1
|
Pius-Sadowska E, Machaliński B. Pleiotropic activity of nerve growth factor in regulating cardiac functions and counteracting pathogenesis. ESC Heart Fail 2021; 8:974-987. [PMID: 33465292 PMCID: PMC8006610 DOI: 10.1002/ehf2.13138] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 12/30/2022] Open
Abstract
Cardiac innervation density generally reflects the levels of nerve growth factor (NGF) produced by the heart—changes in NGF expression within the heart and vasculature contribute to neuronal remodelling (e.g. sympathetic hyperinnervation or denervation). Its synthesis and release are altered under different pathological conditions. Although NGF is well known for its survival effects on neurons, it is clear that these effects are more wide ranging. Recent studies reported both in vitro and in vivo evidence for beneficial actions of NGF on cardiomyocytes in normal and pathological hearts, including prosurvival and antiapoptotic effects. NGF also plays an important role in the crosstalk between the nervous and cardiovascular systems. It was the first neurotrophin to be implicated in postnatal angiogenesis and vasculogenesis by autocrine and paracrine mechanisms. In connection with these unique cardiovascular properties of NGF, we have provided comprehensive insight into its function and potential effect of NGF underlying heart sustainable/failure conditions. This review aims to summarize the recent data on the effects of NGF on various cardiovascular neuronal and non‐neuronal functions. Understanding these mechanisms with respect to the diversity of NGF functions may be crucial for developing novel therapeutic strategies, including NGF action mechanism‐guided therapies.
Collapse
Affiliation(s)
- Ewa Pius-Sadowska
- Department of General Pathology, Pomeranian Medical University, Powstańców Wlkp. 72, Szczecin, 70111, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, Powstańców Wlkp. 72, Szczecin, 70111, Poland
| |
Collapse
|
2
|
Dyavanapalli J. Novel approaches to restore parasympathetic activity to the heart in cardiorespiratory diseases. Am J Physiol Heart Circ Physiol 2020; 319:H1153-H1161. [PMID: 33035444 DOI: 10.1152/ajpheart.00398.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neural control of the heart is regulated by sympathetic and parasympathetic divisions of the autonomic nervous system, both opposing each other to maintain cardiac homeostasis via regulating heart rate, conduction velocity, force of contraction, and coronary blood flow. Sympathetic hyperactivity and diminished parasympathetic activity are the characteristic features of many cardiovascular disease states including hypertension, myocardial ischemia, and arrhythmias that result in heart failure. Restoring parasympathetic activity to the heart has recently been identified as the promising approach to treat such conditions. However, approaches that used vagal nerve stimulation have been shown to be unsuccessful in heart failure. This review focuses on novel chemogenetic approaches used to identify the cardioprotective nature of activating neural points along the vagal pathway (both central and peripheral) while being selectively therapeutic in heart failure and obstructive sleep apnea.
Collapse
Affiliation(s)
- Jhansi Dyavanapalli
- Department of Pharmacology and Physiology, George Washington University, Washington, District of Columbia
| |
Collapse
|
3
|
Scherschel K, Hedenus K, Jungen C, Lemoine MD, Rübsamen N, Veldkamp MW, Klatt N, Lindner D, Westermann D, Casini S, Kuklik P, Eickholt C, Klöcker N, Shivkumar K, Christ T, Zeller T, Willems S, Meyer C. Cardiac glial cells release neurotrophic S100B upon catheter-based treatment of atrial fibrillation. Sci Transl Med 2020; 11:11/493/eaav7770. [PMID: 31118294 DOI: 10.1126/scitranslmed.aav7770] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 04/12/2019] [Indexed: 01/02/2023]
Abstract
Atrial fibrillation (AF), the most common sustained heart rhythm disorder worldwide, is linked to dysfunction of the intrinsic cardiac autonomic nervous system (ICNS). The role of ICNS damage occurring during catheter-based treatment of AF, which is the therapy of choice for many patients, remains controversial. We show here that the neuronal injury marker S100B is expressed in cardiac glia throughout the ICNS and is released specifically upon catheter ablation of AF. Patients with higher S100B release were more likely to be AF free during follow-up. Subsequent in vitro studies revealed that murine intracardiac neurons react to S100B with diminished action potential firing and increased neurite growth. This suggests that release of S100B from cardiac glia upon catheter-based treatment of AF is a hallmark of acute neural damage that contributes to nerve sprouting and can be used to assess ICNS damage.
