1
|
Michalak KP, Michalak AZ. Understanding chronic inflammation: couplings between cytokines, ROS, NO, Ca i 2+, HIF-1α, Nrf2 and autophagy. Front Immunol 2025; 16:1558263. [PMID: 40264757 PMCID: PMC12012389 DOI: 10.3389/fimmu.2025.1558263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/14/2025] [Indexed: 04/24/2025] Open
Abstract
Chronic inflammation is an important component of many diseases, including autoimmune diseases, intracellular infections, dysbiosis and degenerative diseases. An important element of this state is the mainly positive feedback between inflammatory cytokines, reactive oxygen species (ROS), nitric oxide (NO), increased intracellular calcium, hypoxia-inducible factor 1-alpha (HIF-1α) stabilisation and mitochondrial oxidative stress, which, under normal conditions, enhance the response against pathogens. Autophagy and the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant response are mainly negatively coupled with the above-mentioned elements to maintain the defence response at a level appropriate to the severity of the infection. The current review is the first attempt to build a multidimensional model of cellular self-regulation of chronic inflammation. It describes the feedbacks involved in the inflammatory response and explains the possible pathways by which inflammation becomes chronic. The multiplicity of positive feedbacks suggests that symptomatic treatment of chronic inflammation should focus on inhibiting multiple positive feedbacks to effectively suppress all dysregulated elements including inflammation, oxidative stress, calcium stress, mito-stress and other metabolic disturbances.
Collapse
Affiliation(s)
- Krzysztof Piotr Michalak
- Laboratory of Vision Science and Optometry, Physics and Astronomy Faculty, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | |
Collapse
|
2
|
Imamichi T, Yang J, Chen Q, Goswami S, Marquez M, Kariyawasam U, Sharma HN, Wiscovitch-Russo R, Li X, Aioi A, Adelsberger JW, Chang W, Higgins J, Sui H. Interleukin-27-polarized HIV-resistant M2 macrophages are a novel subtype of macrophages that express distinct antiviral gene profiles in individual cells: implication for the antiviral effect via different mechanisms in the individual cell-dependent manner. Front Immunol 2025; 16:1550699. [PMID: 40129989 PMCID: PMC11931227 DOI: 10.3389/fimmu.2025.1550699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/17/2025] [Indexed: 03/26/2025] Open
Abstract
Introduction Interleukin (IL)-27 is an anti-viral cytokine. IL-27-treated monocyte-derived macrophages (27-Mac) suppressed HIV replication. Macrophages are generally divided into two subtypes, M1 and M2 macrophages. M2 macrophages can be polarized into M2a, M2b, M2c, and M2d by various stimuli. IL-6 and adenosine induce M2d macrophages. Since IL-27 is a member of the IL-6 family of cytokines, 27-Mac was considered M2d macrophages. In the current study, we compared biological function and gene expression profiles between 27-Mac and M2d subtypes. Methods Monocytes derived from health donors were differentiated to M2 using macrophage colony-stimulating factor. Then, the resulting M2 was polarized into different subtypes using IL-27, IL-6, or BAY60-658 (an adenosine analog). HIV replication was monitored using a p24 antigen capture assay, and the production of reactive oxygen species (ROS) was determined using a Hydrogen Peroxide Assay. Phagocytosis assay was run using GFP-labeled opsonized E. coli. Cytokine production was detected by the IsoPlexis system, and the gene expression profiles were analyzed using single-cell RNA sequencing (scRNA-seq). Results and Discussion 27-Mac and BAY60-658-polarized M2d (BAY-M2d) resisted HIV infection, but IL-6-polarized M2d (6-M2d) lacked the anti-viral effect. Although phagocytosis activity was comparable among the three macrophages, only 27-Mac, but neither 6-M2d nor BAY-M2d, enhanced the generation of ROS. The cytokine-producing profile of 27-Mac did not resemble that of the two subtypes. The scRNA-seq revealed that 27-Mac exhibited a different clustering pattern compared to other M2ds, and each 27-Mac expressed a distinct combination of anti-viral genes. Furthermore, 27-Mac did not express the biomarkers of M2a, M2b, and M2c. However, it significantly expressed CD38 (p<0.01) and secreted CXCL9 (p<0.001), which are biomarkers of M1. Conclusions These data suggest that 27-Mac may be classified as either an M1-like subtype or a novel subset of M2, which resists HIV infection mediated by a different mechanism in individual cells using different anti-viral gene products. Our results provide a new insight into the function of IL-27 and macrophages.
Collapse
Affiliation(s)
- Tomozumi Imamichi
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Jun Yang
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Qian Chen
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Suranjana Goswami
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Mayra Marquez
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Udeshika Kariyawasam
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Homa Nath Sharma
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Rosana Wiscovitch-Russo
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Xuan Li
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Akihiro Aioi
- Laboratory of Basic Research, Septem-Soken, Osaka, Japan
| | - Joseph W. Adelsberger
- AIDS Monitoring Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Weizhong Chang
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Jeanette Higgins
- AIDS Monitoring Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Hongyan Sui
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| |
Collapse
|
3
|
Ye R, Li S, Li Y, Shi K, Li L. Revealing the role of regulatory b cells in cancer: development, function and treatment significance. Cancer Immunol Immunother 2025; 74:125. [PMID: 39998678 PMCID: PMC11861783 DOI: 10.1007/s00262-025-03973-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
B cells are essential components of the immune response, primarily recognized for their ability to produce antibodies. However, emerging research reveals their important roles in regulating immune responses and influencing tumor development, independent of antibodies. The connection between tumor progression and alterations in the tumor microenvironment is well-established, as immune infiltrating cells can enhance the survival of tumor cells by modifying their surroundings. Despite this, the majority of studies have focused on T cells and macrophages, creating a gap in our understanding of B cells. Regulatory B cells (Bregs) represent a crucial subpopulation that plays a significant role in maintaining immune balance. They may have a substantial impact on tumor immunity by negatively regulating tumor-infiltrating immune cells. This paper reviews the existing literature on Bregs, examining their development, phenotypes, functions, and the mechanisms through which they exert their regulatory effects. Furthermore, we highlight their potential interventional roles and prognostic significance in cancer therapy. By addressing the current gaps in knowledge regarding Bregs within tumors, we hope to inspire further research that could lead to innovative cancer treatments and improved outcomes for patients.
Collapse
Affiliation(s)
- Ruyu Ye
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Sijia Li
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Yuxiao Li
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Kaixin Shi
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Li Li
- Department of Hematology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China.
| |
Collapse
|
4
|
Majchrzycka M, Wegner J, Adamski Z, Jenerowicz D. Interleukins 30 and 27 in psoriasis and inflammation. Postepy Dermatol Alergol 2025; 42:1-4. [PMID: 40114761 PMCID: PMC11921921 DOI: 10.5114/ada.2025.147548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/06/2024] [Indexed: 03/22/2025] Open
Abstract
This review explores the roles of interleukin-30 (IL-30) and interleukin-27 (IL-27) in inflammation and autoimmune diseases, with a focus on psoriasis. The two coexisting cytokines should be analysed in conjunction as their actions are antagonistic in vivo. While IL-27 exhibits diverse anti-inflammatory mechanisms, the understanding of IL-30's functions remains limited. Studies suggest that IL-27 may play a role in regulating psoriasis, but findings are inconsistent. IL-30 shows promise in mitigating psoriatic lesions and suppressing inflammatory responses. However, research on IL-30's involvement in autoimmune diseases presents conflicting results. This article provides a literature review on the complex correlations between cytokines, their role in the pathogenesis of psoriasis, inflammation, carcinogenesis, and autoimmune diseases, and provides a detailed picture of the interplay between IL-27 and IL-30 to uncover novel therapeutic targets for psoriasis and other autoimmune conditions.
Collapse
Affiliation(s)
| | - Joanna Wegner
- Department of Dermatology, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Zygmunt Adamski
- Department of Dermatology, University Clinical Hospital, Poznan, Poland
| | - Dorota Jenerowicz
- Department of Dermatology, University Clinical Hospital, Poznan, Poland
| |
Collapse
|
5
|
Zhu HZ, Niu Y, Wen JX, Yan C, Cha SN, Gao Y, Hao XL, Hou WJ, Yan L, Jiang TW, Hu ZD, Zheng WQ. Accuracy of interleukin-27 in diagnosing tuberculous pleural effusion: Age should be considered. Cytokine 2025; 186:156844. [PMID: 39742701 DOI: 10.1016/j.cyto.2024.156844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Tuberculous pleural effusion (TPE) diagnosis still faces many difficulties and challenges. Some studies have shown that pleural interleukin -27 (IL-27) had a diagnostic potential for TPE. However, their findings are not always consistent. This study aimed to investigate the diagnostic accuracy of pleural IL-27 for TPE. METHODS We prospectively enrolled 211 patients with undiagnosed pleural effusion. Effusion Mycobacterium tuberculosis (Mtb) culture, Ziehl-Neelsen staining, biopsy, and response to antituberculosis therapy were used to define TPE. The pleural IL-27 levels were determined by enzyme-linked immunosorbent assay (ELISA). A receiver operating characteristic curve (ROC) with the area under the curve (AUC) was used to evaluate the diagnostic accuracy of IL-27 for TPE. In addition, we investigated the influence of age on the diagnostic performance of IL-27 by resampling patients with different upper age limits in the inclusion criteria. RESULTS Among the 211 enrolled participants, 33 were TPE and 178 were non-TPE. The mean concentration of IL-27 in TPE patients was significantly higher than that of non-TPE patients. The AUC of IL-27 was 0.76 (95 %CI: 0.67-0.86). At the threshold of 500 pg/mL, the sensitivity and specificity of IL-27 were 0.26 (95 %CI: 0.20-0.33) and 0.91 (95 %CI:0.76-0.97), respectively. The AUC of IL-27 is 0.84 in patients with an upper age limit of 70. Still, it decreased to 0.76 in patients with an upper age limit of 75. CONCLUSION Age can affect the diagnostic performance of IL-27 for TPE.
