1
|
Ramírez-Cortés F, Ménová P. Hepatocyte targeting via the asialoglycoprotein receptor. RSC Med Chem 2025; 16:525-544. [PMID: 39628900 PMCID: PMC11609720 DOI: 10.1039/d4md00652f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/19/2024] [Indexed: 12/06/2024] Open
Abstract
This review highlights the potential of asialoglycoprotein receptor (ASGPR)-mediated targeting in advancing liver-specific treatments and underscores the ongoing progress in the field. First, we provide a comprehensive examination of the nature of ASGPR ligands, both natural and synthetic. Next, we explore various drug delivery strategies leveraging ASGPR, with a particular emphasis on the delivery of therapeutic nucleic acids such as small interfering RNAs (siRNAs) and antisense oligonucleotides (ASOs). An in-depth analysis of the current status of RNA interference (RNAi) and ASO-based therapeutics is included, detailing approved therapies and those in various stages of clinical development (phases 1 to 3). Afterwards, we give an overview of other ASGPR-targeted conjugates, such as those with peptide nucleic acids or aptamers. Finally, targeted protein degradation of extracellular proteins through ASGPR is briefly discussed.
Collapse
Affiliation(s)
| | - Petra Ménová
- University of Chemistry and Technology, Prague Technická 5 16628 Prague 6 Czech Republic
| |
Collapse
|
2
|
Su X, Zhong H, Zeng Y, Zhang Y, Zhang B, Guo W, Huang Q, Ye Y. Dual-ligand-functionalized nanostructured lipid carriers as a novel dehydrocavidine delivery system for liver fibrosis therapy. Colloids Surf B Biointerfaces 2025; 246:114376. [PMID: 39551037 DOI: 10.1016/j.colsurfb.2024.114376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/12/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Liver fibrosis is a common stage of various chronic liver diseases, often developing into liver cirrhosis, and even liver cancer. Activated hepatic stellate cells (aHSCs) have been shown to promote the development of liver fibrosis. Therefore, dual-targeted combination therapy for liver may be an effective strategy for the treatment of liver fibrosis. PURPOSE In this study, the novel nanostructured lipid carriers (GA&GalNH2-DC-NLCs) were prepared for Dehydrocavidine (DC), glycyrrhetinic acid (GA) and galactose-PEG2000-NH2 (GalNH2) were selected as targeted ligand-modified nanostructured lipid carriers (NLCs), which enables dual-targeting to the liver for the treatment of liver fibrosis. STUDY DESIGN To study the targeting effect of GA&GalNH2-DC-NLCs on liver and its therapeutic effect on liver fibrosis, we established aHSC-T6 cell model and rat model of liver fibrosis for study. RESULTS GA&GalNH2-DC-NLCs promoted drug liver targeting efficiency and apoptosis rate by upregulating the expression of Bax. It showed that compared with no and/or GA-modified NLCs and GalNH2-modified NLCs, GA&GalNH2-DC-NLCs exhibited less extracellular matrix (ECM) deposition, induced apoptosis of aHSCs, and stronger anti-fibrosis effects in vivo. This may be due the fact that GA or GalNH2-modifified NLCs simultaneously block HSCs activation and inhibit the IL-6/STAT3 pathway. CONCLUSION GA&GalNH2-DC-NLCs is thus a potential strategy for liver fibrosis treatment.
Collapse
Affiliation(s)
- Xiaodan Su
- Department of Pharmacy, Guangxi Medical University, Nanning 530021, China.
| | - Huashuai Zhong
- Department of Pharmacy, Guangxi Medical University, Nanning 530021, China.
| | - Yongzhu Zeng
- Department of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Yuyan Zhang
- Department of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Bo Zhang
- Scientific Research Center, Guilin Medical University, Guilin 541199, China
| | - Wei Guo
- Department of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Qiujie Huang
- Department of Pharmacy, Guangxi University of Traditional Chinese Medicine, Nanning 530001, China.
| | - Yong Ye
- Department of Pharmacy, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Nanning 530021, China; Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Nanning 530021, China.
| |
Collapse
|
3
|
Cai Y, Wang W, Jiao Q, Hu T, Ren Y, Su X, Li Z, Feng M, Liu X, Wang Y. Nanotechnology for the Diagnosis and Treatment of Liver Cancer. Int J Nanomedicine 2024; 19:13805-13821. [PMID: 39735328 PMCID: PMC11681781 DOI: 10.2147/ijn.s490661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/04/2024] [Indexed: 12/31/2024] Open
Abstract
Liver cancer has become a major global health challenge due to its high incidence, high rate of late diagnosis and limited treatment options. Although there are many clinical treatments available for liver cancer, the cure rate is still very low, and now researchers have begun to explore new aspects of liver cancer treatment, and nanotechnology has shown great potential for improving diagnostic accuracy and therapeutic efficacy and is therefore a promising treatment option. In diagnosis, nanomaterials such as gold nanoparticles, magnetic nanoparticles, and silver nanoparticles can realize highly sensitive and specific detection of liver cancer biomarkers, supporting diagnosis and real-time monitoring of the disease process. In terms of treatment, nanocarriers can realize precise targeted delivery of drugs, improve the bioavailability of liver cancer therapeutic drugs and reduce systemic toxic side effects. In addition, advanced technologies such as nanoparticle-based photothermal therapy and photodynamic therapy provide innovative solutions to overcome drug resistance and local tumor ablation. Therefore, in this paper, we will introduce nanotechnology for hepatocellular carcinoma in terms of tumor marker detection, targeted drug delivery, and synergistic PDT/CDT therapy.
Collapse
Affiliation(s)
- Yuxuan Cai
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Weiwei Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Qinlian Jiao
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Tangbin Hu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Yidan Ren
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Xin Su
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, People’s Republic of China
| | - Zigan Li
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, People’s Republic of China
| | - Maoxiao Feng
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Xiaoyan Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| |
Collapse
|
4
|
Shan X, Lv S, Cheng H, Zhou L, Gao Y, Xing C, Li D, Tao W, Zhang C. Evaluation of 3-O-β-D-galactosylated resveratrol-loaded polydopamine nanoparticles for hepatocellular carcinoma treatment. Eur J Pharm Biopharm 2024; 203:114454. [PMID: 39142541 DOI: 10.1016/j.ejpb.2024.114454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/21/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024]
Abstract
In our previous studies, 3-O-β-D-galactosylated resveratrol (Gal-Res) was synthesized by structural modification and then 3-O-β-D-galactosylated resveratrol polydopamine nanoparticles (Gal-Res NPs) were successfully prepared to improve the bioavailability and liver distribution of Res. However, the pharmacodynamic efficacy and specific mechanism of Gal-Res NPs on hepatocellular carcinoma remain unclear. Herein, liver cancer model mice were successfully constructed by xenograft tumor modeling. Gal-Res NPs (34.2 mg/kg) significantly inhibited tumor growth of the liver cancer model mice with no significant effect on their body weight and no obvious toxic effect on major organs. Additionally, in vitro cellular uptake assay showed that Gal-Res NPs (37.5 μmol/L) increased the uptake of Gal-Res by Hepatocellular carcinoma (HepG2) cells, and significantly inhibited the cell migration and invasion. The experimental results of Hoechst 33342/propyl iodide (PI) double staining and flow cytometry both revealed that Gal-Res NPs could remarkably promote cell apoptosis. Moreover, the Western blot results revealed that Gal-Res NPs significantly regulated the Bcl-2/Bax and AKT/GSK3β/β-catenin signaling pathways. Taken together, the in vitro/in vivo results demonstrated that Gal-Res NPs significantly improved the antitumor efficiency of Gal-Res, which is a potential antitumor drug delivery system.
Collapse
Affiliation(s)
- Xiaoxiao Shan
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China
| | - Shujie Lv
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China
| | - Hongyan Cheng
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China
| | - Lele Zhou
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China
| | - Yu Gao
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China
| | - Chengjie Xing
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China
| | - Dawei Li
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China
| | - Wenwen Tao
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China
| | - Caiyun Zhang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Grand Health Research Institute of Hefei Comprehensive National Science Center, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, Anhui, China.
| |
Collapse
|
5
|
Tao X, Sukumaran S, Sperinde G, Liu C, Beardsley MI, Day P, Kalo M, Ayewoh E, Cai H, Wang Y, Jun I, Hirst K, Nguyen V, Chung S, Lee D, Lekkerkerker A, Stefanich E. Sialic Acid Mediated Endothelial and Hepatic Uptake: A Mechanism based Mathematic Model Elucidating the Complex Pharmacokinetics and Pharmacodynamics of Efmarodocokin Alfa, a Variably Glycosylated Fusion Protein. J Pharm Sci 2024; 113:1975-1986. [PMID: 38561054 DOI: 10.1016/j.xphs.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024]
Abstract
Sialic acid (SA) is crucial for protecting glycoproteins from clearance. Efmarodocokin alfa (IL-22Fc), a fusion protein agonist that links IL-22 to the crystallizable fragment (Fc) of human IgG4, contains 8 N-glycosylation sites and exhibits heterogeneous and variable terminal sialylation biodistribution. This presents a unique challenge for Pharmacokinetic (PK) and Pharmacodynamic (PD) analysis and cross-species translation. In this study, we sought to understand how varying SA levels and heterogeneous distribution contribute to IL-22Fc's complex PKPD properties. We initially used homogenous drug material with varying SA levels to examine PKPD in mice. Population PKPD analysis based on mouse data revealed that SA was a critical covariate simultaneously accounting for the substantial between subject variability (BSV) in clearance (CL), distribution clearance (CLd), and volume of distribution (Vd). In addition to the well-established mechanism by which SA inhibits ASGPR activity, we hypothesized a novel mechanism by which decrease in SA increases the drug uptake by endothelial cells. This decrease in SA, leading to more endothelial uptake, was supported by the neonatal Fc receptor (FcRn) dependent cell-based transcytosis assay. The population analysis also suggested in vivo EC50 (IL-22Fc stimulating Reg3β) was independent on SA, while the in-vitro assay indicated a contradictory finding of SA-in vitro potency relationship. We created a mechanism based mathematical (MBM) PKPD model incorporating the decrease in SA mediated endothelial and hepatic uptake, and successfully characterized the SA influence on IL-22Fc PK, as well as the increased PK exposure being responsible for increased PD. Thereby, the MBM model supported that SA has no direct impact on EC50, aligning with the population PKPD analysis. Subsequently, using the MBM PKPD model, we employed 5 subpopulation simulations to reconstitute the heterogeneity of drug material. The simulation accurately predicted the PKPD of heterogeneously and variably sialylated drug in mouse, monkey and human. The successful prospective validation confirmed the MBM's ability to predict IL-22Fc PK across variable SA levels, homogenous to heterogeneous material, and across species (R2=0.964 for clearance prediction). Our model prediction suggests an average of 1 mol/mol SA increase leads to a 50% increase in drug exposure. This underlines the significance of controlling sialic acid levels during lot-to-lot manufacturing.
