1
|
Sugimori H, Nakao T, Okada Y, Okita Y, Yaku H, Kobayashi J, Uesugi H, Takanashi S, Ito T, Koyama T, Sakaguchi T, Yamamoto K, Yoshikawa Y, Sawa Y. Mid-term outcomes of surgical aortic valve replacement using a mosaic porcine bioprosthesis with concomitant mitral valve repair. Heart Vessels 2024; 39:252-265. [PMID: 37843552 DOI: 10.1007/s00380-023-02325-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/28/2023] [Indexed: 10/17/2023]
Abstract
This study retrospectively evaluated the mid-term outcomes of surgical aortic valve replacement (SAVR) using a stented porcine aortic valve bioprosthesis (Mosaic; Medtronic Inc., Minneapolis, MN, USA) with concomitant mitral valve (MV) repair. From 1999 to 2014, 157 patients (median [interquartile range] age, 75 [70-79] years; 47% women) underwent SAVR with concomitant MV repair (SAVR + MV repair), and 1045 patients (median [interquartile range] age, 76 [70-80] years; 54% women) underwent SAVR only at 10 centers in Japan as part of the long-term multicenter Japan Mosaic valve (J-MOVE) study. The 5-year overall survival rate was 81.5% ± 4.1% in the SAVR + MV repair group and 85.1% ± 1.4% in the SAVR only group, and the 8-year overall survival rates were 75.2% ± 5.7% and 78.1% ± 2.1%, respectively. Cox proportional hazards analysis showed no significant difference in the survival rates between the two groups (hazard ratio, 0.87; 95% confidence interval, 0.54-1.40; P = 0.576). Among women with mild or moderate mitral regurgitation who were not receiving dialysis, those who underwent SAVR + MV repair, were aged > 75 years, and had a preoperative left ventricular ejection fraction of 30-75% tended to have a lower mortality risk. In conclusion, this subgroup analysis of the J-MOVE cohort showed relevant mid-term outcomes after SAVR + MV repair.
Collapse
Affiliation(s)
- Haruhiko Sugimori
- Department of Cardiovascular Surgery, New Tokyo Hospital, 1271 Wanagaya, Matsudo, Chiba, 270-2232, Japan.
| | - Tatsuya Nakao
- Department of Cardiovascular Surgery, New Tokyo Hospital, 1271 Wanagaya, Matsudo, Chiba, 270-2232, Japan
| | - Yukikatsu Okada
- Department of Cardiovascular Surgery, Midori Hospital, 1-16 Edayoshi, Nishi-ku, Kobe, Hyogo, 651-2133, Japan
| | - Yutaka Okita
- Department of Cardiovascular Surgery, Takatsuki General Hospital, 1-3-13 Kosobe-Machi, Takatsuki, Osaka, 569-1192, Japan
| | - Hitoshi Yaku
- Department of Cardiovascular Surgery, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Junjiro Kobayashi
- Department of Cardiovascular Surgery, National Cerebral and Cardiovascular Center, 6-1 Kishibeshin-Machi, Suita, Osaka, 564-0018, Japan
| | - Hideyuki Uesugi
- Department of Cardiovascular Surgery, Saiseikai Kumamoto Hospital, 5-3-1 Chikami, Minami-ku, Kumamoto, Kumamoto, 861-4101, Japan
| | - Shuichiro Takanashi
- Department of Cardiovascular Surgery, Kawasaki Saiwai Hospital, 31-27 Omiya-Chyou, Saiwai-ku, Kawasaki, Kanagawa, 212-0014, Japan
| | - Toshiaki Ito
- Department of Cardiovascular Surgery, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, 3-35 Michishita-Chyou, Nakamura-ku, Nagoya, Aichi, 453-0046, Japan
| | - Tadaaki Koyama
- Department of Cardiovascular Surgery, Kansai Medical University, 2-5-1 Shin-Machi, Hirakata, Osaka, 573-1010, Japan
| | - Taichi Sakaguchi
- Department of Cardiovascular Surgery, Hyogo College of Medicine, 1-3-6 Minatojima, Chuo-ku, Kobe, Hyogo, 650-0045, Japan
| | - Kouji Yamamoto
- Department of Biostatistics, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Yasushi Yoshikawa
- Department of Cardiovascular Surgery, Tottori University, 4-101 Koyama-Cho, Minami, Tottori, 680-8550, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
2
|
Immune disguise: the mechanisms of Neu5Gc inducing autoimmune and transplant rejection. Genes Immun 2022; 23:175-182. [PMID: 36151402 DOI: 10.1038/s41435-022-00182-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/16/2022] [Accepted: 09/05/2022] [Indexed: 11/08/2022]
Abstract
Organ (stem cell) transplantation is the most effective treatment for advanced organ failure. Neu5Gc (N-hydroxyacetylneuraminic acid) is a pathogenic non-human sialic acid, which is very similar to the molecular structure of Neu5Ac (N-acetylneuraminic acid) in human body. Neu5Gc has the function of "immune disguise", which is the main obstacle to transplantation. Gene knockout such as cytidine monophosphate-N-acetylneuraminidase (CMAH) reduces donor antigenicity, making xenotransplantation from fiction to reality. Exploring the immune disguise event in this emerging field has become a hot topic in the research of transplantation immune tolerance mechanism.