Collapse
Affiliation(s)
- Hong-Zhe Zhu
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China; Department of Parasitology, the Basic Medical Sciences College of Inner Mongolia Medical University, Hohhot 010107, China; Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot 010050, China
| | - Yan Niu
- Medical Experiment Center, the College of Basic Medicine, Inner Mongolia Medical University, Hohhot 010030, China
| | - Jian-Xun Wen
- Medical Experiment Center, the College of Basic Medicine, Inner Mongolia Medical University, Hohhot 010030, China
| | - Cheng Yan
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China; Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot 010050, China
| | - Su-Na Cha
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China; Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot 010050, China
| | - Yue Gao
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China; Department of Parasitology, the Basic Medical Sciences College of Inner Mongolia Medical University, Hohhot 010107, China; Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot 010050, China
| | - Xu-Lei Hao
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China; Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot 010050, China
| | - Wen-Jie Hou
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China; Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot 010050, China
| | - Li Yan
- Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot 010050, China; Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China
| | - Ting-Wang Jiang
- Department of Key Laboratory, Affiliated Changshu Hospital of Nantong University, Changshu 215500, China
| | - Zhi-De Hu
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China; Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot 010050, China.
| | - Wen-Qi Zheng
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China; Department of Parasitology, the Basic Medical Sciences College of Inner Mongolia Medical University, Hohhot 010107, China; Key Laboratory for Biomarkers, Inner Mongolia Medical University, Hohhot 010050, China.
| |
Collapse
|
6
|
An J, Fu D, Chen X, Guan C, Li L, Bai J, Lv H. Revisiting the role of IL-27 in obesity-related metabolic diseases: safeguard or perturbation? Front Immunol 2025; 15:1498288. [PMID: 39906735 PMCID: PMC11792170 DOI: 10.3389/fimmu.2024.1498288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/31/2024] [Indexed: 02/06/2025] Open
Abstract
The prevalence of metabolic diseases, such as obesity, has been steadily increasing in recent years, posing a significant threat to public health. Therefore, early identification and intervention play a crucial role. With the deepening understanding of the etiology of metabolic diseases, novel therapeutic targets are emerging for the treatment of obesity, lipid metabolism disorders, cardiovascular and cerebrovascular diseases, glucose metabolism disorders, and other related metabolic conditions. IL-27, as a multi-potent cytokine, holds great promise as a potential candidate target in this regard. This article provides a comprehensive review of the latest findings on IL-27 expression and signal transduction in the regulation of immune inflammatory cells, as well as its implications in obesity and other related metabolic diseases. Furthermore, it explores the potential of IL-27 as a novel therapeutic target for the treatment of obesity and metabolic disorders. Finally, an overview is presented on both the opportunities and challenges associated with targeting IL-27 for therapeutic interventions.
Collapse
Affiliation(s)
- Jinyang An
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Donghua Fu
- Department of Endocrinology, The People’s Hospital of Yuzhong County, Lanzhou, Gansu, China
| | - Ximei Chen
- Department of General Medicine, Zhengzhou Yihe Hospital affiliated to Henan University, Zhengzhou, Henan, China
| | - Conghui Guan
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Lingling Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Jia Bai
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Haihong Lv
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
7
|
Yao X, Huo W, Wang Y, Xia D, Chen Y, Tang Y, Tang H, Yang W, Liu Y, Xue J, Yuan Q, Gao X, Cao K. Environmental Low-Dose Radiation Activates Th1 Immunity through the Mitochondria-STING Pathway. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22907-22918. [PMID: 39689952 DOI: 10.1021/acs.est.4c08009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The presence of low-dose radiation (LDR) in the environment has become more prevalent. However, the effect of LDR exposure on the immune system remains elusive. Here, we interestingly found that LDR specifically elevated the percentage of CD4+IFNγ+ Th1 splenocytes, both in vitro and in vivo, without affecting the percentage of CD8+IFNγ+ Tc1 cells and regulatory T cells. A similar phenomenon was found in T cells from peripheral blood. Mechanistically, we found that LDR can induce mitochondrial damage, which stimulated the STING signaling pathway, leading to the enhanced expression of T-bet, the master transcriptional factor of Th1-cell differentiation. The specific STING signal inhibitor can abrogate the effect of LDR on Th1 differentiation, confirming the central role of the STING pathway. To further validate the immunoregulatory role of LDR, we exposed mice with whole body LDR and evaluated if LDR could protect mice against triple-negative breast cancer through enhanced antitumor immunity. As expected, LDR significantly delayed tumor development and promoted cell death. Meanwhile, LDR resulted in increased tumor-infiltrating Th1 cells, while the proportion of Tc1 and Treg cells remained unchanged. Furthermore, the infiltration of antitumor macrophages was also increased. In summary, we revealed that environmental LDR could specifically regulate Th1 T-cell activities, providing critical information for the potential application of LDR in both clinical and nonclinical settings.
Collapse
Affiliation(s)
- Xiuxiu Yao
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Wendi Huo
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yuchen Wang
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Dongfang Xia
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yan Chen
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yuhua Tang
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Huayong Tang
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Wenjiang Yang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Liu
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jingquan Xue
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Yuan
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Xueyun Gao
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Kai Cao
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
8
|
Su QY, Jiang ZQ, Song XY, Zhang SX. Regulatory B cells in autoimmune diseases: Insights and therapeutic potential. J Autoimmun 2024; 149:103326. [PMID: 39520834 DOI: 10.1016/j.jaut.2024.103326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/06/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Autoimmune diseases are characterized by the body's immune system attacking its own cells, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS). In recent studies, regulatory B cells (Bregs), which play a vital role in maintaining peripheral tolerance and controlling persistent autoimmune diseases (ADs), have shown great potential in treating ADs. This review synthesizes the latest advancements in targeted therapies for ADs, with a particular emphasis on the subgroups, phenotypic markers, and signal pathways associated with Bregs. Following an examination of these elements, the discussion pivots to innovative Breg-based therapeutic approaches for the management of ADs.
Collapse
Affiliation(s)
- Qin-Yi Su
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China
| | - Zhong-Qing Jiang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China
| | - Xuan-Yi Song
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China
| | - Sheng-Xiao Zhang
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Shanxi Province, Taiyuan, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Shanxi Province, Taiyuan, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
9
|
Yazdanpanah E, Pazoki A, Dadfar S, Nemati MH, Sajad Siadati SM, Tarahomi M, Orooji N, Haghmorad D, Oksenych V. Interleukin-27 and Autoimmune Disorders: A Compressive Review of Immunological Functions. Biomolecules 2024; 14:1489. [PMID: 39766196 PMCID: PMC11672993 DOI: 10.3390/biom14121489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Autoimmune disorders (ADs) pose significant health and economic burdens globally, characterized by the body's immune system mistakenly attacking its own tissues. While the precise mechanisms driving their development remain elusive, a combination of genetic predisposition(s) and environmental triggers is implicated. Interleukin-27 (IL-27), among numerous cytokines involved, has emerged as a key regulator, exhibiting dual roles in immune modulation. This review delves into the molecular structure and signaling mechanisms of IL-27, highlighting its diverse effects on various immune cells. Additionally, it explores the involvement of IL-27 in autoimmune diseases, such as multiple sclerosis (MS) and rheumatoid arthritis (RA), offering insights into its potential therapeutic implications. Moreover, its involvement in autoimmune diseases like type 1 diabetes (T1D), inflammatory bowel disease (IBD), myasthenia gravis (MG), Sjögren's syndrome (SS), and Guillain-Barré syndrome (GBS) is multifaceted, with potential diagnostic and therapeutic implications across these conditions. Further research is essential to fully understand IL-27's mechanisms of action and therapeutic potential in autoimmune diseases.
Collapse
Affiliation(s)
- Esmaeil Yazdanpanah
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Alireza Pazoki
- Student Research Committee, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Sepehr Dadfar
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Mohammad Hosein Nemati
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | | | - Mahdieh Tarahomi
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Niloufar Orooji
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Dariush Haghmorad
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan 35147-99442, Iran
| | - Valentyn Oksenych
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), 7028 Trondheim, Norway
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| |
Collapse
|
10
|
Nanjaiah H, Moudgil KD. Targeted Therapy of Antibody-Induced Autoimmune Arthritis Using Peptide-Guided Nanoparticles. Int J Mol Sci 2024; 25:12019. [PMID: 39596089 PMCID: PMC11593680 DOI: 10.3390/ijms252212019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation of the joints and it affects over 18 million people worldwide. Despite the availability of a variety of potent drugs for RA, over 30-40 percent of patients fail to achieve adequate remission, and many patients suffer from systemic adverse effects. Thus, there is an urgent need for a joint-targeted drug delivery system. Nanotechnology-based drug delivery methods offer a promising resource that is largely untapped for RA. Using the T cell-driven rat adjuvant-induced arthritis (AA) model of human RA, we developed a peptide-targeted liposomal drug delivery system for arthritis therapy. It was based on a novel joint-homing peptide ART-2 to guide liposomes entrapping dexamethasone (Dex) to arthritic joints of rats, and this approach was more effective in suppressing arthritis than the unpackaged (free) drug. To de-risk the translation of our innovative drug delivery technology to RA patients, we undertook the validation of ART-2-liposomal delivery in a genetically and mechanistically distinct arthritis model in mice, the collagen antibody-induced arthritis (CAIA) model. Using live imaging for tissue distribution of liposomes in vivo, immunohistochemistry of paws for cellular binding of ART-2, and liposomal Dex delivery, our results fully validated the key findings of the rat model, namely, preferential homing of peptide-functionalized liposomes to arthritic joints compared to healthy joints, and higher efficacy of liposomal Dex than free Dex. These results offer a proof-of-concept for the benefits of targeted drug delivery to the joints and its potential translation to RA patients.
