1
|
Hu CH, Qian R, Wang YB, Li LD, Miao CX. Dexmedetomidine Blocks the ERK Pathway by Inhibiting MAP3K8 to Achieve a Protective Effect in Lung Ischemia/Reperfusion Injury. Kaohsiung J Med Sci 2025:e70045. [PMID: 40372180 DOI: 10.1002/kjm2.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/16/2025] [Accepted: 04/25/2025] [Indexed: 05/16/2025] Open
Abstract
Lung ischemia/reperfusion injury (LIRI) is a primary contributor to morbidity and mortality following lung transplantation. Dexmedetomidine (DEX) protects the lungs from I/R injury, but the underlying mechanisms remain uncertain. This paper examined the protective effect of DEX in LIRI and elucidated the potential regulation involved. LIRI was induced in mice, followed by the detection of pulmonary arterial pressure, lung compliance, pathological changes, pulmonary vascular permeability, oxidative stress, inflammation, and apoptosis. Mice were infected with overexpression (OE)-mitogen-activated protein kinase kinase kinase 8 (MAP3K8) adenovirus and treated with DEX. MAP3K8 expression was examined in mouse lung tissue and pulmonary microvascular endothelial cells (PMVECs). Cells were infected using OE-MAP3K8 lentivirus and treated with DEX, followed by detection of cell viability and apoptosis, VE-cadherin and α-E-catenin, and pro-inflammatory factors. Rescue experiments were performed by MAP3K8 overexpression and combined extracellular signal-regulated protein kinase (ERK) pathway blocker, PD98059. The results demonstrated that DEX protected mice from LIRI. DEX inhibited MAP3K8 expression. MAP3K8 overexpression increased ERK1/2 phosphorylation and activated the ERK pathway. Upregulation of MAP3K8 impaired the protective effect of DEX in vivo and in vitro, which was reversed by the ERK inhibitor PD98059. Overall, DEX achieved its protective effect against LIRI by inhibiting the MAP3K8-ERK axis.
Collapse
Affiliation(s)
- Chun-Huan Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, People's Republic of China
| | - Ru Qian
- Department of Critical Medicine, The Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, People's Republic of China
| | - Yong-Bo Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, People's Republic of China
| | - Lian-Di Li
- Department of Anesthesiology, The Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, People's Republic of China
| | - Chun-Xing Miao
- Department of Chest Surgery, The Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, People's Republic of China
| |
Collapse
|
2
|
Noda K, Atale N, Al‐Zahrani A, Furukawa M, Snyder ME, Ren X, Sanchez PG. Heparanase-induced endothelial glycocalyx degradation exacerbates lung ischemia/reperfusion injury in male mice. Physiol Rep 2024; 12:e70113. [PMID: 39448392 PMCID: PMC11502304 DOI: 10.14814/phy2.70113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
The endothelial glycocalyx (eGC) is a carbohydrate-rich layer on the vascular endothelium, and its damage can lead to endothelial and organ dysfunction. Heparanase (HPSE) degrades the eGC in response to cellular stress, but its role in organ dysfunction remains unclear. This study investigates HPSE's role in lung ischemia-reperfusion (I/R) injury. A left lung hilar occlusion model was used in B6 wildtype (WT) and HPSE genetic knockout (-/-) mice to induce I/R injury in vivo. The left lungs were ischemic for 1 h followed by reperfusion for 4 h prior to investigations of lung function and eGC status. Data were compared between uninjured lungs and I/R-injured lungs in WT and HPSE-/- mice. WT lungs showed significant functional impairment after I/R injury, whereas HPSE-/- lungs did not. Inhibition or knockout of HPSE prevented eGC damage, inflammation, and cellular migration after I/R injury by reducing matrix metalloproteinase activities. HPSE-/- mice exhibited compensatory regulation of related gene expressions. HPSE facilitates eGC degradation leading to inflammation and impaired lung function after I/R injury. HPSE may be a therapeutic target to attenuate graft damage in lung transplantation.
Collapse
Affiliation(s)
- Kentaro Noda
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Neha Atale
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Amer Al‐Zahrani
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Masashi Furukawa
- Division of Lung Transplant and Lung Failure, Department of Cardiothoracic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Mark E. Snyder
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Xi Ren
- Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - Pablo G. Sanchez
- Section of Thoracic Surgery, Department of SurgeryUniversity of ChicagoChicagoIllinoisUSA
| |
Collapse
|
3
|
Ta HQ, Kuppusamy M, Sonkusare SK, Roeser ME, Laubach VE. The endothelium: gatekeeper to lung ischemia-reperfusion injury. Respir Res 2024; 25:172. [PMID: 38637760 PMCID: PMC11027545 DOI: 10.1186/s12931-024-02776-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
The success of lung transplantation is limited by the high rate of primary graft dysfunction due to ischemia-reperfusion injury (IRI). Lung IRI is characterized by a robust inflammatory response, lung dysfunction, endothelial barrier disruption, oxidative stress, vascular permeability, edema, and neutrophil infiltration. These events are dependent on the health of the endothelium, which is a primary target of IRI that results in pulmonary endothelial barrier dysfunction. Over the past 10 years, research has focused more on the endothelium, which is beginning to unravel the multi-factorial pathogenesis and immunologic mechanisms underlying IRI. Many important proteins, receptors, and signaling pathways that are involved in the pathogenesis of endothelial dysfunction after IR are starting to be identified and targeted as prospective therapies for lung IRI. In this review, we highlight the more significant mediators of IRI-induced endothelial dysfunction discovered over the past decade including the extracellular glycocalyx, endothelial ion channels, purinergic receptors, kinases, and integrins. While there are no definitive clinical therapies currently available to prevent lung IRI, we will discuss potential clinical strategies for targeting the endothelium for the treatment or prevention of IRI. The accruing evidence on the essential role the endothelium plays in lung IRI suggests that promising endothelial-directed treatments may be approaching the clinic soon. The application of therapies targeting the pulmonary endothelium may help to halt this rapid and potentially fatal injury.
Collapse
Affiliation(s)
- Huy Q Ta
- Department of Surgery, University of Virginia, P. O. Box 801359, Charlottesville, VA, 22908, USA
| | - Maniselvan Kuppusamy
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, 22908, USA
| | - Swapnil K Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Mark E Roeser
- Department of Surgery, University of Virginia, P. O. Box 801359, Charlottesville, VA, 22908, USA
| | - Victor E Laubach
- Department of Surgery, University of Virginia, P. O. Box 801359, Charlottesville, VA, 22908, USA.
| |
Collapse
|
4
|
Griffiths C, Scott WE, Ali S, Fisher AJ. Maximizing organs for donation: the potential for ex situ normothermic machine perfusion. QJM 2023; 116:650-657. [PMID: 31943119 DOI: 10.1093/qjmed/hcz321] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 11/13/2022] Open
Abstract
Currently, there is a shortfall in the number of suitable organs available for transplant resulting in a high number of patients on the active transplant waiting lists worldwide. To address this shortfall and increase the utilization of donor organs, the acceptance criteria for donor organs is gradually expanding including increased use of organs from donation after circulatory death. Use of such extended criteria donors and exposure of organs to more prolonged periods of warm or cold ischaemia also increases the risk of primary graft dysfunction occurring. Normothermic machine perfusion (NMP) offers a unique opportunity to objectively assess donor organ function outside the donor body and potentially recondition those deemed unsuitable on initial evaluation prior to implantation in the recipient. Furthermore, NMP provides a platform to support the use of established and novel therapeutics delivered directly to the organ, without the need to worry about potential deleterious 'off-target' side effects typically considered when treating the whole patient. This review will explore some of the novel therapeutics currently being added to perfusion platforms during NMP experimentally in an attempt to improve organ function and post-transplant outcomes.
Collapse
Affiliation(s)
- C Griffiths
- From the NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Institute of Transplantation, Freeman Hospital, Newcastle Upon Tyne, NE7 7DN, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | - W E Scott
- From the NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Institute of Transplantation, Freeman Hospital, Newcastle Upon Tyne, NE7 7DN, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | - S Ali
- From the NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Institute of Transplantation, Freeman Hospital, Newcastle Upon Tyne, NE7 7DN, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | - A J Fisher
- From the NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Institute of Transplantation, Freeman Hospital, Newcastle Upon Tyne, NE7 7DN, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| |
Collapse
|
5
|
Effendi WI, Nagano T. A2B Adenosine Receptor in Idiopathic Pulmonary Fibrosis: Pursuing Proper Pit Stop to Interfere with Disease Progression. Int J Mol Sci 2023; 24:4428. [PMID: 36901855 PMCID: PMC10002355 DOI: 10.3390/ijms24054428] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Purine nucleotides and nucleosides are involved in various human physiological and pathological mechanisms. The pathological deregulation of purinergic signaling contributes to various chronic respiratory diseases. Among the adenosine receptors, A2B has the lowest affinity such that it was long considered to have little pathophysiological significance. Many studies suggest that A2BAR plays protective roles during the early stage of acute inflammation. However, increased adenosine levels during chronic epithelial injury and inflammation might activate A2BAR, resulting in cellular effects relevant to the progression of pulmonary fibrosis.