Collapse
Affiliation(s)
- Xun Tao
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Siddharth Sukumaran
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA; Now at Janssen: Pharmaceutical Companies of Johnson & Johnson, 1125 Trenton-Harbourton Road, Titusville, NJ 08560, USA
| | | | - Chang Liu
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | - Peter Day
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Matt Kalo
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | - Hao Cai
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Yehong Wang
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA; Now at Gilead Sciences, Inc, 333 Lakeside Drive. Foster City, CA 94404, USA
| | - Inyoung Jun
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA; Now at University of Florida, Gainesville, FL 32611, USA
| | - Kyle Hirst
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Van Nguyen
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Shan Chung
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Donna Lee
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | - Eric Stefanich
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
6
|
Pongracz T, Biewenga M, Stoelinga AEC, Bladergroen MR, Nicolardi S, Trouw LA, Wuhrer M, de Haan N, van Hoek B. Autoimmune hepatitis displays distinctively high multi-antennary sialylation on plasma N-glycans compared to other liver diseases. J Transl Med 2024; 22:456. [PMID: 38745252 PMCID: PMC11092172 DOI: 10.1186/s12967-024-05173-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/05/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Changes in plasma protein glycosylation are known to functionally affect proteins and to associate with liver diseases, including cirrhosis and hepatocellular carcinoma. Autoimmune hepatitis (AIH) is a liver disease characterized by liver inflammation and raised serum levels of IgG, and is difficult to distinguish from other liver diseases. The aim of this study was to examine plasma and IgG-specific N-glycosylation in AIH and compare it with healthy controls and other liver diseases. METHODS In this cross-sectional cohort study, total plasma N-glycosylation and IgG Fc glycosylation analysis was performed by mass spectrometry for 66 AIH patients, 60 age- and sex-matched healthy controls, 31 primary biliary cholangitis patients, 10 primary sclerosing cholangitis patients, 30 non-alcoholic fatty liver disease patients and 74 patients with viral or alcoholic hepatitis. A total of 121 glycans were quantified per individual. Associations between glycosylation traits and AIH were investigated as compared to healthy controls and other liver diseases. RESULTS Glycan traits bisection (OR: 3.78 [1.88-9.35], p-value: 5.88 × 10- 3), tetraantennary sialylation per galactose (A4GS) (OR: 2.88 [1.75-5.16], p-value: 1.63 × 10- 3), IgG1 galactosylation (OR: 0.35 [0.2-0.58], p-value: 3.47 × 10- 5) and hybrid type glycans (OR: 2.73 [1.67-4.89], p-value: 2.31 × 10- 3) were found as discriminators between AIH and healthy controls. High A4GS differentiated AIH from other liver diseases, while bisection associated with cirrhosis severity. CONCLUSIONS Compared to other liver diseases, AIH shows distinctively high A4GS levels in plasma, with potential implications on glycoprotein function and clearance. Plasma-derived glycosylation has potential to be used as a diagnostic marker for AIH in the future. This may alleviate the need for a liver biopsy at diagnosis. Glycosidic changes should be investigated further in longitudinal studies and may be used for diagnostic and monitoring purposes in the future.
Collapse
Affiliation(s)
- Tamas Pongracz
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands
| | - Maaike Biewenga
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands
| | - Anna Eva Charlotte Stoelinga
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands
| | - Marco René Bladergroen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands
| | - Simone Nicolardi
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands
| | - Leendert Adrianus Trouw
- Department Immunology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands
| | - Noortje de Haan
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands.
| | - Bart van Hoek
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands
| |
Collapse
|
7
|
SORRENTINO MC, CARBONE T, CINQUANTA L, ALESSIO MG, INFANTINO M, DELEONARDI G, TREVISAN MT, PORCELLI B, TERZUOLI L, PLATZGUMMER S, BRUSCA I, ANTICO A, TAMPOIA M, PESCE G, VILLALTA D, BIZZARO N. Linee guida SIPMeL per la determinazione degli autoanticorpi nella diagnosi delle malattie autoimmuni del fegato. LA RIVISTA ITALIANA DELLA MEDICINA DI LABORATORIO 2024; 20. [DOI: 10.23736/s1825-859x.24.00226-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
8
|
Li X, Liu C, Zhu H, Wang K, Ren X, Ma L, Zhang X, Liu M, Zhu B. Recent advances in small-molecule fluorescent probes with the function of targeting cancer receptors. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5947-5977. [PMID: 37909733 DOI: 10.1039/d3ay01387a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Cancer is "the sword of Damocles" that threatens human life and health. Therefore, the diagnosis and treatment of cancer have been receiving much attention. Many overexpressed receptors on the surface of cancer cells provide us with an effective way to specifically identify the cancer cells, and receptor targeting strategies are becoming one of the hot ideas to enhance the ability of fluorescent probes to target tumors. Fluorescent probes connected to ligands are targeted at cancer cell surfaces through receptor-mediated endocytosis. Receptor-targeting probes can image and track cancer cells, determine tumor boundaries, monitor deep lesions, and play a role in clinical medicine, such as fluorescent imaging-guided surgery. In this review, based on the perspective of small molecule fluorescent probes, we reviewed the design ideas, photophysical properties, and applications of receptor-targeting probes for detecting biomarkers in imaging and tracing cancer cells and prospected the future developmental direction of such probes. We hope that this review will provide more ideas for the design and development of active targeting probes for receptors and lead to more applications in the medical field.
Collapse
Affiliation(s)
- Xinke Li
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Hanchuang Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Kun Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Xiaohua Ren
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Lixue Ma
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Xiaohui Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Mengyuan Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| |
Collapse
|
9
|
Luo Q, Chen J, Su Y, Wu P, Wang J, Fang Z, Luo F. Correlation between serum soluble ASGR1 concentration and low-density lipoprotein cholesterol levels: a cross-sectional study. Lipids Health Dis 2023; 22:142. [PMID: 37667265 PMCID: PMC10476293 DOI: 10.1186/s12944-023-01910-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Recent studies have shown that loss-of-function mutations in hepatic asialoglycoprotein receptor 1 (ASGR1) are associated with low levels of circulating cholesterol and a reduced risk of coronary artery disease (CAD). In contrast to ASGR1 on the hepatocyte membrane, serum soluble ASGR1 (sASGR1) is a secreted form that has been detected in circulation. However, the functions of serum sASGR1 are unclear. This study aims to investigate the relationship between human serum sASGR1 concentration and low-density lipoprotein cholesterol (LDL-C) levels. METHODS In a cohort of 134 participants who underwent coronary angiography examination, basic information was recorded, and blood samples were collected for biochemical testing. The serum sASGR1 concentration was determined by ELISA kits. The relationship between sASGR1 concentration and LDL-C levels was examined using linear regression models and interaction tests. Univariate and multivariate analyses were used to identify clinical variables that affect sASGR1 levels. RESULTS After adjusting for potential confounders such as age, sex, BMI, and statin use, the serum sASGR1 concentration was positively correlated with LDL-C levels (β = 0.093, 95% CI: 0.04 to 0.14, P < 0.001). Subgroup analysis and interaction tests showed that the effect of serum sASGR1 concentration on LDL-C levels was significantly influenced by hypertension status (P for interaction = 0.0067). The results of a multivariate linear regression analysis incorporating age, serum TG, LDL-C, nonesterified fatty acid (NEFA), white blood cell counts (WBCC), and fibrinogen revealed that LDL-C (β = 1.005, 95% CI: 0.35 to 1.66, P = 0.003) and WBCC (β = 0.787, 95% CI: 0.41 to 1.16, P < 0.0001) were independent influencing factors for serum sASGR1 levels. CONCLUSIONS The serum sASGR1 concentration was positively correlated with LDL-C levels. In addition, hypertension status significantly affected the effect of serum sASGR1 on LDL-C levels. This study provides some research ideas for clinical doctors and researchers, as well as some references for additional research on serum sASGR1.
Collapse
Affiliation(s)
- Qin Luo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Institute of Blood Lipid and Atherosclerosis, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Jingfei Chen
- Research Institute of Blood Lipid and Atherosclerosis, the Second Xiangya Hospital, Central South University, Changsha, China
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yingjie Su
- Department of Emergency Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Panyun Wu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Institute of Blood Lipid and Atherosclerosis, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiangang Wang
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Zhenfei Fang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Research Institute of Blood Lipid and Atherosclerosis, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Fei Luo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Research Institute of Blood Lipid and Atherosclerosis, the Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
10
|
Li S, Xing W, Gang Y, Guo W, Zeng M, Wu H. Gum Arabic-Stabilized Ferric Oxyhydroxide Nanoparticles for Efficient and Targeted Intestinal Delivery of Bioavailable Iron. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7058-7068. [PMID: 37104684 DOI: 10.1021/acs.jafc.3c02245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Nanostructured iron(III) compounds are promising food fortificants with desirable iron bioavailability and food compatibility. Here, gum arabic (GA) solubilized 252 mg of iron(III) per g at neutral pH in the form of GA-stabilized ferric oxyhydroxide nanoparticles (GA-FeONPs) with Z-average size of 142.7 ± 5.9 nm and ζ-potential of -20.50 ± 1.25 mV. Calcein-fluorescence-quenching assay revealed well-absorbed iron from GA-FeONPs by polarized Caco-2 cells due to efficient macropinocytic internalization and asialoglycoprotein receptor-mediated specific endocytosis facilitated by the polypeptide and arabinogalactan fractions of GA, respectively, with endocytosed GA-FeONPs being in part basolaterally transcytosed and in another part degraded into cellular labile iron pool. GA-FeONPs showed good colloidal stability under varied pH, gastrointestinal, thermal processing, and spray/freeze drying conditions and displayed remarkably weaker pro-oxidant activity than FeSO4 in glyceryl trilinoleate emulsion (P < 0.05). Oral pharmacokinetics unveiled desirable iron bioavailability of GA-FeONPs relative to FeSO4, i.e., 124.27 ± 5.91% in aqueous solution and 161.64 ± 5.01% in milk. Overall, GA-FeONPs are a promising novel iron fortificant with food-compatible, efficient, and targeted intestinal iron delivery and sustained iron-release properties.