Collapse
Affiliation(s)
- Hemalatha Nanjaiah
- Research and Development, VA Maryland Healthcare System, Baltimore VA Medical Center, Baltimore, MD 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kamal D. Moudgil
- Research and Development, VA Maryland Healthcare System, Baltimore VA Medical Center, Baltimore, MD 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Rheumatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
11
|
Qian S, Zhang X, Zheng X, Li R, Hao X, Tang Z, Yang Z, Sun A, Guo S, Song Y, Zhang Z, Song X, Yu L. Development of interleukin-27 recombinant Lactococcus lactis and its efficacy in treating psoriasis and colitis in mice. Int J Biol Macromol 2024; 282:137113. [PMID: 39486722 DOI: 10.1016/j.ijbiomac.2024.137113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Psoriasis and inflammatory bowel disease (IBD) are chronic immune-mediated diseases that adversely affect patients' quality of life. Interleukin (IL)-27 plays an important role in a variety of infectious diseases, autoimmune disorders, and cancers. However, its therapeutic effects in psoriasis and colitis remain underexplored. In this study, we evaluated the therapeutic potential of recombinant Lactococcus lactis (L. lactis) expressing IL-27 (pIL-27) in imiquimod-induced psoriasis and dextran sodium sulfate-induced colitis mouse models. In the psoriasis mouse model, oral administration of pIL-27 significantly reduced skin scaling, mitigated weight loss, lowered psoriasis area and severity index scores, diminished epidermal hyperplasia and inflammatory cell infiltration, and decreased inflammatory cytokine levels. In the colitis mouse model, oral administration of pIL-27 alleviated weight loss, improved disease activity index scores, prevented colon shortening, ameliorated histopathological changes, and decreased inflammatory cytokine levels. Furthermore, recombinant L. lactis expressing IL-27 could modulate the gut microbiota, increasing the amount of beneficial bacteria and reducing harmful bacteria in the intestine, thereby alleviating the progression of psoriasis and colitis. These results suggest the potential of IL-27 as a therapeutic option for treating psoriasis and IBD.
Collapse
Affiliation(s)
- Shaoju Qian
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Henan 453003, China
| | - Xingyi Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Xiaoxiao Zheng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Ruixue Li
- Department of Otolaryngology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| | - Xiaoling Hao
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Henan 453003, China; Department of Endocrine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhou Tang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Zishan Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Henan 453003, China
| | - Aiping Sun
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Henan 453003, China
| | - Sheng Guo
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Henan 453003, China
| | - Yihang Song
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Zihan Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Xiangfeng Song
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Henan 453003, China
| | - Lili Yu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Henan 453003, China; Department of Endocrine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, Henan, China.
| |
Collapse
|
12
|
Wan Y, Zhao Y, Pan M, Gan J, Wu N, Zhang Y, Liu Z, Song L. Peripheral biomarkers of Parkinson's disease and its correlation with clinical symptoms: a case-control study. BMC Neurol 2024; 24:417. [PMID: 39468494 PMCID: PMC11514796 DOI: 10.1186/s12883-024-03918-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Inflammation significantly impacts Parkinson's disease (PD), yet the intricate relationship between inflammatory markers and PD remains elusive. OBJECTIVE To identify the peripheral biomarkers of PD and its correlation with the motor and non-motor symptoms of PD. METHODS 79 PD patients and 65 controls were included in this study. Clinical information and the serum levels of IL-8, IL-27, IL-33, β-NGF, AgRP, and TRAILR2 in the participants were collected. Appropriate scales were used to assess the symptoms of PD. For the factors with significant differences in the two groups, multivariable logistic regression was used to determine its relationship with PD. Moreover, spearman correlation was conducted to explore the correlation between the factors and PD related symptoms. The IL-27 level was compared between the cognitively healthy PD group and the mild cognitive impairment in PD (PD-MCI). The serum level of TRAILR2 was positively correlated with age and was not associated with other clinical characteristics related to PD. RESULTS Compared to controls, the serum levels of IL-27(P = 0.013) were increased whereas the levels of TRAILR2(P = 0.008) were decreased in PD patients. IL-8, IL-33, β-NGF, and AgRP showed no significant differences between the two groups. After controlling for the other variables, IL-27 was considered as an independent risk factor for PD in the multivariable logistic regression model. The receiver operating characteristic (ROC) curve for diagnosing PD with IL-27 yielded an area under the curve (AUC) of 0.621. Additionally, IL-27 level in PD patients was positively correlated with age, the disease duration, LEDD and negatively correlated with the MoCA scores. However, no significant difference was found in IL-27 levels between cognitively healthy PD and PD-MCI groups. CONCLUSION Elevated serum IL-27 was a risk factor for PD and positively correlated with the cognitive decline in PD.
Collapse
Affiliation(s)
- Ying Wan
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuwen Zhao
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengyu Pan
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Jing Gan
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Na Wu
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Zhang
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenguo Liu
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Song
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
13
|
Yin L, Zhang E, Mao T, Zhu Y, Ni S, Li Y, Liu C, Fang Y, Ni K, Lu Y, Li H, Zhou M, Hu Q. Macrophage P2Y 6R activation aggravates psoriatic inflammation through IL-27-mediated Th1 responses. Acta Pharm Sin B 2024; 14:4360-4377. [PMID: 39525587 PMCID: PMC11544167 DOI: 10.1016/j.apsb.2024.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/07/2024] [Accepted: 06/11/2024] [Indexed: 11/16/2024] Open
Abstract
Purinergic signaling plays a causal role in the modulation of immune inflammatory response in the course of psoriasis, but its regulatory mechanism remains unclear. As a member of purinoceptors, P2Y6R mainly distributed in macrophages was significantly up-expressed in skin lesions from patients with psoriasis in the present study. Here, the severity of psoriasis was alleviated in imiquimod-treated mice with macrophages conditional knockout of P2Y6R, while the cell-chat algorithm showed there was a correlation between macrophage P2Y6R and Th1 cells mediated by IL-27. Mechanistically, P2Y6R enhanced PLC β /p-PKC/MAPK activation to induce IL-27 release dependently, which subsequently regulated the differentiation of Th1 cells, leading to erythematous and scaly plaques of psoriasis. Interestingly, we developed a novel P2Y6R inhibitor FS-6, which bonds with the ARG266 side chain of P2Y6R, exhibited remarkable anti-psoriasis effects targeting P2Y6R. Our study provides insights into the role of P2Y6R in the pathogenesis of psoriasis and suggests its potential as a target for the development of therapeutic interventions. A novel P2Y6R inhibitor FS-6 could be developed as an anti-psoriasis drug candidate for the clinic.
Collapse
Affiliation(s)
- Li Yin
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Enming Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Tianqi Mao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Yifan Zhu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Shurui Ni
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yehong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Chunxiao Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yafei Fang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Kexin Ni
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yuhe Lu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Huanqiu Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Mengze Zhou
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qinghua Hu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
14
|
Luo YH, Zhang YY, Li MQ, Zhang XY, Zheng ZM. Emerging Roles of IL-27 in Trophoblast Cells and Pregnancy Complications. Am J Reprod Immunol 2024; 92:e13942. [PMID: 39422056 DOI: 10.1111/aji.13942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/03/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
PROBLEM Pregnancy complications such as spontaneous abortion, preeclampsia, and preterm birth persist, despite current interventions aimed at their prevention and treatment largely proving unsuccessful. Interleukin-27 (IL-27), composed of p28 and EBI3 subunits, binds to IL-27R, which consists of gp130 and IL-27Rα (also known as WSX-1 or TCCR), and plays a pivotal role in tumor development and inflammation regulation. At the maternal-fetal interface, IL-27 expression has been detected in trophoblasts, endometrial stromal cells, and decidual cells. Abnormal levels of IL-27/IL-27R have been linked to adverse pregnancy outcomes, including spontaneous miscarriage, preeclampsia, and preterm birth. This review aims to explore the expression of IL-27 at the maternal-fetal interface and its signaling pathway, uncovering the complex role of IL-27 in pregnancy complications. METHOD OF STUDY A comprehensive literature review was conducted using PubMed/Medline, Scopus, and Embase databases, analyzing studies on IL-27 expression and its signaling pathways at the maternal-fetal interface. The review focused on identifying the presence of IL-27 in various cell types and linking abnormal IL-27/IL-27R expression to pregnancy complications such as spontaneous miscarriage, preeclampsia, and preterm birth. DISCUSSION AND CONCLUSION IL-27 plays a complex role at the maternal-fetal interface, with abnormal expression linked to several pregnancy complications. These findings highlight the need for further research to elucidate IL-27's mechanisms and develop targeted interventions. Future studies should aim to develop targeted interventions and improve therapeutic strategies for managing pregnancy complications.
Collapse
Affiliation(s)
- Yi-Hua Luo
- Department of Reproductive Immunology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yang-Yang Zhang
- Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, People's Republic of China
| | - Ming-Qing Li
- Department of Reproductive Immunology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity and Child Health Hospital, Shanghai, People's Republic of China
| | - Xin-Yan Zhang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, People's Republic of China
| | - Zi-Meng Zheng
- Department of Reproductive Immunology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity and Child Health Hospital, Shanghai, People's Republic of China
| |
Collapse
|
15
|
Soul J, Carlsson E, Hofmann SR, Russ S, Hawkes J, Schulze F, Sergon M, Pablik J, Abraham S, Hedrich CM. Tissue gene expression profiles and communication networks inform candidate blood biomarker identification in psoriasis and atopic dermatitis. Clin Immunol 2024; 265:110283. [PMID: 38880200 DOI: 10.1016/j.clim.2024.110283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/24/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Overlapping clinical and pathomechanistic features can complicate the diagnosis and treatment of inflammatory skin diseases, including psoriasis and atopic dermatitis (AD). Spatial transcriptomics allows the identification of disease- and cell-specific molecular signatures that may advance biomarker development and future treatments. This study identified transcriptional signatures in keratinocytes and sub-basal CD4+ and CD8+ T lymphocytes from patients with psoriasis and AD. In silico prediction of ligand:receptor interactions delivered key signalling pathways (interferon, effector T cells, stroma cell and matrix biology, neuronal development, etc.). Targeted validation of selected transcripts, including CCL22, RELB, and JUND, in peripheral blood T cells suggests the chosen approach as a promising tool also in other inflammatory diseases. Psoriasis and AD are characterized by transcriptional dysregulation in T cells and keratinocytes that may be targeted therapeutically. Spatial transcriptomics is a valuable tool in the search for molecular signatures that can be used as biomarkers and/or therapeutic targets.
