1
|
Colom-Pellicer M, de Assis LVM, Rodríguez RM, Suárez M, Mulero M, Arola-Arnal A, Oster H, Aragonès G, Calvo E. Grape seed procyanidins modulate PER2 circadian rhythm and lipid metabolism of white adipose tissue explants in a time-dependent manner. Int J Food Sci Nutr 2025:1-13. [PMID: 40300822 DOI: 10.1080/09637486.2025.2494151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 05/01/2025]
Abstract
The consumption of grape seed procyanidin extract (GSPE) may improve metabolic alterations and molecular clock desynchrony in white adipose tissue (WAT), depending on administration timing and metabolic status. To test this hypothesis, inguinal WAT explants from lean and obese PERIOD2::LUCIFERASE (PER2::LUC) circadian reporter mice were treated at the peak or trough of the PER2 luminescence rhythm with metabolites present in the serum of GSPE-administered rats (GSPM). PER2::LUC rhythms of explants from obese animals presented a lower amplitude, longer period and a phase delay. GSPM treatment increased luminescence amplitude and period compared to untreated explants, but only when it was given at the trough of PER2::LUC luminescence. GSPM upregulated lipogenesis and lipolysis genes in explants from lean mice, mostly when given at the luminescence peak. This study provides a valuable platform for testing the effects of natural products ex vivo and warrants further investigation into the chrono-utilisation of plant bioactive compounds.
Collapse
Affiliation(s)
- Marina Colom-Pellicer
- Department of Biochemistry and Biotechnology, Nutrigenomics Research Group, Universitat Rovira i Virgili, Tarragona, Spain
| | | | - Romina M Rodríguez
- Department of Biochemistry and Biotechnology, Nutrigenomics Research Group, Universitat Rovira i Virgili, Tarragona, Spain
| | - Manuel Suárez
- Department of Biochemistry and Biotechnology, Nutrigenomics Research Group, Universitat Rovira i Virgili, Tarragona, Spain
- Institute of Health Research Pere Virgili (IISPV), Tarragona, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, Tarragona, Spain
| | - Miquel Mulero
- Department of Biochemistry and Biotechnology, Nutrigenomics Research Group, Universitat Rovira i Virgili, Tarragona, Spain
- Institute of Health Research Pere Virgili (IISPV), Tarragona, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, Tarragona, Spain
| | - Anna Arola-Arnal
- Department of Biochemistry and Biotechnology, Nutrigenomics Research Group, Universitat Rovira i Virgili, Tarragona, Spain
- Institute of Health Research Pere Virgili (IISPV), Tarragona, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, Tarragona, Spain
| | - Henrik Oster
- Center of Brain, Behavior and Metabolism, University of Lübeck, Institute of Neurobiology, Lübeck, Germany
| | - Gerard Aragonès
- Department of Biochemistry and Biotechnology, Nutrigenomics Research Group, Universitat Rovira i Virgili, Tarragona, Spain
- Institute of Health Research Pere Virgili (IISPV), Tarragona, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, Tarragona, Spain
| | - Enrique Calvo
- Department of Biochemistry and Biotechnology, Nutrigenomics Research Group, Universitat Rovira i Virgili, Tarragona, Spain
- Institute of Health Research Pere Virgili (IISPV), Tarragona, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
2
|
Song QX, Suadicani SO, Negoro H, Jiang HH, Jabr R, Fry C, Xue W, Damaser MS. Disruption of circadian rhythm as a potential pathogenesis of nocturia. Nat Rev Urol 2024:10.1038/s41585-024-00961-0. [PMID: 39543359 DOI: 10.1038/s41585-024-00961-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 11/17/2024]
Abstract
Increasing evidence suggested the multifactorial nature of nocturia, but the true pathogenesis of this condition still remains to be elucidated. Contemporary clinical medications are mostly symptom based, aimed at either reducing nocturnal urine volume or targeting autonomic receptors within the bladder to facilitate urine storage. The day-night switch of the micturition pattern is controlled by circadian clocks located both in the central nervous system and in the peripheral organs. Arousal threshold and secretion of melatonin and vasopressin increase at night-time to achieve high-quality sleep and minimize nocturnal urine production. In response to the increased vasopressin, the kidney reduces the glomerular filtration rate and facilitates the reabsorption of water. Synchronously, in the bladder, circadian oscillation of crucial molecules occurs to reduce afferent sensory input and maintain sufficient bladder capacity during the night sleep period. Thus, nocturia might occur as a result of desynchronization in one or more of these circadian regulatory mechanisms. Disrupted rhythmicity of the central nervous system, kidney and bladder (known as the brain-kidney-bladder circadian axis) contributes to the pathogenesis of nocturia. Novel insights into the chronobiological nature of nocturia will be crucial to promote a revolutionary shift towards effective therapeutics targeting the realignment of the circadian rhythm.
Collapse
Affiliation(s)
- Qi-Xiang Song
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sylvia O Suadicani
- Department of Urology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hiromitsu Negoro
- Department of Urology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hai-Hong Jiang
- Department of Urology and Andrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rita Jabr
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Christopher Fry
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Wei Xue
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Margot S Damaser
- Department of Biomedical Engineering, Lerner Research Institute and Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA.