Collapse
Affiliation(s)
- Wiwin Is Effendi
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga (UNAIR), Surabaya 60132, Indonesia
- Department of Pulmonology and Respiratory Medicine, Universitas Airlangga Teaching Hospital, Surabaya 60015, Indonesia
- Pulmonology and Respiratory Medicine of UNAIR (PaRU) Research Center, Universitas Airlangga Teaching Hospital, Surabaya 60015, Indonesia
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| |
Collapse
|
6
|
Miceli V, Bulati M, Gallo A, Iannolo G, Busà R, Conaldi PG, Zito G. Role of Mesenchymal Stem/Stromal Cells in Modulating Ischemia/Reperfusion Injury: Current State of the Art and Future Perspectives. Biomedicines 2023; 11:689. [PMID: 36979668 PMCID: PMC10045387 DOI: 10.3390/biomedicines11030689] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Ischemia/reperfusion injury (IRI) is a multistep damage that occurs in several tissues when a blood flow interruption is inevitable, such as during organ surgery or transplantation. It is responsible for cell death and tissue dysfunction, thus leading, in the case of transplantation, to organ rejection. IRI takes place during reperfusion, i.e., when blood flow is restored, by activating inflammation and reactive oxygen species (ROS) production, causing mitochondrial damage and apoptosis of parenchymal cells. Unfortunately, none of the therapies currently in use are definitive, prompting the need for new therapeutic approaches. Scientific evidence has proven that mesenchymal stem/stromal cells (MSCs) can reduce inflammation and ROS, prompting this cellular therapy to also be investigated for treatment of IRI. Moreover, it has been shown that MSC therapeutic effects were mediated in part by their secretome, which appears to be involved in immune regulation and tissue repair. For these reasons, mediated MSC paracrine function might be key for injury amelioration upon IRI damage. In this review, we highlight the scientific literature on the potential beneficial use of MSCs and their products for improving IRI outcomes in different tissues/organs, focusing in particular on the paracrine effects mediated by MSCs, and on the molecular mechanisms behind these effects.
Collapse
Affiliation(s)
- Vitale Miceli
- Research Department, IRCSS ISMETT (Istituto Mediterraneo per I Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | | | | | | | | | | | - Giovanni Zito
- Research Department, IRCSS ISMETT (Istituto Mediterraneo per I Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| |
Collapse
|
7
|
Miller CL, O JM, Allan JS, Madsen JC. Novel approaches for long-term lung transplant survival. Front Immunol 2022; 13:931251. [PMID: 35967365 PMCID: PMC9363671 DOI: 10.3389/fimmu.2022.931251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Allograft failure remains a major barrier in the field of lung transplantation and results primarily from acute and chronic rejection. To date, standard-of-care immunosuppressive regimens have proven unsuccessful in achieving acceptable long-term graft and patient survival. Recent insights into the unique immunologic properties of lung allografts provide an opportunity to develop more effective immunosuppressive strategies. Here we describe advances in our understanding of the mechanisms driving lung allograft rejection and highlight recent progress in the development of novel, lung-specific strategies aimed at promoting long-term allograft survival, including tolerance.
Collapse
Affiliation(s)
- Cynthia L. Miller
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
| | - Jane M. O
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
| | - James S. Allan
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| | - Joren C. Madsen
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, MA, United States
- Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
8
|
Mitochondrial PKM2 deacetylation by procyanidin B2-induced SIRT3 upregulation alleviates lung ischemia/reperfusion injury. Cell Death Dis 2022; 13:594. [PMID: 35821123 PMCID: PMC9276754 DOI: 10.1038/s41419-022-05051-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 01/21/2023]
Abstract
Apoptosis is a critical event in the pathogenesis of lung ischemia/reperfusion (I/R) injury. Sirtuin 3 (SIRT3), an important deacetylase predominantly localized in mitochondria, regulates diverse physiological processes, including apoptosis. However, the detailed mechanisms by which SIRT3 regulates lung I/R injury remain unclear. Many polyphenols strongly regulate the sirtuin family. In this study, we found that a polyphenol compound, procyanidin B2 (PCB2), activated SIRT3 in mouse lungs. Due to this effect, PCB2 administration attenuated histological lesions, relieved pulmonary dysfunction, and improved the survival rate of the murine model of lung I/R injury. Additionally, this treatment inhibited hypoxia/reoxygenation (H/R)-induced A549 cell apoptosis and rescued Bcl-2 expression. Using Sirt3-knockout mice and specific SIRT3 knockdown in vitro, we further found that SIRT3 strongly protects against lung I/R injury. Sirt3 deficiency or enzymatic inactivation substantially aggravated lung I/R-induced pulmonary lesions, promoted apoptosis, and abolished PCB2-mediated protection. Mitochondrial pyruvate kinase M2 (PKM2) inhibits apoptosis by stabilizing Bcl-2. Here, we found that PKM2 accumulates and is hyperacetylated in mitochondria upon lung I/R injury. By screening the potential sites of PKM2 acetylation, we found that SIRT3 deacetylates the K433 residue of PKM2 in A549 cells. Transfection with a deacetylated mimic plasmid of PKM2 noticeably reduced apoptosis, while acetylated mimic transfection abolished the protective effect of PKM2. Furthermore, PKM2 knockdown or inhibition in vivo significantly abrogated the antiapoptotic effects of SIRT3 upregulation. Collectively, this study provides the first evidence that the SIRT3/PKM2 pathway is a protective target for the suppression of apoptosis in lung I/R injury. Moreover, this study identifies K433 deacetylation of PKM2 as a novel modification that regulates its anti-apoptotic activity. In addition, PCB2-mediated modulation of the SIRT3/PKM2 pathway may significantly protect against lung I/R injury, suggesting a novel prophylactic strategy for lung I/R injury.
Collapse
|
9
|
Niikawa H, Okamoto T, Ayyat KS, Itoda Y, Sakanoue I, Farver CF, Yun JJ, McCurry KR. Prone Ex Vivo Lung Perfusion Protects Human Lungs from Reperfusion Injury. Artif Organs 2022; 46:2226-2233. [DOI: 10.1111/aor.14328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/08/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Hiromichi Niikawa
- Department of Inflammation and Immunity Lerner Research Institute; Cleveland Clinic Cleveland OH U.S.A
- Department of Thoracic and Cardiovascular Surgery; Cleveland Clinic Cleveland OH U.S.A
| | - Toshihiro Okamoto
- Department of Inflammation and Immunity Lerner Research Institute; Cleveland Clinic Cleveland OH U.S.A
- Department of Thoracic and Cardiovascular Surgery; Cleveland Clinic Cleveland OH U.S.A
| | - Kamal S. Ayyat
- Department of Inflammation and Immunity Lerner Research Institute; Cleveland Clinic Cleveland OH U.S.A
- Department of Thoracic and Cardiovascular Surgery; Cleveland Clinic Cleveland OH U.S.A
- Department of Cardiothoracic Surgery Zagazig University Zagazig Egypt
| | - Yoshifumi Itoda
- Department of Inflammation and Immunity Lerner Research Institute; Cleveland Clinic Cleveland OH U.S.A
- Department of Thoracic and Cardiovascular Surgery; Cleveland Clinic Cleveland OH U.S.A
| | - Ichiro Sakanoue
- Department of Inflammation and Immunity Lerner Research Institute; Cleveland Clinic Cleveland OH U.S.A
- Department of Thoracic and Cardiovascular Surgery; Cleveland Clinic Cleveland OH U.S.A
| | - Carol F. Farver
- Department of Anatomic Pathology; Cleveland Clinic Cleveland OH U.S.A
| | - James J. Yun
- Department of Inflammation and Immunity Lerner Research Institute; Cleveland Clinic Cleveland OH U.S.A
- Department of Thoracic and Cardiovascular Surgery; Cleveland Clinic Cleveland OH U.S.A
- Transplant Center; Cleveland Clinic Cleveland OH U.S.A
| | - Kenneth R. McCurry
- Department of Inflammation and Immunity Lerner Research Institute; Cleveland Clinic Cleveland OH U.S.A
- Department of Thoracic and Cardiovascular Surgery; Cleveland Clinic Cleveland OH U.S.A
- Transplant Center; Cleveland Clinic Cleveland OH U.S.A
| |
Collapse
|
10
|
Miceli V, Bertani A. Mesenchymal Stromal/Stem Cells and Their Products as a Therapeutic Tool to Advance Lung Transplantation. Cells 2022; 11:826. [PMID: 35269448 PMCID: PMC8909054 DOI: 10.3390/cells11050826] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/18/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023] Open
Abstract
Lung transplantation (LTx) has become the gold standard treatment for end-stage respiratory failure. Recently, extended lung donor criteria have been applied to decrease the mortality rate of patients on the waiting list. Moreover, ex vivo lung perfusion (EVLP) has been used to improve the number/quality of previously unacceptable lungs. Despite the above-mentioned progress, the morbidity/mortality of LTx remains high compared to other solid organ transplants. Lungs are particularly susceptible to ischemia-reperfusion injury, which can lead to graft dysfunction. Therefore, the success of LTx is related to the quality/function of the graft, and EVLP represents an opportunity to protect/regenerate the lungs before transplantation. Increasing evidence supports the use of mesenchymal stromal/stem cells (MSCs) as a therapeutic strategy to improve EVLP. The therapeutic properties of MSC are partially mediated by secreted factors. Hence, the strategy of lung perfusion with MSCs and/or their products pave the way for a new innovative approach that further increases the potential for the use of EVLP. This article provides an overview of experimental, preclinical and clinical studies supporting the application of MSCs to improve EVLP, the ultimate goal being efficient organ reconditioning in order to expand the donor lung pool and to improve transplant outcomes.