Collapse
Affiliation(s)
- J Soul
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - E Carlsson
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - S R Hofmann
- Department of Pediatrics, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - S Russ
- Department of Pediatrics, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - J Hawkes
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - F Schulze
- Department of Pediatrics, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - M Sergon
- Institut of Pathology, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - J Pablik
- Institut of Pathology, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - S Abraham
- Department of Dermatology, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - C M Hedrich
- Department of Women's & Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom; Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, United Kingdom.
| |
Collapse
|
16
|
Korobova ZR, Arsentieva NA, Santoni A, Totolian AA. Role of IL-27 in COVID-19: A Thin Line between Protection and Disease Promotion. Int J Mol Sci 2024; 25:7953. [PMID: 39063193 PMCID: PMC11276726 DOI: 10.3390/ijms25147953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Cytokine storm is usually described as one of the main reasons behind COVID-associated mortality. Cytokines are essential protein molecules engaged in immune responses; they play a critical role in protection against infections. However, they also contribute to inflammatory reactions and tissue damage, becoming a double-edged sword in the context of COVID-19. Recent studies have suggested various cytokines and chemokines that play a crucial role in the immune response to SARS-CoV-2 infection. One such cytokine is interleukin 27 (IL-27), which has been found to be elevated in the blood plasma of patients with COVID-19. Within this study, we will explore the role of IL-27 in immune responses and analyze both the existing literature and our own prior research findings on this cytokine in the context of COVID-19. It affects a wide variety of immune cells. Regardless of the pathological process it is involved in, IL-27 is critical for upholding the necessary balance between tissue damage and cytotoxicity against infectious agents and/or tumors. In COVID-19, it is involved in multiple processes, including antiviral cytotoxicity via CD8+ cells, IgG subclass switching, and even the activation of Tregs.
Collapse
Affiliation(s)
- Zoia R. Korobova
- Laboratory of Molecular Immunology, Saint Petersburg Pasteur Institute, 197101 Saint Petersburg, Russia; (Z.R.K.)
- Department of Immunology, Pavlov First State Medical University of Saint Petersburg, 197022 Saint Petersburg, Russia
| | - Natalia A. Arsentieva
- Laboratory of Molecular Immunology, Saint Petersburg Pasteur Institute, 197101 Saint Petersburg, Russia; (Z.R.K.)
| | - Angela Santoni
- Department of Molecular Medicine, Pasteur Institute–Cenci Bolognetti Foundation, Sapienza University of Rome, 00162 Rome, Italy
| | - Areg A. Totolian
- Laboratory of Molecular Immunology, Saint Petersburg Pasteur Institute, 197101 Saint Petersburg, Russia; (Z.R.K.)
- Department of Immunology, Pavlov First State Medical University of Saint Petersburg, 197022 Saint Petersburg, Russia
| |
Collapse
|
17
|
Tang Y, Qu S, Ning Z, Wu H. Immunopeptides: immunomodulatory strategies and prospects for ocular immunity applications. Front Immunol 2024; 15:1406762. [PMID: 39076973 PMCID: PMC11284077 DOI: 10.3389/fimmu.2024.1406762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024] Open
Abstract
Immunopeptides have low toxicity, low immunogenicity and targeting, and broad application prospects in drug delivery and assembly, which are diverse in application strategies and drug combinations. Immunopeptides are particularly important for regulating ocular immune homeostasis, as the eye is an immune-privileged organ. Immunopeptides have advantages in adaptive immunity and innate immunity, treating eye immune-related diseases by regulating T cells, B cells, immune checkpoints, and cytokines. This article summarizes the application strategies of immunopeptides in innate immunity and adaptive immunity, including autoimmunity, infection, vaccine strategies, and tumors. Furthermore, it focuses on the mechanisms of immunopeptides in mediating ocular immunity (autoimmune diseases, inflammatory storms, and tumors). Moreover, it reviews immunopeptides' application strategies and the therapeutic potential of immunopeptides in the eye. We expect the immune peptide to get attention in treating eye diseases and to provide a direction for eye disease immune peptide research.
Collapse
Affiliation(s)
| | | | | | - Hong Wu
- Eye Center of Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Shen Y, Li C, Zhang X, Wang Y, Zhang H, Yu Z, Gui B, Hu R, Li Q, Gao A, Liang H. Gut microbiota linked to hydrocephalus through inflammatory factors: a Mendelian randomization study. Front Immunol 2024; 15:1372051. [PMID: 39076985 PMCID: PMC11284128 DOI: 10.3389/fimmu.2024.1372051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/27/2024] [Indexed: 07/31/2024] Open
Abstract
Background The gut microbiota (GM) has been implicated in neurological disorders, but the relationship with hydrocephalus, especially the underlying mechanistic pathways, is unclear. Using Mendelian randomization (MR), we aim to discover the mediating role of inflammatory factors in the relationship between GM and hydrocephalus. Methods After removing confounders, univariable and multivariable MR analyses were performed using summary statistics to assess the causal relationships between GM, inflammatory factors (IL-17A and IL-27), and types of hydrocephalus. Meta-analyses were used to reconcile the differences in MR results between different hydrocephalus sources. Finally, mediator MR analyses were applied to determine the mediating effect of inflammatory factors. Various sensitivity analysis methods were employed to ensure the reliability and stability of the results. Results After correction for P-values, Firmicutes (phylum) (OR, 0.34; 95%CI, 0.17-0.69; P = 2.71E-03, P FDR = 2.44E-02) significantly reduced the risk of obstructive hydrocephalus. The remaining 18 different taxa of GM had potential causal relationships for different types of hydrocephalus. In addition, Firmicutes (phylum) decreased the risk of obstructive hydrocephalus by increasing levels of IL-17A (mediating effect = 21.01%), while Eubacterium ruminantium group (genus) increased the risk of normal-pressure hydrocephalus by decreasing levels of IL-27 (mediating effect = 7.48%). Conclusion We reveal the connection between GM, inflammatory factors (IL-17A and IL-27), and hydrocephalus, which lays the foundation for unraveling the mechanism between GM and hydrocephalus.
Collapse
Affiliation(s)
- Yingjie Shen
- Department of Neurosurgery, National Health Commission Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Changyu Li
- Department of Neurosurgery, Hainan Cancer Hospital, Haikou, Hainan, China
| | - Xi Zhang
- Department of Neurosurgery, National Health Commission Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yaolou Wang
- Department of Neurosurgery, National Health Commission Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Haopeng Zhang
- Department of Neurosurgery, National Health Commission Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhao Yu
- Department of Neurosurgery, National Health Commission Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Binbin Gui
- Department of Neurosurgery, National Health Commission Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Renjie Hu
- Department of Neurosurgery, National Health Commission Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Qi Li
- Department of Neurosurgery, National Health Commission Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Aili Gao
- School of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Hongsheng Liang
- Department of Neurosurgery, National Health Commission Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
19
|
Zhang M, Li D, Zhu J, Xia X, Zhang H, Wu J, Wang S, Deng A, Wen Q, Tan J, Hao J, Jiang J, Bao X, Sun G, Lu J, Yang Q, Yang H, Cao G, Yin Z, Wang Q. IL-27 disturbs lipid metabolism and restrains mitochondrial activity to inhibit γδ T17 cell-mediated skin inflammation. Cell Death Dis 2024; 15:491. [PMID: 38982043 PMCID: PMC11233514 DOI: 10.1038/s41419-024-06887-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
IL-17+ γδ T cells (γδ T17) are kick-starters of inflammation due to their strict immunosurveillance of xenobiotics or cellular damages and rapid response to pro-inflammatory stimulators. IL-27 is a well-recognized pleiotropic immune regulator with potent inhibitory effects on type 17 immune responses. However, its actions on γδ T17 mediated inflammation and the underlying mechanisms are less well understood. Here we find that IL-27 inhibits the production of IL-17 from γδ T cells. Mechanistically, IL-27 promotes lipolysis while inhibits lipogenesis, thus reduces the accumulation of lipids and subsequent membrane phospholipids, which leads to mitochondrial deactivation and ensuing reduction of IL-17. More importantly, Il27ra deficient γδ T cells are more pathogenic in an imiquimod-induced murine psoriasis model, while intracutaneous injection of rmIL-27 ameliorates psoriatic inflammation. In summary, this work uncovered the metabolic basis for the immune regulatory activity of IL-27 in restraining γδ T17 mediated inflammation, which provides novel insights into IL-27/IL-27Ra signaling, γδ T17 biology and the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Mingyue Zhang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, 519000, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
| | - Dehai Li
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jing Zhu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632, China
| | - Xue Xia
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, 519000, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
| | - Hua Zhang
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Jie Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632, China
| | - Shengli Wang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, 519000, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
| | - Anyi Deng
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, 519000, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
| | - Qiong Wen
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, 519000, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
| | - Jingyi Tan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, 519000, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
| | - Jianlei Hao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, 519000, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China
| | - Jun Jiang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, 519000, China
| | - Xiucong Bao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Guodong Sun
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital (Heyuan Shenhe People's Hospital), Jinan University, Heyuan, 517000, China
| | - Jiajing Lu
- Department of Dermatology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China
- Institute of Psoriasis, School of Medicine, Tongji University, Shanghai, 200443, China
| | - Quanli Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, 519000, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632, China
| | - Hengwen Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, 519000, China.
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
| | - Guangchao Cao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, 519000, China.
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
| | - Zhinan Yin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, 519000, China.
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
| | - Qian Wang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai, 519000, China.
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, 510632, China.
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
| |
Collapse
|
20
|
Li H, Li W, Li D, Yuan L, Xu Y, Su P, Wu L, Zhang Z. Based on systematic druggable genome-wide Mendelian randomization identifies therapeutic targets for diabetes. Front Endocrinol (Lausanne) 2024; 15:1366290. [PMID: 38915894 PMCID: PMC11194396 DOI: 10.3389/fendo.2024.1366290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/28/2024] [Indexed: 06/26/2024] Open
Abstract
Purpose Diabetes and its complications cause a heavy burden of disease worldwide. In recent years, Mendelian randomization (MR) has been widely used to discover the pathogenesis and epidemiology of diseases, as well as to discover new therapeutic targets. Therefore, based on systematic "druggable" genomics, we aim to identify new therapeutic targets for diabetes and analyze its pathophysiological mechanisms to promote its new therapeutic strategies. Material and method We used double sample MR to integrate the identified druggable genomics to evaluate the causal effect of quantitative trait loci (eQTLs) expressed by druggable genes in blood on type 1 and 2 diabetes (T1DM and T2DM). Repeat the study using different data sources on diabetes and its complications to verify the identified genes. Not only that, we also use Bayesian co-localization analysis to evaluate the posterior probabilities of different causal variations, shared causal variations, and co-localization probabilities to examine the possibility of genetic confounding. Finally, using diabetes markers with available genome-wide association studies data, we evaluated the causal relationship between established diabetes markers to explore possible mechanisms. Result Overall, a total of 4,477 unique druggable genes have been gathered. After filtering using methods such as Bonferroni significance (P<1.90e-05), the MR Steiger directionality test, Bayesian co-localization analysis, and validation with different datasets, Finally, 7 potential druggable genes that may affect the results of T1DM and 7 potential druggable genes that may affect the results of T2DM were identified. Reverse MR suggests that C4B may play a bidirectional role in the pathogenesis of T1DM, and none of the other 13 target genes have a reverse causal relationship. And the 7 target genes in T2DM may each affect the biomarkers of T2DM to mediate the pathogenesis of T2DM. Conclusion This study provides genetic evidence supporting the potential therapeutic benefits of targeting seven druggable genes, namely MAP3K13, KCNJ11, REG4, KIF11, CCNE2, PEAK1, and NRBP1, for T2DM treatment. Similarly, targeting seven druggable genes, namely ERBB3, C4B, CD69, PTPN22, IL27, ATP2A1, and LT-β, has The potential therapeutic benefits of T1DM treatment. This will provide new ideas for the treatment of diabetes and also help to determine the priority of drug development for diabetes.