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.
| |
Collapse
|
3
|
Celik D, Campisi M, Cannella L, Pavanello S. The effect of low birth weight as an intrauterine exposure on the early onset of sarcopenia through possible molecular pathways. J Cachexia Sarcopenia Muscle 2024; 15:770-780. [PMID: 38553412 PMCID: PMC11154781 DOI: 10.1002/jcsm.13455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 06/07/2024] Open
Abstract
Sarcopenia, a musculoskeletal disease characterized by the progressive loss of skeletal muscle mass, strength, and physical performance, presents significant challenges to global public health due to its adverse effects on mobility, morbidity, mortality, and healthcare costs. This comprehensive review explores the intricate connections between sarcopenia and low birth weight (LBW), emphasizing the developmental origins of health and disease (DOHaD) hypothesis, inflammatory processes (inflammaging), mitochondrial dysfunction, circadian rhythm disruptions, epigenetic mechanisms, and genetic variations revealed through genome-wide studies (GWAS). A systematic search strategy was developed using PubMed to identify relevant English-language publications on sarcopenia, LBW, DOHaD, inflammaging, mitochondrial dysfunction, circadian disruption, epigenetic mechanisms, and GWAS. The publications consist of 46.2% reviews, 21.2% cohort studies, 4.8% systematic reviews, 1.9% cross-sectional studies, 13.4% animal studies, 4.8% genome-wide studies, 5.8% epigenome-wide studies, and 1.9% book chapters. The review identified key factors contributing to sarcopenia development, including the DOHaD hypothesis, LBW impact on muscle mass, inflammaging, mitochondrial dysfunction, the influence of clock genes, the role of epigenetic mechanisms, and genetic variations revealed through GWAS. The DOHaD theory suggests that LBW induces epigenetic alterations during foetal development, impacting long-term health outcomes, including the early onset of sarcopenia. LBW correlates with reduced muscle mass, grip strength, and lean body mass in adulthood, increasing the risk of sarcopenia. Chronic inflammation (inflammaging) and mitochondrial dysfunction contribute to sarcopenia, with LBW linked to increased oxidative stress and dysfunction. Disrupted circadian rhythms, regulated by genes such as BMAL1 and CLOCK, are associated with both LBW and sarcopenia, impacting lipid metabolism, muscle mass, and the ageing process. Early-life exposures, including LBW, induce epigenetic modifications like DNA methylation (DNAm) and histone changes, playing a pivotal role in sarcopenia development. Genome-wide studies have identified candidate genes and variants associated with lean body mass, muscle weakness, and sarcopenia, providing insights into genetic factors contributing to the disorder. LBW emerges as a potential early predictor of sarcopenia development, reflecting the impact of intrauterine exposures on long-term health outcomes. Understanding the complex interplay between LBW with inflammaging, mitochondrial dysfunction, circadian disruption, and epigenetic factors is essential for elucidating the pathogenesis of sarcopenia and developing targeted interventions. Future research on GWAS and the underlying mechanisms of LBW-associated sarcopenia is warranted to inform preventive strategies and improve public health outcomes.
Collapse
Affiliation(s)
- Dilek Celik
- Department of Pharmceutical and Pharmacological SciencesUniversity of PaduaPaduaItaly
| | - Manuela Campisi
- Department of Cardiac Thoracic Vascular Sciences and Public HealthUniversity of PaduaPaduaItaly
| | - Luana Cannella
- Department of Cardiac Thoracic Vascular Sciences and Public HealthUniversity of PaduaPaduaItaly
| | - Sofia Pavanello
- Department of Cardiac Thoracic Vascular Sciences and Public HealthUniversity of PaduaPaduaItaly
- University Hospital of PadovaPaduaItaly
| |
Collapse
|
4
|
Peters B, Vahlhaus J, Pivovarova-Ramich O. Meal timing and its role in obesity and associated diseases. Front Endocrinol (Lausanne) 2024; 15:1359772. [PMID: 38586455 PMCID: PMC10995378 DOI: 10.3389/fendo.2024.1359772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/01/2024] [Indexed: 04/09/2024] Open
Abstract
Meal timing emerges as a crucial factor influencing metabolic health that can be explained by the tight interaction between the endogenous circadian clock and metabolic homeostasis. Mistimed food intake, such as delayed or nighttime consumption, leads to desynchronization of the internal circadian clock and is associated with an increased risk for obesity and associated metabolic disturbances such as type 2 diabetes and cardiovascular diseases. Conversely, meal timing aligned with cellular rhythms can optimize the performance of tissues and organs. In this review, we provide an overview of the metabolic effects of meal timing and discuss the underlying mechanisms. Additionally, we explore factors influencing meal timing, including internal determinants such as chronotype and genetics, as well as external influences like social factors, cultural aspects, and work schedules. This review could contribute to defining meal-timing-based recommendations for public health initiatives and developing guidelines for effective lifestyle modifications targeting the prevention and treatment of obesity and associated metabolic diseases. Furthermore, it sheds light on crucial factors that must be considered in the design of future food timing intervention trials.
Collapse
Affiliation(s)
- Beeke Peters
- Research Group Molecular Nutritional Medicine and Department of Human Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München, Germany
| | - Janna Vahlhaus
- Research Group Molecular Nutritional Medicine and Department of Human Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- University of Lübeck, Lübeck, Germany
| | - Olga Pivovarova-Ramich
- Research Group Molecular Nutritional Medicine and Department of Human Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- University of Lübeck, Lübeck, Germany
- Department of Endocrinology and Metabolism, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
5
|
Zhang XY, Khakisahneh S, Han SY, Song EJ, Nam YD, Kim H. Ginseng extracts improve circadian clock gene expression and reduce inflammation directly and indirectly through gut microbiota and PI3K signaling pathway. NPJ Biofilms Microbiomes 2024; 10:24. [PMID: 38503759 PMCID: PMC10950852 DOI: 10.1038/s41522-024-00498-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/06/2024] [Indexed: 03/21/2024] Open
Abstract
Despite the potential benefits of herbal medicines for therapeutic application in preventing and treating various metabolic disorders, the mechanisms of action were understood incompletely. Ginseng (Panax ginseng), a commonly employed plant as a dietary supplement, has been reported to play its hot property in increasing body temperature and improving gut health. However, a comprehensive understanding of the mechanisms by which ginseng regulates body temperature and gut health is still incomplete. This paper illustrates that intermittent supplementation with ginseng extracts improved body temperature rhythm and suppressed inflammatory responses in peripheral metabolic organs of propylthiouracil (PTU)-induced hypothermic rats. These effects were associated with changes in gut hormone secretion and the microbiota profile. The in-vitro studies in ICE-6 cells indicate that ginseng extracts can not only act directly on the cell to regulate the genes related to circadian clock and inflammation, but also may function through the gut microbiota and their byproducts such as lipopolysaccharide. Furthermore, administration of PI3K inhibitor blocked ginseng or microbiota-induced gene expression related with circadian clock and inflammation in vitro. These findings demonstrate that the hot property of ginseng may be mediated by improving circadian clock and suppressing inflammation directly or indirectly through the gut microbiota and PI3K-AKT signaling pathways.