Collapse
Affiliation(s)
- Shiyang Li
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Wenshuo Xing
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Yuxin Gang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Wei Guo
- School of Pharmacy, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong 264003, China
| | - Mingyong Zeng
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Haohao Wu
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| |
Collapse
|
11
|
Kotani K, Enomoto M, Uchida-Kobayashi S, Tamori A, Yukawa-Muto Y, Odagiri N, Motoyama H, Kozuka R, Kawamura E, Hagihara A, Fujii H, Kageyama K, Yamamoto A, Yoshida A, Higashiyama S, Kawabe J, Kawada N. Short-term hepatocyte function and portal hypertension outcomes of sofosbuvir/velpatasvir for decompensated hepatitis C-related cirrhosis. J Gastroenterol 2023; 58:394-404. [PMID: 36729172 PMCID: PMC10049944 DOI: 10.1007/s00535-023-01963-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/26/2023] [Indexed: 02/03/2023]
Abstract
BACKGROUND It is unclear whether hepatocyte function and/or portal hypertension improves if a sustained virologic response (SVR) is achieved with direct-acting antivirals in patients with decompensated hepatitis C-related cirrhosis. METHODS We examined the safety and efficacy of a 12-week course of sofosbuvir/velpatasvir (SOF/VEL) in 20 patients with decompensated hepatitis C-related cirrhosis. We also investigated changes in the hepatocyte receptor index (LHL15) and blood clearance index (HH15) by Tc-99 m-galactosyl human serum albumin scintigraphy, liver stiffness measurement (LSM) by transient elastography, and hepatic venous pressure gradient (HVPG) in patients who achieved an SVR at 24 weeks after treatment (SVR24). RESULTS One patient discontinued treatment because of rectal variceal hemorrhage, and 19 patients completed treatment. SVR24 was achieved in 17 patients (89%). Median LHL15 increased from 0.72 pre-treatment to 0.82 after SVR24 (p = 0.012), and median HH15 decreased from 0.82 pre-treatment to 0.76 after SVR24 (p = 0.010). The percentage of patients with LSM ≥ 20 kPa was 90% before treatment and remained at 90% after SVR24. However, the percentage with severe portal hypertension (defined as HVPG ≥ 12 mmHg) decreased from 92% pre-treatment to 58% after SVR24 (p = 0.046). Patients with a decreased HVPG from pre-treatment to after SVR24 had a smaller pre-treatment spleen volume than those with an increased HVPG (median, 252 vs. 537 mL, p = 0.028). CONCLUSION Achieving SVR24 with SOF/VEL treatment in patients with decompensated hepatitis C-related cirrhosis can be expected to improve hepatocyte function and portal hypertension on short-term follow-up.
Collapse
Affiliation(s)
- Kohei Kotani
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan.
| | - Masaru Enomoto
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Sawako Uchida-Kobayashi
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Akihiro Tamori
- Department of Hepatology, Kashiwara Municipal Hospital, 1-7-9 Houzenji, Kashiwara, Osaka, 582-0005, Japan
| | - Yoshimi Yukawa-Muto
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Naoshi Odagiri
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Hiroyuki Motoyama
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Ritsuzo Kozuka
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Etsushi Kawamura
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Atsushi Hagihara
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Hideki Fujii
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Ken Kageyama
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Akira Yamamoto
- Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Atsushi Yoshida
- Department of Nuclear Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Shigeaki Higashiyama
- Department of Nuclear Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Joji Kawabe
- Department of Nuclear Medicine, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| |
Collapse
|
12
|
Lunghi B, Morfini M, Martinelli N, Branchini A, Linari S, Castaman G, Bernardi F. Modulation of factor VIII pharmacokinetics by genetic components in factor VIII receptors. Haemophilia 2023; 29:479-487. [PMID: 36533781 DOI: 10.1111/hae.14722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Gene variation in receptors for circulating factor VIII (FVIII) is candidate to explain the large inter-patient variability of infused FVIII pharmacokinetics (PK) in haemophilia A (HA). AIM To compare in an Italian HA cohort (n = 26) the influence on FVIII PK of genetic components in four von Willebrand factor (VWF)/FVIII receptors. METHODS Genotypes of low-density lipoprotein receptor (LDLR), asialoglycoprotein receptor minor subunit (ASGR2), family 4 member M (CLEC4M), stabilin2 (STAB2) and ABO blood-group, and VWF:Ag levels were included as independent variables in linear regression analyses of two-compartment model (TCM) - standard half-life (SHL) FVIII PK parameters. RESULTS In the initial FVIII distribution phase, the STAB2 rs4981022 AA, ASGR2 rs2289645 TT and LDLR rs688 TT genotypes may contribute to increase Cmax , and prolong or shorten AlphaHL. In the elimination phase, a shorter BetaHL was associated with the CLEC4M rs868875 GG (beta-coefficient .366, p = .025) and ASGR2 rs2289645 TC (beta-coefficient .456, p = .006) genotypes, which also showed shorter mean residence time (MRT) than TT genotypes (p = .021). The alpha and beta phase effects were independent of ABO and VWF:Ag levels at baseline. The association of the LDLR rs2228671 genotypes with clearance was independent of ABO (beta-coefficient -.363, p = .035) but not of other receptors or VWF:Ag, which may point out multiple and competing interactions. CONCLUSIONS With the limitation of the small number of HA patients, these observations highlight multiple genetic components acting in distinct phases of FVIII PK and contributing to explain FVIII PK variability. This analysis provides candidates for genotype-based, individual tailoring of FVIII substitutive treatment.
Collapse
Affiliation(s)
- Barbara Lunghi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Massimo Morfini
- Italian Association of Hemophilia Centers (AICE), Naples, Italy
| | | | - Alessio Branchini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Silvia Linari
- Center for Bleeding Disorders, Department of Oncology, Careggi University Hospital, Florence, Italy
| | - Giancarlo Castaman
- Center for Bleeding Disorders, Department of Oncology, Careggi University Hospital, Florence, Italy
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
13
|
Ebenezer O, Comoglio P, Wong GKS, Tuszynski JA. Development of Novel siRNA Therapeutics: A Review with a Focus on Inclisiran for the Treatment of Hypercholesterolemia. Int J Mol Sci 2023; 24:4019. [PMID: 36835426 PMCID: PMC9966809 DOI: 10.3390/ijms24044019] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
Over the past two decades, it was discovered that introducing synthetic small interfering RNAs (siRNAs) into the cytoplasm facilitates effective gene-targeted silencing. This compromises gene expression and regulation by repressing transcription or stimulating sequence-specific RNA degradation. Substantial investments in developing RNA therapeutics for disease prevention and treatment have been made. We discuss the application to proprotein convertase subtilisin/kexin type 9 (PCSK9), which binds to and degrades the low-density lipoprotein cholesterol (LDL-C) receptor, interrupting the process of LDL-C uptake into hepatocytes. PCSK9 loss-of-function modifications show significant clinical importance by causing dominant hypocholesterolemia and lessening the risk of cardiovascular disease (CVD). Monoclonal antibodies and small interfering RNA (siRNA) drugs targeting PCSK9 are a significant new option for managing lipid disorders and improving CVD outcomes. In general, monoclonal antibodies are restricted to binding with cell surface receptors or circulating proteins. Similarly, overcoming the intracellular and extracellular defenses that prevent exogenous RNA from entering cells must be achieved for the clinical application of siRNAs. N-acetylgalactosamine (GalNAc) conjugates are a simple solution to the siRNA delivery problem that is especially suitable for treating a broad spectrum of diseases involving liver-expressed genes. Inclisiran is a GalNAc-conjugated siRNA molecule that inhibits the translation of PCSK9. The administration is only required every 3 to 6 months, which is a significant improvement over monoclonal antibodies for PCSK9. This review provides an overview of siRNA therapeutics with a focus on detailed profiles of inclisiran, mainly its delivery strategies. We discuss the mechanisms of action, its status in clinical trials, and its prospects.
Collapse
Affiliation(s)
- Oluwakemi Ebenezer
- Department of Chemistry, Faculty of Natural Science, Mangosuthu University of Technology, Umlazi 4031, South Africa
| | - Pietro Comoglio
- Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, 10129 Turin, Italy
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Jack A. Tuszynski
- Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, 10129 Turin, Italy
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
14
|
Rakhimbekova A, Lopukhov A, Klyachko N, Kabanov A, Madzhidov TI, Tropsha A. Efficient design of peptide-binding polymers using active learning approaches. J Control Release 2023; 353:903-914. [PMID: 36402234 DOI: 10.1016/j.jconrel.2022.11.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/21/2022] [Accepted: 11/13/2022] [Indexed: 12/23/2022]
Abstract
Active learning (AL) has become a subject of active recent research both in industry and academia as an efficient approach for rapid design and discovery of novel chemicals, materials, and polymers. Herein, we have assessed the applicability of AL for the discovery of polymeric micelle formulations for poorly soluble drugs. We were motivated by the key advantages of this approach making it a desirable strategy for rational design of drug delivery systems due toto its ability to (i) employ relatively small datasets for model development, (ii) iterate between model development and model assessment using small external datasets that can be either generated in focused experimental studies or formed from subsets of the initial training data, and (iii) progressively evolve models towards increasingly more reliable predictions and the identification of novel chemicals with the desired properties. In this study, we compared various AL protocols for their effectiveness in finding biologically active molecules using synthetic datasets. We have investigated the dependency of AL performance on the size of the initial training set, the relative complexity of the task, and the choice of the initial training dataset. We found that AL techniques as applied to regression modeling offer no benefits over random search, while AL used for classification tasks performs better than models built for randomly selected training sets but still quite far from perfect. Using the best performing AL protocol,. Finally, the best performing AL approach was employed to discover and experimentally validate novel binding polymers for a case study of asialoglycoprotein receptor (ASGPR).
Collapse
Affiliation(s)
- Assima Rakhimbekova
- A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, Russia
| | - Anton Lopukhov
- Laboratory of Chemical Design of Bionanomaterials, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Natalia Klyachko
- Laboratory of Chemical Design of Bionanomaterials, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Alexander Kabanov
- Laboratory of Chemical Design of Bionanomaterials, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia; Center for Nanotechnology in Drug Delivery, Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC, USA
| | - Timur I Madzhidov
- A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, Russia
| | - Alexander Tropsha
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
15
|
Kayser C, Dutra LA, Dos Reis-Neto ET, Castro CHDM, Fritzler MJ, Andrade LEC. The Role of Autoantibody Testing in Modern Personalized Medicine. Clin Rev Allergy Immunol 2022; 63:251-288. [PMID: 35244870 DOI: 10.1007/s12016-021-08918-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 02/08/2023]
Abstract
Personalized medicine (PM) aims individualized approach to prevention, diagnosis, and treatment. Precision Medicine applies the paradigm of PM by defining groups of individuals with akin characteristics. Often the two terms have been used interchangeably. The quest for PM has been advancing for centuries as traditional nosology classification defines groups of clinical conditions with relatively similar prognoses and treatment options. However, any individual is characterized by a unique set of multiple characteristics and therefore the achievement of PM implies the determination of myriad demographic, epidemiological, clinical, laboratory, and imaging parameters. The accelerated identification of numerous biological variables associated with diverse health conditions contributes to the fulfillment of one of the pre-requisites for PM. The advent of multiplex analytical platforms contributes to the determination of thousands of biological parameters using minute amounts of serum or other biological matrixes. Finally, big data analysis and machine learning contribute to the processing and integration of the multiplexed data at the individual level, allowing for the personalized definition of susceptibility, diagnosis, prognosis, prevention, and treatment. Autoantibodies are traditional biomarkers for autoimmune diseases and can contribute to PM in many aspects, including identification of individuals at risk, early diagnosis, disease sub-phenotyping, definition of prognosis, and treatment, as well as monitoring disease activity. Herein we address how autoantibodies can promote PM in autoimmune diseases using the examples of systemic lupus erythematosus, antiphospholipid syndrome, rheumatoid arthritis, Sjögren syndrome, systemic sclerosis, idiopathic inflammatory myopathies, autoimmune hepatitis, primary biliary cholangitis, and autoimmune neurologic diseases.