Collapse
|
3
|
Naso F, Gandaglia A. Can Heart Valve Decellularization Be Standardized? A Review of the Parameters Used for the Quality Control of Decellularization Processes. Front Bioeng Biotechnol 2022; 10:830899. [PMID: 35252139 PMCID: PMC8891751 DOI: 10.3389/fbioe.2022.830899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
When a tissue or an organ is considered, the attention inevitably falls on the complex and delicate mechanisms regulating the correct interaction of billions of cells that populate it. However, the most critical component for the functionality of specific tissue or organ is not the cell, but the cell-secreted three-dimensional structure known as the extracellular matrix (ECM). Without the presence of an adequate ECM, there would be no optimal support and stimuli for the cellular component to replicate, communicate and interact properly, thus compromising cell dynamics and behaviour and contributing to the loss of tissue-specific cellular phenotype and functions. The limitations of the current bioprosthetic implantable medical devices have led researchers to explore tissue engineering constructs, predominantly using animal tissues as a potentially unlimited source of materials. The high homology of the protein sequences that compose the mammalian ECM, can be exploited to convert a soft animal tissue into a human autologous functional and long-lasting prosthesis ensuring the viability of the cells and maintaining the proper biomechanical function. Decellularization has been shown to be a highly promising technique to generate tissue-specific ECM-derived products for multiple applications, although it might comprise very complex processes that involve the simultaneous use of chemical, biochemical, physical and enzymatic protocols. Several different approaches have been reported in the literature for the treatment of bone, cartilage, adipose, dermal, neural and cardiovascular tissues, as well as skeletal muscle, tendons and gastrointestinal tract matrices. However, most of these reports refer to experimental data. This paper reviews the most common and latest decellularization approaches that have been adopted in cardiovascular tissue engineering. The efficacy of cells removal was specifically reviewed and discussed, together with the parameters that could be used as quality control markers for the evaluation of the effectiveness of decellularization and tissue biocompatibility. The purpose was to provide a panel of parameters that can be shared and taken into consideration by the scientific community to achieve more efficient, comparable, and reliable experimental research results and a faster technology transfer to the market.
Collapse
|
4
|
McGregor C, Salmonsmith J, Burriesci G, Byrne G. Biological Equivalence of GGTA-1 Glycosyltransferase Knockout and Standard Porcine Pericardial Tissue Using 90-Day Mitral Valve Implantation in Adolescent Sheep. Cardiovasc Eng Technol 2021; 13:363-372. [PMID: 34820778 PMCID: PMC9197892 DOI: 10.1007/s13239-021-00585-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/19/2021] [Indexed: 11/26/2022]
Abstract
Objective There is growing interest in the application of genetically engineered reduced antigenicity animal tissue for manufacture of bioprosthetic heart valves (BHVs) to reduce antibody induced tissue calcification and accelerated structural valve degeneration (SVD). This study tested biological equivalence of valves made from Gal-knockout (GalKO) and standard porcine pericardium after 90-day mitral valve implantation in sheep. Methods GalKO (n = 5) and standard (n = 5) porcine pericardial BHVs were implanted in a randomized and blind fashion into sheep for 90-days. Valve haemodynamic function was measured at 30-day intervals. After explantation, valves were examined for pannus, vegetation, inflammation, thrombus, and tissue calcification. Results Nine of 10 recipients completed the study. There was no difference between study groups for haemodynamic performance and no adverse valve-related events. Explanted BHVs showed mild pannus integration and minimal thrombus, with no difference between the groups. Limited focal mineral deposits were detected by x-ray. Atomic spectroscopy analysis detected tissue calcium levels of 1.0 µg/mg ± 0.2 for GalKO BHVs and 1.9 µg/mg ± 0.9 for standard tissue BHVs (p = 0.4), considered to be both low and equivalent. Conclusions This is the first demonstration of biological equivalence between GalKO and standard pig pericardium. The GalKO mutation causes neither intrinsic detrimental biological nor functional impact on BHV performance. Commercial adaptation of GalKO tissue for surgical or transcatheter BHVs would remove the clinical disparity between patients producing anti-Gal antibody and BHVs containing the Gal antigen. GalKO BHVs may reduce accelerated tissue calcification and SVD, enhancing patient choices, especially for younger patients. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s13239-021-00585-0.