Collapse
Affiliation(s)
- Hu Li
- Emergency Department, Binzhou Medical University Hospital, Binzhou, China
| | - Wei Li
- Urology Department, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Dongyang Li
- Internal Medicine-Neurology, Binzhou Medical University Hospital, Binzhou, China
| | - Lijuan Yuan
- Emergency Department, Binzhou Medical University Hospital, Binzhou, China
| | - Yucheng Xu
- Department of Critical Care Medicine, Jinan Central Hospital, Jinan, China
| | - Pengtao Su
- Emergency Department, Binzhou Medical University Hospital, Binzhou, China
| | - Liqiang Wu
- Emergency Department, Binzhou Medical University Hospital, Binzhou, China
| | - Zhiqiang Zhang
- Emergency Department, Binzhou Medical University Hospital, Binzhou, China
| |
Collapse
|
21
|
Shan Y, Xie T, Sun Y, Lu Z, Topatana W, Juengpanich S, Chen T, Han Y, Cao J, Hu J, Li S, Cai X, Chen M. Lipid metabolism in tumor-infiltrating regulatory T cells: perspective to precision immunotherapy. Biomark Res 2024; 12:41. [PMID: 38644503 PMCID: PMC11034130 DOI: 10.1186/s40364-024-00588-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/04/2024] [Indexed: 04/23/2024] Open
Abstract
Regulatory T cells (Tregs) are essential to the negative regulation of the immune system, as they avoid excessive inflammation and mediate tumor development. The abundance of Tregs in tumor tissues suggests that Tregs may be eliminated or functionally inhibited to stimulate antitumor immunity. However, immunotherapy targeting Tregs has been severely hampered by autoimmune diseases due to the systemic elimination of Tregs. Recently, emerging studies have shown that metabolic regulation can specifically target tumor-infiltrating immune cells, and lipid accumulation in TME is associated with immunosuppression. Nevertheless, how Tregs actively regulate metabolic reprogramming to outcompete effector T cells (Teffs), and how lipid metabolic reprogramming contributes to the immunomodulatory capacity of Tregs have not been fully discussed. This review will discuss the physiological processes by which lipid accumulation confers a metabolic advantage to tumor-infiltrating Tregs (TI-Tregs) and amplifies their immunosuppressive functions. Furthermore, we will provide a summary of the driving effects of various metabolic regulators on the metabolic reprogramming of Tregs. Finally, we propose that targeting the lipid metabolism of TI-Tregs could be efficacious either alone or in conjunction with immune checkpoint therapy.
Collapse
Affiliation(s)
- Yukai Shan
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No.3 East Qingchun Road, 310016, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
| | - Tianao Xie
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No.3 East Qingchun Road, 310016, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
| | - Yuchao Sun
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No.3 East Qingchun Road, 310016, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
| | - Ziyi Lu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No.3 East Qingchun Road, 310016, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
| | - Win Topatana
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No.3 East Qingchun Road, 310016, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
- School of Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Sarun Juengpanich
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
| | - Tianen Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No.3 East Qingchun Road, 310016, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
| | - Yina Han
- Department of Pathology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
| | - Jiasheng Cao
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No.3 East Qingchun Road, 310016, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
| | - Jiahao Hu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No.3 East Qingchun Road, 310016, Hangzhou, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
| | - Shijie Li
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No.3 East Qingchun Road, 310016, Hangzhou, China.
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China.
| | - Xiujun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No.3 East Qingchun Road, 310016, Hangzhou, China.
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China.
- School of Medicine, Zhejiang University, 310058, Hangzhou, China.
| | - Mingyu Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Key Laboratory of Endoscopic Technique Research of Zhejiang Province, No.3 East Qingchun Road, 310016, Hangzhou, China.
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run-Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China.
- School of Medicine, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
22
|
Zhou H, Qi Y, Xu Y, Qi X, Qi H. Reverse causation between multiple sclerosis and psoriasis: a genetic correlation and Mendelian randomization study. Sci Rep 2024; 14:8845. [PMID: 38632254 PMCID: PMC11024188 DOI: 10.1038/s41598-024-58182-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
Observational studies have found a potential bidirectional positive association between multiple sclerosis and psoriasis, but these studies are susceptible to confounding factors. We examined the directionality of causation using Mendelian randomization and estimated the genetic correlation using the linkage disequilibrium score. We performed Mendelian randomization analysis using large-scale genome-wide association studies datasets from the International Multiple Sclerosis Genetics Consortium (IMSGC, 115,803 individuals of European ancestry) and FinnGen (252,323 individuals of European ancestry). We selected several Mendelian randomization methods including causal analysis using summary effect (CAUSE), inverse variance-weighted (IVW), and pleiotropy-robust methods. According to CAUSE and IVW the genetic liability to MS reduces the risk of psoriasis (CAUSE odds ratio [OR] 0.93, p = 0.045; IVW OR 0.93, p = 2.51 × 10-20), and vice versa (CAUSE OR 0.72, p = 0.001; IVW OR 0.71, p = 4.80 × 10-26). Pleiotropy-robust methods show the same results, with all p-values < 0.05. The linkage disequilibrium score showed no genetic correlation between psoriasis and MS (rg = - 0.071, p = 0.2852). In summary, there is genetic evidence that MS reduces the risk of psoriasis, and vice versa.
Collapse
Affiliation(s)
- Hao Zhou
- Peking University Shenzhen Hospital Clinical College, Anhui Medical University, Shenzhen, 518036, China
- The Fifth Clinical Medical College, Anhui Medical University, Hefei, 230000, China
- Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Yajie Qi
- Peking University Shenzhen Hospital Clinical College, Anhui Medical University, Shenzhen, 518036, China
- The Fifth Clinical Medical College, Anhui Medical University, Hefei, 230000, China
- Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Yingxin Xu
- Peking University Shenzhen Hospital Clinical College, Anhui Medical University, Shenzhen, 518036, China
- The Fifth Clinical Medical College, Anhui Medical University, Hefei, 230000, China
- Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Xiaoyi Qi
- Medical College, Shantou University, Shantou, 515000, China
| | - Hui Qi
- Peking University Shenzhen Hospital Clinical College, Anhui Medical University, Shenzhen, 518036, China.
- The Fifth Clinical Medical College, Anhui Medical University, Hefei, 230000, China.
- Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| |
Collapse
|
23
|
Cobb J, Rawson J, Gonzalez N, Singer M, Kandeel F, Husseiny MI. Mechanism of Action of Oral Salmonella-Based Vaccine to Prevent and Reverse Type 1 Diabetes in NOD Mice. Vaccines (Basel) 2024; 12:276. [PMID: 38543910 PMCID: PMC10975319 DOI: 10.3390/vaccines12030276] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/06/2025] Open
Abstract
A combination therapy of preproinsulin (PPI) and immunomodulators (TGFβ+IL10) orally delivered via genetically modified Salmonella and anti-CD3 promoted glucose balance in in NOD mice with recent onset diabetes. The Salmonella bacteria were modified to express the diabetes-associated antigen PPI controlled by a bacterial promoter in conjunction with over-expressed immunomodulating molecules. The possible mechanisms of action of this vaccine to limit autoimmune diabetes remained undefined. In mice, the vaccine prevented and reversed ongoing diabetes. The vaccine-mediated beneficial effects were associated with increased numbers of antigen-specific CD4+CD25+Foxp3+ Tregs, CD4+CD49b+LAG3+ Tr1-cells, and tolerogenic dendritic-cells (tol-DCs) in the spleens and lymphatic organs of treated mice. Despite this, the immune response to Salmonella infection was not altered. Furthermore, the vaccine effects were associated with a reduction in islet-infiltrating lymphocytes and an increase in the islet beta-cell mass. This was associated with increased serum levels of the tolerogenic cytokines (IL10, IL2, and IL13) and chemokine ligand 2 (CCL2) and decreased levels of inflammatory cytokines (IFNγ, GM-CSF, IL6, IL12, and TNFα) and chemokines (CXCL1, CXCL2, and CXCL5). Overall, the data suggest that the Salmonella-based vaccine modulates the immune response, reduces inflammation, and promotes tolerance specifically to an antigen involved in autoimmune diabetes.
Collapse
Affiliation(s)
- Jacob Cobb
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Duarte, CA 91010, USA (F.K.)
- Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jeffrey Rawson
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Duarte, CA 91010, USA (F.K.)
- Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Nelson Gonzalez
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Duarte, CA 91010, USA (F.K.)
- Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Mahmoud Singer
- School of Medicine, University of California Irvine, Irvine, CA 92697, USA;
| | - Fouad Kandeel
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Duarte, CA 91010, USA (F.K.)
- Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Mohamed I. Husseiny
- Department of Translational Research & Cellular Therapeutics, Arthur Riggs Diabetes & Metabolism Research Institute, Duarte, CA 91010, USA (F.K.)
- Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
24
|
Skougaard M, Søndergaard MF, Ditlev SB, Kristensen LE. Changes in Inflammatory Cytokines in Responders and Non-Responders to TNFα Inhibitor and IL-17A Inhibitor: A Study Examining Psoriatic Arthritis Patients. Int J Mol Sci 2024; 25:3002. [PMID: 38474247 PMCID: PMC10932211 DOI: 10.3390/ijms25053002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/25/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
This study aimed to examine the changes in biomarker levels in responders and non-responders to tumor necrosis factor alpha inhibitor (TNFi) and interleukin-17A inhibitor (IL-17Ai) in psoriatic arthritis (PsA) patients over a 4-month period after treatment initiation. A total of 68 PsA patients initiating either TNFi, IL-17Ai, or methotrexate treatment were included. Blood plasma and clinical outcome measures were collected adjacent to treatment initiation and after four months. A commercially available multiplex immunoassay was included to evaluate 54 biomarkers. Mean changes were used to evaluate change over time. A statistically significant decrease in pro-inflammatory cytokines IL-6 (log-transformed mean change -0.97, 95%CI -4.30; 2.37, [p = 0.032]) and an increase in anti-inflammatory IL-10 (0.38, 95%CI 1.74; 2.50 [p = 0.010]) were seen in TNFi responders. Meanwhile, a statistically significant increase in the target cytokine IL-17A was seen in both IL-17Ai responders (2.49, 95%CI -1.84; 6.85 [p = 0.031]) and non-responders (2.48, 95%CI -1.46; 6.41 [p = 0.001]). This study demonstrated differing changes in cytokine levels when comparing treatment responders and non-responders, highlighting the need to improve the understanding of the different immune response mechanisms explaining different responses to medical treatment in PsA patients.
Collapse
Affiliation(s)
- Marie Skougaard
- The Parker Institute, Copenhagen University Hospital Bispebjerg and Frederiksberg, Nordre Fasanvej 57, 2000 Frederiksberg, Denmark
- Copenhagen Center for Translational Research, Copenhagen University Hospital Bispebjerg and Frederiksberg, Bispebjerg Bakke 23, 2400 Copenhagen, Denmark
- Department of Clinical Immunology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus, Denmark
| | - Magnus Friis Søndergaard
- Copenhagen Center for Translational Research, Copenhagen University Hospital Bispebjerg and Frederiksberg, Bispebjerg Bakke 23, 2400 Copenhagen, Denmark
| | - Sisse Bolm Ditlev
- Copenhagen Center for Translational Research, Copenhagen University Hospital Bispebjerg and Frederiksberg, Bispebjerg Bakke 23, 2400 Copenhagen, Denmark
| | - Lars Erik Kristensen
- The Parker Institute, Copenhagen University Hospital Bispebjerg and Frederiksberg, Nordre Fasanvej 57, 2000 Frederiksberg, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
25
|
Liu J, Zhang B, Zhang G, Shang D. Reprogramming of regulatory T cells in inflammatory tumor microenvironment: can it become immunotherapy turning point? Front Immunol 2024; 15:1345838. [PMID: 38449875 PMCID: PMC10915070 DOI: 10.3389/fimmu.2024.1345838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024] Open
Abstract
Overcoming the immunosuppressive tumor microenvironment and identifying widely used immunosuppressants with minimal side effects are two major challenges currently hampering cancer immunotherapy. Regulatory T cells (Tregs) are present in almost all cancer tissues and play an important role in preserving autoimmune tolerance and tissue homeostasis. The tumor inflammatory microenvironment causes the reprogramming of Tregs, resulting in the conversion of Tregs to immunosuppressive phenotypes. This process ultimately facilitates tumor immune escape or tumor progression. However, current systemic Treg depletion therapies may lead to severe autoimmune toxicity. Therefore, it is crucial to understand the mechanism of Treg reprogramming and develop immunotherapies that selectively target Tregs within tumors. This article provides a comprehensive review of the potential mechanisms involved in Treg cell reprogramming and explores the application of Treg cell immunotherapy. The interference with reprogramming pathways has shown promise in reducing the number of tumor-associated Tregs or impairing their function during immunotherapy, thereby improving anti-tumor immune responses. Furthermore, a deeper understanding of the mechanisms that drive Treg cell reprogramming could reveal new molecular targets for future treatments.
Collapse
Affiliation(s)
- Jinming Liu
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Biao Zhang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guolin Zhang
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Dong Shang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
26
|
Qi C, Feng F, Guo J, Liu Y, Guo X, Meng Y, Di T, Hu X, Wang Y, Zhao N, Zhang X, Wang Y, Zhao J, Li P. Electroacupuncture on Baihui (DU20) and Xuehai (SP10) acupoints alleviates psoriatic inflammation by regulating neurotransmitter substance P- Neurokinin-1 receptor signaling. J Tradit Complement Med 2024; 14:91-100. [PMID: 38223807 PMCID: PMC10785156 DOI: 10.1016/j.jtcme.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 04/06/2023] [Accepted: 07/06/2023] [Indexed: 01/16/2024] Open
Abstract
Background At present, acupuncture-related practices have been widely used to treat psoriasis. In our study, we investigated the effect and explored the mechanism of electroacupuncture (EA) on acupoints Baihui (DU20) and Xuehai (SP10) for the treatment of psoriasis. Methods Imiquimod-induced psoriasis-like mouse model was used in this study. Mice were treated with electroacupuncture at DU20 and SP10 (depth of 2-3 mm, frequency of 2/15 Hz, intensity of 0.5-1.0 mA, 10 min/day). The severity of psoriasis-like lesions for each group was assessed. In addition, histological analysis of the lesions were performed. The levels of inflammatory cytokines were determined using Elisa. The expression levels of Substance P (SP) and NK1R were measured using Western blotting. In addition, NK1R inhibitor was administrated to evaluate the target of electroacupuncture in our mouse model. Results Electroacupuncture significantly alleviated IMQ-induced skin lesions and epidermal thickness, accompanied with reduced keratinocyte proliferation, CD3+, CD4+, and CD8+ T cells infiltration. The reduced levels of inflammatory cytokines was observed after electroacupuncture treatment. In addition, electroacupuncture inhibited the expression levels of SP and NK1R. NK1R inhibitor could ameliorate lesional symptoms and suppress epidermal thickening and CD3+, CD4+, and CD8 + T cell infiltration. Conclusions Electroacupuncture relieved psoriasis-like inflammation and T cell infiltration. This therapeutic action was likely mediated by the modulation of Substance P and its receptor NK1R.
Collapse
Affiliation(s)
- Cong Qi
- Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Clinic and Basic Research with TCM on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, PR China
| | - Fang Feng
- Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory of Clinic and Basic Research with TCM on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, PR China
| | - JianNing Guo
- Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory of Clinic and Basic Research with TCM on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, PR China
| | - Yu Liu
- Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory of Clinic and Basic Research with TCM on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, PR China
| | - XiaoYao Guo
- Capital Medical University, Beijing, 100069, China
| | - YuJiao Meng
- Beijing Key Laboratory of Clinic and Basic Research with TCM on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, PR China
| | - TingTing Di
- Beijing Key Laboratory of Clinic and Basic Research with TCM on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, PR China
| | - XueQing Hu
- Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory of Clinic and Basic Research with TCM on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, PR China
| | - Yazhuo Wang
- Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Clinic and Basic Research with TCM on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, PR China
| | - Ning Zhao
- Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Clinic and Basic Research with TCM on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, PR China
| | - XiaWei Zhang
- Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Clinic and Basic Research with TCM on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, PR China
| | - Yan Wang
- Beijing Key Laboratory of Clinic and Basic Research with TCM on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, PR China
| | - Jingxia Zhao
- Beijing Key Laboratory of Clinic and Basic Research with TCM on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, PR China
| | - Ping Li
- Beijing Key Laboratory of Clinic and Basic Research with TCM on Psoriasis, Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, PR China
| |
Collapse
|
27
|
Lee HS, Kwon YJ, Seo EB, Kim SK, Lee H, Lee JT, Chang PS, Choi YJ, Lee SH, Ye SK. Anti-inflammatory effects of Allium cepa L. peel extracts via inhibition of JAK-STAT pathway in LPS-stimulated RAW264.7 cells. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116851. [PMID: 37385574 DOI: 10.1016/j.jep.2023.116851] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/17/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Allium cepa L. (A. cepa) is one of the oldest cultivated plants in the world. A. cepa has been used in traditional folk medicine to treat inflammatory disease in several regions, such as Palestine and Serbia. A. cepa peel has a higher content of flavonoids, such as quercetin, than the edible parts. These flavonoids alleviate inflammatory diseases. However, the anti-inflammatory effects of A. cepa peel extract-obtained using various extraction methods-and their underlying mechanisms require further investigation. AIM OF THE STUDY Although research to find safe anti-inflammatory substances in various natural products has been actively conducted for many years, it is important to continue identifying potential anti-inflammatory effects in natural materials. The purpose of this study was to investigate the ethnopharmacological properties of the A. cepa peel extract, whose efficacy when obtained through different extraction methods and underlying action mechanisms is not well known. The present study specifically aimed to observe the anti-inflammatory effects of the A. cepa peel extracts obtained using various extraction methods and the related detailed mechanisms of A. cepa peel extracts in lipopolysaccharide (LPS)-induced RAW264.7 cells. MATERIALS AND METHODS The total flavonoid content of the A. cepa peel extracts was determined the diethylene glycol colorimetric method and measured using a calibration curve prepared using quercetin as a standard solution. The antioxidant activity was evaluated using the ABTS assay, and cytotoxicity was measured using the MTT assay. NO production was measured using Griess reagent. Protein levels were measured by western blotting, and mRNA expression was measured by RT-qPCR. Secreted cytokines were analyzed using ELISA or cytokine arrays. In the GSE160086 dataset, we calculated Z-scores for individual genes of interest and displayed using a heat map. RESULTS Of the three A. cepa peel extracts obtained using different extraction methods, the A. cepa peel 50% EtOH extract (AP50E) was the most effective at inhibiting LPS-induced nitric oxide (NO) and inducible nitric oxide synthase (iNOS). Furthermore, AP50E significantly reduced the levels of pro-inflammation cytokines interleukin (IL)-1α, IL-1β, IL-6, and IL-27. Additionally, AP50E directly inhibited the Janus kinase-signaling transducer and activator of transcription (JAK-STAT) pathway. CONCLUSIONS These results showed that AP50E exhibited an anti-inflammatory effect in LPS-induced RAW264.7 mouse macrophages by directly inhibiting JAK-STAT signaling. Based on these findings, we propose AP50E as a potential candidate for the development of preventive or therapeutic agents against inflammatory diseases.