Collapse
Affiliation(s)
- Cristiane Kayser
- Rheumatology Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | - Marvin J Fritzler
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Luis Eduardo C Andrade
- Rheumatology Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil. .,Immunology Division, Fleury Medicine and Health Laboratories, São Paulo, Brazil.
| |
Collapse
|
16
|
B cells in autoimmune hepatitis: bystanders or central players? Semin Immunopathol 2022; 44:411-427. [PMID: 35488094 PMCID: PMC9256567 DOI: 10.1007/s00281-022-00937-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023]
Abstract
B cells are central for the adaptive immune system to mount successful immune responses not only as antibody producers but also as regulators of cellular immunity. These multifaceted features are also reflected in autoimmunity where autoreactive B cells can fuel disease by production of cytotoxic autoantibodies, presentation of autoantigens to autoreactive T cells, and secretion of cytokines and chemokines that either promote detrimental immune activation or impair regulatory T and B cells. The role of B cells and autoantibodies in autoimmune hepatitis (AIH) have been controversially discussed, with typical autoantibodies and hypergammaglobulinemia indicating a key role, while strong HLA class II association suggests T cells as key players. In this review, we summarize current knowledge on B cells in AIH and how different B cell subpopulations may drive AIH progression beyond autoantibodies. We also discuss recent findings of B cell-directed therapies in AIH.
Collapse
|
17
|
Kumar V, Kiran S, Kumar S, Singh UP. Extracellular vesicles in obesity and its associated inflammation. Int Rev Immunol 2022; 41:30-44. [PMID: 34423733 PMCID: PMC8770589 DOI: 10.1080/08830185.2021.1964497] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Obesity is characterized by low-grade, chronic inflammation, which promotes insulin resistance and diabetes. Obesity can lead to the development and progression of many autoimmune diseases, including inflammatory bowel disease, psoriasis, psoriatic arthritis, rheumatoid arthritis, thyroid autoimmunity, and type 1 diabetes mellitus (T1DM). These diseases result from an alteration of self-tolerance by promoting pro-inflammatory immune response by lowering numbers of regulatory T cells (Tregs), increasing Th1 and Th17 immune responses, and inflammatory cytokine production. Therefore, understanding the immunological changes that lead to this low-grade inflammatory milieu becomes crucial for the development of therapies that suppress the risk of autoimmune diseases and other immunological conditions. Cells generate extracellular vesicles (EVs) to eliminate cellular waste as well as communicating the adjacent and distant cells through exchanging the components (genetic material [DNA or RNA], lipids, and proteins) between them. Immune cells and adipocytes from individuals with obesity and a high basal metabolic index (BMI) produce also release exosomes (EXOs) and microvesicles (MVs), which are collectively called EVs. These EVs play a crucial role in the development of autoimmune diseases. The current review discusses the immunological dysregulation that leads to inflammation, inflammatory diseases associated with obesity, and the role played by EXOs and MVs in the induction and progression of this devastating conditi8on.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee, 38103 USA
| | - Sonia Kiran
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee, 38103 USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee, 38103 USA
| | - Udai P. Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, Tennessee, 38103 USA,Correspondence: Udai P Singh, Ph.D., Associate Professor, Department of Pharmaceutical Sciences, College of Pharmacy, 881 Madison Avenue, The University of Tennessee Health Science Center Memphis, TN, 38163 USA,
| |
Collapse
|
18
|
Deng X, Wu Y, Xu H, Yan J, Liu H, Zhang B. Recent research progress in galactose-based fluorescent probes for detection of biomarkers of liver diseases. Chem Commun (Camb) 2022; 58:12518-12527. [DOI: 10.1039/d2cc04180d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This highlight illustrates the challenges and latest progress in galactose-based fluorescent probes for early diagnosis of liver diseases.
Collapse
Affiliation(s)
- Xiaojing Deng
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Yingxu Wu
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Hu Xu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 16044, China
| | - Jiawei Yan
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Huanying Liu
- School of Mechanical and Power Engineering, Dalian Ocean University, Dalian 116023, China
| | - Boyu Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
19
|
Andrade LEC, Damoiseaux J, Vergani D, Fritzler MJ. Antinuclear antibodies (ANA) as a criterion for classification and diagnosis of systemic autoimmune diseases. J Transl Autoimmun 2022; 5:100145. [PMID: 35128372 PMCID: PMC8804266 DOI: 10.1016/j.jtauto.2022.100145] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/22/2022] Open
Abstract
The classification and diagnosis of systemic autoimmune diseases are frequently based on a collection of criteria composed of clinical, laboratory, imaging, and pathology elements that are strongly associated with the respective disease. Autoantibodies are a distinctive hallmark and have a prominent position in the classification criteria of many autoimmune diseases. The indirect immunofluorescence assay on HEp-2 cells (HEp-2 IFA), historically known as the antinuclear antibody test, is a method capable of detecting a wide spectrum of autoantibodies. A positive HEp-2 IFA test is part of the classification criteria for systemic lupus erythematosus (SLE) and juvenile idiopathic arthritis (JIA), as well as the diagnostic criteria for autoimmune hepatitis (AIH) and primary biliary cholangitis (PBC). A positive HEp-2 IFA test can appear as different morphological patterns that are indicative of the most probable autoantibody specificities in the sample. Only some of the HEp-2 IFA patterns are associated with the specific autoantibodies relevant to SLE, JIA, AIH, and PBC, whereas some other patterns occur mainly in non-related conditions and even in apparently healthy individuals. This paper provides a critical review on the subject and proposes that the classification and diagnostic criteria for SLE, JIA, AIH, and PBC could be improved by a modification on the HEp-2 IFA (ANA) criterion in that the staining patterns accepted for each of these diseases should be restricted according to the respective relevant autoantibody specificities. Autoantibodies play a prominent role in the classification or diagnostic criteria of many autoimmune diseases. ANA test is part of the classification criteria for SLE and JIA, as well as the diagnostic criteria for AIH. Different HEp-2 IFA patterns indicate different autoantibodies and only some are associated with a specific disease. ANA classification/diagnostic criteria should reflect the HEp-2 IFA patterns associated to the relevant autoantibodies.
Collapse
Affiliation(s)
- Luis Eduardo C. Andrade
- Rheumatology Division, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Immunology Division, Fleury Medicine and Health Laboratories, São Paulo, Brazil
- Corresponding author. Rua Luis de França Jr 201, casa 8. São Paulo, SP, CEP 04648-070, Brazil.
| | - Jan Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Diego Vergani
- King's College London Faculty of Life Sciences & Medicine at King's College Hospital, London, United Kingdom
- Institute of Liver Studies, MowatLabs, King's College Hospital, London, United Kingdom
| | - Marvin J. Fritzler
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
20
|
Fathi M, Emam-Djomeh Z, Aliabbasi N. Developing two new types of nanostructured vehicles to improve biological activity and functionality of curcumin. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101386] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Zhao X, Li X, Huang X, Liang S, Cai P, Wang Y, Cui Y, Chen W, Dong X. Development of lactobionic acid conjugated-copper chelators as anticancer candidates for hepatocellular carcinoma. ARAB J CHEM 2021; 14:103241. [DOI: 10.1016/j.arabjc.2021.103241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
22
|
Abstract
PURPOSE OF REVIEW Autoimmune hepatitis (AIH) is a chronic disease characterized by a lymphocyte infiltrate in the liver. For decades, nonspecific immunosuppression has been used to limit chronic liver inflammation. The high risk of relapse, the treatments side effects, and the significant number of refractory patients are the main clinical issues that require efforts to understand AIH immune mechanisms. RECENT FINDINGS The balance between regulatory CD4 T cells, known to control autoimmunity, and effector CD4 T cells, that recognize liver self-antigens and mediate the liver inflammation, appears central in AIH immune mechanisms. Recent advances in the identification of pathogenic auto-reactive CD4 T cells, and of new mechanisms of immune regulatory defects in AIH patients, give new insights into the pathophysiology of this disease. SUMMARY In this review, we propose an overview of the central role of CD4 T cells (both regulatory and pathogenic) in mechanisms of AIH, with a focus on recent advances regarding defective regulatory mechanisms and immune profile of auto-reactive CD4 T cells. These findings may have implication for the orientation of new therapeutic strategies to treat AIH, such as regulatory T-cell infusion or targeting B cells and cytokines released by pathogenic CD4 T cells.
Collapse
Affiliation(s)
- Anaïs Cardon
- Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | | | | |
Collapse
|
23
|
Congdon MD, Gildersleeve JC. Enhanced Binding and Reduced Immunogenicity of Glycoconjugates Prepared via Solid-State Photoactivation of Aliphatic Diazirine Carbohydrates. Bioconjug Chem 2020; 32:133-142. [PMID: 33325683 DOI: 10.1021/acs.bioconjchem.0c00555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biological conjugation is an important tool employed for many basic research and clinical applications. While useful, common methods of biological conjugation suffer from a variety of limitations, such as (a) requiring the presence of specific surface-exposed residues, such as lysines or cysteines, (b) reducing protein activity, and/or (c) reducing protein stability and solubility. Use of photoreactive moieties including diazirines, azides, and benzophenones provide an alternative, mild approach to conjugation. Upon irradiation with UV and visible light, these functionalities generate highly reactive carbenes, nitrenes, and radical intermediates. Many of these will couple to proteins in a non-amino-acid-specific manner. The main hurdle for photoactivated biological conjugation is very low yield. In this study, we developed a solid-state method to increase conjugation efficiency of diazirine-containing carbohydrates to proteins. Using this methodology, we produced multivalent carbohydrate-protein conjugates with unaltered protein charge and secondary structure. Compared to carbohydrate conjugates prepared with amide linkages to lysine residues using standard NHS conjugation, the photoreactive prepared conjugates displayed up to 100-fold improved binding to lectins and diminished immunogenicity in mice. These results indicate that photoreactive bioconjugation could be especially useful for in vivo applications, such as lectin targeting, where high binding affinity and low immunogenicity are desired.