Collapse
Affiliation(s)
- Katharina Scherschel
- Department of Cardiology-Electrophysiology, cNEP (cardiac Neuro- and Electrophysiology research group), University Heart Centre, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany
| | - Katja Hedenus
- Department of Cardiology-Electrophysiology, cNEP (cardiac Neuro- and Electrophysiology research group), University Heart Centre, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany
| | - Christiane Jungen
- Department of Cardiology-Electrophysiology, cNEP (cardiac Neuro- and Electrophysiology research group), University Heart Centre, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany
| | - Marc D Lemoine
- Department of Cardiology-Electrophysiology, cNEP (cardiac Neuro- and Electrophysiology research group), University Heart Centre, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany.,Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nicole Rübsamen
- Department of General and Interventional Cardiology, University Heart Center Hamburg, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Marieke W Veldkamp
- Department of Clinical and Experimental Cardiology, Heart Center, Academic Medical Center, 1105 AZ, Amsterdam, Netherlands
| | - Niklas Klatt
- Department of Cardiology-Electrophysiology, cNEP (cardiac Neuro- and Electrophysiology research group), University Heart Centre, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany
| | - Diana Lindner
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany.,Department of General and Interventional Cardiology, University Heart Center Hamburg, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Dirk Westermann
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany.,Department of General and Interventional Cardiology, University Heart Center Hamburg, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Simona Casini
- Department of Clinical and Experimental Cardiology, Heart Center, Academic Medical Center, 1105 AZ, Amsterdam, Netherlands
| | - Pawel Kuklik
- Department of Cardiology-Electrophysiology, cNEP (cardiac Neuro- and Electrophysiology research group), University Heart Centre, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany
| | - Christian Eickholt
- Department of Cardiology-Electrophysiology, cNEP (cardiac Neuro- and Electrophysiology research group), University Heart Centre, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany
| | - Nikolaj Klöcker
- Institute of Neural and Sensory Physiology, Medical Faculty, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Kalyanam Shivkumar
- Cardiac Arrhythmia Center and Neurocardiology Research Center of Excellence, Molecular, Cellular and Integrative Physiology Interdepartmental Program, UCLA, Los Angeles, CA 90095, USA
| | - Torsten Christ
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany.,Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tanja Zeller
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany.,Department of General and Interventional Cardiology, University Heart Center Hamburg, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Stephan Willems
- Department of Cardiology-Electrophysiology, cNEP (cardiac Neuro- and Electrophysiology research group), University Heart Centre, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany
| | - Christian Meyer
- Department of Cardiology-Electrophysiology, cNEP (cardiac Neuro- and Electrophysiology research group), University Heart Centre, University Hospital Hamburg-Eppendorf, 20246 Hamburg, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 13347 Berlin, Germany
| |
Collapse
|
4
|
García-García A, Korn C, García-Fernández M, Domingues O, Villadiego J, Martín-Pérez D, Isern J, Bejarano-García JA, Zimmer J, Pérez-Simón JA, Toledo-Aral JJ, Michel T, Airaksinen MS, Méndez-Ferrer S. Dual cholinergic signals regulate daily migration of hematopoietic stem cells and leukocytes. Blood 2019; 133:224-236. [PMID: 30361261 PMCID: PMC6449569 DOI: 10.1182/blood-2018-08-867648] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 10/02/2018] [Indexed: 12/12/2022] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) and leukocytes circulate between the bone marrow (BM) and peripheral blood following circadian oscillations. Autonomic sympathetic noradrenergic signals have been shown to regulate HSPC and leukocyte trafficking, but the role of the cholinergic branch has remained unexplored. We have investigated the role of the cholinergic nervous system in the regulation of day/night traffic of HSPCs and leukocytes in mice. We show here that the autonomic cholinergic nervous system (including parasympathetic and sympathetic) dually regulates daily migration of HSPCs and leukocytes. At night, central parasympathetic cholinergic signals dampen sympathetic noradrenergic tone and decrease BM egress of HSPCs and leukocytes. However, during the daytime, derepressed sympathetic noradrenergic activity causes predominant BM egress of HSPCs and leukocytes via β3-adrenergic receptor. This egress is locally supported by light-triggered sympathetic cholinergic activity, which inhibits BM vascular cell adhesion and homing. In summary, central (parasympathetic) and local (sympathetic) cholinergic signals regulate day/night oscillations of circulating HSPCs and leukocytes. This study shows how both branches of the autonomic nervous system cooperate to orchestrate daily traffic of HSPCs and leukocytes.