Collapse
Affiliation(s)
- Vitale Miceli
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), 90127 Palermo, Italy
| | - Alessandro Bertani
- Thoracic Surgery and Lung Transplantation Unit, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| |
Collapse
|
11
|
Wang X, Yang B, Li Y, Luo J, Wang Y. AKR1C1 alleviates LPS‑induced ALI in mice by activating the JAK2/STAT3 signaling pathway. Mol Med Rep 2021; 24:833. [PMID: 34590152 PMCID: PMC8503743 DOI: 10.3892/mmr.2021.12473] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/05/2021] [Indexed: 01/08/2023] Open
Abstract
Acute lung injury (ALI) is a respiratory tract disease characterized by increased alveolar/capillary permeability, lung inflammation and structural damage to lung tissues, which can progress and transform into acute respiratory distress syndrome (ARDS). Although there are several treatment strategies available to manage this condition, there is still no specific cure for ALI. Aldo‑keto reductase family 1 member C1 (AKR1C1) is a member of the aldo‑keto reductase superfamily, and is a well‑known Nrf2 target gene and an oxidative stress gene. The aim of the present study was to investigate the effects of AKR1C1 on a lipopolysaccharide (LPS)‑induced ALI model. After mice received LPS treatment, the mRNA expression levels of AKR1C1 in the bronchoalveolar lavage fluid and serum were measured using reverse transcription‑quantitative PCR and its relationship with the inflammatory factors and malondialdehyde levels were determined using correlation analysis. Next, AKR1C1 was overexpressed or knocked out in mice, and subsequently ALI was induced in mice using LPS. The severity of ALI, oxidative stress and inflammation in the lungs were measured, and the potential involvement of the Janus kinase 2 (JAK2)/signal transduction activator of transcription 3 (STAT3) signaling pathway was assessed by measuring the changes of lung injury parameters after the agonists of JAK2/STAT3 pathway, including interleukin (IL)‑6 and colivelin, were administrated to mice. The results revealed that AKR1C1 expression was decreased in the LPS‑induced ALI mouse model. AKR1C1 expression was inversely correlated with serum tumor necrosis factor‑α, IL‑6 and malondialdehyde levels, and positively correlated with serum IL‑10 levels. AKR1C1 overexpression significantly attenuated lung injury, as shown by the changes in Evans blue leakage in the lung, lung wet/dry weight ratio, PaO2/FIO2 ratio, survival rate of mice and histological lung changes. In addition, the JAK2/STAT3 signaling pathway was significantly deactivated by AKR1C1+/+. When AKR1C1+/+ mice were treated with JAK2/STAT3 agonists, the effects of AKR1C1 overexpression on lung injury and oxidative stress were abolished. In conclusion, AKR1C1 may protect against oxidative stress and serve as a negative regulator of inflammation in ALI/ARDS. In addition, the JAK2/STAT3 signaling pathway could participate in the protective effects of AKR1C1 against ALI.
Collapse
Affiliation(s)
- Xianjun Wang
- Emergency Observation Ward, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222002, P.R. China
| | - Baocheng Yang
- Emergency Observation Ward, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222002, P.R. China
| | - Yuyu Li
- Emergency Observation Ward, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222002, P.R. China
| | - Jiye Luo
- Emergency Medicine Department, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222002, P.R. China
| | - Yanli Wang
- Emergency Medicine Department, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222002, P.R. China
- Emergency Medicine Department, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, Jiangsu 222002, P.R. China
- Emergency Medicine Department, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu 222000, P.R. China
| |
Collapse
|
12
|
Iske J, Hinze CA, Salman J, Haverich A, Tullius SG, Ius F. The potential of ex vivo lung perfusion on improving organ quality and ameliorating ischemia reperfusion injury. Am J Transplant 2021; 21:3831-3839. [PMID: 34355495 PMCID: PMC8925042 DOI: 10.1111/ajt.16784] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 01/25/2023]
Abstract
Allogeneic lung transplantation (LuTx) is considered the treatment of choice for a broad range of advanced, progressive lung diseases resistant to conventional treatment regimens. Ischemia reperfusion injury (IRI) occurring upon reperfusion of the explanted, ischemic lung during implantation remains a crucial mediator of primary graft dysfunction (PGD) and early allo-immune responses. Ex vivo lung perfusion (EVLP) displays an advanced technique aiming at improving lung procurement and preservation. Indeed, previous clinical trials have demonstrated a reduced incidence of PGD following LuTx utilizing EVLP, while long-term outcomes are yet to be evaluated. Mechanistically, EVLP may alleviate donor lung inflammation through reconditioning the injured lung and diminishing IRI through storing the explanted lung in a non-ischemic, perfused, and ventilated status. In this work, we review potential mechanisms of EVLP that may attenuate IRI and improve organ quality. Moreover, we dissect experimental treatment approaches during EVLP that may further attenuate inflammatory events deriving from tissue ischemia, shear forces or allograft rejection associated with LuTx.
Collapse
Affiliation(s)
- Jasper Iske
- Department of Cardiothoracic-, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany.,Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher A. Hinze
- Department of Cardiothoracic-, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Jawad Salman
- Department of Cardiothoracic-, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Axel Haverich
- Department of Cardiothoracic-, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany.,Biomedical research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Stefan G. Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Fabio Ius
- Department of Cardiothoracic-, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany.,Biomedical research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,Correspondence: Fabio Ius, MD, Department of Heart-, Thoracic-, Vascular-, and Transplant Surgery, Hannover Medical School, 1 Carl-Neuberg-Street, 30625 Hannover, Germany, Tel: +49 511 532 2125, Fax: +49 511 532 8436,
| |
Collapse
|
13
|
Dong L, Yin L, Li R, Xu L, Xu Y, Han X, Qi Y. Dioscin alleviates lung ischemia/reperfusion injury by regulating FXR-mediated oxidative stress, apoptosis, and inflammation. Eur J Pharmacol 2021; 908:174321. [PMID: 34252440 DOI: 10.1016/j.ejphar.2021.174321] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022]
Abstract
Dioscin showed various pharmacological effects in our previous studies; however, the effects and mechanisms against lung ischemia/reperfusion injury (LI/RI) have not been reported. Hypoxia/reoxygenation (H/R) models were established using A549 and primary AEC-II cells, while LI/RI models were established in rats and mice. The effects of dioscin on oxidative stress, inflammation and apoptosis in vivo and in vitro were investigated. The mechanisms were investigated focus on dioscin regulating FXR/LKB1 signaling pathway. Dioscin improved cell viability and mitochondrial membrane potential, reduced reactive oxygen species level, and inhibited H/R-mediated cell apoptosis. It also significantly decreased the lung wet/dry weight ratio, ameliorated levels of oxidative stress indicators, and enhanced the mitochondrial membrane potential and inhibited cell apoptosis in vivo. The results of mechanism research showed that dioscin activated FXR/LKB1 signals by increasing the expression of p-LKB1 and p-AMPKα, promoting the nuclear translocation of Nrf2, up-regulating the levels of HO-1, NQO1 and GCLC, expressed against oxidative stress. Furthermore, dioscin reduced Cyt C released, decreased the expression levels of Caspase-9 and Caspase-3 during apoptosis. Dioscin suppressed inflammation by inhibiting NF-κB translocation, reducing the expression levels of NF-κB, HMGB1, COX-2, IL-1β, IL-6 and TNF-α. The transfection of FXR or LKB1 siRNA further confirmed that the protective effect of dioscin against LI/RI was attributable to the regulation of FXR/LKB1 signaling pathway. Our research showed that dioscin exhibited potent activity against LI/RI, by adjusting the levels of FXR/LKB1-mediated oxidative stress, apoptosis, and inflammation, and should be considered as a new candidate for treating LI/RI.
Collapse
Affiliation(s)
- Lile Dong
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - Ruomiao Li
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - Youwei Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - Xu Han
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian, 116044, China.
| |
Collapse
|
14
|
Garcia-Garcia L, Olle L, Martin M, Roca-Ferrer J, Muñoz-Cano R. Adenosine Signaling in Mast Cells and Allergic Diseases. Int J Mol Sci 2021; 22:ijms22105203. [PMID: 34068999 PMCID: PMC8156042 DOI: 10.3390/ijms22105203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023] Open
Abstract
Adenosine is a nucleoside involved in the pathogenesis of allergic diseases. Its effects are mediated through its binding to G protein-coupled receptors: A1, A2a, A2b and A3. The receptors differ in the type of G protein they recruit, in the effect on adenylyl cyclase (AC) activity and the downstream signaling pathway triggered. Adenosine can produce both an enhancement and an inhibition of mast cell degranulation, indicating that adenosine effects on these receptors is controversial and remains to be clarified. Depending on the study model, A1, A2b, and A3 receptors have shown anti- or pro-inflammatory activity. However, most studies reported an anti-inflammatory activity of A2a receptor. The precise knowledge of the adenosine mechanism of action may allow to develop more efficient therapies for allergic diseases by using selective agonist and antagonist against specific receptor subtypes.