Collapse
Affiliation(s)
- Molly D Congdon
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Jeffrey C Gildersleeve
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| |
Collapse
|
24
|
Hassani A, Azarian MMS, Ibrahim WN, Hussain SA. Preparation, characterization and therapeutic properties of gum arabic-stabilized gallic acid nanoparticles. Sci Rep 2020; 10:17808. [PMID: 33082415 PMCID: PMC7576211 DOI: 10.1038/s41598-020-71175-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022] Open
Abstract
Gallic acid (GA) is a natural phenolic compound with therapeutic effects that are often challenged by its rapid metabolism and clearance. Therefore, GA was encapsulated using gum arabic into nanoparticles to increase its bioavailability. The formulated nanoparticles (GANPs) were characterized for physicochemical properties and size and were then evaluated for antioxidant and antihypertensive effects using various established in vitro assays, including 1,1-diphenyl-2-picrylhydrazyl (DPPH), nitric oxide scavenging (NO), β-carotene bleaching and angiotensin-converting enzyme (ACE) inhibitory assays. The GANPs were further evaluated for the in vitro cytotoxicity, cell uptake and cell migration in four types of human cancer cell lines including (MCF-7, MDA-MB231) breast adenocarcinoma, HepG2 hepatocellular cancer, HT-29 colorectal adenocarcinoma, and MCF-10A breast epithelial cell lines. The GANPs demonstrated potent antioxidant effects and have shown promising anti-cancer properties in a dose-dependent manner with a predilection toward HepG2 and MCF7 cancer cells. The uptake of GANPs was successful in the majority of cancer cells with a propensity to accumulate in the nuclear region of the cells. The HepG2 and MCF7 cancer cells also had a significantly higher percentage of apoptosis and were more sensitive to gallic acid nanoparticle treatment in the cell migration assay. This study is the first to confirm the synergistic effects of gum arabic in the encapsulation of gallic acid by increasing the selectivity towards cancer cells and enhancing the antioxidant properties. The formulated nanoparticles also had remarkably low toxicity in normal cells. Based on these findings, GANPs may have promising therapeutic applications towards the development of more effective treatments with a probable targeting precision in cancer cells.
Collapse
Affiliation(s)
- Abdelkader Hassani
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, UPM, Serdang, 43400, Malaysia
| | | | - Wisam Nabeel Ibrahim
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar.
| | - Siti Aslina Hussain
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, UPM, Serdang, 43400, Malaysia.
| |
Collapse
|
25
|
Alginate-Based Platforms for Cancer-Targeted Drug Delivery. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1487259. [PMID: 33083451 PMCID: PMC7563048 DOI: 10.1155/2020/1487259] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022]
Abstract
As an acidic, ocean colloid polysaccharide, alginate is both a biopolymer and a polyelectrolyte that is considered to be biocompatible, nontoxic, nonimmunogenic, and biodegradable. A significant number of studies have confirmed the potential use of alginate-based platforms as effective vehicles for drug delivery for cancer-targeted treatment. In this review, the focus is on the formation of alginate-based cancer-targeted delivery systems. Specifically, some general chemical and physical properties of alginate and different types of alginate-based delivery systems are discussed, and various kinds of alginate-based carriers are introduced. Finally, recent innovative strategies to functionalize alginate-based vehicles for cancer targeting are described to highlight research towards the optimization of alginate.
Collapse
|
26
|
Michalak TI. Diverse Virus and Host-Dependent Mechanisms Influence the Systemic and Intrahepatic Immune Responses in the Woodchuck Model of Hepatitis B. Front Immunol 2020; 11:853. [PMID: 32536912 PMCID: PMC7267019 DOI: 10.3389/fimmu.2020.00853] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
Woodchuck infected with woodchuck hepatitis virus (WHV) represents the pathogenically nearest model of hepatitis B and associated hepatocellular carcinoma (HCC). This naturally occurring animal model also is highly valuable for development and preclinical evaluation of new anti-HBV agents and immunotherapies against chronic hepatitis (CH) B and HCC. Studies in this system uncovered a number of molecular and immunological processes which contribute or likely contribute to the immunopathogenesis of liver disease and modulation of the systemic and intrahepatic innate and adaptive immune responses during hepadnaviral infection. Among them, inhibition of presentation of the class I major histocompatibility complex on chronically infected hepatocytes and a role of WHV envelope proteins in this process, as well as augmented hepatocyte cytotoxicity mediated by constitutively expressed components of CD95 (Fas) ligand- and perforin-dependent pathways, capable of eliminating cells brought to contact with hepatocyte surface, including activated T lymphocytes, were uncovered. Other findings pointed to a role of autoimmune response against hepatocyte asialoglycoprotein receptor in augmenting severity of liver damage in hepadnaviral CH. It was also documented that WHV in the first few hours activates intrahepatic innate immunity that transiently decreases hepatic virus load. However, this activation is not translated in a timely manner to induction of virus-specific T cell response which appears to be hindered by defective activation of antigen presenting cells and presentation of viral epitopes to T cells. The early WHV infection also induces generalized polyclonal activation of T cells that precedes emergence of virus-specific T lymphocyte reactivity. The combination of these mechanisms hinder recognition of virus allowing its dissemination in the initial, asymptomatic stages of infection before adaptive cellular response became apparent. This review will highlight a range of diverse mechanisms uncovered in the woodchuck model which affect effectiveness of the anti-viral systemic and intrahepatic immune responses, and modify liver disease outcomes. Further exploration of these and other mechanisms, either already discovered or yet unknown, and their interactions should bring more comprehensive understanding of HBV pathogenesis and help to identify novel targets for therapeutic and preventive interventions. The woodchuck model is uniquely positioned to further contribute to these advances.
Collapse
Affiliation(s)
- Tomasz I Michalak
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
27
|
Lopens S, Krawczyk M, Papp M, Milkiewicz P, Schierack P, Liu Y, Wunsch E, Conrad K, Roggenbuck D. The search for the Holy Grail: autoantigenic targets in primary sclerosing cholangitis associated with disease phenotype and neoplasia. AUTO- IMMUNITY HIGHLIGHTS 2020; 11:6. [PMID: 32178720 PMCID: PMC7077156 DOI: 10.1186/s13317-020-00129-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/06/2020] [Indexed: 12/22/2022]
Abstract
Unlike in other autoimmune liver diseases such as autoimmune hepatitis and primary biliary cholangitis, the role and nature of autoantigenic targets in primary sclerosing cholangitis (PSC), a progressive, chronic, immune-mediated, life threatening, genetically predisposed, cholestatic liver illness, is poorly elucidated. Although anti-neutrophil cytoplasmic antibodies (ANCA) have been associated with the occurrence of PSC, their corresponding targets have not yet been identified entirely. Genome-wide association studies revealed a significant number of immune-related and even disease-modifying susceptibility loci for PSC. However, these loci did not allow discerning a clear autoimmune pattern nor do the therapy options and the male gender preponderance in PSC support a pathogenic role of autoimmune responses. Nevertheless, PSC is characterized by the co-occurrence of inflammatory bowel diseases (IBD) demonstrating autoimmune responses. The identification of novel autoantigenic targets in IBD such as the major zymogen granule membrane glycoprotein 2 (GP2) or the appearance of proteinase 3 (PR3) autoantibodies (autoAbs) have refocused the interest on a putative association of loss of tolerance with the IBD phenotype and consequently with the PSC phenotype. Not surprisingly, the report of an association between GP2 IgA autoAbs and disease severity in patients with PSC gave a new impetus to autoAb research for autoimmune liver diseases. It might usher in a new era of serological research in this field. The mucosal loss of tolerance against the microbiota-sensing GP2 modulating innate and adaptive intestinal immunity and its putative role in the pathogenesis of PSC will be elaborated in this review. Furthermore, other potential PSC-related autoantigenic targets such as the neutrophil PR3 will be discussed. GP2 IgA may represent a group of new pathogenic antibodies, which share characteristics of both type 2 and 3 of antibody-mediated hypersensitive reactions according to Coombs and Gell.
Collapse
Affiliation(s)
| | - Marcin Krawczyk
- Department of Medicine II, Saarland University Hospital, Saarland University, Homburg/Saar, Germany
- Liver and Internal Medicine Unit, Medical University of Warsaw, Warsaw, Poland
| | - Maria Papp
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Piotr Milkiewicz
- Liver and Internal Medicine Unit, Medical University of Warsaw, Warsaw, Poland
| | - Peter Schierack
- Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Yudong Liu
- Department of Laboratory Medicine, Peking University People's Hospital, Beijing, China
| | - Ewa Wunsch
- Translational Medicine Group, Pomeranian Medical University, Szczecin, Poland
| | - Karsten Conrad
- Institute of Immunology, Technical University Dresden, Dresden, Germany
| | - Dirk Roggenbuck
- Institute of Biotechnology, Faculty Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany.
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Universitätsplatz 1, 01968, Senftenberg, Germany.
| |
Collapse
|
28
|
Nanoparticle-Mediated Dual Targeting: An Approach for Enhanced Baicalin Delivery to the Liver. Pharmaceutics 2020; 12:pharmaceutics12020107. [PMID: 32013203 PMCID: PMC7076551 DOI: 10.3390/pharmaceutics12020107] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/22/2020] [Accepted: 01/26/2020] [Indexed: 01/13/2023] Open
Abstract
In this study, water-soluble chitosan lactate (CL) was reacted with lactobionic acid (LA), a disaccharide with remarkable affinity to hepatic asialoglycoprotein (ASGP) receptors, to form dual liver-targeting LA-modified-CL polymer for site-specific drug delivery to the liver. The synthesized polymer was used to encapsulate baicalin (BA), a promising bioactive flavonoid with pH-dependent solubility, into ultrahigh drug-loaded nanoparticles (NPs) via the ionic gelation method. The successful chemical conjugation of LA with CL was tested and the formulated drug-loaded LA-modified-CL-NPs were assessed in terms of particle size (PS), encapsulation efficiency (EE) and zeta potential (ZP) using full factorial design. The in vivo biodistribution and pharmacokinetics of the designed NPs were assessed using 99mTc-radiolabeled BA following oral administration to mice and results were compared to 99mTc-BA-loaded-LA-free-NPs and 99mTc-BA solution as controls. Results showed that the chemical modification of CL with LA was successfully achieved and the method of preparation of the optimized NPs was very efficient in encapsulating BA into nearly spherical particles with an extremely high EE exceeding 90%. The optimized BA-loaded-LA-modified-CL-NPs showed an average PS of 490 nm, EE of 93.7% and ZP of 48.1 mV. Oral administration of 99mTc-BA-loaded-LA-modified-CL-NPs showed a remarkable increase in BA delivery to the liver over 99mTc-BA-loaded-LA-free-CL-NPs and 99mTc-BA oral solution. The mean area under the curve (AUC0-24) estimates from liver data were determined to be 11-fold and 26-fold higher from 99mTc-BA-loaded-LA-modified-CL-NPs relative to 99mTc-BA-loaded-LA-free-CL-NPs and 99mTc-BA solution respectively. In conclusion, the outcome of this study highlights the great potential of using LA-modified-CL-NPs for the ultrahigh encapsulation of therapeutic molecules with pH-dependent/poor water-solubility and for targeting the liver.
Collapse
|
29
|
Glyco-nanoparticles: New drug delivery systems in cancer therapy. Semin Cancer Biol 2019; 69:24-42. [PMID: 31870939 DOI: 10.1016/j.semcancer.2019.12.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 12/24/2022]
Abstract
Cancer is known as one of the most common diseases that are associated with high mobility and mortality in the world. Despite several efforts, current cancer treatment modalities often are highly toxic and lack efficacy and specificity. However, the application of nanotechnology has led to the development of effective nanosized drug delivery systems which are highly selective for tumors and allow a slow release of active anticancer agents. Different Nanoparticles (NPs) such as the silicon-based nano-materials, polymers, liposomes and metal NPs have been designed to deliver anti-cancer drugs to tumor sites. Among different drug delivery systems, carbohydrate-functionalized nanomaterials, specially based on their multi-valent binding capacities and desirable bio-compatibility, have attracted considerable attention as an excellent candidate for controlled release of therapeutic agents. In addition, these carbohydrate functionalized nano-carriers are more compatible with construction of the intracellular delivery platforms like the carbohydrate-modified metal NPs, quantum dots, and magnetic nano-materials. In this review, we discuss recent research in the field of multifunctional glycol-nanoparticles (GNPs) intended for cancer drug delivery applications.