Collapse
Affiliation(s)
- Xue-Ying Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Saeid Khakisahneh
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, 814 Siksa-dong, Ilsandong-gu, Goyang-si, 10326, Republic of Korea
| | - Song-Yi Han
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, 814 Siksa-dong, Ilsandong-gu, Goyang-si, 10326, Republic of Korea
| | - Eun-Ji Song
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju-gun, 245, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Wanju, Republic of Korea
| | - Young-Do Nam
- Research Group of Personalized Diet, Korea Food Research Institute, Wanju-gun, 245, Republic of Korea.
- Department of Food Biotechnology, Korea University of Science and Technology, Wanju, Republic of Korea.
| | - Hojun Kim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University, 814 Siksa-dong, Ilsandong-gu, Goyang-si, 10326, Republic of Korea.
| |
Collapse
|
6
|
Vales-Villamarín C, de Dios O, Mahíllo-Fernández I, Perales M, Pérez-Nadador I, Gavela-Pérez T, Soriano-Guillén L, Garcés C. Sex-dependent relationship of polymorphisms in CLOCK and REV-ERBα genes with body mass index and lipid levels in children. Sci Rep 2023; 13:22127. [PMID: 38092833 PMCID: PMC10719338 DOI: 10.1038/s41598-023-49506-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
Circadian rhythms, which are governed by a circadian clock, regulate important biological processes associated with obesity. SNPs in circadian clock genes have been linked to energy and lipid homeostasis. The aim of our study was to evaluate the associations of CLOCK and REV-ERBα SNPs with BMI and plasma lipid levels in pre-pubertal boys and girls. The study sample population comprised 1268 children aged 6-8 years. Information regarding anthropometric parameters and plasma lipid concentrations was available. Genotyping of CLOCK SNPs rs1801260, rs4580704, rs3749474, rs3736544 and rs4864548 and REV-ERBα SNPs rs2017427, rs20711570 and rs2314339 was performed by RT-PCR. The CLOCK SNPs rs3749474 and rs4864548 were significantly associated with BMI in girls but no in boys. Female carriers of the minor alleles for these SNPs presented lower BMI compared to non-carriers. A significant association of the REV-ERBα SNP rs2071570 with plasma total cholesterol, LDL-cholesterol and Apo B in males was also observed. Male AA carriers showed lower plasma levels of total cholesterol, LDL-cholesterol and Apo B levels as compared with carriers of the C allele. No significant associations between any of the studied REV-ERBα SNPs and plasma lipid levels were observed in females. In summary, CLOCK and REV-ERBα SNPs were associated with BMI and plasma lipid levels respectively in a sex-dependent manner. Our findings suggest that sex-related factors may interact with Clock genes SNPs conditioning the effects of these polymorphisms on circadian alterations.
Collapse
Affiliation(s)
| | - Olaya de Dios
- Lipid Research Laboratory, IIS-Fundación Jiménez Díaz, 28040, Madrid, Spain
| | | | - Macarena Perales
- Lipid Research Laboratory, IIS-Fundación Jiménez Díaz, 28040, Madrid, Spain
| | - Iris Pérez-Nadador
- Lipid Research Laboratory, IIS-Fundación Jiménez Díaz, 28040, Madrid, Spain
| | | | | | - Carmen Garcés
- Lipid Research Laboratory, IIS-Fundación Jiménez Díaz, 28040, Madrid, Spain.
| |
Collapse
|
7
|
Rabadán-Chávez G, Díaz de la Garza RI, Jacobo-Velázquez DA. White adipose tissue: Distribution, molecular insights of impaired expandability, and its implication in fatty liver disease. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166853. [PMID: 37611674 DOI: 10.1016/j.bbadis.2023.166853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/17/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
We are far behind the 2025 World Health Organization (WHO) goal of a zero increase in obesity. Close to 360 million people in Latin America and the Caribbean are overweight, with the highest rates observed in the Bahamas, Mexico, and Chile. To achieve relevant progress against the obesity epidemic, scientific research is essential to establish uniform practices in the study of obesity pathophysiology (using pre-clinical and clinical models) that ensure accuracy, reproducibility, and transcendent outcomes. The present review focuses on relevant aspects of white adipose tissue (WAT) expansion, underlying mechanisms of inefficient expandability, and its repercussion in ectopic lipid accumulation in the liver during nutritional abundance. In addition, we highlight the potential role of disrupted circadian rhythm in WAT metabolism. Since genetic factors also play a key role in determining an individual's predisposition to weight gain, we describe the most relevant genes associated with obesity in the Mexican population, underlining that most of them are related to appetite control.