Collapse
Affiliation(s)
- Christopher McGregor
- Institute of Cardiovascular Science, University College London, London, UK.
- Department of Surgery, University of Minnesota, 8195B, MMC 195 Mayo, Minneapolis, MN, 55455, USA.
| | - Jacob Salmonsmith
- Department of Surgery, University of Minnesota, 8195B, MMC 195 Mayo, Minneapolis, MN, 55455, USA
- Department of Mechanical Engineering, University College London, London, UK
| | - Gaetano Burriesci
- Department of Mechanical Engineering, University College London, London, UK
- Ri.MED Foundation, Bioengineering Group, Palermo, Italy
| | - Guerard Byrne
- Institute of Cardiovascular Science, University College London, London, UK
- Department of Surgery, University of Minnesota, 8195B, MMC 195 Mayo, Minneapolis, MN, 55455, USA
| |
Collapse
|
5
|
Agarwal V, Kaple RK, Mehta HH, Singh P, Bapat VN. Current state of transcatheter mitral valve implantation in bioprosthetic mitral valve and in mitral ring as a treatment approach for failed mitral prosthesis. Ann Cardiothorac Surg 2021; 10:585-604. [PMID: 34733687 DOI: 10.21037/acs-2021-tviv-80] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/25/2021] [Indexed: 01/29/2023]
Abstract
With heightened awareness of mitral valve disease and improvement in surgical techniques, the use of mitral valve bioprostheses has increased. There is a large aging population with prior surgical valvular interventions. Limited durability of the prosthesis due to valvular degeneration over time may necessitate the need for repair or replacement of the prior prosthesis in the future. This usually entails another surgical intervention in this population with elevated risk for a reoperation. There is an ongoing clinical need for newer, less invasive options that are feasible and carry a lower complication rate. The advent of transcatheter heart valve (THV) therapies has opened up a wide range of therapeutic options for treatment of a failed bioprosthesis. Their safety and feasibility are now well established. This article serves as a review of the currently available THVs for implantation in the mitral position, the pre-procedural assessment, the challenges associated with implantation, as well as outcomes associated with a mitral valve-in-valve (VIV) and a mitral valve-in-ring (VIR) procedure.