Collapse
Affiliation(s)
- Lucia Garcia-Garcia
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (L.G.-G.); (L.O.); (M.M.); (J.R.-F.)
| | - Laia Olle
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (L.G.-G.); (L.O.); (M.M.); (J.R.-F.)
| | - Margarita Martin
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (L.G.-G.); (L.O.); (M.M.); (J.R.-F.)
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine, University of Barcelona, 08036 Barcelona, Spain
- ARADyAL, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Jordi Roca-Ferrer
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (L.G.-G.); (L.O.); (M.M.); (J.R.-F.)
| | - Rosa Muñoz-Cano
- Clinical and Experimental Respiratory Immunoallergy (IRCE), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (L.G.-G.); (L.O.); (M.M.); (J.R.-F.)
- ARADyAL, Instituto de Salud Carlos III, 28220 Madrid, Spain
- Allergy Section, Hospital Clinic, Universitat de Barcelona, 08036 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-2275540
| |
Collapse
|
15
|
Prasad NK, Pasrija C, Talaie T, Krupnick AS, Zhao Y, Lau CL. Ex Vivo Lung Perfusion: Current Achievements and Future Directions. Transplantation 2021; 105:979-985. [PMID: 33044428 PMCID: PMC8792510 DOI: 10.1097/tp.0000000000003483] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
There is a severe shortage in the availability of donor organs for lung transplantation. Novel strategies are needed to optimize usage of available organs to address the growing global needs. Ex vivo lung perfusion has emerged as a powerful tool for the assessment, rehabilitation, and optimization of donor lungs before transplantation. In this review, we discuss the history of ex vivo lung perfusion, current evidence on its use for standard and extended criteria donors, and consider the exciting future opportunities that this technology provides for lung transplantation.
Collapse
Affiliation(s)
- Nikhil K. Prasad
- Department of Surgery, University of Maryland School of Medicine
| | - Chetan Pasrija
- Department of Surgery, University of Maryland School of Medicine
| | - Tara Talaie
- Department of Surgery, University of Maryland School of Medicine
| | | | - Yunge Zhao
- Department of Surgery, University of Maryland School of Medicine
| | - Christine L. Lau
- Department of Surgery, University of Maryland School of Medicine
| |
Collapse
|
16
|
Tian Z, Dixon J, Guo X, Deal B, Liao Q, Zhou Y, Cheng F, Allen-Gipson DS. Co-inhibition of CD73 and ADORA2B Improves Long-Term Cigarette Smoke Induced Lung Injury. Front Physiol 2021; 12:614330. [PMID: 33584346 PMCID: PMC7876334 DOI: 10.3389/fphys.2021.614330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/04/2021] [Indexed: 11/20/2022] Open
Abstract
Adenosine (ADO) involvement in lung injury depends on the activation of its receptors. The ADO A2A receptor (ADORA2A) and A2B receptor (ADORA2B) are best described to have both tissue-protective and tissue-destructive processes. However, no approach has been effective in delineating the mechanism(s) involved with ADO shifting from its tissue-protective to tissue-destructive properties in chronic airway injury. Using cigarette smoke (CS) as our model of injury, we chronically exposed Nuli-1 cells to 5% CS extract (CSE) for 3 years establishing a long-term CSE exposure model (LTC). We found significant morphological changes, decreased proliferation, and migration resulting in impaired airway wound closure in LTC. Further investigations showed that long-term CSE exposure upregulates CD73 and ADORA2B expression, increases ADO production, inhibits PKC alpha activity and p-ERK signaling pathway. Knocking down ADORA2B and/or CD73 in LTC activates PKC alpha and increases p-ERK signaling. Knocking down both showed better improvement in wound repair than either alone. In vivo experiments also showed that double knockout CD73 and ADORA2B remarkably improved CS-induced lung injury by activating PKC alpha, reducing the inflammatory cell number in bronchoalveolar lavage fluid and the production of inflammatory mediator IL-6, inhibiting the fibrosis-like lesions and decreasing collagen deposition surrounding bronchioles. Collectively, long-term CSE exposure upregulates CD73 expression and increases ADO production, which promotes low affinity ADORA2B activation and subsequent diminution of PKC alpha activity and ERK signaling pathway, and inhibition of airway wound repair. Moreover, the data suggesting ADORA2B and CD73 as potential therapeutic targets may be more efficacious in improving chronic CS lung diseases and impaired wound repair.
Collapse
Affiliation(s)
- Zhi Tian
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Jendayi Dixon
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Xiaofang Guo
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Benjamin Deal
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Qianjin Liao
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yujuan Zhou
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Feng Cheng
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Diane S Allen-Gipson
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States.,Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
17
|
Ischemia-reperfusion Injury in the Transplanted Lung: A Literature Review. Transplant Direct 2021; 7:e652. [PMID: 33437867 PMCID: PMC7793349 DOI: 10.1097/txd.0000000000001104] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
Lung ischemia-reperfusion injury (LIRI) and primary graft dysfunction are leading causes of morbidity and mortality among lung transplant recipients. Although extensive research endeavors have been undertaken, few preventative and therapeutic treatments have emerged for clinical use. Novel strategies are still needed to improve outcomes after lung transplantation. In this review, we discuss the underlying mechanisms of transplanted LIRI, potential modifiable targets, current practices, and areas of ongoing investigation to reduce LIRI and primary graft dysfunction in lung transplant recipients.
Collapse
|
18
|
Miceli V, Bertani A, Chinnici CM, Bulati M, Pampalone M, Amico G, Carcione C, Schmelzer E, Gerlach JC, Conaldi PG. Conditioned Medium from Human Amnion-Derived Mesenchymal Stromal/Stem Cells Attenuating the Effects of Cold Ischemia-Reperfusion Injury in an In Vitro Model Using Human Alveolar Epithelial Cells. Int J Mol Sci 2021; 22:510. [PMID: 33419219 PMCID: PMC7825633 DOI: 10.3390/ijms22020510] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/30/2020] [Accepted: 01/03/2021] [Indexed: 02/07/2023] Open
Abstract
The clinical results of lung transplantation (LTx) are still less favorable than other solid organ transplants in both the early and long term. The fragility of the lungs limits the procurement rate and can favor the occurrence of ischemia-reperfusion injury (IRI). Ex vivo lung perfusion (EVLP) with Steen SolutionTM (SS) aims to address problems, and the implementation of EVLP to alleviate the activation of IRI-mediated processes has been achieved using mesenchymal stromal/stem cell (MSC)-based treatments. In this study, we investigated the paracrine effects of human amnion-derived MSCs (hAMSCs) in an in vitro model of lung IRI that includes cold ischemia and normothermic EVLP. We found that SS enriched by a hAMSC-conditioned medium (hAMSC-CM) preserved the viability and delayed the apoptosis of alveolar epithelial cells (A549) through the downregulation of inflammatory factors and the upregulation of antiapoptotic factors. These effects were more evident using the CM of 3D hAMSC cultures, which contained an increased amount of immunosuppressive and growth factors compared to both 2D cultures and encapsulated-hAMSCs. To conclude, we demonstrated an in vitro model of lung IRI and provided evidence that a hAMSC-CM attenuated IRI effects by improving the efficacy of EVLP, leading to strategies for a potential implementation of this technique.
Collapse
Affiliation(s)
- Vitale Miceli
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (M.B.); (P.G.C.)
| | - Alessandro Bertani
- Thoracic Surgery and Lung Transplantation Unit, Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione, 90127 Palermo, Italy;
| | - Cinzia Maria Chinnici
- Regenerative Medicine Unit, Fondazione Ri.MED, 90127 Palermo, Italy; (C.M.C.); (M.P.); (G.A.); (C.C.)
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS–ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Matteo Bulati
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (M.B.); (P.G.C.)
| | - Mariangela Pampalone
- Regenerative Medicine Unit, Fondazione Ri.MED, 90127 Palermo, Italy; (C.M.C.); (M.P.); (G.A.); (C.C.)
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS–ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Giandomenico Amico
- Regenerative Medicine Unit, Fondazione Ri.MED, 90127 Palermo, Italy; (C.M.C.); (M.P.); (G.A.); (C.C.)
- Department of Laboratory Medicine and Advanced Biotechnologies, IRCCS–ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Claudia Carcione
- Regenerative Medicine Unit, Fondazione Ri.MED, 90127 Palermo, Italy; (C.M.C.); (M.P.); (G.A.); (C.C.)
| | - Eva Schmelzer
- Department of Surgery, School of Medicine, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219-3130, USA; (E.S.); (J.C.G.)
| | - Jörg C. Gerlach
- Department of Surgery, School of Medicine, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219-3130, USA; (E.S.); (J.C.G.)
