterolemia: Update and Review. Endocr Metab Immune Disord Drug Targets 2021; 22:198-211. [PMID: 33563162 DOI: 10.2174/1871530321666210208212148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 11/22/2022]
Abstract
Knowledge of epidemiology, genetic etiopathogenesis, diagnostic criteria, and management of familial hypercholesterolemia have increased in the last two decades. Several population studies have shown that familial hypercholesterolemia is more frequent than previously thought, making this entity the most common metabolic disease with monogenic inheritence in the world. Identification of causal heterozygous pathogenic variants in LDLR, APOB, and PCSK9 genes have increased diagnostic accuracy of classical criteria (extreme hypercholesterolemia, personal / family history of premature coronary artery disease or other cardiovascular disease). Genetic screening has been recently introduced in many European countries to detect patients with familial hypercholesterolemia, mainly affected pediatric subjects, asymptomatic or those at the beggining of their disease, with the purpose of increasing surveillance and avoiding complications such as cardiovascular diseases. Cholesterol-lowering drugs should be started as soon as the diagnosis is made. Various combinations between drugs can be used when the goal is not achieved. New therapies, including small interference ribonucleic acids (siRNA) are being tested in different clinical trials.
Collapse
Affiliation(s)
| | - Glustein Pozo Molina
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, . Mexico
| | - Claudia Fabiola Méndez Catalá
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, . Mexico
| | - Julia Reyes Reali
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, . Mexico
| | - René Méndez Cruz
- Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, . Mexico
| | - Juan Carlos Zenteno
- Biochemistry Department, Faculty Medicine, National Autonomous University of Mexico, Mexico City,. Mexico
| |
Collapse
|
36
|
Kamar A, Khalil A, Nemer G. The Digenic Causality in Familial Hypercholesterolemia: Revising the Genotype-Phenotype Correlations of the Disease. Front Genet 2021; 11:572045. [PMID: 33519890 PMCID: PMC7844333 DOI: 10.3389/fgene.2020.572045] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/01/2020] [Indexed: 12/20/2022] Open
Abstract
Genetically inherited defects in lipoprotein metabolism affect more than 10 million individuals around the globe with preponderance in some parts where consanguinity played a major role in establishing founder mutations. Mutations in four genes have been so far linked to the dominant and recessive form of the disease. Those players encode major proteins implicated in cholesterol regulation, namely, the low-density lipoprotein receptor (LDLR) and its associate protein 1 (LDLRAP1), the proprotein convertase substilin/kexin type 9 (PCSK9), and the apolipoprotein B (APOB). Single mutations or compound mutations in one of these genes are enough to account for a spectrum of mild to severe phenotypes. However, recently several reports have identified digenic mutations in familial cases that do not necessarily reflect a much severe phenotype. Yet, data in the literature supporting this notion are still lacking. Herein, we review all the reported cases of digenic mutations focusing on the biological impact of gene dosage and the potential protective effects of single-nucleotide polymorphisms linked to hypolipidemia. We also highlight the difficulty of establishing phenotype-genotype correlations in digenic familial hypercholesterolemia cases due to the complexity and heterogeneity of the phenotypes and the still faulty in silico pathogenicity scoring system. We finally emphasize the importance of having a whole exome/genome sequencing approach for all familial cases of familial hyperlipidemia to better understand the genetic and clinical course of the disease.
Collapse
Affiliation(s)
- Amina Kamar
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Athar Khalil
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Georges Nemer
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
- Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
37
|
Lui DTW, Lee ACH, Tan KCB. Management of Familial Hypercholesterolemia: Current Status and Future Perspectives. J Endocr Soc 2021; 5:bvaa122. [PMID: 33928199 PMCID: PMC8059332 DOI: 10.1210/jendso/bvaa122] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 12/31/2022] Open
Abstract
Familial hypercholesterolemia (FH) is the most common monogenic disorder associated with premature atherosclerotic cardiovascular disease. Early diagnosis and effective treatment can significantly improve prognosis. Recent advances in the field of lipid metabolism have shed light on the molecular defects in FH and new therapeutic options have emerged. A search of PubMed database up to March 2020 was performed for this review using the following keywords: "familial hypercholesterolemia," "diagnosis," "management," "guideline," "consensus," "genetics," "screening," "lipid lowering agents." The prevalence rate of heterozygous FH is approximately 1 in 200 to 250 and FH is underdiagnosed and undertreated in many parts of the world. Diagnostic criteria have been developed to aid the clinical diagnosis of FH. Genetic testing is now available but not widely used. Cascade screening is recommended to identify affected family members, and the benefits of early interventions are clear. Treatment strategy and target is currently based on low-density lipoprotein (LDL) cholesterol levels as the prognosis of FH largely depends on the magnitude of LDL cholesterol-lowering that can be achieved by lipid-lowering therapies. Statins with or without ezetimibe are the mainstay of treatment and are cost-effective. Addition of newer medications like PCSK9 inhibitors is able to further lower LDL cholesterol levels substantially, but the cost is high. Lipoprotein apheresis is indicated in homozygous FH or severe heterozygous FH patients with inadequate response to cholesterol-lowering therapies. In conclusion, FH is a common, treatable genetic disorder, and although our understanding of this disease has improved, many challenges still remain for its optimal management.