Collapse
Affiliation(s)
- Griselda Rabadán-Chávez
- Tecnologico de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, NL, Mexico
| | - Rocío I Díaz de la Garza
- Tecnologico de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, NL, Mexico; Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Monterrey, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, NL, Mexico.
| | - Daniel A Jacobo-Velázquez
- Tecnologico de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, NL, Mexico; Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Guadalajara, Av. General Ramon Corona 2514, C.P. 45201 Zapopan, Jalisco, Mexico.
| |
Collapse
|
8
|
Solivan-Rivera J, Yang Loureiro Z, DeSouza T, Desai A, Pallat S, Yang Q, Rojas-Rodriguez R, Ziegler R, Skritakis P, Joyce S, Zhong D, Nguyen T, Corvera S. A neurogenic signature involving monoamine Oxidase-A controls human thermogenic adipose tissue development. eLife 2022; 11:e78945. [PMID: 36107478 PMCID: PMC9519151 DOI: 10.7554/elife.78945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Mechanisms that control 'beige/brite' thermogenic adipose tissue development may be harnessed to improve human metabolic health. To define these mechanisms, we developed a species-hybrid model in which human mesenchymal progenitor cells were used to develop white or thermogenic/beige adipose tissue in mice. The hybrid adipose tissue developed distinctive features of human adipose tissue, such as larger adipocyte size, despite its neurovascular architecture being entirely of murine origin. Thermogenic adipose tissue recruited a denser, qualitatively distinct vascular network, differing in genes mapping to circadian rhythm pathways, and denser sympathetic innervation. The enhanced thermogenic neurovascular network was associated with human adipocyte expression of THBS4, TNC, NTRK3, and SPARCL1, which enhance neurogenesis, and decreased expression of MAOA and ACHE, which control neurotransmitter tone. Systemic inhibition of MAOA, which is present in human but absent in mouse adipocytes, induced browning of human but not mouse adipose tissue, revealing the physiological relevance of this pathway. Our results reveal species-specific cell type dependencies controlling the development of thermogenic adipose tissue and point to human adipocyte MAOA as a potential target for metabolic disease therapy.
Collapse
Affiliation(s)
- Javier Solivan-Rivera
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Zinger Yang Loureiro
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Tiffany DeSouza
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Anand Desai
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Sabine Pallat
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Qin Yang
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Raziel Rojas-Rodriguez
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Rachel Ziegler
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Pantos Skritakis
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Shannon Joyce
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Denise Zhong
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
| | - Tammy Nguyen
- Department of Surgery, University of Massachusetts Medical SchoolWorcesterUnited States
- Diabetes Center of Excellence, University of Massachusetts Medical CenterWorcesterUnited States
| | - Silvia Corvera
- Program in Molecular Medicine, University of Massachusetts Medical SchoolWorcesterUnited States
- Diabetes Center of Excellence, University of Massachusetts Medical CenterWorcesterUnited States
| |
Collapse
|
9
|
Piperine Improves Lipid Dysregulation by Modulating Circadian Genes Bmal1 and Clock in HepG2 Cells. Int J Mol Sci 2022; 23:ijms23105611. [PMID: 35628429 PMCID: PMC9144199 DOI: 10.3390/ijms23105611] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 01/27/2023] Open
Abstract
Metabolic disorders are closely associated with the dysregulation of circadian rhythms. Many bioactive components with lipid metabolism-regulating effects have been reported to function through circadian clock-related mechanisms. As the main pungent principle of black pepper, piperine (PIP) has been demonstrated to possess anti-obesity bioactivity by affecting hepatic lipid metabolism-related factors. However, whether the circadian clock genes Bmal1 and Clock are involved in the protective effect of PIP against lipid metabolism disorders remains unknown. In this work, oleic acid (OA) induced lipid accumulation in HepG2 cells. The effect of PIP on redox status, mitochondrial functions, and circadian rhythms of core clock genes were evaluated. Results revealed that PIP alleviated circadian desynchrony, ROS overproduction, and mitochondrial dysfunction. A mechanism study showed that PIP could activate the SREBP-1c/PPARγ and AMPK/AKT-mTOR signaling pathways in a Bmal1/Clock-dependent manner in HepG2 cells. These results indicated that Bmal1 and Clock played important roles in the regulating effect of PIP on hepatic lipid homeostasis.
Collapse
|
10
|
Chen KY, De Angulo A, Guo X, More A, Ochsner SA, Lopez E, Saul D, Pang W, Sun Y, McKenna NJ, Tong Q. Adipocyte-Specific Ablation of PU.1 Promotes Energy Expenditure and Ameliorates Metabolic Syndrome in Aging Mice. FRONTIERS IN AGING 2022; 2:803482. [PMID: 35822007 PMCID: PMC9261351 DOI: 10.3389/fragi.2021.803482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/13/2021] [Indexed: 12/03/2022]
Abstract
Objective: Although PU.1/Spi1 is known as a master regulator for macrophage development and function, we have reported previously that it is also expressed in adipocytes and is transcriptionally induced in obesity. Here, we investigated the role of adipocyte PU.1 in the development of the age-associated metabolic syndrome. Methods: We generated mice with adipocyte-specific PU.1 knockout, assessed metabolic changes in young and older adult PU.1fl/fl (control) and AdipoqCre PU.1fl/fl (aPU.1KO) mice, including body weight, body composition, energy expenditure, and glucose homeostasis. We also performed transcriptional analyses using RNA-Sequencing of adipocytes from these mice. Results: aPU.1KO mice have elevated energy expenditure at a young age and decreased adiposity and increased insulin sensitivity in later life. Corroborating these observations, transcriptional network analysis indicated the existence of validated, adipocyte PU.1-modulated regulatory hubs that direct inflammatory and thermogenic gene expression programs. Conclusion: Our data provide evidence for a previously uncharacterized role of PU.1 in the development of age-associated obesity and insulin resistance.