Collapse
Affiliation(s)
- Vratika Agarwal
- Section of Cardiovascular Medicine, Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ryan K Kaple
- Section of Cardiovascular Medicine, Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Hetal H Mehta
- Section of Cardiovascular Medicine, Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Prabhjot Singh
- Section of Cardiovascular Medicine, Department of Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Vinayak N Bapat
- Division of Cardiothoracic Surgery, The Minneapolis Heart Institute Foundation, Minneapolis, Minnesota, USA
| |
Collapse
|
6
|
Ebken J, Mester N, Smart I, Ramm R, Goecke T, Jashari R, Böthig D, Horke A, Cebotari S, Tudorache I, Avsar M, Bobylev D, Haverich A, Sarikouch S, Hilfiker A. Residual immune response towards decellularized homografts may be highly individual. Eur J Cardiothorac Surg 2021; 59:773-782. [PMID: 33544830 PMCID: PMC8083949 DOI: 10.1093/ejcts/ezaa393] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES Decellularized homograft valves (DHVs) have shown promising clinical results, particularly in the treatment of congenital heart disease. However, DHV appears to elicit an immune response in a subset of young patients, indicated by early valve degeneration. As the decellularization process is quality controlled for each DHV, we hypothesized that there may be residual immunogenicity within the extracellular matrix of DHV. METHODS A semi-quantitative dot blot analysis was established to screen for preformed recipient antibodies using secondary anti-human antibodies. Fifteen DHV samples (7 aortic, 8 pulmonary) were solubilized and exposed to serum from 20 healthy controls. RESULTS The sera from young controls (n = 10, 18–25 years) showed significantly stronger binding of preformed antibodies than sera from older individuals (n = 10, 48–73 years). The difference between the means of arbitrary units was 15.1 ± 6.5 (P = 0.0315). There was high intraindividual variance in the mean amounts of arbitrary units of antibody binding with some healthy controls showing >10 times higher antibody binding towards 2 different DHV. The amount of preformed antibodies bound to DHVs was higher in aortic than in pulmonary DHVs. The mean number of antibody binding (in arbitrary units) was 17.2 ± 4.5 in aortic and 14.5 ± 4.7 in pulmonary DHV (P = 0.27). The amount of preformed antibodies bound to pulmonary DHVs was statistically significantly higher in the sera of healthy males (n = 10) than in the sera of healthy females (n = 10). The mean number of arbitrary units was 17.2 ± 4.2 in male and 11.7 ± 5.3 in female sera (P = 0.036). Antibody binding to aortic DHV was also higher in males, but not significant (18.8 ± 5.0 vs 15.6 ± 4.0). Blood group (ABO) incompatibility between the serum from controls and DHV showed no impact on antibody binding, and there was no age-related impact among DHV donors. CONCLUSIONS Residual immunogenicity of decellularized homografts appears to exist despite almost complete cell removal. The established dot blot method allows a semi-quantitative assessment of the individual immune response towards extracellular DHV components and potentially the possibility of preoperative homograft matching.
Collapse
Affiliation(s)
- Johannes Ebken
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
| | - Nils Mester
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
| | - Isabel Smart
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
| | - Robert Ramm
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
| | - Tobias Goecke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany.,Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Ramadan Jashari
- European Homograft Bank, Clinique Saint-Jean, Brussels, Belgium
| | - Dietmar Böthig
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Alexander Horke
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Serghei Cebotari
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Igor Tudorache
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Murat Avsar
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Dmitry Bobylev
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Axel Haverich
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany.,Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Samir Sarikouch
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Andres Hilfiker
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Hannover, Germany
| |
Collapse
|
7
|
Jover E, Fagnano M, Cathery W, Slater S, Pisanu E, Gu Y, Avolio E, Bruno D, Baz-Lopez D, Faulkner A, Carrabba M, Angelini G, Madeddu P. Human adventitial pericytes provide a unique source of anti-calcific cells for cardiac valve engineering: Role of microRNA-132-3p. Free Radic Biol Med 2021; 165:137-151. [PMID: 33497799 DOI: 10.1016/j.freeradbiomed.2021.01.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/21/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022]
Abstract
AIMS Tissue engineering aims to improve the longevity of prosthetic heart valves. However, the optimal cell source has yet to be determined. This study aimed to establish a mechanistic rationale supporting the suitability of human adventitial pericytes (APCs). METHODS AND RESULTS APCs were immunomagnetically sorted from saphenous vein leftovers of patients undergoing coronary artery bypass graft surgery and antigenically characterized for purity. Unlike bone marrow-derived mesenchymal stromal cells (BM-MSCs), APCs were resistant to calcification and delayed osteochondrogenic differentiation upon high phosphate (HP) induction, as assessed by cytochemistry and expression of osteogenic markers. Moreover, glycolysis was activated during osteogenic differentiation of BM-MSCs, whereas APCs showed no increase in glycolysis upon HP challenge. The microRNA-132-3p (miR-132), a known inhibitor of osteogenesis, was found constitutively expressed by APCs and upregulated following HP stimulation. The anti-calcific role of miR-132 was further corroborated by in silico analysis, luciferase assays in HEK293 cells, and transfecting APCs with miR-132 agomir and antagomir, followed by assessment of osteochondrogenic markers. Interestingly, treatment of swine cardiac valves with APC-derived conditioned medium conferred them with resistance to HP-induced osteogenesis, with this effect being negated when using the medium of miR-132-silenced APCs. Additionally, as an initial bioengineering step, APCs were successfully engrafted onto pericardium sheets, where they proliferated and promoted aortic endothelial cells attraction, a process mimicking valve endothelialization. CONCLUSIONS Human APCs are resistant to calcification compared with BM-MSCs and convey the anti-calcific phenotype to heart valves through miR-132. These findings may open new important avenues for prosthetic valve cellularization.