Collapse
Affiliation(s)
- David T W Lui
- Department of Medicine, University of Hong Kong, Queen
Mary Hospital, Hong Kong, China
| | - Alan C H Lee
- Department of Medicine, University of Hong Kong, Queen
Mary Hospital, Hong Kong, China
| | - Kathryn C B Tan
- Department of Medicine, University of Hong Kong, Queen
Mary Hospital, Hong Kong, China
| |
Collapse
|
38
|
Gazzotti M, Casula M, Olmastroni E, Averna M, Arca M, Catapano AL. How registers could enhance knowledge and characterization of genetic dyslipidaemias: The experience of the LIPIGEN in Italy and of other networks for familial hypercholesterolemia. ATHEROSCLEROSIS SUPP 2020; 42:e35-e40. [PMID: 33589222 DOI: 10.1016/j.atherosclerosissup.2021.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Familial hypercholesterolemia (FH) is a common genetic disorder of lipid metabolism, still underdiagnosed and undertreated in the general population. Pathology registers could play a crucial role in the creation of a comprehensive and integrated global approach to cover all aspects of this disease. Systematic data collection of patients affected by FH has increased dramatically worldwide in the past few years. Moreover, results from registers already established for the longest time showed their potentialities in the implementation of the knowledge of FH, comparing country-specific approaches and providing real-world data about identification, management and treatment of FH individuals in the clinical practice. The potential fields of research through registers are related to the deepening of the genetic basis of disease, the study of genotype-phenotype correlation, the local adaption and implementation of diagnostic algorithms, the comparison of pharmacological approaches and treatment gaps in real-life clinical practice, the evaluation of specific subpopulations, and the identification of factors modifying cardiovascular disease risk. Registers could become also a valid resource for other rare dyslipidaemias, contributing towards the evidence-based enhancement in the worldwide care of uncommon diseases.
Collapse
Affiliation(s)
- Marta Gazzotti
- Epidemiology and Preventive Pharmacology Service (SEFAP), Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
| | - Manuela Casula
- Epidemiology and Preventive Pharmacology Service (SEFAP), Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; IRCCS MultiMedica, Sesto San Giovanni (MI), Italy
| | - Elena Olmastroni
- Epidemiology and Preventive Pharmacology Service (SEFAP), Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Maurizio Averna
- Department ProMISE (Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties), University of Palermo, Palermo, Italy
| | - Marcello Arca
- Department of Translational and Precision Medicine, Sapienza University of Rome, Italy
| | - Alberico L Catapano
- Epidemiology and Preventive Pharmacology Service (SEFAP), Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; IRCCS MultiMedica, Sesto San Giovanni (MI), Italy
| |
Collapse
|
39
|
Kanuri B, Fong V, Haller A, Hui DY, Patel SB. Mice lacking global Stap1 expression do not manifest hypercholesterolemia. BMC MEDICAL GENETICS 2020; 21:234. [PMID: 33228548 PMCID: PMC7685646 DOI: 10.1186/s12881-020-01176-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/15/2020] [Indexed: 12/18/2022]
Abstract
Background Autosomal dominant familial hypercholesterolemia (ADH; MIM#143890) is one of the most common monogenic disorders characterized by elevated circulatory LDL cholesterol. Initial studies in humans with ADH identified a potential relationship with variants of the gene encoding signal transducing adaptor family member protein 1 (STAP1; MIM#604298). However, subsequent studies have been contradictory. In this study, mice lacking global Stap1 expression (Stap1−/−) were characterized under standard chow and a 42% kcal western diet (WD). Methods Mice were studied for changes in different metabolic parameters before and after a 16-week WD regime. Growth curves, body fats, circulatory lipids, parameters of glucose homeostasis, and liver architecture were studied for comparisons. Results Surprisingly, Stap1−/− mice fed the 16-week WD demonstrated no marked differences in any of the metabolic parameters compared to Stap1+/+ mice. Furthermore, hepatic architecture and cholesterol content in FPLC-isolated lipoprotein fractions also remained comparable to wild-type mice. Conclusion These results strongly suggest that STAP1 does not alter lipid levels, that a western diet did not exacerbate a lipid disorder in Stap1 deficient mice and support the contention that it is not causative for hyperlipidemia in ADH patients. These results support other published studies also questioning the role of this locus in human hypercholesterolemia. Supplementary Information The online version contains supplementary material available at 10.1186/s12881-020-01176-x.