Collapse
MESH Headings
- Animals
- Bone Marrow Cells/cytology
- Bone Marrow Cells/drug effects
- Bone Marrow Cells/physiology
- Cell Adhesion
- Cell Movement
- Cells, Cultured
- Chemotaxis
- Cholinergic Agents/pharmacology
- Circadian Rhythm
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiology
- Female
- Glial Cell Line-Derived Neurotrophic Factor Receptors/physiology
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/drug effects
- Hematopoietic Stem Cells/physiology
- Leukocytes/cytology
- Leukocytes/drug effects
- Leukocytes/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Parasympathetic Nervous System/physiology
- Receptors, Adrenergic, beta-2
- Receptors, Adrenergic, beta-3/physiology
- Receptors, G-Protein-Coupled/physiology
- Sympathetic Nervous System/physiology
Collapse
Affiliation(s)
- Andrés García-García
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Hematology, University of Cambridge, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Claudia Korn
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Hematology, University of Cambridge, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - María García-Fernández
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Hematology, University of Cambridge, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Olivia Domingues
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur Alzette, Luxembourg
| | - Javier Villadiego
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas (CSIC) and
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain; and
| | | | - Joan Isern
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - José A Bejarano-García
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas (CSIC) and
| | - Jacques Zimmer
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur Alzette, Luxembourg
| | - José A Pérez-Simón
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas (CSIC) and
| | - Juan J Toledo-Aral
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas (CSIC) and
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain; and
| | - Tatiana Michel
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur Alzette, Luxembourg
| | - Matti S Airaksinen
- Neuroscience Center and Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Simón Méndez-Ferrer
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Hematology, University of Cambridge, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| |
Collapse
|
5
|
Association assessment of Nerve growth factor gene promoter polymorphism and its expression status with susceptibility to coronary artery disease. Meta Gene 2018. [DOI: 10.1016/j.mgene.2017.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
6
|
Coskun V, Lombardo DM. Studying the pathophysiologic connection between cardiovascular and nervous systems using stem cells. J Neurosci Res 2016; 94:1499-1510. [PMID: 27629698 DOI: 10.1002/jnr.23924] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/25/2016] [Accepted: 08/25/2016] [Indexed: 12/17/2022]
Abstract
The cardiovascular and nervous systems are deeply connected during development, health, and disease. Both systems affect and regulate the development of each other during embryogenesis and the early postnatal period. Specialized neural crest cells contribute to cardiac structures, and a number of growth factors released from the cardiac tissue (e.g., glial cell line-derived neurotrophic factor, neurturin, nerve growth factor, Neurotrophin-3) ensure proper maturation of the incoming parasympathetic and sympathetic neurons. Physiologically, the cardiovascular and nervous systems operate in harmony to adapt to various physical and emotional conditions to maintain homeostasis through sympathetic and parasympathetic nervous systems. Moreover, neurocardiac regulation involves a neuroaxis consisting of cortex, amygdala, and other subcortical structures, which have the ability to modify lower-level neurons in the hierarchy. Given the interconnectivity of cardiac and neural systems, when one undergoes pathological changes, the other is affected to a certain extent. In addition, there are specific neurocardiac diseases that affect