- Department of Bioengineering, School of Medicine, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219-3130, USA
| | - Pier Giulio Conaldi
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy; (M.B.); (P.G.C.)
| |
Collapse
|
19
|
Haywood N, Byler MR, Zhang A, Roeser ME, Kron IL, Laubach VE. Isolated Lung Perfusion in the Management of Acute Respiratory Distress Syndrome. Int J Mol Sci 2020; 21:ijms21186820. [PMID: 32957547 PMCID: PMC7555278 DOI: 10.3390/ijms21186820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 01/08/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is associated with high morbidity and mortality, and current management has a dramatic impact on healthcare resource utilization. While our understanding of this disease has improved, the majority of treatment strategies remain supportive in nature and are associated with continued poor outcomes. There is a dramatic need for the development and breakthrough of new methods for the treatment of ARDS. Isolated machine lung perfusion is a promising surgical platform that has been associated with the rehabilitation of injured lungs and the induction of molecular and cellular changes in the lung, including upregulation of anti-inflammatory and regenerative pathways. Initially implemented in an ex vivo fashion to evaluate marginal donor lungs prior to transplantation, recent investigations of isolated lung perfusion have shifted in vivo and are focused on the management of ARDS. This review presents current tenants of ARDS management and isolated lung perfusion, with a focus on how ex vivo lung perfusion (EVLP) has paved the way for current investigations utilizing in vivo lung perfusion (IVLP) in the treatment of severe ARDS.
Collapse
|
20
|
Yeudall S, Leitinger N, Laubach VE. Extracellular nucleotide signaling in solid organ transplantation. Am J Transplant 2020; 20:633-640. [PMID: 31605463 PMCID: PMC7042041 DOI: 10.1111/ajt.15651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/12/2019] [Accepted: 09/25/2019] [Indexed: 01/25/2023]
Abstract
The role of extracellular purine nucleotides, including adenosine triphosphate (ATP) and adenosine, as modulators of posttransplantation outcome and ischemia-reperfusion injury is becoming increasingly evident. Upon pathological release of ATP, binding and activation of P2 purinergic surface receptors promote tissue injury and inflammation, while the expression and activation of P1 receptors for adenosine have been shown to attenuate inflammation and limit ischemia-induced damage, which are central to the viability and long-term success of allografts. Here we review the current state of the transplant field with respect to the role of extracellular nucleotide signaling, with a focus on the sources and functions of extracellular ATP. The connection between ischemia reperfusion, purinergic signaling, and graft preservation, as well as the role of ATP and adenosine as driving factors in the promotion and suppression of posttransplant inflammation and allograft rejection, are discussed. We also examine novel therapeutic approaches that take advantage of the ischemia-reperfusion-responsive and immunomodulatory roles for purinergic signaling with the goal of enhancing graft viability, attenuating posttransplant inflammation, and minimizing complications including rejection, graft failure, and associated comorbidities.
Collapse
Affiliation(s)
- Scott Yeudall
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Norbert Leitinger
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia,Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Victor E. Laubach
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
21
|
Kumar A, Noda K, Philips B, Velayutham M, Stolz DB, Gladwin MT, Shiva S, D'Cunha J. Nitrite attenuates mitochondrial impairment and vascular permeability induced by ischemia-reperfusion injury in the lung. Am J Physiol Lung Cell Mol Physiol 2020; 318:L580-L591. [PMID: 32073901 DOI: 10.1152/ajplung.00367.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Primary graft dysfunction (PGD) is directly related to ischemia-reperfusion (I/R) injury and a major obstacle in lung transplantation (LTx). Nitrite (NO2-), which is reduced in vivo to form nitric oxide (NO), has recently emerged as an intrinsic signaling molecule with a prominent role in cytoprotection against I/R injury. Using a murine model, we provide the evidence that nitrite mitigated I/R-induced injury by diminishing infiltration of immune cells in the alveolar space, reducing pulmonary edema, and improving pulmonary function. Ultrastructural studies support severe mitochondrial impairment in the lung undergoing I/R injury, which was significantly protected by nitrite treatment. Nitrite also abrogated the increased pulmonary vascular permeability caused by I/R. In vitro, hypoxia-reoxygenation (H/R) exacerbated cell death in lung epithelial and microvascular endothelial cells. This contributed to mitochondrial dysfunction as characterized by diminished complex I activity and mitochondrial membrane potential but increased mitochondrial reactive oxygen species (mtROS). Pretreatment of cells with nitrite robustly attenuated mtROS production through modulation of complex I activity. These findings illustrate a potential novel mechanism in which nitrite protects the lung against I/R injury by regulating mitochondrial bioenergetics and vascular permeability.
Collapse
Affiliation(s)
- Ajay Kumar
- Division of Lung Transplantation and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kentaro Noda
- Division of Lung Transplantation and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brian Philips
- Division of Lung Transplantation and Lung Failure, Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Murugesan Velayutham
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Donna B Stolz
- Center for Biological Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mark T Gladwin
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sruti Shiva
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jonathan D'Cunha
- Department of Cardiothoracic Surgery, Mayo Clinic Arizona, Phoenix, Arizona
| |
Collapse
|
22
|
Moskowitzova K, Orfany A, Liu K, Ramirez-Barbieri G, Thedsanamoorthy JK, Yao R, Guariento A, Doulamis IP, Blitzer D, Shin B, Snay ER, Inkster JAH, Iken K, Packard AB, Cowan DB, Visner GA, Del Nido PJ, McCully JD. Mitochondrial transplantation enhances murine lung viability and recovery after ischemia-reperfusion injury. Am J Physiol Lung Cell Mol Physiol 2019; 318:L78-L88. [PMID: 31693391 PMCID: PMC6985877 DOI: 10.1152/ajplung.00221.2019] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The most common cause of acute lung injury is ischemia-reperfusion injury (IRI), during which mitochondrial damage occurs. We have previously demonstrated that mitochondrial transplantation is an efficacious therapy to replace or augment mitochondria damaged by IRI, allowing for enhanced muscle viability and function in cardiac tissue. Here, we investigate the efficacy of mitochondrial transplantation in a murine lung IRI model using male C57BL/6J mice. Transient ischemia was induced by applying a microvascular clamp on the left hilum for 2 h. Upon reperfusion mice received either vehicle or vehicle-containing mitochondria either by vascular delivery (Mito V) through the pulmonary artery or by aerosol delivery (Mito Neb) via the trachea (nebulization). Sham control mice underwent thoracotomy without hilar clamping and were ventilated for 2 h before returning to the cage. After 24 h recovery, lung mechanics were assessed and lungs were collected for analysis. Our results demonstrated that at 24 h of reperfusion, dynamic compliance and inspiratory capacity were significantly increased and resistance, tissue damping, elastance, and peak inspiratory pressure (Mito V only) were significantly decreased (P < 0.05) in Mito groups as compared with their respective vehicle groups. Neutrophil infiltration, interstitial edema, and apoptosis were significantly decreased (P < 0.05) in Mito groups as compared with vehicles. No significant differences in cytokines and chemokines between groups were shown. All lung mechanics results in Mito groups except peak inspiratory pressure in Mito Neb showed no significant differences (P > 0.05) as compared with Sham. These results conclude that mitochondrial transplantation by vascular delivery or nebulization improves lung mechanics and decreases lung tissue injury.
Collapse
Affiliation(s)
- Kamila Moskowitzova
- Department of Cardiac Surgery, Harvard Medical School, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Arzoo Orfany
- Department of Cardiac Surgery, Harvard Medical School, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Kaifeng Liu
- Department of Pulmonary and Respiratory Diseases, Harvard Medical School, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Giovanna Ramirez-Barbieri
- Department of Cardiac Surgery, Harvard Medical School, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Jerusha K Thedsanamoorthy
- Department of Anesthesiology, Critical Care and Pain Medicine, Harvard Medical School, Boston, Massachusetts
| | - Rouan Yao
- Department of Anesthesiology, Critical Care and Pain Medicine, Harvard Medical School, Boston, Massachusetts
| | - Alvise Guariento
- Department of Cardiac Surgery, Harvard Medical School, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Ilias P Doulamis
- Department of Cardiac Surgery, Harvard Medical School, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - David Blitzer
- Department of Cardiac Surgery, Harvard Medical School, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Borami Shin
- Department of Cardiac Surgery, Harvard Medical School, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Erin R Snay
- Department of Radiology, Division of Nuclear Medicine and Molecular imaging, Boston Children's Hospital, Boston, Massachusetts
| | - James A H Inkster
- Department of Radiology, Division of Nuclear Medicine and Molecular imaging, Boston Children's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Khadija Iken
- Department of Pulmonary and Respiratory Diseases, Harvard Medical School, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Alan B Packard
- Department of Radiology, Division of Nuclear Medicine and Molecular imaging, Boston Children's Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Douglas B Cowan
- Department of Anesthesiology, Critical Care and Pain Medicine, Harvard Medical School, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Gary A Visner
- Department of Pulmonary and Respiratory Diseases, Harvard Medical School, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Pedro J Del Nido
- Department of Cardiac Surgery, Harvard Medical School, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - James D McCully
- Department of Cardiac Surgery, Harvard Medical School, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
23
|
Soares ROS, Losada DM, Jordani MC, Évora P, Castro-E-Silva O. Ischemia/Reperfusion Injury Revisited: An Overview of the Latest Pharmacological Strategies. Int J Mol Sci 2019; 20:ijms20205034. [PMID: 31614478 PMCID: PMC6834141 DOI: 10.3390/ijms20205034] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 02/08/2023] Open
Abstract
Ischemia/reperfusion injury (IRI) permeates a variety of diseases and is a ubiquitous concern in every transplantation proceeding, from whole organs to modest grafts. Given its significance, efforts to evade the damaging effects of both ischemia and reperfusion are abundant in the literature and they consist of several strategies, such as applying pre-ischemic conditioning protocols, improving protection from preservation solutions, thus providing extended cold ischemia time and so on. In this review, we describe many of the latest pharmacological approaches that have been proven effective against IRI, while also revisiting well-established concepts and presenting recent pathophysiological findings in this ever-expanding field. A plethora of promising protocols has emerged in the last few years. They have been showing exciting results regarding protection against IRI by employing drugs that engage several strategies, such as modulating cell-surviving pathways, evading oxidative damage, physically protecting cell membrane integrity, and enhancing cell energetics.