Collapse
Affiliation(s)
- Babunageswararao Kanuri
- Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati, Cincinnati, OH, USA
| | - Vincent Fong
- Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati, Cincinnati, OH, USA
| | - April Haller
- Department of Pathology, University of Cincinnati, Cincinnati, OH, USA
| | - David Y Hui
- Department of Pathology, University of Cincinnati, Cincinnati, OH, USA
| | - Shailendra B Patel
- Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
40
|
Baragetti A, Bonacina F, Da Dalt L, Moregola A, Zampoleri V, Pellegatta F, Grigore L, Pirillo A, Spina R, Cefalù AB, Averna M, Norata GD, Catapano AL. Genetically determined hypercholesterolaemia results into premature leucocyte telomere length shortening and reduced haematopoietic precursors. Eur J Prev Cardiol 2020; 29:721-729. [PMID: 33624064 DOI: 10.1093/eurjpc/zwaa115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/24/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022]
Abstract
AIMS Leucocyte telomere length (LTL) shortening is a marker of cellular senescence and associates with increased risk of cardiovascular disease (CVD). A number of cardiovascular risk factors affect LTL, but the correlation between elevated LDL cholesterol (LDL-C) and shorter LTL is debated: in small cohorts including subjects with a clinical diagnosis of familial hypercholesterolaemia (FH). We assessed the relationship between LDL-C and LTL in subjects with genetic familial hypercholesterolaemia (HeFH) compared to those with clinically diagnosed, but not genetically confirmed FH (CD-FH), and normocholesterolaemic subjects. METHODS AND RESULTS LTL was measured in mononuclear cells-derived genomic DNA from 206 hypercholesterolaemic subjects (135 HeFH and 71 CD-FH) and 272 controls. HeFH presented shorter LTL vs. controls (1.27 ± 0.07 vs. 1.59 ± 0.04, P = 0.045). In particular, we found shorter LTL in young HeFH as compared to young controls (<35 y) (1.34 ± 0.08 vs. 1.64 ± 0.08, P = 0.019); moreover, LTL was shorter in statin-naïve HeFH subjects as compared to controls (1.23 ± 0.08 vs. 1.58 ± 0.04, P = 0.001). HeFH subjects presented shorter LTL compared to LDL-C matched CD-FH (1.33 ± 0.05 vs. 1.55 ± 0.08, P = 0.029). Shorter LTL was confirmed in leucocytes of LDLR-KO vs. wild-type mice and associated with lower abundance of long-term haematopoietic stem and progenitor cells (LT-HSPCs) in the bone marrow. Accordingly, HeFH subjects presented lower circulating haematopoietic precursors (CD34 + CD45dim cells) vs. CD-FH and controls. CONCLUSIONS We found (i) shorter LTL in genetically determined hypercholesterolaemia, (ii) lower circulating haematopoietic precursors in HeFH subjects, and reduced bone marrow resident LT-HSPCs in LDLR-KO mice. We support early cellular senescence and haematopoietic alterations in subjects with FH.
Collapse
Affiliation(s)
- Andrea Baragetti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy.,SISA Center for the Study of Atherosclerosis, Bassini Hospital, Via M. Gorki 50, 20092 Cinisello Balsamo, Milan, Italy
| | - Fabrizia Bonacina
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Lorenzo Da Dalt
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Annalisa Moregola
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Veronica Zampoleri
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy.,SISA Center for the Study of Atherosclerosis, Bassini Hospital, Via M. Gorki 50, 20092 Cinisello Balsamo, Milan, Italy
| | - Fabio Pellegatta
- IRCCS Multimedica Hospital, Via Milanese 300, 20099 Sesto San Giovanni, Milan, Italy
| | - Liliana Grigore
- IRCCS Multimedica Hospital, Via Milanese 300, 20099 Sesto San Giovanni, Milan, Italy
| | - Angela Pirillo
- IRCCS Multimedica Hospital, Via Milanese 300, 20099 Sesto San Giovanni, Milan, Italy
| | - Rossella Spina
- Dipartimento di Promozione della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza "G. D'Alessandro" (PROMISE), Università degli Studi di Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Angelo Baldassarre Cefalù
- Dipartimento di Promozione della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza "G. D'Alessandro" (PROMISE), Università degli Studi di Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Maurizio Averna
- Dipartimento di Promozione della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza "G. D'Alessandro" (PROMISE), Università degli Studi di Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Giuseppe D Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy.,SISA Center for the Study of Atherosclerosis, Bassini Hospital, Via M. Gorki 50, 20092 Cinisello Balsamo, Milan, Italy
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy.,IRCCS Multimedica Hospital, Via Milanese 300, 20099 Sesto San Giovanni, Milan, Italy
| |
Collapse
|
41
|
Scicali R, Russo GI, Di Mauro M, Manuele F, Di Marco G, Di Pino A, Ferrara V, Rabuazzo AM, Piro S, Morgia G, Purrello F. Analysis of Arterial Stiffness and Sexual Function after Adding on PCSK9 Inhibitor Treatment in Male Patients with Familial Hypercholesterolemia: A Single Lipid Center Real-World Experience. J Clin Med 2020; 9:jcm9113597. [PMID: 33171638 PMCID: PMC7695132 DOI: 10.3390/jcm9113597] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Familial hypercholesterolemia (FH) subjects have high low-density lipoprotein cholesterol (LDL-C) and may be at high risk of erectile dysfunction and atherosclerotic cardiovascular diseases. We evaluated the effect of PCSK9-i on sexual function evaluated by the Male Sexual Health Questionnaire (MSHQ) and the International Index of Erectile Function (IIEF-5) questionnaire and on pulse wave velocity (PWV) in FH male subjects. In this prospective observational study, we evaluated 30 FH male patients on high-intensity statins plus ezetimibe and with an LDL-C off-target. All patients added PCSK9-i treatment and obtained clinical assessment at baseline and after six months of PCSK9-i. As expected, LDL-C significantly decreased after adding-on PCSK9-i (-48.73%, p < 0.001). MSHQ and PWV significantly improved after adding-on PCSK9-i (for MSHQ 93.63 ± 6.28 vs. 105.41 ± 5.86, p < 0.05; for PWV 9.86 ± 1.51 vs. 7.7 ± 1.42, p < 0.05); no significant change of IIEF-5 was found. Finally, a simple regression showed that ∆ MSHQ was significantly associated with ∆ LDL-C and ∆ PWV (p value for both <0.05). In conclusion, PCSK9-i therapy significantly improves lipid profile, PWV, and sexual function in FH male patients; our results support the favorable function of PCSK9-i on these parameters.