both systems simultaneously, such as Huntington disease, Lewy body diseases, Friedreich ataxia, congenital heart diseases, Danon disease, and Timothy syndrome. Over the last decade, in vitro modeling of neurocardiac diseases using induced pluripotent stem cells (iPSCs) has provided an invaluable opportunity to elevate our knowledge about the brain-heart connection, since previously primary cardiomyocytes and neurons had been extremely difficult to maintain long-term in vitro. Ultimately, the ability of iPSC technology to model abnormal functional phenotypes of human neurocardiac disorders, combined with the ease of therapeutic screening using this approach, will transform patient care through personalized medicine in the future. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Volkan Coskun
- Department of Medicine, Division of Cardiology, University of California, Irvine, Irvine, California.
| | - Dawn M Lombardo
- Department of Medicine, Division of Cardiology, University of California, Irvine, Irvine, California
| |
Collapse
|
7
|
Abstract
Over the past 60 years, a large number of selective neurotoxins were discovered and developed, making it possible to animal-model a broad range of human neuropsychiatric and neurodevelopmental disorders. In this paper, we highlight those neurotoxins that are most commonly used as neuroteratologic agents, to either produce lifelong destruction of neurons of a particular phenotype, or a group of neurons linked by a specific class of transporter proteins (i.e., dopamine transporter) or body of receptors for a specific neurotransmitter (i.e., NMDA class of glutamate receptors). Actions of a range of neurotoxins are described: 6-hydroxydopamine (6-OHDA), 6-hydroxydopa, DSP-4, MPTP, methamphetamine, IgG-saporin, domoate, NMDA receptor antagonists, and valproate. Their neuroteratologic features are outlined, as well as those of nerve growth factor, epidermal growth factor, and that of stress. The value of each of these neurotoxins in animal modeling of human neurologic, neurodegenerative, and neuropsychiatric disorders is discussed in terms of the respective value as well as limitations of the derived animal model. Neuroteratologic agents have proven to be of immense importance for understanding how associated neural systems in human neural disorders may be better targeted by new therapeutic agents.
Collapse
Affiliation(s)
- Trevor Archer
- Department of Psychology, University of Gothenburg, Box 500, 430 50, Gothenburg, Sweden.
| | - Richard M Kostrzewa
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, PO Box 70577, Johnson City, TN, 37614, USA
| |
Collapse
|
8
|
Schoner A, Tyrrell C, Wu M, Gelow JM, Hayes AA, Lindner JR, Thornburg KL, Hasan W. Endocardial Endothelial Dysfunction Progressively Disrupts Initially Anti then Pro-Thrombotic Pathways in Heart Failure Mice. PLoS One 2015; 10:e0142940. [PMID: 26565707 PMCID: PMC4643996 DOI: 10.1371/journal.pone.0142940] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/28/2015] [Indexed: 01/01/2023] Open
Abstract
Objective An experimental model of endocardial thrombosis has not been developed and endocardial endothelial dysfunction in heart failure (HF) is understudied. We sought to determine whether disruption of the endothelial anti-coagulant activated protein C (APC) pathway in CREBA133 HF mice promotes endocardial thrombosis in the acute decompensated phase of the disease, and whether alterations in von Willebrand factor (vWF) secretion from HF endocardium reduces thrombus formation as HF stabilizes. Approach and results Echocardiography was used to follow HF development and to detect endocardial thrombi in CREBA133 mice. Endocardial thrombi incidence was confirmed with immunohistochemistry and histology. In early and acute decompensated phases of HF, CREBA133 mice had the highest incidence of endocardial thrombi and these mice also had a shorter tail-bleeding index consistent with a pro-thrombotic milieu. Both APC generation, and expression of receptors that promote APC function (thrombomodulin, endothelial protein C receptor, protein S), were suppressed in the endocardium of acute decompensated HF mice. However, in stable compensated HF mice, an attenuation occurred for vWF protein content and secretion from endocardial endothelial cells, vWF-dependent platelet agglutination (by ristocetin), and thrombin generation on the endocardial surface. Conclusions CREBA133 mice develop HF and endocardial endothelial dysfunction. Attenuation of the anti-coagulant APC pathway promotes endocardial thrombosis in early and acute decompensated phases of HF. However, in stable compensated HF mice, disruptions in endothelial vWF expression and extrusion may actually reduce the incidence of endocardial thrombosis.