Collapse
Affiliation(s)
- Hyun-Seung Lee
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | - Yong-Jin Kwon
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Department of Cosmetic Science, Kyungsung University, Busan, 48434, Republic of Korea.
| | - Eun-Bi Seo
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | - Seul-Ki Kim
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | - Haeri Lee
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | - Jin-Tae Lee
- Department of Cosmetic Science, Kyungsung University, Busan, 48434, Republic of Korea.
| | - Pahn-Shick Chang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Young Jin Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Sung-Hyen Lee
- Functional Food Division, Department of Agro-Food Resources, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea.
| | - Sang-Kyu Ye
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Neuro-Immune Information Storage Network Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea; Wide River Institute of Immunology, Seoul National University, Hongcheon, 25159, Republic of Korea.
| |
Collapse
|
28
|
Geng M, Li K, Ai K, Liang W, Yang J, Wei X. Evolutionarily conserved IL-27β enhances Th1 cells potential by triggering the JAK1/STAT1/T-bet axis in Nile tilapia. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 4:100087. [PMID: 36873098 PMCID: PMC9978509 DOI: 10.1016/j.fsirep.2023.100087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
As a pleiotropic cytokine in the interleukin (IL)-12 family, IL-27β plays a significant role in regulating immune cell responses, eliminating invading pathogens, and maintaining immune homeostasis. Although non-mammalian IL-27β homologs have been identified, the mechanism of whether and how it is involved in adaptive immunity in early vertebrates remains unclear. In this study, we identified an evolutionarily conserved IL-27β (defined as OnIL-27β) from Nile tilapia (Oreochromis niloticus), and explored its conserved status through gene collinearity, gene structure, functional domain, tertiary structure, multiple sequence alignment, and phylogeny analysis. IL-27β was widely expressed in the immune-related tissues/organ of tilapia. The expression of OnIL-27β in spleen lymphocytes increased significantly at the adaptive immune phase after Edwardsiella piscicida infection. OnIL-27β can bind to precursor cells, T cells, and other lymphocytes to varying degrees. Additionally, IL-27β may be involved in lymphocyte-mediated immune responses through activation of Erk and JNK pathways. More importantly, we found that IL-27β enhanced the mRNA expression of the Th1 cell-associated cytokine IFN-γ and the transcription factor T-bet. This potential enhancement of the Th1 response may be attributed to the activation of the JAK1/STAT1/T-bet axis by IL-27β, as it induced increased transcript levels of JAK1, STAT1 but not TYK2 and STAT4. This study provides a new perspective for understanding the origin, evolution and function of the adaptive immune system in teleost.
Collapse
Affiliation(s)
- Ming Geng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Kete Ai
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Wei Liang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
29
|
Zhang Z, Zhu T, Zhang L, Xing Y, Yan Z, Li Q. Critical influence of cytokines and immune cells in autoimmune gastritis. Autoimmunity 2023; 56:2174531. [PMID: 36762543 DOI: 10.1080/08916934.2023.2174531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Gastric cancer (GC) is a type of the most common cancers. Autoimmune gastritis (AIG) and infection with Helicobacter pylori (HP) are the risk factors of triggering GC. With the emphasis on the treatment of HP, the incidence and prevalence of HP infection in population is decreasing. However, AIG lacks accurate diagnosis and treatment methods, which occupies high cancer risk factors. AIG is controlled by the immune environment of the stomach, including immune cells, inflammatory cells, and infiltrating intercellular material. Various immune cells or cytokines play a central role in the process of regulating gastric parietal cells. Abnormal expression levels of cytokines involved in immunity are bound to face the risk of tumorigenesis. Therefore, it is particularly important for preventing or treating AIG and avoiding the risk of gastric cancer to clarify the confirmed action mode of immune cells and cytokines in the gastric system. Herein, we briefly reviewed the role of the immune environment under AIG, focussing on describing these double-edged effects between immune cells and cytokines, and pointing out potential research challenges.
Collapse
Affiliation(s)
- Zepeng Zhang
- Kunshan Hospital of Chinese Medicine, Suzhou, Jiangsu, China
| | - Tongtong Zhu
- Kunshan Hospital of Traditional Chinese and Western Medicine, Suzhou, Jiangsu, China
| | - Lei Zhang
- Kunshan Hospital of Chinese Medicine, Suzhou, Jiangsu, China
| | - Yanchao Xing
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiqiang Yan
- Kunshan Hospital of Chinese Medicine, Suzhou, Jiangsu, China
| | - Qingsong Li
- Kunshan Hospital of Chinese Medicine, Suzhou, Jiangsu, China
| |
Collapse
|
30
|
Nie M, Huang D, Chen G, Zhao Y, Sun L. Bioadhesive Microcarriers Encapsulated with IL-27 High Expressive MSC Extracellular Vesicles for Inflammatory Bowel Disease Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303349. [PMID: 37759399 PMCID: PMC10646269 DOI: 10.1002/advs.202303349] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/24/2023] [Indexed: 09/29/2023]
Abstract
Mesenchymal stem cell (MSC) therapy is a promising candidate for inflammatory bowel disease (IBD) treatment, while overcoming the limitations of naive seeding cells function and realizing efficient intestinal targeting remains a challenge. Here, a bioadhesive microparticle carrying interleukin-27 (IL-27) MSC-derived extracellular vesicles (MSCIL-27 EVs) is developed to treat IBD. The MSCIL-27 EVs prepared through lentivirus-mediated gene transfection technology show ideal anti-inflammatory and damage repair function. By encapsulating MSCIL-27 EVs into dopamine methacrylamide-modified hydrogel, a bioadhesive EVs microcarrier via microfluidic technology is fabricated. The resultant microcarriers exhibit ideal MSCIL-27 EVs sustained release effect and effective wet adhesion property. Furthermore, the therapeutic potential of MSCIL-27 EVs-loaded microcarriers in treating IBD is demonstrated. Through giving IBD rats a rectal administration, it is found that the microcarriers can firmly anchor to the surface of colon, reduce the inflammatory response, and repair the damaged barrier. Therefore, the bioadhesive MSCIL-27 EVs-loaded microcarriers provide a promising strategy for the biomedical application of MSC-derived EVs, and broaden the clinical potential of MSC therapy.
Collapse
Affiliation(s)
- Min Nie
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjing210002China
| | - Danqing Huang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjing210002China
| | - Guopu Chen
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjing210002China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjing210002China
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Lingyun Sun
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjing210002China
- Department of Rheumatology and ImmunologyThe First Affiliated Hospital of Anhui Medical UniversityHefei230000China
| |
Collapse
|
31
|
Markina E, Tyrina E, Ratushnyy A, Andreeva E, Buravkova L. Heterotypic Cell Culture from Mouse Bone Marrow under Simulated Microgravity: Lessons for Stromal Lineage Functions. Int J Mol Sci 2023; 24:13746. [PMID: 37762048 PMCID: PMC10531336 DOI: 10.3390/ijms241813746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Muscle and skeleton structures are considered most susceptible to negative factors of spaceflights, namely microgravity. Three-dimensional clinorotation is a ground-based simulation of microgravity. It provides an opportunity to elucidate the effects of microgravity at the cellular level. The extracellular matrix (ECM) content, transcriptional profiles of genes encoding ECM and remodelling molecules, and secretory profiles were investigated in a heterotypic primary culture of bone marrow cells after 14 days of 3D clinorotation. Simulated microgravity negatively affected stromal lineage cells, responsible for bone tissue formation. This was evidenced by the reduced ECM volume and stromal cell numbers, including multipotent mesenchymal stromal cells (MSCs). ECM genes encoding proteins responsible for matrix stiffness and cell-ECM contacts were downregulated. In a heterotypic population of bone marrow cells, the upregulation of genes encoding ECM degrading molecules and the formation of a paracrine profile that can stimulate ECM degradation, may be mechanisms of osteodegenerative events that develop in real spaceflight.
Collapse
Affiliation(s)
- Elena Markina
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia; (E.T.); (A.R.); (L.B.)
| | | | | | - Elena Andreeva
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, 123007 Moscow, Russia; (E.T.); (A.R.); (L.B.)
| | | |
Collapse
|
32
|
Wang Q, Gao QC, Wang QC, Wu L, Yu Q, He PF. A compendium of mitochondrial molecular characteristics provides novel perspectives on the treatment of rheumatoid arthritis patients. J Transl Med 2023; 21:561. [PMID: 37608254 PMCID: PMC10463924 DOI: 10.1186/s12967-023-04426-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/06/2023] [Indexed: 08/24/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that exhibits a high degree of heterogeneity, marked by unpredictable disease flares and significant variations in the response to available treatments. The lack of optimal stratification for RA patients may be a contributing factor to the poor efficacy of current treatment options. The objective of this study is to elucidate the molecular characteristics of RA through the utilization of mitochondrial genes and subsequently construct and authenticate a diagnostic framework for RA. Mitochondrial proteins were obtained from the MitoCarta database, and the R package limma was employed to filter for differentially expressed mitochondrial genes (MDEGs). Metascape was utilized to perform enrichment analysis, followed by an unsupervised clustering algorithm using the ConsensuClusterPlus package to identify distinct subtypes based on MDEGs. The immune microenvironment, biological pathways, and drug response were further explored in these subtypes. Finally, a multi-biomarker-based diagnostic model was constructed using machine learning algorithms. Utilizing 88 MDEGs present in transcript profiles, it was possible to classify RA patients into three distinct subtypes, each characterized by unique molecular and cellular signatures. Subtype A exhibited a marked activation of inflammatory cells and pathways, while subtype C was characterized by the presence of specific innate lymphocytes. Inflammatory and immune cells in subtype B displayed a more modest level of activation (Wilcoxon test P < 0.05). Notably, subtype C demonstrated a stronger correlation with a superior response to biologics such as infliximab, anti-TNF, rituximab, and methotrexate/abatacept (P = 0.001) using the fisher test. Furthermore, the mitochondrial diagnosis SVM model demonstrated a high degree of discriminatory ability in distinguishing RA in both training (AUC = 100%) and validation sets (AUC = 80.1%). This study presents a pioneering analysis of mitochondrial modifications in RA, offering a novel framework for patient stratification and potentially enhancing therapeutic decision-making.