Collapse
Affiliation(s)
- Roberto Scicali
- Department of Clinical and Experimental Medicine, University of Catania, 95100 Catania, Italy; (F.M.); (G.D.M.); (A.D.P.); (V.F.); (A.M.R.); (S.P.); (F.P.)
- Internal Medicine, Garibaldi Hospital, 95122 Catania, Italy
- Correspondence: ; Tel.: +39-0957598401; Fax: +39-0957598421
| | - Giorgio Ivan Russo
- Urology Section, Department of Surgery, University of Catania, 95100 Catania, Italy; (G.I.R.); (M.D.M.); (G.M.)
| | - Marina Di Mauro
- Urology Section, Department of Surgery, University of Catania, 95100 Catania, Italy; (G.I.R.); (M.D.M.); (G.M.)
| | - Flavia Manuele
- Department of Clinical and Experimental Medicine, University of Catania, 95100 Catania, Italy; (F.M.); (G.D.M.); (A.D.P.); (V.F.); (A.M.R.); (S.P.); (F.P.)
- Internal Medicine, Garibaldi Hospital, 95122 Catania, Italy
| | - Grazia Di Marco
- Department of Clinical and Experimental Medicine, University of Catania, 95100 Catania, Italy; (F.M.); (G.D.M.); (A.D.P.); (V.F.); (A.M.R.); (S.P.); (F.P.)
- Internal Medicine, Garibaldi Hospital, 95122 Catania, Italy
| | - Antonino Di Pino
- Department of Clinical and Experimental Medicine, University of Catania, 95100 Catania, Italy; (F.M.); (G.D.M.); (A.D.P.); (V.F.); (A.M.R.); (S.P.); (F.P.)
- Internal Medicine, Garibaldi Hospital, 95122 Catania, Italy
| | - Viviana Ferrara
- Department of Clinical and Experimental Medicine, University of Catania, 95100 Catania, Italy; (F.M.); (G.D.M.); (A.D.P.); (V.F.); (A.M.R.); (S.P.); (F.P.)
- Internal Medicine, Garibaldi Hospital, 95122 Catania, Italy
| | - Agata Maria Rabuazzo
- Department of Clinical and Experimental Medicine, University of Catania, 95100 Catania, Italy; (F.M.); (G.D.M.); (A.D.P.); (V.F.); (A.M.R.); (S.P.); (F.P.)
- Internal Medicine, Garibaldi Hospital, 95122 Catania, Italy
| | - Salvatore Piro
- Department of Clinical and Experimental Medicine, University of Catania, 95100 Catania, Italy; (F.M.); (G.D.M.); (A.D.P.); (V.F.); (A.M.R.); (S.P.); (F.P.)
- Internal Medicine, Garibaldi Hospital, 95122 Catania, Italy
| | - Giuseppe Morgia
- Urology Section, Department of Surgery, University of Catania, 95100 Catania, Italy; (G.I.R.); (M.D.M.); (G.M.)
| | - Francesco Purrello
- Department of Clinical and Experimental Medicine, University of Catania, 95100 Catania, Italy; (F.M.); (G.D.M.); (A.D.P.); (V.F.); (A.M.R.); (S.P.); (F.P.)