Collapse
Affiliation(s)
- Amanda Schoner
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Christina Tyrrell
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Melinda Wu
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Jill M. Gelow
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Alicia A. Hayes
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Jonathan R. Lindner
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Kent L. Thornburg
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Wohaib Hasan
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
9
|
Chaldakov GN, Fiore M, Ghenev PI, Beltowski J, Ranćić G, Tunçel N, Aloe L. Triactome: neuro-immune-adipose interactions. Implication in vascular biology. Front Immunol 2014; 5:130. [PMID: 24782857 PMCID: PMC3986561 DOI: 10.3389/fimmu.2014.00130] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 03/14/2014] [Indexed: 12/21/2022] Open
Abstract
Understanding how the precise interactions of nerves, immune cells, and adipose tissue account for cardiovascular and metabolic biology is a central aim of biomedical research at present. A long standing paradigm holds that the vascular wall is composed of three concentric tissue coats (tunicae): intima, media, and adventitia. However, large- and medium-sized arteries, where usually atherosclerotic lesions develop, are consistently surrounded by periadventitial adipose tissue (PAAT), we recently designated tunica adiposa (in brief, adiposa like intima, media, and adventitia). Today, atherosclerosis is considered an immune-mediated inflammatory disease featured by endothelial dysfunction/intimal thickening, medial atrophy, and adventitial lesions associated with adipose dysfunction, whereas hypertension is characterized by hyperinnervation-associated medial thickening due to smooth muscle cell hypertrophy/hyperplasia. PAAT expansion is associated with increased infiltration of immune cells, both adipocytes and immunocytes secreting pro-inflammatory and anti-inflammatory (metabotrophic) signaling proteins collectively dubbed adipokines. However, the role of vascular nerves and their interactions with immune cells and paracrine adipose tissue is not yet evaluated in such an integrated way. The present review attempts to briefly highlight the findings in basic and translational sciences in this area focusing on neuro-immune-adipose interactions, herein referred to as triactome. Triactome-targeted pharmacology may provide a novel therapeutic approach in cardiovascular disease.
Collapse
Affiliation(s)
- George Nikov Chaldakov
- Laboratory of Cell Biology, Department of Anatomy and Histology, Medical University, Varna, Bulgaria
| | - Marco Fiore
- Institute of Cellular Biology and Neurobiology, National Research Council, Rome, Italy
| | - Peter I. Ghenev
- Department of General and Clinical Pathology, Medical University, Varna, Bulgaria
| | - Jerzy Beltowski
- Department of Pathophysiology, Medical University, Lublin, Poland
| | - Gorana Ranćić
- Department of Histology and Embryology, University Medical Faculty, Niš, Serbia
| | - Neşe Tunçel
- Department of Physiology, Medical Faculty, Eskişehir University, Eskişehir, Turkey
| | - Luigi Aloe
- Institute of Cellular Biology and Neurobiology, National Research Council, Rome, Italy
| |
Collapse
|