Collapse
|
30
|
Li J, Zhang Y, Cai C, Rong X, Shao M, Li J, Yang C, Yu G. Collaborative assembly of doxorubicin and galactosyl diblock glycopolymers for targeted drug delivery of hepatocellular carcinoma. Biomater Sci 2019; 8:189-200. [PMID: 31821399 DOI: 10.1039/c9bm01604j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hepatocellular carcinoma (HCC) patients suffer from severe pain due to the serious systemic side effects and low efficiency of chemotherapeutic drugs, and it is important to develop novel drug delivery systems to circumvent these issues. In this study, a series of galactose-based glycopolymers, poly(N-(prop-2-enoyl)-β-d-galactopyranosylamine)-b-poly(N-isopropyl acrylamide) (pGal(OH)-b-pNIPAA), were prepared through a sequential reversible addition-fragmentation chain transfer (RAFT) polymerization and tetrabutylammonium hydroxide (TBAOH)-mediated removal of acetyl groups. Hydrophilic doxorubicin hydrochloride was introduced to undergo collaborative assembly with poly(N-(prop-2-enoyl)-β-d-peracetylated galactosamine)-b-poly(N-isopropyl acrylamide) (pGal(Ac)-b-pNIPAA) via TBAOH treatment. pGal-b-pNIPAA/doxorubicin (DOX) delivery nanoparticles (GND NPs) formed by collaborative assembly were fully characterized by NMR, TEM and FT-IR, indicating the well-controlled formation of particles with uniform size and high efficiency in terms of drug loading and encapsulation compared with conventional adsorption methods. Meanwhile, the GND NPs were observed to be rapidly disintegrated under acidic conditions and resulted in an increased release of DOX. Cellular experiments showed that pGal-b-pNIPAA/DOX is apparently an asialoglycoprotein receptor (ASGPR)-mediated target of HCC, resulting in enhanced cellular uptake to HepG2 cells and anti-tumor efficacy in vitro. Furthermore, GND NPs III exerted more sustainable and effective anti-tumor effects compared to free DOX on a transgenic zebrafish TO(KrasG12V) model in vivo. These results indicated that the biocompatible nanomaterials developed by collaborative assembly with galactosyl diblock glycopolymers and DOX may serve as a promising candidates for targeting therapy of HCC.
Collapse
Affiliation(s)
- Jianghua Li
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Yang Zhang
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Chao Cai
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China. and Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Xiaozhi Rong
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China. and Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Meng Shao
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Jiarui Li
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Chendong Yang
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Guangli Yu
- Key Laboratory of Marine Drugs, Ministry of Education & Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China. and Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
31
|
|
32
|
Hamledari H, Sajjadi SF, Alikhah A, Boroumand MA, Behmanesh M. ASGR1 but not FOXM1 expression decreases in the peripheral blood mononuclear cells of diabetic atherosclerotic patients. J Diabetes Complications 2019; 33:539-546. [PMID: 31202960 DOI: 10.1016/j.jdiacomp.2019.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/22/2019] [Accepted: 05/11/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND The ASGR1 was recently shown to play a key role in the development of coronary artery disease (CAD), but its exact mechanism of action in the CAD pathogenesis is not yet known. This study evaluates the possible association between the expression level of ASGR1 and its downstream transcription factor FOXM1 in the inflammatory cells of peripheral blood (PBMC) and the pathogenesis of CAD in the Diabetic condition. METHODS Blood samples were taken from the candidates who had visited the Tehran Heart Center and had underwent diagnostic tests with respect to diabetes and CAD. The peripheral blood cells were harvested, RNA was extracted, and cDNA was synthesized. The qRT-PCR was performed on 79 cDNA samples taken from 49 CAD+ patients and 30 CAD- patients. RESULTS In this study, we observed a significant decrease of ASGR1 expression in the PBMC of CAD+ patients compared to the CAD- patients. We did not identify any considerable differences in the expression of FOXM1 in patients' subgroups with respect to the diabetes and CAD. CONCLUSION The results of our study determine the association of ASGR1 expression and CAD pathogenesis. However, we do not know whether this result is the cause or the effect of CAD.
Collapse
Affiliation(s)
- Homa Hamledari
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyedeh Fatemeh Sajjadi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Asieh Alikhah
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mehrdad Behmanesh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
33
|
Maeda Y, Motoyama K, Nishiyama R, Higashi T, Onodera R, Nakamura H, Takeo T, Nakagata N, Yamada Y, Ishitsuka Y, Kondo Y, Irie T, Era T, Arima H. In vivo Efficacy and Safety Evaluation of Lactosyl-β-cyclodextrin as a Therapeutic Agent for Hepatomegaly in Niemann-Pick Type C Disease. NANOMATERIALS 2019; 9:nano9050802. [PMID: 31130658 PMCID: PMC6566927 DOI: 10.3390/nano9050802] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/02/2022]
Abstract
Niemann-Pick type C disease (NPC) is a fatal, autosomal recessive disorder, which causes excessive accumulation of free cholesterol in endolysosomes, resulting in progressive hepatomegaly and neurodegeneration. Currently, 2-hydroxypropyl-β-cyclodextrin (HP-β-CyD) is used at a high dose for the treatment of NPC, risking lung toxicity and hearing loss during treatment. One method to reduce the required dose of HP-β-CyD for the treatment of hepatomegaly is to actively deliver β-cyclodextrin (β-CyD) to hepatocytes. Previously, we synthesized lactosyl-β-CyD (Lac-β-CyD) and demonstrated that it lowers cholesterol in NPC model liver cells. In the present study, we studied the efficacy and safety of Lac-β-CyD treatment of hepatomegaly in Npc1−/− mice. After subcutaneous administration, Lac-β-CyD accumulated in the liver and reduced hepatomegaly with greater efficacy than HP-β-CyD. In addition, subcutaneous administration of a very high dose of Lac-β-CyD was less toxic to the lungs than HP-β-CyD. Notably, the accumulation of intracellular free cholesterol in endolysosomes of NPC-like liver cells was significantly lower after administration of Lac-β-CyD than after treatment with HP-β-CyD. In conclusion, these results suggest that Lac-β-CyD is a candidate for the effective treatment of hepatomegaly in NPC.
Collapse
Affiliation(s)
- Yuki Maeda
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan.
- Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, Kumamoto 862-0973, Japan.
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan.
| | - Rena Nishiyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan.
| | - Taishi Higashi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan.
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto 862-0973, Japan.
| | | | - Hideaki Nakamura
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan.
| | - Toru Takeo
- Center for Animal Resources and Development, Kumamoto University, Kumamoto 860-0811, Japan.
| | - Naomi Nakagata
- Center for Animal Resources and Development, Kumamoto University, Kumamoto 860-0811, Japan.
| | - Yusei Yamada
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan.
| | - Yoichi Ishitsuka
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan.
| | - Yuki Kondo
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan.
| | - Tetsumi Irie
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan.
- Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, Kumamoto 862-0973, Japan.
| | - Takumi Era
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan.
| | - Hidetoshi Arima
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan.
- Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, Kumamoto 862-0973, Japan.
| |
Collapse
|
34
|
Terziroli Beretta-Piccoli B, Mieli-Vergani G, Vergani D. The clinical usage and definition of autoantibodies in immune-mediated liver disease: A comprehensive overview. J Autoimmun 2018; 95:144-158. [DOI: 10.1016/j.jaut.2018.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023]
|
35
|
Wu J, Yuan J, Ye B, Wu Y, Xu Z, Chen J, Chen J. Dual-Responsive Core Crosslinking Glycopolymer-Drug Conjugates Nanoparticles for Precise Hepatocarcinoma Therapy. Front Pharmacol 2018; 9:663. [PMID: 30065648 PMCID: PMC6056621 DOI: 10.3389/fphar.2018.00663] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/04/2018] [Indexed: 12/14/2022] Open
Abstract
Nanoparticles (NPs) have demonstrated a potential for hepatocarcinoma therapy. However, the effective and safe NP-mediated drug transportation is still challenging due to premature leakage and inaccurate release of the drug. Herein, we designed a series of core cross-linking galactose-based glycopolymer-drug conjugates (GPDs) NPs with both redox-responsive and pH-sensitive characteristics to target and program drug release. Glycopolymer is comprised of galactose-containing units, which gather on the surface of GPD NPs and exhibit specific recognition to hepatocarcinoma cells, which over-express the asialoglycoprotein receptor. GPD NPs are stable in a normal physiological environment and can rapidly release the drug in hepatocarcinoma cells, which are reductive and acidic, by combining disulfide bond cross-linked core, as well as boronate ester-linked hydrophilic glycopolymer chain and the hydrophobic drug.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinghua Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Jingxiao Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| |
Collapse
|
36
|
e Silva ATM, Maia ALC, de Oliveira Silva J, de Barros ALB, Soares DCF, de Magalhães MTQ, José Alves R, Ramaldes GA. Synthesis of cholesterol-based neoglycoconjugates and their use in the preparation of liposomes for active liver targeting. Carbohydr Res 2018; 465:52-57. [DOI: 10.1016/j.carres.2018.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/15/2018] [Accepted: 06/15/2018] [Indexed: 01/01/2023]
|
37
|
Sebode M, Weiler-Normann C, Liwinski T, Schramm C. Autoantibodies in Autoimmune Liver Disease-Clinical and Diagnostic Relevance. Front Immunol 2018; 9:609. [PMID: 29636752 PMCID: PMC5880919 DOI: 10.3389/fimmu.2018.00609] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022] Open
Abstract
Testing for liver-related autoantibodies should be included in the workup of patients with hepatitis or cholestasis of unknown origin. Although most of these autoantibodies are not disease specific, their determination is a prerequisite to diagnose autoimmune hepatitis (AIH) and primary biliary cholangitis (PBC), and they are components of the diagnostic scoring system in these diseases. In primary sclerosing cholangitis (PSC), on the other hand, autoantibodies are frequently present but play a minor role in establishing the diagnosis. In PSC, however, data on antibodies suggest a link between disease pathogenesis and the intestinal microbiota. This review will focus on practical aspects of antibody testing in the three major autoimmune liver diseases AIH, PBC, and PSC.