Collapse
Affiliation(s)
- Ke Yun Chen
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
| | - Alejandra De Angulo
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
| | - Xin Guo
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Aditya More
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
| | - Scott A. Ochsner
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Eduardo Lopez
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
| | - David Saul
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
| | - Weijun Pang
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
- Northwestern University of Agriculture and Forestry, Yangling, China
| | - Yuxiang Sun
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - Neil J. McKenna
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
- *Correspondence: Neil J. McKenna, ; Qiang Tong,
| | - Qiang Tong
- Department of Pediatrics, USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Huffington Center on Aging, Houston, TX, United States
- Department of Medicine, Baylor College of Medicine, Huffington Center on Aging, Houston, TX, United States
- *Correspondence: Neil J. McKenna, ; Qiang Tong,
| |
Collapse
|
11
|
Duan J, Greenberg EN, Karri SS, Andersen B. The circadian clock and diseases of the skin. FEBS Lett 2021; 595:2413-2436. [PMID: 34535902 PMCID: PMC8515909 DOI: 10.1002/1873-3468.14192] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 02/06/2023]
Abstract
Organisms have an evolutionarily conserved internal rhythm that helps them anticipate and adapt to daily changes in the environment. Synchronized to the light-dark cycle with a period of around 24 hours, the timing of the circadian clock is set by light-triggering signals sent from the retina to the suprachiasmatic nucleus. Other inputs, including food intake, exercise, and temperature, also affect clocks in peripheral tissues, including skin. Here, we review the intricate interplay between the core clock network and fundamental physiological processes in skin such as homeostasis, regeneration, and immune- and stress responses. We illustrate the effect of feeding time on the skin circadian clock and skin functions, a previously overlooked area of research. We then discuss works that relate the circadian clock and its disruption to skin diseases, including skin cancer, sunburn, hair loss, aging, infections, inflammatory skin diseases, and wound healing. Finally, we highlight the promise of circadian medicine for skin disease prevention and management.
Collapse
Affiliation(s)
- Junyan Duan
- Center for Complex Biological Systems, University of California, Irvine, CA 92697
| | - Elyse Noelani Greenberg
- Department of Biological Chemistry, University of California, Irvine, CA 92697
- Department of Medicine, Division of Endocrinology, School of Medicine, University of California, Irvine, CA 92697
| | - Satya Swaroop Karri
- Department of Biological Chemistry, University of California, Irvine, CA 92697
| | - Bogi Andersen
- Center for Complex Biological Systems, University of California, Irvine, CA 92697
- Department of Biological Chemistry, University of California, Irvine, CA 92697
- Department of Medicine, Division of Endocrinology, School of Medicine, University of California, Irvine, CA 92697
- Institute for Genomics and Bioinformatics, University of California, Irvine, CA 92697
| |
Collapse
|
12
|
Veronda AC, Kline CE, Irish LA. The impact of circadian timing on energy balance: an extension of the energy balance model. Health Psychol Rev 2021; 16:161-203. [PMID: 34387140 DOI: 10.1080/17437199.2021.1968310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A significant proportion of the population is classified as having overweight or obesity. One framework which has attempted to explain biobehavioral mechanisms influencing the development of overweight and obesity is the energy balance model. According to this model, the body continually attempts to balance energy intake with energy expenditure. When energy intake and energy expenditure become imbalanced, there is an increase in homeostatic and allostatic pressure, generally to either increase energy intake or decrease energy expenditure, so as to restore energy homeostasis.Recent research has indicated that circadian aspects of energy intake and energy expenditure may influence energy balance. This paper provides a narrative review of existing evidence of the role of circadian timing on components of energy balance. Research on the timing of food intake, physical activity, and sleep indicates that unhealthy timing is likely to increase risk of weight gain. Public health guidelines focus on how much individuals eat and sleep, what foods are consumed, and the type and frequency of exercise, but the field of circadian science has begun to demonstrate that when these behaviors occur may also influence overweight and obesity prevention and treatment efforts.