Collapse
Affiliation(s)
| | - Daniele M Losada
- Department of Anatomic Pathology, Faculty of Medical Sciences, University of Campinas, 13083-970 Campinas, Brazil.
| | - Maria C Jordani
- Department of Surgery & Anatomy, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
| | - Paulo Évora
- Department of Surgery & Anatomy, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
- Department of Gastroenterology, São Paulo Medical School, University of São Paulo, 01246-903 São Paulo, Brazil.
| | - Orlando Castro-E-Silva
- Department of Surgery & Anatomy, Ribeirão Preto Medical School, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
- Department of Gastroenterology, São Paulo Medical School, University of São Paulo, 01246-903 São Paulo, Brazil.
| |
Collapse
|
24
|
Mehaffey JH, Money D, Charles EJ, Schubert S, Piñeros AF, Wu D, Bontha SV, Hawkins R, Teman NR, Laubach VE, Mas VR, Tribble CG, Maluf DG, Sharma AK, Yang Z, Kron IL, Roeser ME. Adenosine 2A Receptor Activation Attenuates Ischemia Reperfusion Injury During Extracorporeal Cardiopulmonary Resuscitation. Ann Surg 2019; 269:1176-1183. [PMID: 31082918 PMCID: PMC6757347 DOI: 10.1097/sla.0000000000002685] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE We tested the hypothesis that systemic administration of an A2AR agonist will reduce multiorgan IRI in a porcine model of ECPR. SUMMARY BACKGROUND DATA Advances in ECPR have decreased mortality after cardiac arrest; however, subsequent IRI contributes to late multisystem organ failure. Attenuation of IRI has been reported with the use of an A2AR agonist. METHODS Adult swine underwent 20 minutes of circulatory arrest, induced by ventricular fibrillation, followed by 6 hours of reperfusion with ECPR. Animals were randomized to vehicle control, low-dose A2AR agonist, or high-dose A2AR agonist. A perfusion specialist using a goal-directed resuscitation protocol managed all the animals during the reperfusion period. Hourly blood, urine, and tissue samples were collected. Biochemical and microarray analyses were performed to identify differential inflammatory markers and gene expression between groups. RESULTS Both the treatment groups demonstrated significantly higher percent reduction from peak lactate after reperfusion compared with vehicle controls. Control animals required significantly more fluid, epinephrine, and higher final pump flow while having lower urine output than both the treatment groups. The treatment groups had lower urine NGAL, an early marker of kidney injury (P = 0.01), lower plasma aspartate aminotransferase, and reduced rate of troponin rise (P = 0.01). Pro-inflammatory cytokines were lower while anti-inflammatory cytokines were significantly higher in the treatment groups. CONCLUSIONS Using a novel and clinically relevant porcine model of circulatory arrest and ECPR, we demonstrated that a selective A2AR agonist significantly attenuated systemic IRI and warrants clinical investigation.
Collapse
Affiliation(s)
- James H Mehaffey
- Department of Surgery, University of Virginia, Charlottesville, VA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hung KY, Liao WI, Pao HP, Wu SY, Huang KL, Chu SJ. Targeting F-Box Protein Fbxo3 Attenuates Lung Injury Induced by Ischemia-Reperfusion in Rats. Front Pharmacol 2019; 10:583. [PMID: 31178737 PMCID: PMC6544082 DOI: 10.3389/fphar.2019.00583] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/06/2019] [Indexed: 01/12/2023] Open
Abstract
Background: Increasing evidence suggests that Fbxo3 signaling has an important impact on the pathophysiology of the inflammatory process. Fbxo3 protein inhibition has reduced cytokine-driven inflammation and improved disease severity in animal model of Pseudomonas-induced lung injury. However, it remains unclear whether inhibition of Fbxo3 protein provides protection in acute lung injury induced by ischemia-reperfusion (I/R). In this study, we investigated the protective effects of BC-1215 administration, a Fbxo3 inhibitor, on acute lung injury induced by I/R in rats. Methods: Lung I/R injury was induced by ischemia (40 min) followed by reperfusion (60 min). The rats were randomly assigned into one of six experimental groups (n = 6 rats/group): the control group, control + BC-1215 (Fbxo3 inhibitor, 0.5 mg/kg) group, I/R group, or I/R + BC-1215 (0.1, 0.25, 0.5 mg/kg) groups. The effects of BC-1215 on human alveolar epithelial cells subjected to hypoxia-reoxygenation (H/R) were also examined. Results: BC-1215 significantly attenuated I/R-induced lung edema, indicated by a reduced vascular filtration coefficient, wet/dry weight ratio, lung injury scores, and protein levels in bronchoalveolar lavage fluid (BALF). Oxidative stress and the level of inflammatory cytokines in BALF were also significantly reduced following administration of BC-1215. Additionally, BC-1215 mitigated I/R-stimulated apoptosis, NF-κB, and mitogen-activated protein kinase activation in the injured lung tissue. BC-1215 increased Fbxl2 protein expression and suppressed Fbxo3 and TNFR associated factor (TRAF)1–6 protein expression. BC-1215 also inhibited IL-8 production and NF-κB activation in vitro in experiments with alveolar epithelial cells exposed to H/R. Conclusions: Our findings demonstrated that Fbxo3 inhibition may represent a novel therapeutic approach for I/R-induced lung injury, with beneficial effects due to destabilizing TRAF proteins.
Collapse
Affiliation(s)
- Kuei-Yi Hung
- The Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Wen-I Liao
- The Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.,Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsin-Ping Pao
- The Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Yu Wu
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Kun-Lun Huang
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Shi-Jye Chu
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Purine nucleosides and nucleotides are released in the extracellular space following cell injury and act as paracrine mediators through a number of dedicated membrane receptors. In particular, extracellular ATP (eATP) significantly influences T-lymphocyte activation and phenotype. The purpose of this review is to discuss the role of ATP signaling in the T-cell-mediated alloimmune response. RECENT FINDINGS In various animal models of solid transplantation, the purinergic axis has been targeted to prevent acute rejection and to promote long-term graft tolerance. The inhibition of ATP-gated P2X receptors has been shown to halt lymphocyte activation, to downregulate both Th1 and Th17 responses and to promote T-regulatory (Treg) cell differentiation. Similarly, the inhibition of ATP signaling attenuated graft-versus-host disease in mice undergoing hematopoietic cell transplantation. Significantly, different drugs targeting the purinergic system have been recently approved for human use and may be a viable therapeutic option for transplant patients. SUMMARY The inhibition of eATP signaling downregulates the alloimmune response, expands Treg cells and promotes graft survival. This robust preclinical evidence and the recent advances in pharmacological research may lead to intriguing clinical applications.
Collapse
|
27
|
Vecchio EA, White PJ, May LT. The adenosine A 2B G protein-coupled receptor: Recent advances and therapeutic implications. Pharmacol Ther 2019; 198:20-33. [PMID: 30677476 DOI: 10.1016/j.pharmthera.2019.01.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The adenosine A2B receptor (A2BAR) is one of four adenosine receptor subtypes belonging to the Class A family of G protein-coupled receptors (GPCRs). Until recently, the A2BAR remained poorly characterised, in part due to its relatively low affinity for the endogenous agonist adenosine and therefore presumed minor physiological significance. However, the substantial increase in extracellular adenosine concentration, the sensitisation of the receptor and the upregulation of A2BAR expression under conditions of hypoxia and inflammation, suggest the A2BAR as an exciting therapeutic target in a variety of pathological disease states. Here we discuss the pharmacology of the A2BAR and outline its role in pathophysiology including ischaemia-reperfusion injury, fibrosis, inflammation and cancer.