Collapse
Affiliation(s)
- Marcial Sebode
- 1st Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Christina Weiler-Normann
- 1st Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.,Martin Zeitz Centre for Rare Diseases, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Timur Liwinski
- 1st Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Schramm
- 1st Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.,Martin Zeitz Centre for Rare Diseases, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
38
|
Yang D, Zheng X, Wang N, Fan S, Yang Y, Lu Y, Chen Q, Liu X, Zheng J. Kukoamine B promotes TLR4-independent lipopolysaccharide uptake in murine hepatocytes. Oncotarget 2018; 7:57498-57513. [PMID: 27542278 PMCID: PMC5295368 DOI: 10.18632/oncotarget.11292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 08/11/2016] [Indexed: 12/30/2022] Open
Abstract
Free bacterial lipopolysaccharide (LPS) is generally removed from the bloodstream through hepatic uptake via TLR4, the LPS pattern recognition receptor, but mechanisms for internalization and clearance of conjugated LPS are less clear. Kukoamine B (KB) is a novel cationic alkaloid that interferes with LPS binding to TLR4. In this study, KB accelerated blood clearance of LPS. KB also enhanced LPS distribution in the hepatic tissues of C57 BL/6 mice, along with LPS uptake in primary hepatocytes and HepG2 cells. By contrast, KB inhibited LPS internalization in Kupffer and RAW 264.7 cells. Loss of TLR4 did not affect LPS uptake into KB-treated hepatocytes. We also detected selective upregulation of the asialoglycoprotein receptor (ASGPR) upon KB treatment, and ASGPR colocalized with KB in cultured hepatocytes. Molecular docking showed that KB bound to ASGPR in a manner similar to GalNAc, a known ASGPR agonist. GalNAc dose-dependently reduced KB internalization, suggesting it competes with KB for ASGPR binding, and ASGPR knockdown also impaired LPS uptake into hepatocytes. Finally, while KB enhanced LPS uptake, it was protective against LPS-induced inflammation and hepatocyte injury. Our study provides a new mechanism for conjugated LPS hepatic uptake induced by the LPS neutralizer KB and mediated by membrane ASGPR binding.
Collapse
Affiliation(s)
- Dong Yang
- Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xinchuan Zheng
- Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ning Wang
- Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shijun Fan
- Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yongjun Yang
- Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yongling Lu
- Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qian Chen
- Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xin Liu
- Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jiang Zheng
- Medical Research Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
39
|
Wahiba M, Feng XQ, Zang Y, James TD, Li J, Chen GR, He XP. A supramolecular pyrenyl glycoside-coated 2D MoS 2 composite electrode for selective cell capture. Chem Commun (Camb) 2018; 52:11689-11692. [PMID: 27722250 DOI: 10.1039/c6cc06332b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Here we demonstrate the simple construction and characterization of a pyrenyl glycoside-coated 2D MoS2 material composite capable of selectively capturing proteins and live cells on an electrode, as determined by differential pulse voltammetry.
Collapse
Affiliation(s)
- Mokhtari Wahiba
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, P. R. China.
| | - Xue-Qing Feng
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, P. R. China.
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Rd., Shanghai 201203, P. R. China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
| | - Jia Li
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, P. R. China.
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, P. R. China.
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, P. R. China.
| |
Collapse
|
40
|
Dong H, Tian L, Gao M, Xu H, Zhang C, Lv L, Zhang J, Wang C, Tian Y, Ma X. Promising galactose-decorated biodegradable poloxamer 188-PLGA diblock copolymer nanoparticles of resibufogenin for enhancing liver cancer therapy. Drug Deliv 2017; 24:1302-1316. [PMID: 28895767 PMCID: PMC8240972 DOI: 10.1080/10717544.2017.1373165] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Liver cancer is one of the major diseases affecting human health. Modified drug delivery systems through the asialoglycoprotein receptor, which is highly expressed on the surface of hepatocytes, have become a research focus for the treatment of liver cancer. Resibufogenin (RBG) is a popular traditional Chinese medicine and natural anti-cancer drug that was isolated from Chansu, but its cardiotoxicity and hydrophobicity have limited its clinical applications. Galactosyl-succinyl-poloxamer 188 and galactosyl-succinyl-poloxamer 188-polylactide-co-glycolide (Gal-SP188–PLGA) were synthesized using galactose, P188, and PLGA to achieve active liver-targeting properties. RBG-loaded Gal-SP188–PLGA nanoparticles (RGPPNs) and coumarin-6-loaded Gal-SP188–PLGA nanoparticles (CGPPNs) were prepared. The in vitro cellular uptake, cytotoxicity, and apoptosis of nanoparticles in HepG2 cells were analyzed. The in vivo therapeutic effects of nanoparticles were assessed in a hepatocarcinogenic mouse model. The results showed that Gal-SP188–PLGA was successfully synthesized. The cellular uptake assay demonstrated that CGPPNs had superior active liver-targeting properties. The ratio of apoptotic cells was increased in the RGPPN group. In comparison to the other groups, RGPPNs showed superior in vivo therapeutic effects and anticancer efficacy. Thus, the active liver-targeting RGPPNs, which can enhance the pharmacological effects and decrease the toxicity of RBG, are expected to become a promising and effective treatment for liver cancer.
Collapse
Affiliation(s)
- Hao Dong
- a College of Pharmacy , Dalian Medical University , Dalian , China
| | - Li Tian
- b Department of Pharmaceutics , The First Affiliated Hospital of Dalian Medical University , Dalian , China
| | - Meng Gao
- a College of Pharmacy , Dalian Medical University , Dalian , China
| | - Hong Xu
- c College of Basic Medical Sciences , Dalian Medical University , Dalian , China
| | - Chenghong Zhang
- c College of Basic Medical Sciences , Dalian Medical University , Dalian , China
| | - Li Lv
- a College of Pharmacy , Dalian Medical University , Dalian , China
| | - Jianbin Zhang
- a College of Pharmacy , Dalian Medical University , Dalian , China
| | - Changyuan Wang
- a College of Pharmacy , Dalian Medical University , Dalian , China
| | - Yan Tian
- a College of Pharmacy , Dalian Medical University , Dalian , China
| | - Xiaochi Ma
- a College of Pharmacy , Dalian Medical University , Dalian , China
| |
Collapse
|
41
|
Motoyama K, Nishiyama R, Maeda Y, Higashi T, Ishitsuka Y, Kondo Y, Irie T, Era T, Arima H. Synthesis of multi-lactose-appended β-cyclodextrin and its cholesterol-lowering effects in Niemann-Pick type C disease-like HepG2 cells. Beilstein J Org Chem 2017; 13:10-18. [PMID: 28179943 PMCID: PMC5238562 DOI: 10.3762/bjoc.13.2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 12/01/2016] [Indexed: 02/05/2023] Open
Abstract
Niemann–Pick type C (NPC) disease, characterized by intracellular accumulation of unesterified cholesterol and other lipids owing to defects in two proteins NPC1 and NPC2, causes neurodegeneration and other fatal neurovisceral symptoms. Currently, treatment of NPC involves the use of 2-hydroxypropyl-β-cyclodextrin (HP-β-CD). HP-β-CD is effective in the treatment of hepatosplenomegaly in NPC disease, albeit at a very high dose. One of the methods to reduce the required dose of HP-β-CD for treatment of NPC is to actively targeting hepatocytes with β-cyclodextrin (β-CD). The aim of the present study was to synthesize a novel multi-lactose-appended β-CD (multi-Lac-β-CD) and to evaluate its cholesterol-lowering effect in U18666A-treated HepG2 (NPC-like HepG2) cells. Further, the study aimed at delivering β-CD to hepatocytes via cholesterol-accumulated HepG2 cells, and indicated that the newly synthesized multi-Lac-β-CD had an average degree of substitution of lactose (DSL) of 5.6. This newly synthesized multi-Lac-β-CD was found to significantly decrease the concentration of intracellular cholesterol with negligible cytotoxicity as compared to HP-β-CD. An increased internalization of TRITC-multi-Lac-β-CD (DSL 5.6) as compared to TRITC-HP-β-CD was observed in NPC-like HepG2 cells. Further, the dissociation constant of peanut lectin with multi-Lac-β-CD (DSL5.6) was found to be extremely low (2.5 × 10−8 M). These results indicate that multi-Lac-β-CD (DSL5.6) diminished intracellular cholesterol levels in NPC-like HepG2 cells via asialoglycoprotein receptor (ASGPR)-mediated endocytosis.
Collapse
Affiliation(s)
- Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Rena Nishiyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuki Maeda
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Taishi Higashi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yoichi Ishitsuka
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuki Kondo
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Tetsumi Irie
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Takumi Era
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Hidetoshi Arima
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
42
|
He XP, Zang Y, James TD, Li J, Chen GR, Xie J. Fluorescent glycoprobes: a sweet addition for improved sensing. Chem Commun (Camb) 2016; 53:82-90. [PMID: 27740660 DOI: 10.1039/c6cc06875h] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The development of small-molecule fluorescent probes for the detection of ions and biomacromolecules and for cellular and in vivo imaging has been a very active research area. Nevertheless, many problems exist for traditional probes including their poor water solubility, toxicity and the inability to target specific tissues. Because of the enhanced water solubility, biocompatibility and targeting ability for specific cells, there has been an emerging movement to use carbohydrates as either the backbone or as a warhead to decorate conventional fluorescent probes, producing "glycoprobes" with enhanced properties. This feature article provides an overview of recently developed glycoprobes for ion and protein detection as well as targeted (receptor targeting) cellular imaging and theranostics. Here, we summarise the tactics for preparing small molecular glycoprobes and their supramolecular 2D material composites.
Collapse
Affiliation(s)
- Xiao-Peng He
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, P. R. China.
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Rd., Shanghai 201203, P. R. China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Rd., Shanghai 201203, P. R. China.