Collapse
Affiliation(s)
- Allison C Veronda
- Department of Psychology, North Dakota State University, Fargo, ND, USA
| | - Christopher E Kline
- Department of Health and Human Development, University of Pittsburgh, Pittsburgh, PA, USA
| | - Leah A Irish
- Department of Psychology, North Dakota State University, Fargo, ND, USA.,Sanford Center for Biobehavioral Research, Sanford Research, Fargo, ND, USA
| |
Collapse
|
13
|
Bjørklund G, Tippairote T, Dadar M, Lizcano F, Aaseth J, Borisova O. The Roles of Dietary, Nutritional and Lifestyle Interventions in Adipose Tissue Adaptation and Obesity. Curr Med Chem 2021; 28:1683-1702. [PMID: 32368968 DOI: 10.2174/0929867327666200505090449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/03/2020] [Accepted: 03/28/2020] [Indexed: 11/22/2022]
Abstract
The obesity and the associated non-communicable diseases (NCDs) are globally increasing in their prevalence. While the modern-day lifestyle required less ventilation of metabolic energy through muscular activities, this lifestyle transition also provided the unlimited accession to foods around the clock, which prolong the daily eating period of foods that contained high calorie and high glycemic load. These situations promote the high continuous flux of carbon substrate availability in mitochondria and induce the indecisive bioenergetic switches. The disrupted bioenergetic milieu increases the uncoupling respiration due to the excess flow of the substrate-derived reducing equivalents and reduces ubiquinones into the respiratory chain. The diversion of the uncoupling proton gradient through adipocyte thermogenesis will then alleviate the damaging effects of free radicals to mitochondria and other organelles. The adaptive induction of white adipose tissues (WAT) to beige adipose tissues (beAT) has shown beneficial effects on glucose oxidation, ROS protection and mitochondrial function preservation through the uncoupling protein 1 (UCP1)-independent thermogenesis of beAT. However, the maladaptive stage can eventually initiate with the persistent unhealthy lifestyles. Under this metabolic gridlock, the low oxygen and pro-inflammatory environments promote the adipose breakdown with sequential metabolic dysregulation, including insulin resistance, systemic inflammation and clinical NCDs progression. It is unlikely that a single intervention can reverse all these complex interactions. A comprehensive protocol that includes dietary, nutritional and all modifiable lifestyle interventions, can be the preferable choice to decelerate, stop, or reverse the NCDs pathophysiologic processes.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Torsak Tippairote
- Doctor of Philosophy Program in Nutrition, Faculty of Medicine Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok, Thailand
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | | | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway
| | - Olga Borisova
- Odesa I. I. Mechnikov National University, Odessa, Ukraine
| |
Collapse
|
14
|
Abulmeaty MMA, Almajwal AM, Alnumair KS, Razak S, Hasan MM, Fawzy A, Farraj AI, Abudawood M, Aljuraiban GS. Effect of Long-Term Continuous Light Exposure and Western Diet on Adropin Expression, Lipid Metabolism, and Energy Homeostasis in Rats. BIOLOGY 2021; 10:biology10050413. [PMID: 34066943 PMCID: PMC8148543 DOI: 10.3390/biology10050413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 12/15/2022]
Abstract
Long-term continuous light exposure (CL) and western diet (WD) effects on Adropin expression, RORα, and Rev-erb-α nuclear receptors and energy homeostasis were studied in rats. Thirty-two male Wistar rats (250-290 g) were enrolled for 3 months in the following groups (n = 8/group): (a) Normal control group (NC), (b) CL group, (c) WD group, and (d) CL + WD group. Then, indirect calorimetry and food intake (FI) were measured. Finally, Adropin, hormone-sensitive lipase (HSL), adipocyte triglyceride lipase (ATGL), and free fatty acids (FFA) were measured. Additionally, the histopathology and gene expression of Enho, RORα, and Rev-erb-α genes were done. The CL alone elevated the Adropin plasma level and gene expression, increased RORα expression, and decreased the Rev-erb-α nuclear receptor expression mainly in the liver and kidney. Besides, CL increased the total energy expenditure (TEE) and decreased the respiratory quotient. WD alone or in combination with the CL reversed gene expression of Enho, RORα, and Rev-erb-α. Combined CL and WD increased the TEE, reduced the food intake, increased the ATGL, and reduced the Adropin level in addition to widespread degenerative changes in the liver, spleen, and renal tissues. The deleterious effects of CL and WD on energy homeostasis may include Adropin with the involvement of the RORα and Rev-erb-α nuclear receptors.
Collapse
Affiliation(s)
- Mahmoud Mustafa Ali Abulmeaty
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia; (A.M.A.); (K.S.A.); (S.R.); (G.S.A.)
- Department of Medical Physiology, School of Medicine, Zagazig University, Zagazig 44519, Egypt;
- Correspondence: ; Tel.: +966-54-815-5983
| | - Ali Madi Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia; (A.M.A.); (K.S.A.); (S.R.); (G.S.A.)
| | - Khalid S. Alnumair
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia; (A.M.A.); (K.S.A.); (S.R.); (G.S.A.)
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia; (A.M.A.); (K.S.A.); (S.R.); (G.S.A.)
| | - Mai Mohammed Hasan
- Department of Medical Physiology, School of Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Amal Fawzy
- Department of Medical Biochemistry, School of Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Abdullah Ibrahim Farraj
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia; (A.I.F.); (M.A.)
| | - Manal Abudawood
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia; (A.I.F.); (M.A.)
| | - Ghadeer S. Aljuraiban
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia; (A.M.A.); (K.S.A.); (S.R.); (G.S.A.)
| |
Collapse
|
15
|
Keogh K, Kelly AK, Kenny DA. Effect of plane of nutrition in early life on the transcriptome of visceral adipose tissue in Angus heifer calves. Sci Rep 2021; 11:9716. [PMID: 33958675 PMCID: PMC8102595 DOI: 10.1038/s41598-021-89252-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/15/2021] [Indexed: 02/03/2023] Open
Abstract
Adipose tissue represents not only an important energy storage tissue but also a major endocrine organ within the body, influencing many biochemical systems including metabolic status, immune function and energy homeostasis. The objective of this study was to evaluate the effect of an enhanced dietary intake during the early calfhood period on the transcriptome of visceral adipose tissue. Artificially reared Angus × Holstein-Friesian heifer calves were offered either a high (HI, n = 15) or moderate (MOD, n = 15) plane of nutrition from 3 to 21 weeks of life. At 21 weeks of age all calves were euthanized, visceral adipose harvested and samples subsequently subjected to mRNA sequencing. Plane of nutrition resulted in the differential expression of 1214 genes within visceral adipose tissue (adj. p < 0.05; fold change > 1.5). Differentially expressed genes were involved in processes related to metabolism and energy production. Biochemical pathways including Sirtuin signalling (adj. p < 0.0001) and the adipogenesis pathways (adj. p = 0.009) were also significantly enriched, indicating greater metabolic processing and adipogenesis in the calves on the high plane of nutrition. Results from this study identify novel genes regulating the molecular response of visceral adipose tissue to an improved plane of nutrition during early calfhood.