Collapse
Affiliation(s)
- Eva Jover
- Bristol Medical School (Translational Health Sciences), Bristol Heart Institute, University of Bristol, Bristol, United Kingdom; Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain.
| | - Marco Fagnano
- Bristol Medical School (Translational Health Sciences), Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - William Cathery
- Bristol Medical School (Translational Health Sciences), Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Sadie Slater
- Bristol Medical School (Translational Health Sciences), Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Emanuela Pisanu
- Bristol Medical School (Translational Health Sciences), Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Yue Gu
- Bristol Medical School (Translational Health Sciences), Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Elisa Avolio
- Bristol Medical School (Translational Health Sciences), Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Domenico Bruno
- Bristol Medical School (Translational Health Sciences), Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Daniel Baz-Lopez
- Bristol Medical School (Translational Health Sciences), Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Ashton Faulkner
- Bristol Medical School (Translational Health Sciences), Bristol Heart Institute, University of Bristol, Bristol, United Kingdom; School of Biochemistry, University of Bristol, UK
| | - Michele Carrabba
- Bristol Medical School (Translational Health Sciences), Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Gianni Angelini
- Bristol Medical School (Translational Health Sciences), Bristol Heart Institute, University of Bristol, Bristol, United Kingdom
| | - Paolo Madeddu
- Bristol Medical School (Translational Health Sciences), Bristol Heart Institute, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
8
|
In Situ "Humanization" of Porcine Bioprostheses: Demonstration of Tendon Bioprostheses Conversion into Human ACL and Possible Implications for Heart Valve Bioprostheses. Bioengineering (Basel) 2021; 8:bioengineering8010010. [PMID: 33445522 PMCID: PMC7826727 DOI: 10.3390/bioengineering8010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 11/21/2022] Open
Abstract
This review describes the first studies on successful conversion of porcine soft-tissue bioprostheses into viable permanently functional tissue in humans. This process includes gradual degradation of the porcine tissue, with concomitant neo-vascularization and reconstruction of the implanted bioprosthesis with human cells and extracellular matrix. Such a reconstruction process is referred to in this review as “humanization”. Humanization was achieved with porcine bone-patellar-tendon-bone (BTB), replacing torn anterior-cruciate-ligament (ACL) in patients. In addition to its possible use in orthopedic surgery, it is suggested that this humanization method should be studied as a possible mechanism for converting implanted porcine bioprosthetic heart-valves (BHV) into viable tissue valves in young patients. Presently, these patients are only implanted with mechanical heart-valves, which require constant anticoagulation therapy. The processing of porcine bioprostheses, which enables humanization, includes elimination of α-gal epitopes and partial (incomplete) crosslinking with glutaraldehyde. Studies on implantation of porcine BTB bioprostheses indicated that enzymatic elimination of α-gal epitopes prevents subsequent accelerated destruction of implanted tissues by the natural anti-Gal antibody, whereas the partial crosslinking by glutaraldehyde molecules results in their function as “speed bumps” that slow the infiltration of macrophages. Anti-non gal antibodies produced against porcine antigens in implanted bioprostheses recruit macrophages, which infiltrate at a pace that enables slow degradation of the porcine tissue, neo-vascularization, and infiltration of fibroblasts. These fibroblasts align with the porcine collagen-fibers scaffold, secrete their collagen-fibers and other extracellular-matrix (ECM) components, and gradually replace porcine tissues degraded by macrophages with autologous functional viable tissue. Porcine BTB implanted in patients completes humanization into autologous ACL within ~2 years. The similarities in cells and ECM comprising heart-valves and tendons, raises the possibility that porcine BHV undergoing a similar processing, may also undergo humanization, resulting in formation of an autologous, viable, permanently functional, non-calcifying heart-valves.