- Internal Medicine, Garibaldi Hospital, 95122 Catania, Italy
| |
Collapse
|
42
|
Bertolini S, Calandra S, Arca M, Averna M, Catapano AL, Tarugi P, Bartuli A, Bucci M, Buonuomo PS, Calabrò P, Casula M, Cefalù AB, Cicero A, D'Addato S, D'Erasmo L, Fasano T, Iannuzzo G, Ibba A, Negri EA, Pasta A, Pavanello C, Pisciotta L, Rabacchi C, Ripoli C, Sampietro T, Sbrana F, Sileo F, Suppressa P, Trenti C, Zenti MG. Homozygous familial hypercholesterolemia in Italy: Clinical and molecular features. Atherosclerosis 2020; 312:72-78. [DOI: 10.1016/j.atherosclerosis.2020.08.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/07/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022]
|
43
|
Vrablik M, Tichý L, Freiberger T, Blaha V, Satny M, Hubacek JA. Genetics of Familial Hypercholesterolemia: New Insights. Front Genet 2020; 11:574474. [PMID: 33133164 PMCID: PMC7575810 DOI: 10.3389/fgene.2020.574474] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
Familial hypercholesterolemia (FH) is one of the most common monogenic diseases, leading to an increased risk of premature atherosclerosis and its cardiovascular complications due to its effect on plasma cholesterol levels. Variants of three genes (LDL-R, APOB and PCSK9) are the major causes of FH, but in some probands, the FH phenotype is associated with variants of other genes. Alternatively, the typical clinical picture of FH can result from the accumulation of common cholesterol-increasing alleles (polygenic FH). Although the Czech Republic is one of the most successful countries with respect to FH detection, approximately 80% of FH patients remain undiagnosed. The opportunities for international collaboration and experience sharing within international programs (e.g., EAS FHSC, ScreenPro FH, etc.) will improve the detection of FH patients in the future and enable even more accessible and accurate genetic diagnostics.
Collapse
Affiliation(s)
- Michal Vrablik
- 3rd Department of Internal Medicine, 1st Faculty of Medicine, Charles University, Prague, Czechia
| | - Lukas Tichý
- Centre of Molecular Biology and Gene Therapy, University Hospital, Brno, Czechia
| | - Tomas Freiberger
- Centre for Cardiovascular Surgery and Transplantation, Brno, and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Vladimir Blaha
- Internal Gerontometabolic Department, Charles University and University Hospital Hradec Kralove, Hradec Kralove, Czechia
| | - Martin Satny
- 3rd Department of Internal Medicine, 1st Faculty of Medicine, Charles University, Prague, Czechia
| | - Jaroslav A Hubacek
- 3rd Department of Internal Medicine, 1st Faculty of Medicine, Charles University, Prague, Czechia.,Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, Prague, Czechia
| |
Collapse
|
44
|
Di Minno A, Gentile M, Iannuzzo G, Calcaterra I, Tripaldella M, Porro B, Cavalca V, Di Taranto MD, Tremoli E, Fortunato G, Rubba POF, Di Minno MND. Endothelial function improvement in patients with familial hypercholesterolemia receiving PCSK-9 inhibitors on top of maximally tolerated lipid lowering therapy. Thromb Res 2020; 194:229-236. [PMID: 33213848 DOI: 10.1016/j.thromres.2020.07.049] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/16/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Treatment with protein convertase subtilisin kexin type 9 inhibitors (PCSK-9i) reduced cholesterol levels and cardiovascular events in patients with hypercholesterolemia. We assessed changes in lipid profile, oxidation markers and endothelial function in patients with familial hypercholesterolemia (FH) after a 12-week treatment with a PCSK-9i. METHODS Patients with FH starting a treatment with PCSK-9i were included. Total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), lipoprotein(a) (Lp(a)), small dense LDL (assessed by LDL score), 11-dehydro-thromboxane (11-TXB2), 8-isoprostaglandin-2alpha (8-iso-PGF2α), flow-mediated dilation (FMD) and reactive hyperaemia index (RHI) were evaluated before starting PCSK-9i treatment and after a 12-week treatment. RESULTS Twenty-five subjects were enrolled (52% males, mean age 51.5 years). At the 12-week assessment, we observed a 38% median reduction in TC, 52% in LDL-C, 7% in Lp(a) and 46% in LDL score. In parallel, 11-TXB2 and 8-iso-PGF2α showed a reduction of 18% and 17%, respectively. FMD changed from 4.78% ± 2.27 at baseline to 10.6% ± 5.89 at 12 weeks (p < 0.001), with RHI changing from 2.37 ± 1.23 to 3.76 ± 1.36 (p < 0.001). A multivariate analysis showed that, after adjusting for potential confounders, change in LDL score was an independent predictor of changes in FMD (β = -0.846, p = 0.015) and in 8-iso-PGF2α (β = 0.778, p = 0.012). CONCLUSIONS Small dense LDL reduction (assessed by LDL score) is related to changes in oxidation markers and endothelial function in patients with FH treated with PCSK-9i.