Collapse
Affiliation(s)
- Kate Keogh
- Teagasc Animal and Bioscience Research Department, Teagasc Grange, Dunsany, Co Meath, Ireland
| | - Alan K. Kelly
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - David A. Kenny
- Teagasc Animal and Bioscience Research Department, Teagasc Grange, Dunsany, Co Meath, Ireland ,School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
16
|
Xiong X, Lin Y, Lee J, Paul A, Yechoor V, Figueiro M, Ma K. Chronic circadian shift leads to adipose tissue inflammation and fibrosis. Mol Cell Endocrinol 2021; 521:111110. [PMID: 33285245 PMCID: PMC7799174 DOI: 10.1016/j.mce.2020.111110] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/11/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022]
Abstract
The circadian clock exerts temporal coordination of metabolic pathways. Clock disruption is intimately linked with the development of obesity and insulin resistance, and our previous studies found that the essential clock transcription activator, Brain and Muscle Arnt-like 1 (Bmal1), is a key regulator of adipogenesis. However, the metabolic consequences of chronic shiftwork on adipose tissues have not been clearly defined. Here, using an environmental lighting-induced clock disruption that mimics rotating shiftwork schedule, we show that chronic clock dysregulation for 6 months in mice resulted in striking adipocyte hypertrophy with adipose tissue inflammation and fibrosis. Both visceral and subcutaneous depots display enlarged adipocyte with prominent crown-like structures indicative of macrophage infiltration together with evidence of extracellular matrix remodeling. Global transcriptomic analyses of these fat depots revealed that shiftwork resulted in up-regulations of inflammatory, adipogenic and angiogenic pathways with disruption of normal time-of-the-day-dependent regulation. These changes in adipose tissues are associated with impaired insulin signaling in mice subjected to shiftwork, together with suppression of the mTOR signaling pathway. Taken together, our study identified the significant adipose depot dysfunctions induced by chronic shiftwork regimen that may underlie the link between circadian misalignment and insulin resistance.
Collapse
Affiliation(s)
- Xuekai Xiong
- Department of Diabetes Complications & Metabolism, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Yayu Lin
- Department of Diabetes Complications & Metabolism, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Jeongkyung Lee
- Diabetes and Beta Cell Biology Center, Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Antonio Paul
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - Vijay Yechoor
- Diabetes and Beta Cell Biology Center, Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Mariana Figueiro
- Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Ke Ma
- Department of Diabetes Complications & Metabolism, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
17
|
Kolben Y, Weksler-Zangen S, Ilan Y. Adropin as a potential mediator of the metabolic system-autonomic nervous system-chronobiology axis: Implementing a personalized signature-based platform for chronotherapy. Obes Rev 2021; 22:e13108. [PMID: 32720402 DOI: 10.1111/obr.13108] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
Adropin is a peptide hormone, which plays a role in energy homeostasis and controls glucose and fatty acid metabolism. Its levels correlate with changes in carbohydrate-lipid metabolism, metabolic diseases, central nervous system function, endothelial function and cardiovascular disease. Both metabolic pathways and adropin are regulated by the circadian clocks. Here, we review the roles of the autonomic nervous system and circadian rhythms in regulating metabolic pathways and energy homeostasis. The beneficial effects of chronotherapy in various systems are discussed. We suggest a potential role for adropin as a mediator of the metabolic system-autonomic nervous system axis. We discuss the possibility of establishing an individualized adropin and circadian rhythm-based platform for implementing chronotherapy, and variability signatures for improving the efficacy of adropin-based therapies are discussed.
Collapse
Affiliation(s)
- Yotam Kolben
- Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Sarah Weksler-Zangen
- Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Yaron Ilan
- Department of Medicine, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
18
|
Expression Signatures of microRNAs and Their Targeted Pathways in the Adipose Tissue of Chickens during the Transition from Embryonic to Post-Hatch Development. Genes (Basel) 2021; 12:genes12020196. [PMID: 33572831 PMCID: PMC7911735 DOI: 10.3390/genes12020196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/21/2022] Open
Abstract
As the chick transitions from embryonic to post-hatching life, its metabolism must quickly undergo a dramatic switch in its major energy source. The chick embryo derives most of its energy from the yolk, a lipid-rich/carbohydrate-poor source. Upon hatching, the chick’s metabolism must then be able to utilize a lipid-poor/carbohydrate-rich source (feed) as its main form of energy. We recently found that a number of hepatically-expressed microRNAs (miRNAs) help facilitate this shift in metabolic processes in the chick liver, the main site of lipogenesis. While adipose tissue was initially thought to mainly serve as a lipid storage site, it is now known to carry many metabolic, endocrine, and immunological functions. Therefore, it would be expected that adipose tissue is also an important factor in the metabolic switch. To that end, we used next generation sequencing (NGS) and real-time quantitative PCR (RT-qPCR) to generate miRNome and transcriptome signatures of the adipose tissue during the transition from late embryonic to early post-hatch development. As adipose tissue is well known to produce inflammatory and other immune factors, we used SPF white leghorns to generate the initial miRNome and transcriptome signatures to minimize complications from external factors (e.g., pathogenic infections) and ensure the identification of bona fide switch-associated miRNAs and transcripts. We then examined their expression signatures in the adipose tissue of broilers (Ross 708). Using E18 embryos as representative of pre-switching metabolism and D3 chicks as a representative of post-switching metabolism, we identified a group of miRNAs which work concordantly to regulate a diverse but interconnected group of developmental, immune and metabolic processes in the adipose tissue during the metabolic switch. Network mapping suggests that during the first days post-hatch, despite the consumption of feed, the chick is still heavily reliant upon adipose tissue lipid stores for energy production, and is not yet efficiently using their new energy source for de novo lipid storage. A number of core master regulatory pathways including, circadian rhythm transcriptional regulation and growth hormone (GH) signaling, likely work in concert with miRNAs to maintain an essential balance between adipogenic, lipolytic, developmental, and immunological processes in the adipose tissue during the metabolic switch.