Collapse
|
9
|
Oveissi F, Naficy S, Lee A, Winlaw D, Dehghani F. Materials and manufacturing perspectives in engineering heart valves: a review. Mater Today Bio 2020; 5:100038. [PMID: 32211604 PMCID: PMC7083765 DOI: 10.1016/j.mtbio.2019.100038] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/27/2022] Open
Abstract
Valvular heart diseases (VHD) are a major health burden, affecting millions of people worldwide. The treatments for such diseases rely on medicine, valve repair, and artificial heart valves including mechanical and bioprosthetic valves. Yet, there are countless reports on possible alternatives noting long-term stability and biocompatibility issues and highlighting the need for fabrication of more durable and effective replacements. This review discusses the current and potential materials that can be used for developing such valves along with existing and developing fabrication methods. With this perspective, we quantitatively compare mechanical properties of various materials that are currently used or proposed for heart valves along with their fabrication processes to identify challenges we face in creating new materials and manufacturing techniques to better mimick the performance of native heart valves.
Collapse
Key Words
- 3D printing
- Biofabrication
- Biomaterials
- E, Young's modulus
- Electrospinning
- Gal, galactose-α1,3-galactose
- GelMa, gelatin methacrylate
- HA, hyaluronic acid
- HAVIC, human aortic valvular interstitial cells
- MA-HA, methacrylated hyaluronic acid
- NeuGc, N-glycolylneuraminic acid
- P4HB, poly(4-hydroxybutyrate)
- PAAm, polyacrylamide
- PCE, polycitrate-(ε-polypeptide)
- PCL, polycaprolactone
- PE, polyethylene
- PEG, polyethylene glycol
- PEGDA, polyethylene glycol diacrylate
- PGA, poly(glycolic acid)
- PHA, poly(hydroxyalkanoate)
- PLA, polylactide
- PMMA, poly(methyl methacrylate)
- PPG, polypropylene glycol
- PTFE, polytetrafluoroethylene
- PU, polyurethane
- SIBS, poly(styrene-b-isobutylene-b-styrene)
- SMC, smooth muscle cells
- VHD, valvular heart disease
- VIC, aortic valve leaflet interstitial cells
- Valvular heart diseases
- dECM, decellularized extracellular matrix
- ePTFE, expanded PTFE
- xSIBS, crosslinked version of SIBS
- α-SMA, alpha-smooth muscle actin
Collapse
Affiliation(s)
- F. Oveissi
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - S. Naficy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - A. Lee
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, Faculty of Health and Medicine, The University of Sydney, New South Wales, 2006, Australia
- Heart Centre for Children, The Children's Hospital at Westmead, New South Wales, 2145, Australia
| | - D.S. Winlaw
- Discipline of Child and Adolescent Health, Sydney Medical School, Faculty of Health and Medicine, The University of Sydney, New South Wales, 2006, Australia
- Heart Centre for Children, The Children's Hospital at Westmead, New South Wales, 2145, Australia
| | - F. Dehghani
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
10
|
Abstract
There is a well-known worldwide shortage of deceased human donor organs for clinical transplantation. The transplantation of organs from genetically engineered pigs may prove an alternative solution. In the past 5 years, there have been sequential advances that have significantly increased pig graft survival in nonhuman primates. This progress has been associated with (1) the availability of increasingly sophisticated genetically engineered pigs; (2) the introduction of novel immunosuppressive agents, particularly those that block the second T-cell signal (costimulation blockade); (3) a better understanding of the inflammatory response to pig xenografts; and (4) increasing experience in the management of nonhuman primates with pig organ or cell grafts. The range of investigations required in experimental studies has increased. The standard immunologic assays are still carried out, but increasingly investigations aimed toward other pathobiologic barriers (e.g., coagulation dysregulation and inflammation) have become more important in determining injury to the graft.Now that prolonged graft survival, extending to months or even years, is increasingly being obtained, the function of the grafts can be more reliably assessed. If the source pigs are bred and housed under biosecure isolation conditions, and weaned early from the sow, most microorganisms can be eradicated from the herd. The potential risk of porcine endogenous retrovirus (PERV) infection remains unknown, but is probably small. Attention is being directed toward the selection of patients for the first clinical trials of xenotransplantation.