Collapse
Affiliation(s)
| | - Marco Gentile
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Gabriella Iannuzzo
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Ilenia Calcaterra
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Maria Tripaldella
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Benedetta Porro
- Unit of Metabolomics and Cellular Biochemistry of Atherothrombosis, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Viviana Cavalca
- Unit of Metabolomics and Cellular Biochemistry of Atherothrombosis, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Maria Donata Di Taranto
- Department of Molecular Medicine e Medical Biotechnologies, Federico II University, Naples, Italy
| | - Elena Tremoli
- Unit of Metabolomics and Cellular Biochemistry of Atherothrombosis, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Giuliana Fortunato
- Department of Molecular Medicine e Medical Biotechnologies, Federico II University, Naples, Italy
| | | | | |
Collapse
|
45
|
Reeskamp LF, Tromp TR, Defesche JC, Grefhorst A, Stroes ESG, Hovingh GK, Zuurbier L. Next-generation sequencing to confirm clinical familial hypercholesterolemia. Eur J Prev Cardiol 2020; 28:875-883. [PMID: 34298557 DOI: 10.1093/eurjpc/zwaa451] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/28/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Familial hypercholesterolemia is characterised by high low-density lipoprotein-cholesterol levels and is caused by a pathogenic variant in LDLR, APOB or PCSK9. We investigated which proportion of suspected familial hypercholesterolemia patients was genetically confirmed, and whether this has changed over the past 20 years in The Netherlands. METHODS Targeted next-generation sequencing of 27 genes involved in lipid metabolism was performed in patients with low-density lipoprotein-cholesterol levels greater than 5 mmol/L who were referred to our centre between May 2016 and July 2018. The proportion of patients carrying likely pathogenic or pathogenic variants in LDLR, APOB or PCSK9, or the minor familial hypercholesterolemia genes LDLRAP1, ABCG5, ABCG8, LIPA and APOE were investigated. This was compared with the yield of Sanger sequencing between 1999 and 2016. RESULTS A total of 227 out of the 1528 referred patients (14.9%) were heterozygous carriers of a pathogenic variant in LDLR (80.2%), APOB (14.5%) or PCSK9 (5.3%). More than 50% of patients with a Dutch Lipid Clinic Network score of 'probable' or 'definite' familial hypercholesterolemia were familial hypercholesterolemia mutation-positive; 4.8% of the familial hypercholesterolemia mutation-negative patients carried a variant in one of the minor familial hypercholesterolemia genes. The mutation detection rate has decreased over the past two decades, especially in younger patients in which it dropped from 45% in 1999 to 30% in 2018. CONCLUSIONS A rare pathogenic variant in LDLR, APOB or PCSK9 was identified in 14.9% of suspected familial hypercholesterolemia patients and this rate has decreased in the past two decades. Stringent use of clinical criteria algorithms is warranted to increase this yield. Variants in the minor familial hypercholesterolemia genes provide a possible explanation for the familial hypercholesterolemia phenotype in a minority of patients.
Collapse
Affiliation(s)
- Laurens F Reeskamp
- Department of Vascular Medicine, University of Amsterdam, The Netherlands
| | - Tycho R Tromp
- Department of Vascular Medicine, University of Amsterdam, The Netherlands
| | - Joep C Defesche
- Department of Clinical Genetics, University of Amsterdam, The Netherlands
| | - Aldo Grefhorst
- Department of Experimental Vascular Medicine, University of Amsterdam, The Netherlands
| | - Erik S G Stroes
- Department of Vascular Medicine, University of Amsterdam, The Netherlands
| | - G Kees Hovingh
- Department of Vascular Medicine, University of Amsterdam, The Netherlands
| | - Linda Zuurbier
- Department of Clinical Genetics, University of Amsterdam, The Netherlands
| |
Collapse
|
46
|
Reeskamp LF, Tromp TR, Defesche JC, Grefhorst A, Stroes ES, Hovingh GK, Zuurbier L. Next-generation sequencing to confirm clinical familial hypercholesterolemia. Eur J Prev Cardiol 2020:2047487320942996. [PMID: 32718233 DOI: 10.1177/2047487320942996] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
BACKGROUND Familial hypercholesterolemia is characterised by high low-density lipoprotein-cholesterol levels and is caused by a pathogenic variant in LDLR, APOB or PCSK9. We investigated which proportion of suspected familial hypercholesterolemia patients was genetically confirmed, and whether this has changed over the past 20 years in The Netherlands. METHODS Targeted next-generation sequencing of 27 genes involved in lipid metabolism was performed in patients with low-density lipoprotein-cholesterol levels greater than 5 mmol/L who were referred to our centre between May 2016 and July 2018. The proportion of patients carrying likely pathogenic or pathogenic variants in LDLR, APOB or PCSK9, or the minor familial hypercholesterolemia genes LDLRAP1, ABCG5, ABCG8, LIPA and APOE were investigated. This was compared with the yield of Sanger sequencing between 1999 and 2016. RESULTS A total of 227 out of the 1528 referred patients (14.9%) were heterozygous carriers of a pathogenic variant in LDLR (80.2%), APOB (14.5%) or PCSK9 (5.3%). More than 50% of patients with a Dutch Lipid Clinic Network score of 'probable' or 'definite' familial hypercholesterolemia were familial hypercholesterolemia mutation-positive; 4.8% of the familial hypercholesterolemia mutation-negative patients carried a variant in one of the minor familial hypercholesterolemia genes. The mutation detection rate has decreased over the past two decades, especially in younger patients in which it dropped from 45% in 1999 to 30% in 2018. CONCLUSIONS A rare pathogenic variant in LDLR, APOB or PCSK9 was identified in 14.9% of suspected familial hypercholesterolemia patients and this rate has decreased in the past two decades. Stringent use of clinical criteria algorithms is warranted to increase this yield. Variants in the minor familial hypercholesterolemia genes provide a possible explanation for the familial hypercholesterolemia phenotype in a minority of patients.