Collapse
Affiliation(s)
- Elizabeth A Vecchio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Heart Failure Pharmacology, Baker Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Paul J White
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Lauren T May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
28
|
Härter M, Kalthof B, Delbeck M, Lustig K, Gerisch M, Schulz S, Kast R, Meibom D, Lindner N. Novel non-xanthine antagonist of the A 2B adenosine receptor: From HTS hit to lead structure. Eur J Med Chem 2018; 163:763-778. [PMID: 30576906 DOI: 10.1016/j.ejmech.2018.11.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 11/17/2022]
Abstract
The A2B adenosine receptor is a G protein-coupled receptor that belongs to the four member family of adenosine receptors: A1, A2A, A2B, A3. While adenosine-mediated A2B receptor signaling attenuates acute inflammation, facilitates tissue adaptation to hypoxia, and induces increased ischemia tolerance under conditions of an acute insult, persistently elevated adenosine levels and A2B receptor signaling are characteristics of a number of chronic disease states. In this report we describe the discovery of certain thienouracils (thieno[2,3-d]pyrimidine-2,4(1H,3H)-diones) as antagonists of the A2B adenosine receptor by high-throughput screening from our corporate substance collection. The structure optimization of the initial screening hits led to BAY-545, an A2B receptor antagonist that was suitable for in vivo testing. The structure optimization work, SAR that was derived from there, as well as the properties of BAY-545 are also described. In vivo efficacy of BAY-545 was demonstrated in two models of lung fibrosis and data is presented.
Collapse
Affiliation(s)
- Michael Härter
- Small Molecules Innovation, Research & Development, Bayer Pharmaceuticals, Wuppertal, Germany.
| | - Bernd Kalthof
- Small Molecules Innovation, Research & Development, Bayer Pharmaceuticals, Wuppertal, Germany
| | - Martina Delbeck
- Preclinical Research, Research & Development, Bayer Pharmaceuticals, Wuppertal, Germany
| | - Klemens Lustig
- Translational Sciences, Research & Development, Bayer Pharmaceuticals, Wuppertal, Germany
| | - Michael Gerisch
- Translational Sciences, Research & Development, Bayer Pharmaceuticals, Wuppertal, Germany
| | - Simone Schulz
- Translational Sciences, Research & Development, Bayer Pharmaceuticals, Wuppertal, Germany
| | - Raimund Kast
- Preclinical Research, Research & Development, Bayer Pharmaceuticals, Wuppertal, Germany
| | - Daniel Meibom
- Small Molecules Innovation, Research & Development, Bayer Pharmaceuticals, Wuppertal, Germany
| | - Niels Lindner
- Small Molecules Innovation, Research & Development, Bayer Pharmaceuticals, Wuppertal, Germany
| |
Collapse
|
29
|
Ali A, Keshavjee S, Cypel M. Rising to the Challenge of Unmet Need: Expanding the Lung Donor Pool. CURRENT PULMONOLOGY REPORTS 2018. [DOI: 10.1007/s13665-018-0205-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Sharma AK, Charles EJ, Zhao Y, Narahari AK, Baderdinni PK, Good ME, Lorenz UM, Kron IL, Bayliss DA, Ravichandran KS, Isakson BE, Laubach VE. Pannexin-1 channels on endothelial cells mediate vascular inflammation during lung ischemia-reperfusion injury. Am J Physiol Lung Cell Mol Physiol 2018; 315:L301-L312. [PMID: 29745255 PMCID: PMC6139659 DOI: 10.1152/ajplung.00004.2018] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/17/2018] [Accepted: 05/02/2018] [Indexed: 12/31/2022] Open
Abstract
Ischemia-reperfusion (I/R) injury (IRI), which involves inflammation, vascular permeability, and edema, remains a major challenge after lung transplantation. Pannexin-1 (Panx1) channels modulate cellular ATP release during inflammation. This study tests the hypothesis that endothelial Panx1 is a key mediator of vascular inflammation and edema after I/R and that IRI can be blocked by Panx1 antagonism. A murine hilar ligation model of IRI was used whereby left lungs underwent 1 h of ischemia and 2 h of reperfusion. Treatment of wild-type mice with Panx1 inhibitors (carbenoxolone or probenecid) significantly attenuated I/R-induced pulmonary dysfunction, edema, cytokine production, and neutrophil infiltration versus vehicle-treated mice. In addition, VE-Cad-CreERT2+/Panx1fl/fl mice (tamoxifen-inducible deletion of Panx1 in vascular endothelium) treated with tamoxifen were significantly protected from IRI (reduced dysfunction, endothelial permeability, edema, proinflammatory cytokines, and neutrophil infiltration) versus vehicle-treated mice. Furthermore, extracellular ATP levels in bronchoalveolar lavage fluid is Panx1-mediated after I/R as it was markedly attenuated by Panx1 antagonism in wild-type mice and by endothelial-specific Panx1 deficiency. Panx1 gene expression in lungs after I/R was also significantly elevated compared with sham. In vitro experiments demonstrated that TNF-α and/or hypoxia-reoxygenation induced ATP release from lung microvascular endothelial cells, which was attenuated by Panx1 inhibitors. This study is the first, to our knowledge, to demonstrate that endothelial Panx1 plays a key role in mediating vascular permeability, inflammation, edema, leukocyte infiltration, and lung dysfunction after I/R. Pharmacological antagonism of Panx1 activity may be a novel therapeutic strategy to prevent IRI and primary graft dysfunction after lung transplantation.
Collapse
Affiliation(s)
- Ashish K Sharma
- Department of Surgery, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Eric J Charles
- Department of Surgery, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Yunge Zhao
- Department of Surgery, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Adishesh K Narahari
- Department of Pharmacology, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Pranav K Baderdinni
- Department of Pharmacology, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Miranda E Good
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Ulrike M Lorenz
- Department of Microbiology, Immunology, and Cancer, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Irving L Kron
- Department of Surgery, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Kodi S Ravichandran
- Department of Microbiology, Immunology, and Cancer, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Victor E Laubach
- Department of Surgery, University of Virginia School of Medicine , Charlottesville, Virginia
| |
Collapse
|
31
|
Jing L, Yao L, Zhao M, Peng LP, Liu M. Organ preservation: from the past to the future. Acta Pharmacol Sin 2018; 39:845-857. [PMID: 29565040 DOI: 10.1038/aps.2017.182] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 12/31/2017] [Indexed: 12/13/2022]
Abstract
Organ transplantation is the most effective therapy for patients with end-stage disease. Preservation solutions and techniques are crucial for donor organ quality, which is directly related to morbidity and survival after transplantation. Currently, static cold storage (SCS) is the standard method for organ preservation. However, preservation time with SCS is limited as prolonged cold storage increases the risk of early graft dysfunction that contributes to chronic complications. Furthermore, the growing demand for the use of marginal donor organs requires methods for organ assessment and repair. Machine perfusion has resurfaced and dominates current research on organ preservation. It is credited to its dynamic nature and physiological-like environment. The development of more sophisticated machine perfusion techniques and better perfusates may lead to organ repair/reconditioning. This review describes the history of organ preservation, summarizes the progresses that has been made to date, and discusses future directions for organ preservation.
Collapse
|
32
|
Wang X, Chen D. Purinergic Regulation of Neutrophil Function. Front Immunol 2018; 9:399. [PMID: 29545806 PMCID: PMC5837999 DOI: 10.3389/fimmu.2018.00399] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/13/2018] [Indexed: 12/28/2022] Open
Abstract
Purinergic signaling, which utilizes nucleotides (particularly ATP) and adenosine as transmitter molecules, plays an essential role in immune system. In the extracellular compartment, ATP predominantly functions as a pro-inflammatory molecule through activation of P2 receptors, whereas adenosine mostly functions as an anti-inflammatory molecule through activation of P1 receptors. Neutrophils are the most abundant immune cells in circulation and have emerged as an important component in orchestrating a complex series of events during inflammation. However, because of the destructive nature of neutrophil-derived inflammatory agents, neutrophil activation is fine-tuned, and purinergic signaling is intimately involved in this process. Indeed, shifting the balance between P2 and P1 signaling is critical for neutrophils to appropriately exert their immunologic activity. Here, we review the role of purinergic signaling in regulating neutrophil function, and discuss the potential of targeting purinergic signaling for the treatment of neutrophil-associated infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Xu Wang
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Deyu Chen
- Institute of Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
33
|
Giacomelli C, Daniele S, Romei C, Tavanti L, Neri T, Piano I, Celi A, Martini C, Trincavelli ML. The A 2B Adenosine Receptor Modulates the Epithelial- Mesenchymal Transition through the Balance of cAMP/PKA and MAPK/ERK Pathway Activation in Human Epithelial Lung Cells. Front Pharmacol 2018; 9:54. [PMID: 29445342 PMCID: PMC5797802 DOI: 10.3389/fphar.2018.00054] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/15/2018] [Indexed: 12/12/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) is a complex process in which cell phenotype switches from the epithelial to mesenchymal one. The deregulations of this process have been related with the occurrence of different diseases such as lung cancer and fibrosis. In the last decade, several efforts have been devoted in understanding the mechanisms that trigger and sustain this transition process. Adenosine is a purinergic signaling molecule that has been involved in the onset and progression of chronic lung diseases and cancer through the A2B adenosine receptor subtype activation, too. However, the relationship between A2BAR and EMT has not been investigated, yet. Herein, the A2BAR characterization was carried out in human epithelial lung cells. Moreover, the effects of receptor activation on EMT were investigated in the absence and presence of transforming growth factor-beta (TGF-β1), which has been known to promote the transition. The A2BAR activation alone decreased and increased the expression of epithelial markers (E-cadherin) and the mesenchymal one (Vimentin, N-cadherin), respectively, nevertheless a complete EMT was not observed. Surprisingly, the receptor activation counteracted the EMT induced by TGF-β1. Several intracellular pathways regulate the EMT: high levels of cAMP and ERK1/2 phosphorylation has been demonstrated to counteract and promote the transition, respectively. The A2BAR stimulation was able to modulated these two pathways, cAMP/PKA and MAPK/ERK, shifting the fine balance toward activation or inhibition of EMT. In fact, using a selective PKA inhibitor, which blocks the cAMP pathway, the A2BAR-mediated EMT promotion were exacerbated, and conversely the selective inhibition of MAPK/ERK counteracted the receptor-induced transition. These results highlighted the A2BAR as one of the receptors involved in the modulation of EMT process. Nevertheless, its activation is not enough to trigger a complete transition, its ability to affect different intracellular pathways could represent a mechanism at the basis of EMT maintenance/inhibition based on the extracellular microenvironment. Despite further investigations are needed, herein for the first time the A2BAR has been related to the EMT process, and therefore to the different EMT-related pathologies.