Collapse
Affiliation(s)
- David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
11
|
Perota A, Galli C. N-Glycolylneuraminic Acid (Neu5Gc) Null Large Animals by Targeting the CMP-Neu5Gc Hydroxylase (CMAH). Front Immunol 2019; 10:2396. [PMID: 31681287 PMCID: PMC6803385 DOI: 10.3389/fimmu.2019.02396] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/24/2019] [Indexed: 01/05/2023] Open
Abstract
The two major sialic acids described in mammalian cells are the N-glycolylneuraminic acid (Neu5Gc) and the N-acetylneuraminic acid (Neu5Ac). Neu5Gc synthesis starts from the N-acetylneuraminic acid (Neu5Ac) precursor modified by an hydroxylic group addition catalyzed by CMP-Neu5Ac hydroxylase enzyme (CMAH). In humans, CMAH was inactivated by a 92 bp deletion occurred 2-3 million years ago. Few other mammals do not synthetize Neu5Gc, however livestock species used for food production and as a source of biological materials for medical applications carry Neu5Gc. Trace amounts of Neu5Gc are up taken through the diet and incorporated into various tissues including epithelia and endothelia cells. Humans carry "natural," diet-induced Anti-Neu5Gc antibodies and when undertaking medical treatments or receiving transplants or devices that contain animal derived products they can cause immunological reaction affecting pharmacology, immune tolerance, and severe side effect like serum sickness disease (SSD). Neu5Gc null mice have been the main experimental model to study such phenotype. With the recent advances in genome editing, pigs and cattle KO for Neu5Gc have been generated always in association with the αGal KO. These large animals are normal and fertile and provide additional experimental models to study such mutation. Moreover, they will be the base for the development of new therapeutic applications like polyclonal IgG immunotherapy, Bioprosthetic Heart Valves, cells and tissues replacement.
Collapse
Affiliation(s)
- Andrea Perota
- Laboratory of Reproductive Technologies, Avantea, Cremona, Italy
| | - Cesare Galli
- Laboratory of Reproductive Technologies, Avantea, Cremona, Italy.,Fondazione Avantea, Cremona, Italy
| |
Collapse
|
12
|
Li P, Zhang W, Smith LJ, Ayares D, Cooper DK, Ekser B. The potential role of 3D-bioprinting in xenotransplantation. Curr Opin Organ Transplant 2019; 24:547-554. [PMID: 31385888 PMCID: PMC6861853 DOI: 10.1097/mot.0000000000000684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW To review the impact of a new technology, 3D-bioprinting, in xenotransplantation research. RECENT FINDINGS Genetically engineered pigs, beginning with human (h) CD55-transgenic and Gal-knockout pigs, have improved the outcomes of xenotransplantation research. Today, there are more than 30 different genetically engineered pigs either expressing human gene(s) or lacking pig gene(s). CRIPSR/cas9 technology has facilitated the production of multigene pigs (up to nine genes in a single pig), which lack multiple pig xenoantigens, and express human transgenes, such as hCD46, hCD55, hThrombomodulin, hCD39, etc. Although recent studies in nonhuman primates (NHPs) have demonstrated prolonged survival after life-supporting pig kidney, heart, and islet xenotransplantation, researchers have difficulty determining the best genetic combination to test in NHPs because of a potential greater than 100 000 genetic combinations. 3D-bioprinting of genetically engineered pig cells: is superior to 2D in-vitro testing, enables organ-specific testing, helps to understand differences in immunogenicity between organs, and is faster and cheaper than testing in NHPs. Moreover, 3D-bioprinted cells can be continuously perfused in a bioreactor, controlling for all variables, except the studied variable. SUMMARY 3D-bioprinting can help in the study of the impact of specific genes (human or pig) in xenotransplantation in a rapid, inexpensive, and reliable way.
Collapse
Affiliation(s)
- Ping Li
- Division of Transplant Surgery, Department of Surgery, Indiana University, School of Medicine, Indianapolis, IN, USA
| | - Wenjun Zhang
- Division of Transplant Surgery, Department of Surgery, Indiana University, School of Medicine, Indianapolis, IN, USA
| | - Lester J. Smith
- Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- 3D Bioprinting Core, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - David K.C. Cooper
- Xenotransplantation Program, Department of Surgery, University of Birmingham at Alabama, Birmingham, AL, USA
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University, School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
13
|
Salas de Armas IA, Rajagopal K. Developing an Ideal Cardiac Valve Bioprosthesis: Xeno’s Paradox. Ann Thorac Surg 2019; 108:319-320. [DOI: 10.1016/j.athoracsur.2019.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 02/10/2019] [Indexed: 10/27/2022]
|