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, P. R. China.
| | - Juan Xie
- PPSM, ENS Cachan, CNRS UMR 8531, Université Paris-Saclay, 61 av President Wilson, F-94230 Cachan, France.
| |
Collapse
|
43
|
Tumor targeting strategies for chitosan-based nanoparticles. Colloids Surf B Biointerfaces 2016; 148:460-473. [DOI: 10.1016/j.colsurfb.2016.09.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 09/13/2016] [Accepted: 09/15/2016] [Indexed: 12/17/2022]
|
44
|
Zhang L, Tian Y, Wen Z, Zhang F, Qi Y, Huang W, Zhang H, Wang Y. Asialoglycoprotein receptor facilitates infection of PLC/PRF/5 cells by HEV through interaction with ORF2. J Med Virol 2016; 88:2186-2195. [DOI: 10.1002/jmv.24570] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Although the biological and epidemiological features of hepatitis E virus (HEV) have been studied extensively in recent years, the mechanism by which HEV infects cells is still poorly understood. In this study, coimmunoprecipitation, pull‐down, and ELISA were used to show that the HEV ORF2 protein interacts directly with the ectodomain of both ASGR1 and ASGR2. Susceptibility to HEV correlated positively with the expression level of surface asialoglycoprotein receptor (ASGPR) in cell lines. ASGPR‐directed small interfering RNA (siRNA) in HEV‐infected PLC/PRF/5 cells had no significant effect on HEV release, suggesting that ASGPR mainly regulates the viral binding and entry steps. Both the purified ASGPR ectodomain and anti‐ASGPR antibodies disturbed the binding of HEV to PLC/PRF/5 cells. The classic ASGPR ligands asialofetuin, asialoganglioside, and fibronectin competitively inhibited the binding of HEV to hepatocytes in the presence of calcium. HeLa cell lines stably expressing ASGPR displayed increased HEV‐binding capacity, whereas ASGPR‐knockout PLC/PRF/5 cell lines had lower HEV‐binding capacity. Thus, our study demonstrates that ASGPR is involved in and facilitates HEV infection by binding to ORF2. J. Med. Virol. 88:2186–2195, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Li Zhang
- Division of HIV/AIDS and Sexually‐Transmitted Virus Vaccines National Institutes for Food and Drug Control Beijing China
| | - Yabin Tian
- Division of HIV/AIDS and Sexually‐Transmitted Virus Vaccines National Institutes for Food and Drug Control Beijing China
| | - Zhiheng Wen
- Division of HIV/AIDS and Sexually‐Transmitted Virus Vaccines National Institutes for Food and Drug Control Beijing China
| | - Feng Zhang
- Division of Monoclonal Antibody Products National Institutes for Food and Drug Control Beijing China
| | - Ying Qi
- Division of HIV/AIDS and Sexually‐Transmitted Virus Vaccines National Institutes for Food and Drug Control Beijing China
| | - Weijin Huang
- Division of HIV/AIDS and Sexually‐Transmitted Virus Vaccines National Institutes for Food and Drug Control Beijing China
| | - Heqiu Zhang
- Department of Bio‐Diagnosis Beijing Institute of Basic Medical Sciences Beijing China
| | - Youchun Wang
- Division of HIV/AIDS and Sexually‐Transmitted Virus Vaccines National Institutes for Food and Drug Control Beijing China
| |
Collapse
|
45
|
Ji DK, Zhang Y, Zang Y, Li J, Chen GR, He XP, Tian H. Targeted Intracellular Production of Reactive Oxygen Species by a 2D Molybdenum Disulfide Glycosheet. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:9356-9363. [PMID: 27570946 DOI: 10.1002/adma.201602748] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/25/2016] [Indexed: 05/20/2023]
Abstract
A 2D "glycosheet" based on supramolecular self-assembly between 2D MoS2 and fluorescent glycoligands is developed. The composite 2D material is proven suitable for targeted intracellular production of reactive oxygen species (singlet oxygen) by the sequential control of a receptor endocytosis and light irradiation.
Collapse
Affiliation(s)
- Ding-Kun Ji
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, P. R. China
| | - Yue Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, P. R. China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Rd., Shanghai, 201203, P. R. China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Rd., Shanghai, 201203, P. R. China
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Rd., Shanghai, 201203, P. R. China
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, P. R. China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, P. R. China
| |
Collapse
|
46
|
Xie D, Feng XQ, Hu XL, Liu L, Ye Z, Cao J, Chen GR, He XP, Long YT. Probing Mannose-Binding Proteins That Express on Live Cells and Pathogens with a Diffusion-to-Surface Ratiometric Graphene Electrosensor. ACS APPLIED MATERIALS & INTERFACES 2016; 8:25137-25141. [PMID: 27588680 DOI: 10.1021/acsami.6b08566] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper describes the development of a "diffusion-to-surface" ratiometric graphene electrosensor for the selective detection of live cells and pathogens that highly express mannose-binding proteins (MBPs). MBPs have been implicated in many pathological processes and are identified on specific types of bacteria. Consequently, MBPs are a promising biomarker for targeted disease diagnosis and therapy. Here, we develop a unique electrosensor that features a ratiometric voltammetric signal for the selective probing of MBPs. Self-assembly of mannosyl anthraquinone (AQ) to a graphene oxide-decorated screen-printed electrode produces the sensor with an inherent surface-controlled voltammetric signal. Subsequently, addition of a redox probe (RP) imparts the system with a diffusion-controlled current, thus enabling a ratiometric sensing rationale for which AQ serves as a reference. While the reference current is hardly compromised by adding analytes, RP exhibits a concentration-dependent current quenching on addition of mannose-selective lectins over other proteins. Importantly, this ratiometric electrosensor has proven to be applicable for the ratiometric probing of alternatively activated macrophages and a Gram-negative bacterium highly expressing MBPs, but shows minimal response to a series of control live cells and bacteria without mannose receptor expression.
Collapse
Affiliation(s)
- Donghao Xie
- Department of Pharmacy & Department of Interventional Oncology, Dahua Hospital , Xuhui District, Shanghai, 200237, P.R. China
| | - Xue-Qing Feng
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology , Shanghai 200237, P.R. China
| | - Xi-Le Hu
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology , Shanghai 200237, P.R. China
| | - Lin Liu
- Department of Pharmacy & Department of Interventional Oncology, Dahua Hospital , Xuhui District, Shanghai, 200237, P.R. China
| | - Zhihong Ye
- Department of Pharmacy & Department of Interventional Oncology, Dahua Hospital , Xuhui District, Shanghai, 200237, P.R. China
| | - Jun Cao
- Department of Pharmacy & Department of Interventional Oncology, Dahua Hospital , Xuhui District, Shanghai, 200237, P.R. China
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology , Shanghai 200237, P.R. China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology , Shanghai 200237, P.R. China
| | - Yi-Tao Long
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology , Shanghai 200237, P.R. China
| |
Collapse
|
47
|
Dias SFL, Nogueira SS, de França Dourado F, Guimarães MA, de Oliveira Pitombeira NA, Gobbo GG, Primo FL, de Paula RCM, Feitosa JPA, Tedesco AC, Nunes LCC, Leite JRSA, da Silva DA. Acetylated cashew gum-based nanoparticles for transdermal delivery of diclofenac diethyl amine. Carbohydr Polym 2016; 143:254-61. [DOI: 10.1016/j.carbpol.2016.02.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/30/2016] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
|
48
|
Dou WT, Zeng YL, Lv Y, Wu J, He XP, Chen GR, Tan C. Supramolecular Ensembles Formed between Charged Conjugated Polymers and Glycoprobes for the Fluorogenic Recognition of Receptor Proteins. ACS APPLIED MATERIALS & INTERFACES 2016; 8:13601-13606. [PMID: 27159586 DOI: 10.1021/acsami.6b03223] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This paper describes the simple construction of a unique class of supramolecular ensembles formed by electrostatic self-assembly between charged conjugated polymers and fluorophore-coupled glycoligands (glycoprobes) for the selective fluorogenic detection of receptor proteins at both the molecular and cellular levels. We show that positively and negatively charged diazobenzene-containing poly(p-phenylethynylenes) (PPEs) can be used to form stable fluorogenic probes with fluorescein-based (negatively charged) and rhodamine B based (positively charged) glycoprobes by electrostatic interaction. The structures of the ensembles have been characterized by spectroscopic and microscopic techniques. The supramolecular probes formed show quenched fluorescence in an aqueous buffer solution, which can be specifically recovered, in a concentration-dependent manner, through competitive complexation with a selective protein receptor, over a range of other unselective proteins. The ensembles also show selective fluorescence enhancement with a live cell that expresses the glycoligand receptor but not a control cell without receptor expression.
Collapse
Affiliation(s)
- Wei-Tao Dou
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, P. R. China
| | - Ya-Li Zeng
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, P. R. China
| | - Ying Lv
- The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, P. R. China
| | - Jiatao Wu
- The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, P. R. China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, P. R. China
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, P. R. China
| | - Chunyan Tan
- The Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, P. R. China
| |
Collapse
|
49
|
Witzigmann D, Quagliata L, Schenk SH, Quintavalle C, Terracciano LM, Huwyler J. Variable asialoglycoprotein receptor 1 expression in liver disease: Implications for therapeutic intervention. Hepatol Res 2016; 46:686-96. [PMID: 26422581 DOI: 10.1111/hepr.12599] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/07/2015] [Accepted: 09/19/2015] [Indexed: 02/08/2023]
Abstract
AIM One of the most promising strategies for the treatment of liver diseases is targeted drug delivery via the asialoglycoprotein receptor (ASGPR). The success of this approach heavily depends on the ASGPR expression level on parenchymal liver cells. In this study, we assessed the mRNA and protein expression levels of the major receptor subunit, ASGR1, in hepatocytes both in vitro and in vivo. METHODS In vitro, various liver cancer-derived cell lines were evaluated. In vivo, we screened the ASGR1 mRNA on 59 hepatocellular carcinoma and matched non-neoplastic tissue using RNA microarray. In addition, 350 human liver specimens of patients with hepatocellular carcinoma or non-neoplastic liver diseases were screened for ASGR1 protein level using tissue microarray analysis. RESULTS Our data reveal that the ASGR1 mRNA expression directly correlates with the protein level. We demonstrate that the ASGR1 expression is upregulated in cirrhotic specimens and is significantly decreased with increasing hepatocellular carcinoma grade. CONCLUSION Because the ASGR1 expression levels are variable between patients, our findings suggest that ASGPR-based targeting strategies should be combined with ASGPR-companion diagnostics to maximize clinical benefit.
Collapse
Affiliation(s)
- Dominik Witzigmann
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Luca Quagliata
- Institute of Pathology, Molecular Pathology Division, University Hospital of Basel, Basel, Switzerland
| | - Susanne H Schenk
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Cristina Quintavalle
- Institute of Pathology, Molecular Pathology Division, University Hospital of Basel, Basel, Switzerland
| | - Luigi M Terracciano
- Institute of Pathology, Molecular Pathology Division, University Hospital of Basel, Basel, Switzerland
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
50
|
Liu D, Zhang J, Xu S, Liu H. Membrane property and biofunction of phospholiposome incorporated with anomeric galactolipids. SPRINGERPLUS 2016; 5:655. [PMID: 27330921 PMCID: PMC4870520 DOI: 10.1186/s40064-016-2236-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/26/2016] [Indexed: 11/21/2022]
Abstract
There has been increasing interest in the construction of liposomes containing a targeting reagent for target-specific drug delivery. Glycoconjugates that can be recognized by transmembrane glycoprotein receptors have been extensively used to form glyco-liposomal drug carriers. However, the impact of anomerism, which is a common identity of natural glycoconjugates, on the glyco-liposomal properties has been hardly probed in previous studies. Here we investigate the liposomal properties of phospholipid incorporated with a pair of anomeric galactolipids. The anomeric galacto-liposomes are characterized and their membrane fluidity, thermo-stability, DNA condensation efficiency and fluorescence leakage are comparatively tested. The in vitro cellular internalization effect of the galacto-liposomes is also demonstrated. This study suggests that anomerism might give distinct impact on the membrane properties and even biofunctions of glyco-liposomes.
Collapse
Affiliation(s)
- Danyang Liu
- />Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237 People’s Republic of China
| | - Junqi Zhang
- />Key Laboratory of Medical Molecular Virology (Ministry of Health and Ministry of Education), School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Rd, Shanghai, 200032 People’s Republic of China
| | - Shouhong Xu
- />Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237 People’s Republic of China
| | - Honglai Liu
- />Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237 People’s Republic of China
| |
Collapse
|