Collapse
Affiliation(s)
- Laurens F Reeskamp
- Department of Vascular Medicine, University of Amsterdam, The Netherlands
| | - Tycho R Tromp
- Department of Vascular Medicine, University of Amsterdam, The Netherlands
| | - Joep C Defesche
- Department of Clinical Genetics, University of Amsterdam, The Netherlands
| | - Aldo Grefhorst
- Department of Experimental Vascular Medicine, University of Amsterdam, The Netherlands
| | - Erik Sg Stroes
- Department of Vascular Medicine, University of Amsterdam, The Netherlands
| | - G Kees Hovingh
- Department of Vascular Medicine, University of Amsterdam, The Netherlands
| | - Linda Zuurbier
- Department of Clinical Genetics, University of Amsterdam, The Netherlands
| |
Collapse
|
47
|
Di Minno MND, Gentile M, Di Minno A, Iannuzzo G, Calcaterra I, Buonaiuto A, Di Taranto MD, Giacobbe C, Fortunato G, Rubba POF. Changes in carotid stiffness in patients with familial hypercholesterolemia treated with Evolocumab®: A prospective cohort study. Nutr Metab Cardiovasc Dis 2020; 30:996-1004. [PMID: 32402582 DOI: 10.1016/j.numecd.2020.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 01/29/2023]
Abstract
BACKGROUND AND AIM Protein convertase subtilisin kexin type 9 (PCSK-9) inhibitors demonstrated efficacy in cholesterol reduction and in the prevention of cardiovascular events. We evaluated changes in lipid profile and carotid stiffness in patients with familial hypercholesterolemia during 12 weeks of treatment with a PCSK-9 inhibitor, Evolocumab®. METHODS AND RESULTS Patients with familial hypercholesterolemia starting a treatment with Evolocumab® were included. Total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), small dense LDL (assessed by LDL score) and carotid stiffness were evaluated before starting treatment with Evolocumab® and during 12 weeks of treatment. Twenty-five subjects were enrolled (52% males, mean age 51.5 years). TC and LDL-C were reduced of 38% and 52%, respectively during treatment, with LDL score reduced of 46.1%. In parallel, carotid stiffness changed from 8.8 (IQR: 7.0-10.4) m/sec to 6.6 (IQR: 5.4-7.5) m/sec, corresponding to a median change of 21.4% (p < 0.001), with a significant increase in carotid distensibility (from 12.1, IQR: 8.73-19.3 kPA-1 × 10-3 at T0 to 21.8, IQR: 16.6-31.8 kPA-1 × 10-3 at T12w) corresponding to a median change of 62.8% (p < 0.001). A multivariate analysis showed that changes in LDL score were independently associated with changes in carotid stiffness (β = 0.429, p = 0.041). CONCLUSION Small dense LDL reduction, as assessed by LDL score, is associated with changes in carotid stiffness in patients with familial hypercholesterolemia treated with Evolocumab®.
Collapse
Affiliation(s)
| | - Marco Gentile
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Alessandro Di Minno
- Department of Pharmacy, Federico II University, Naples, Italy; Unit of Metabolomics and Cellular Biochemistry of Atherothrombosis, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Gabriella Iannuzzo
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Ilenia Calcaterra
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Alessio Buonaiuto
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Maria D Di Taranto
- Department of Molecular Medicine e Medical Biotechnologies, Federico II University, Naples, Italy
| | - Carola Giacobbe
- Department of Molecular Medicine e Medical Biotechnologies, Federico II University, Naples, Italy
| | - Giuliana Fortunato
- Department of Molecular Medicine e Medical Biotechnologies, Federico II University, Naples, Italy
| | - Paolo O F Rubba
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| |
Collapse
|
48
|
Di Taranto MD, Giacobbe C, Fortunato G. Familial hypercholesterolemia: A complex genetic disease with variable phenotypes. Eur J Med Genet 2020; 63:103831. [DOI: 10.1016/j.ejmg.2019.103831] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/01/2019] [Accepted: 12/21/2019] [Indexed: 12/21/2022]
|
49
|
Mandraffino G, Scicali R, Rodríguez-Carrio J, Savarino F, Mamone F, Scuruchi M, Cinquegrani M, Imbalzano E, Di Pino A, Piro S, Rabuazzo AM, Squadrito G, Purrello F, Saitta A. Arterial stiffness improvement after adding on PCSK9 inhibitors or ezetimibe to high-intensity statins in patients with familial hypercholesterolemia: A Two-Lipid Center Real-World Experience. J Clin Lipidol 2020; 14:231-240. [PMID: 32111581 DOI: 10.1016/j.jacl.2020.01.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/29/2019] [Accepted: 01/28/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND Familial hypercholesterolemia (FH) is characterized by increased cardiovascular risk; despite-high intensity statins, only few patients with FH achieve the recommended low-density lipoprotein cholesterol (LDL-C) targets. OBJECTIVE We aimed to evaluate the effectiveness of six-month add-on therapy with proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9-i) or ezetimibe on lipid profile and pulse wave velocity (PWV) in patients with FH. METHODS In this observational study, we evaluated 98 genetically confirmed patients with FH with an LDL-C off-target despite high-intensity statins with or without ezetimibe; of these, 53 patients (statin plus ezetimibe) added PCSK9-i (PCSK9-i group) and 45 (statin only) added ezetimibe (EZE group) per applicable guidelines and reimbursement rules. All patients obtained biochemical analysis and PWV evaluation at baseline and after six months of optimized treatment. RESULTS After 6 months of add-on therapy, most patients achieving LDL-C targets were in the PCSK9-i group (77.3% PCSK9-i group vs 37.8% EZE group, P < .001). The PCSK9-i group achieved both a greater LDL-C and PWV reduction than the EZE group [-51% vs -22.8%, P < .001 and -15% vs -8.5%, P < .01, respectively]. In a linear regression analysis, we showed a coefficient (r) of 0.334 for the relationship between ΔPWV and ΔLDL (P < .05); moreover, in an exploratory analysis, the relationship appeared to be stronger in patients with FH without cardiovascular events (r = 0.422, P < .01). CONCLUSIONS Lipid and PWV profiles in patients with FH significantly improved after addition of PCSK9-i or ezetimibe to high-intensity statin therapy; moreover, ΔPWV was associated with ΔLDL. Our results are consistent with a beneficial role of these novel therapies in FH subjects.