Collapse
Affiliation(s)
| | | | - Chiara Romei
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy.,Radiology Unit, University Hospital of Pisa, Pisa, Italy
| | - Laura Tavanti
- Pneumology Unit, Cardio-Thoracic Department, University Hospital of Pisa, Pisa, Italy
| | - Tommaso Neri
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Ilaria Piano
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Alessandro Celi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | | | | |
Collapse
|
34
|
Charles EJ, Kron IL. Bedside-to-Bench and Back Again: Surgeon-Initiated Translational Research. Ann Thorac Surg 2018; 105:10-11. [DOI: 10.1016/j.athoracsur.2017.06.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 10/18/2022]
|
35
|
Gauthier JM, Puri V, Kreisel D. Hitting the target with lung perfusion. J Thorac Cardiovasc Surg 2017; 154:1821-1822. [PMID: 29042053 DOI: 10.1016/j.jtcvs.2017.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 08/08/2017] [Indexed: 10/19/2022]
Affiliation(s)
- Jason M Gauthier
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University in St Louis School of Medicine, St Louis, Mo
| | - Varun Puri
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University in St Louis School of Medicine, St Louis, Mo
| | - Daniel Kreisel
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University in St Louis School of Medicine, St Louis, Mo; Department of Pathology and Immunology, Washington University in St Louis School of Medicine, St Louis, Mo.
| |
Collapse
|
36
|
Abstract
The number of patients actively awaiting lung transplantation (LTx) is more than the number of suitable donor lungs. The percentage of lung retrieval rate is lower when compared to other solid organs. The use of lungs from donation after cardiocirculatory death (DCD) donors is one of the options to avoid organ shortage in LTx. After extensive experimental research, clinical application of DCD donation is becoming wider. The results from most of the centers show at least equal survival rate compared to donors from brain death. This review paper will summarize experimental background and clinical experience from DCD donors.
Collapse
Affiliation(s)
- Ilhan Inci
- Department of Thoracic Surgery, University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
37
|
Lama VN, Belperio JA, Christie JD, El-Chemaly S, Fishbein MC, Gelman AE, Hancock WW, Keshavjee S, Kreisel D, Laubach VE, Looney MR, McDyer JF, Mohanakumar T, Shilling RA, Panoskaltsis-Mortari A, Wilkes DS, Eu JP, Nicolls MR. Models of Lung Transplant Research: a consensus statement from the National Heart, Lung, and Blood Institute workshop. JCI Insight 2017; 2:93121. [PMID: 28469087 DOI: 10.1172/jci.insight.93121] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lung transplantation, a cure for a number of end-stage lung diseases, continues to have the worst long-term outcomes when compared with other solid organ transplants. Preclinical modeling of the most common and serious lung transplantation complications are essential to better understand and mitigate the pathophysiological processes that lead to these complications. Various animal and in vitro models of lung transplant complications now exist and each of these models has unique strengths. However, significant issues, such as the required technical expertise as well as the robustness and clinical usefulness of these models, remain to be overcome or clarified. The National Heart, Lung, and Blood Institute (NHLBI) convened a workshop in March 2016 to review the state of preclinical science addressing the three most important complications of lung transplantation: primary graft dysfunction (PGD), acute rejection (AR), and chronic lung allograft dysfunction (CLAD). In addition, the participants of the workshop were tasked to make consensus recommendations on the best use of these complimentary models to close our knowledge gaps in PGD, AR, and CLAD. Their reviews and recommendations are summarized in this report. Furthermore, the participants outlined opportunities to collaborate and directions to accelerate research using these preclinical models.
Collapse
Affiliation(s)
- Vibha N Lama
- Department of Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - John A Belperio
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jason D Christie
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Souheil El-Chemaly
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael C Fishbein
- Department of Pathology and Laboratory Medicine, UCLA Center for the Health Sciences, Los Angeles, California, USA
| | - Andrew E Gelman
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Wayne W Hancock
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Shaf Keshavjee
- Division of Thoracic Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Victor E Laubach
- Department of Surgery, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Mark R Looney
- Department of Medicine, UCSF School of Medicine, San Francisco, California, USA
| | - John F McDyer
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Rebecca A Shilling
- Department of Medicine, University of Illinois College of Medicine at Chicago, Illinois, USA
| | - Angela Panoskaltsis-Mortari
- Departments of Pediatrics, and Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - David S Wilkes
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Jerry P Eu
- National Heart, Lung and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Mark R Nicolls
- Department of Medicine, Stanford University School of Medicine/VA Palo Alto Health Care System, Stanford, California, USA
| |
Collapse
|
38
|
Charles EJ, Mehaffey JH, Sharma AK, Zhao Y, Stoler MH, Isbell JM, Lau CL, Tribble CG, Laubach VE, Kron IL. Lungs donated after circulatory death and prolonged warm ischemia are transplanted successfully after enhanced ex vivo lung perfusion using adenosine A2B receptor antagonism. J Thorac Cardiovasc Surg 2017; 154:1811-1820. [PMID: 28483262 DOI: 10.1016/j.jtcvs.2017.02.072] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 12/05/2016] [Accepted: 02/10/2017] [Indexed: 01/10/2023]
Abstract
OBJECTIVE The current supply of acceptable donor lungs is not sufficient for the number of patients awaiting transplantation. We hypothesized that ex vivo lung perfusion (EVLP) with targeted drug therapy would allow successful rehabilitation and transplantation of donation after circulatory death lungs exposed to 2 hours of warm ischemia. METHODS Donor porcine lungs were procured after 2 hours of warm ischemia postcardiac arrest and subjected to 4 hours of cold preservation or EVLP. ATL802, an adenosine A2B receptor antagonist, was administered to select groups. Four groups (n = 4/group) were randomized: cold preservation (Cold), cold preservation with ATL802 during reperfusion (Cold + ATL802), EVLP (EVLP), and EVLP with ATL802 during ex vivo perfusion (EVLP + ATL802). Lungs subsequently were transplanted, reperfused, and assessed by measuring dynamic lung compliance and oxygenation capacity. RESULTS EVLP + ATL802 significantly improved dynamic lung compliance compared with EVLP (25.0 ± 1.8 vs 17.0 ± 2.4 mL/cmH2O, P = .04), and compared with cold preservation (Cold: 12.2 ± 1.3, P = .004; Cold + ATL802: 10.6 ± 2.0 mL/cmH2O, P = .002). Oxygenation capacity was highest in EVLP (440.4 ± 37.0 vs Cold: 174.0 ± 61.3 mm Hg, P = .037). No differences in oxygenation or pulmonary edema were observed between EVLP and EVLP + ATL802. A significant decrease in interleukin-12 expression in tissue and bronchoalveolar lavage was identified between groups EVLP and EVLP + ATL802, along with less neutrophil infiltration. CONCLUSIONS Severely injured donation after circulatory death lungs subjected to 2 hours of warm ischemia are transplanted successfully after enhanced EVLP with targeted drug therapy. Increased use of lungs after uncontrolled donor cardiac death and prolonged warm ischemia may be possible and may improve transplant wait list times and mortality.
Collapse
Affiliation(s)
- Eric J Charles
- Department of Surgery, University of Virginia Health System, Charlottesville, Va
| | - J Hunter Mehaffey
- Department of Surgery, University of Virginia Health System, Charlottesville, Va
| | - Ashish K Sharma
- Department of Surgery, University of Virginia Health System, Charlottesville, Va
| | - Yunge Zhao
- Department of Surgery, University of Virginia Health System, Charlottesville, Va
| | - Mark H Stoler
- Department of Pathology, University of Virginia Health System, Charlottesville, Va
| | - James M Isbell
- Department of Surgery, University of Virginia Health System, Charlottesville, Va
| | - Christine L Lau
- Department of Surgery, University of Virginia Health System, Charlottesville, Va
| | - Curtis G Tribble
- Department of Surgery, University of Virginia Health System, Charlottesville, Va
| | - Victor E Laubach
- Department of Surgery, University of Virginia Health System, Charlottesville, Va
| | - Irving L Kron
- Department of Surgery, University of Virginia Health System, Charlottesville, Va.
| |
Collapse
|