Collapse
|
19
|
Zhang S, Dai M, Wang X, Jiang SH, Hu LP, Zhang XL, Zhang ZG. Signalling entrains the peripheral circadian clock. Cell Signal 2020; 69:109433. [PMID: 31982551 DOI: 10.1016/j.cellsig.2019.109433] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/29/2019] [Accepted: 09/29/2019] [Indexed: 12/18/2022]
Abstract
In mammals, 24-h rhythms of behaviour and physiology are regulated by the circadian clock. The circadian clock is controlled by a central clock in the brain's suprachiasmatic nucleus (SCN) that synchronizes peripheral clocks in peripheral tissues. Clock genes in the SCN are primarily entrained by light. Increasing evidence has shown that peripheral clocks are also regulated by light and hormones independent of the SCN. How the peripheral clocks deal with internal signals is dependent on the relevance of a specific cue to a specific tissue. In different tissues, most genes that are under circadian control are not overlapping, revealing the tissue-specific control of peripheral clocks. We will discuss how different signals control the peripheral clocks in different peripheral tissues, such as the liver, gastrointestinal tract, and pancreas, and discuss the organ-to-organ communication between the peripheral clocks at the molecular level.
Collapse
Affiliation(s)
- Shan Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Miao Dai
- Department of Gynecologic Oncology, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan Province, China
| | - Xu Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Peng Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xue-Li Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Zhi-Gang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
20
|
Tan JT, Nankivell VA, Bilu C, Shemesh T, Nicholls SJ, Zimmet P, Kronfeld-Schor N, Brown A, Bursill CA. High-Energy Diet and Shorter Light Exposure Drives Markers of Adipocyte Dysfunction in Visceral and Subcutaneous Adipose Depots of Psammomys obesus. Int J Mol Sci 2019; 20:ijms20246291. [PMID: 31847097 PMCID: PMC6940992 DOI: 10.3390/ijms20246291] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023] Open
Abstract
Dysfunctional adipose tissue phenotype underpins type 2 diabetes mellitus (T2DM) development. The disruption of circadian rhythms contributes to T2DM development. We investigated the effects of high-energy diet and photoperiod length on visceral and subcutaneous adipose tissue phenotype. Psammomys obesus sand rats exposed to neutral (12 light:12 dark) or short (5 light:19 dark) photoperiod were fed a low- (LE) or high- (HE) energy diet. The HE diet and/or short photoperiod reduced subcutaneous expression of adipocyte differentiation/function markers C/ebpα, Pparδ, Pparγ and Adipoq. Visceral Pparα levels were elevated in the 5:19HE group; however, the HE diet and/or short photoperiod decreased visceral Pparγ and Adipoq expression. 5:19HE animals had elevated Ucp1 yet lower Pgc-1α levels. The HE diet increased visceral Tgf-β1, Ccl2 and Cd68 levels, suggestive of a pro-inflammatory state. Daily visceral rhythms of these genes were affected by a short photoperiod and/or HE diet. The 12:12HE, 5:19LE or 5:19HE animals had a higher proportion of larger adipocytes, indicating increased adipocyte hypertrophy. Collectively, the HE diet and/or shorter light exposure drives a dysfunctional adipose tissue phenotype. Daily rhythms are affected by a short photoperiod and HE diet in a site-specific manner. These findings provide mechanistic insight on the influence of disrupted circadian rhythms and HE diet on adipose tissue phenotype.
Collapse
Affiliation(s)
- Joanne T.M. Tan
- South Australian Health & Medical Research Institute, Adelaide SA 5000, Australia; (V.A.N.); (T.S.); (P.Z.); (A.B.); (C.A.B.)
- Adelaide Medical School, The University of Adelaide, Adelaide SA 5005, Australia
- Correspondence: ; Tel.: +61-8-8128-4789
| | - Victoria A. Nankivell
- South Australian Health & Medical Research Institute, Adelaide SA 5000, Australia; (V.A.N.); (T.S.); (P.Z.); (A.B.); (C.A.B.)
- Adelaide Medical School, The University of Adelaide, Adelaide SA 5005, Australia
| | - Carmel Bilu
- School of Zoology, Tel Aviv University, Tel Aviv, Ramat Aviv 69978, Israel; (C.B.); (N.K.-S.)
| | - Tomer Shemesh
- South Australian Health & Medical Research Institute, Adelaide SA 5000, Australia; (V.A.N.); (T.S.); (P.Z.); (A.B.); (C.A.B.)
| | - Stephen J. Nicholls
- Monash Cardiovascular Research Centre, Monash University, Clayton VIC 3168, Australia;
| | - Paul Zimmet
- South Australian Health & Medical Research Institute, Adelaide SA 5000, Australia; (V.A.N.); (T.S.); (P.Z.); (A.B.); (C.A.B.)
- Department of Diabetes, Monash University, Clayton VIC 3800, Australia
| | - Noga Kronfeld-Schor
- School of Zoology, Tel Aviv University, Tel Aviv, Ramat Aviv 69978, Israel; (C.B.); (N.K.-S.)
| | - Alex Brown
- South Australian Health & Medical Research Institute, Adelaide SA 5000, Australia; (V.A.N.); (T.S.); (P.Z.); (A.B.); (C.A.B.)
- Adelaide Medical School, The University of Adelaide, Adelaide SA 5005, Australia
| | - Christina A. Bursill
- South Australian Health & Medical Research Institute, Adelaide SA 5000, Australia; (V.A.N.); (T.S.); (P.Z.); (A.B.); (C.A.B.)
- Adelaide Medical School, The University of Adelaide, Adelaide SA 5005, Australia
| |
Collapse
|