Collapse
Affiliation(s)
| | - Roberto Scicali
- Department of Clinical and Experimental Medicine, University of Catania, Italy
| | - Javier Rodríguez-Carrio
- Department of Functional Biology, Area of Immunology, Faculty of Medicine, University of Oviedo, Oviedo, Spain; Area of Metabolism, Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Oviedo, Spain; Bone and Mineral Research Unit, Instituto Reina Sofía de Investigación Nefrológica, RED in REN Del ISCIII, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Francesca Savarino
- Department of Clinical and Experimental Medicine, University of Messina, Italy
| | - Federica Mamone
- Department of Clinical and Experimental Medicine, University of Messina, Italy
| | - Michele Scuruchi
- Department of Clinical and Experimental Medicine, University of Messina, Italy
| | - Maria Cinquegrani
- Department of Clinical and Experimental Medicine, University of Messina, Italy
| | - Egidio Imbalzano
- Department of Clinical and Experimental Medicine, University of Messina, Italy
| | - Antonino Di Pino
- Department of Clinical and Experimental Medicine, University of Catania, Italy
| | - Salvatore Piro
- Department of Clinical and Experimental Medicine, University of Catania, Italy
| | | | - Giovanni Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Italy
| | - Francesco Purrello
- Department of Clinical and Experimental Medicine, University of Catania, Italy
| | - Antonino Saitta
- Department of Clinical and Experimental Medicine, University of Messina, Italy
| |
Collapse
|
50
|
Suppressa P, Carbonara C, Scialpi N, Ciavarella A, Sabbà C. Homozygous familial hypercholesterolemia in a young woman with dual gene mutations of low-density lipoprotein receptor and proprotein convertase subtilisin/kexin type 9. J Clin Lipidol 2020; 14:192-196. [PMID: 32088152 DOI: 10.1016/j.jacl.2020.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 10/25/2022]
Abstract
A 28-year-old woman with a rare combination of homozygous LDLR and heterozygous PCSK9 mutations had a phenotype consistent with homozygous familial hypercholesterolemia. She reported a clinical history of coronary and extracoronary atherosclerosis treated with 3 coronary stenting procedures, one coronary bypass, and aortic and mitral valve replacements. Because the patient refused lipoprotein apheresis, lipid-lowering therapy with statins, ezetimibe, and evolocumab was started. The desired low-density lipoprotein cholesterol target was not achieved. Dose-escalated lomitapide therapy (up to 30 mg/d) was added, enabling achievement of low-density lipoprotein cholesterol levels of 45 mg/dL during 24 months' follow-up. During this period, no cardiovascular events or clinical evidence of side effects occurred. In this case, lomitapide has been used in combination with maximum-tolerated statin therapy to successfully treat a patient with a rare combination of mutations in both LDLR and PCSK9 genes.
Collapse
Affiliation(s)
- Patrizia Suppressa
- Department of Internal Medicine and Rare Disease Centre "C. Frugoni" University Hospital of Bari, Bari, Italy.
| | - Concetta Carbonara
- Department of Internal Medicine and Rare Disease Centre "C. Frugoni" University Hospital of Bari, Bari, Italy
| | - Natasha Scialpi
- Department of Internal Medicine and Rare Disease Centre "C. Frugoni" University Hospital of Bari, Bari, Italy
| | - Alessandro Ciavarella
- Department of Internal Medicine and Rare Disease Centre "C. Frugoni" University Hospital of Bari, Bari, Italy
| | - Carlo Sabbà
- Department of Internal Medicine and Rare Disease Centre "C. Frugoni" University Hospital of Bari, Bari, Italy
| |
Collapse
|