Collapse
Affiliation(s)
- Qi Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Taiyuan, China
| | - Qi-Chao Gao
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Taiyuan, China
| | - Qi-Chuan Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Li Wu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Department of Anesthesiology, Shanxi Provincial People's Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Qi Yu
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Taiyuan, China
- School of Management, Shanxi Medical University, Taiyuan, China
| | - Pei-Feng He
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Taiyuan, China.
- School of Management, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
33
|
Skougaard M, Ditlev SB, Søndergaard MF, Kristensen LE. Cytokine Signatures in Psoriatic Arthritis Patients Indicate Different Phenotypic Traits Comparing Responders and Non-Responders of IL-17A and TNFα Inhibitors. Int J Mol Sci 2023; 24:ijms24076343. [PMID: 37047315 PMCID: PMC10093817 DOI: 10.3390/ijms24076343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
This study aimed to explore the dynamic interactions between 32 cytokines and biomarkers in Psoriatic Arthritis (PsA) patients to compare cytokine signatures of treatment responders and non-responders. Biomarkers were measured before and after four months of treatment in 39 PsA patients initiating either Tumor Necrosis Factor alpha inhibitor (TNFi) or Interleukin-17A inhibitor (IL-17Ai). Response to treatment was defined by the composite measure, Disease Activity in Psoriatic Arthritis (DAPSA). A two-component principal component analysis (PCA) was implemented to describe cytokine signatures comparing DAPSA50 responders and non-responders. The cytokine signature of TNFi responders was driven by the correlated cytokines interferon γ (IFNγ) and IL-6, additionally associated with IL-12/IL-23p40, TNFα, and CRP, while the cytokine signature of TNFi non-responders was driven by the correlated cytokines IL-15, IL-8, and IFNγ. IL-17Ai responders were characterized by contributions of strongly correlated Th17 inflammatory cytokines, IL-17A, IL-12/IL-23p40, IL-22 to the cytokine signature, whereas IL-17A and IL-12/IL-23p40 did not demonstrate significant contribution in IL-17Ai non-responders. Based on PCA results it was possible to differentiate DAPSA50 responders and non-responders to treatment, endorsing additional examination of cytokine interaction models in PsA patients and supporting further PsA patient immune stratification to improve individualized treatment of PsA patients.
Collapse
Affiliation(s)
- Marie Skougaard
- The Parker Institute, Bispebjerg and Frederiksberg Hospital, Nordre Fasanvej 57, 2000 Frederiksberg, Denmark
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Bispebjerg Bakke 23, 2400 Copenhagen, Denmark
- Department of Clinical Immunology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus, Denmark
- Correspondence:
| | - Sisse Bolm Ditlev
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Bispebjerg Bakke 23, 2400 Copenhagen, Denmark
| | - Magnus Friis Søndergaard
- Copenhagen Center for Translational Research, Bispebjerg and Frederiksberg Hospital, Bispebjerg Bakke 23, 2400 Copenhagen, Denmark
| | - Lars Erik Kristensen
- The Parker Institute, Bispebjerg and Frederiksberg Hospital, Nordre Fasanvej 57, 2000 Frederiksberg, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen, Denmark
| |
Collapse
|
34
|
Zamani B, Momen-Heravi M, Erami M, Motedayyen H, ArefNezhad R. Impacts of IL-27 and IL-32 in the pathogenesis and outcome of COVID-19 associated mucormycosis. J Immunoassay Immunochem 2023; 44:242-255. [PMID: 36602425 DOI: 10.1080/15321819.2022.2164506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Changes in the immune system participate in the pathogenesis and development of infectious diseases. Previous studies have indicated immune dysregulation in patients suffering from COVID-19 and mucormycosis. Therefore, this study investigated whether interleukin-27 (IL-27) and interleukin-32 (IL-32) levels may participate in the development and outcome of COVID-19 associated mucormycosis (CAM). The blood samples were obtained from 79 patients suffering from COVID-19 and mucormycosis and 25 healthy subjects. The serum samples were isolated from the whole blood and frequencies of some immune cells were measured by a cell counter. The levels of IL-27 and IL-32 were assessed by enzyme-linked immunosorbent assay. IL-27 and IL-32 levels were significantly lower in patients with COVID-19 and mucormycosis than healthy subjects (P < .05), although there was no significant difference in IL-27 between patients with COVID-19 and CAM. IL-27 level was significantly higher in severe COVID-19 survivors than dead cases (P < .01). Patients with CAM had significant increases in NLR compared to COVID-19 patients and healthy individuals (P < .0001-0.01). NLR was significantly associated with COVID-19 outcome (P < .05). Severe COVID-19 survivors had a significant reduction in NLR compared to non-survivors (P < .05). Changes in IL-27 and IL-32 levels may contribute to the pathogenesis of CAM. IL-27 may relate to the pathogenesis and outcomes of mucormycosis in COVID-19 patients.
Collapse
Affiliation(s)
- Batool Zamani
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mansooreh Momen-Heravi
- Department of Infectious Diseases, School of Medicine, Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahzad Erami
- Kashan Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | | |
Collapse
|
35
|
Harsini S, Rezaei N. Autoimmune diseases. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
36
|
Myeloid-derived suppressor cells in head and neck squamous cell carcinoma. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 375:33-92. [PMID: 36967154 DOI: 10.1016/bs.ircmb.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs), which originated from hematopoietic stem cells, are heterogeneous population of cells that have different differentiation patterns and widely presented in tumor microenvironment. For tumor research, myeloid suppressor cells have received extensive attention since their discovery due to their specific immunosuppressive properties, and the mechanisms of immunosuppression and therapeutic approaches for MDSCs have been investigated in a variety of different types of malignancies. To improve the efficacy of treatment for head and neck squamous cell carcinoma (HNSCC), a disease with a high occurrence, immunotherapy has gradually emerged in after traditional surgery and subsequent radiotherapy and chemotherapy, and has made some progress. In this review, we introduced the mechanisms on the development, differentiation, and elimination of MDSCs and provided a detailed overview of the mechanisms behind the immunosuppressive properties of MDSCs. We summarized the recent researches on MDSCs in HNSCC, especially for targeting-MDSCs therapy and combination with other types of therapy such as immune checkpoint blockade (ICB). Furthermore, we looked at drug delivery patterns and collected the current diverse drug delivery systems for the improvement that contributed to therapy against MDSCs in HNSCC. Most importantly, we made possible outlooks for the future research priorities, which provide a basis for further study on the clinical significance and therapeutic value of MDSCs in HNSCC.
Collapse
|
37
|
Zamani B, Najafizadeh M, Motedayyen H, Arefnezhad R. Predicting roles of IL-27 and IL-32 in determining the severity and outcome of COVID-19. Int J Immunopathol Pharmacol 2022; 36:3946320221145827. [PMID: 36476070 PMCID: PMC9742516 DOI: 10.1177/03946320221145827] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Immune changes play fundamental roles in the pathogenesis and severity of coronavirus disease 2019 (COVID-19). Previous studies have revealed alterations in immune responses of patients with non-severe and severe COVID-19. Therefore, this study investigated whether interleukin-27 (IL-27) and interleukin-32 (IL-32) levels may be considered as predicting factors for determining the severity and outcome of COVID-19. METHODS The blood samples were collected from 50 non-severe and severe patients infected with COVID-19 and 25 healthy subjects. The serum samples were isolated from the whole blood. The levels of IL-27 and IL-32 were measured by enzyme-linked immunosorbent assay and percentages of some immune cells were studied by cell counter. RESULTS The levels of IL-27 and IL-32 were significantly higher in COVID-19 patients than healthy subjects (p < 0.0001-0.01). IL-27 was significantly reduced in severe COVID-19 patients who needed to undergo ICU therapy (p < 0.05). Disease severity was significantly associated with IL-27 level in patients with COVID-19 (p < 0.05), unlike IL-32 level. There was a significant association between IL-27 and IL-32 in participants (p < 0.0001, odds ratio (OR) = 0.9873; 95% confidence interval (CI) = 0.9998 to 1.000; p < 0.05, OR = 0.4462; 95% CI = 0.08,579 to 0.7802; p < 0.01, OR = 0.6640, 95% CI = 0.3007-0.8590). IL-27 level was significantly higher in the recovered subjects than dead cases (p < 0.0001). IL-27 and IL-32 levels in patients who had fever were significantly higher than those who did not have (p < 0.01-0.05), unlike patients who suffered from cough (p < 0.001-0.01). The IL-27 level in patients with non-severe COVID-19 was directly correlated with CRP value (p < 0.05, OR = 0.5,722,357, 95% CI = 0.06,807,176-0.8,435,928). IL-27 and IL-32 levels in non-severe patients were positively associated with NLR (p < 0.01, OR = 0.7292; 95% CI = 0.2809 to 0.9163; p < 0.01, OR = 0.6537, 95% CI = 0.1425-0.8896). Patients with severe COVID-19 had a significant increase in NLR (p < 0.0001-0.05). NLR was significantly correlated with the disease severity (p < 0.0001-0.05). Survivors had a significant reduction in NLR compared with those who succumbed to COVID-19 (p < 0.05). CONCLUSION Change in IL-27 level along with the frequencies of some immune cells may serve as a predictor of the severity and outcome of COVID-19.
Collapse
Affiliation(s)
- Batool Zamani
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Maedeh Najafizadeh
- Infectious Disease Research Center, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran,Hossein Motedayyen, Autoimmune Diseases Research Center, Shahid Beheshti Hospital, Kashan University of Medical Sciences, 5th Kilometer of Ravand Road, Kashan, Iran. ; Reza ArefNezhad, Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran. reza.aref1374@gmail
| | - Reza Arefnezhad
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
38
|
Michalak-Stoma A, Bartosińska J, Raczkiewicz D, Kowal M, Kozak J, Gujski M, Krasowska D, Chodorowska G. Multiple Cytokine Analysis of Th1/Th2/Th9/Th17/Th22/Treg Cytokine Pathway for Individual Immune Profile Assessment in Patients with Psoriasis. Med Sci Monit 2022; 28:e938277. [PMID: 36419330 PMCID: PMC9707043 DOI: 10.12659/msm.938277] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 10/19/2022] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Psoriasis is an autoimmune and autoinflammatory disorder that has a significant impact on patient quality of life. The aim of the study was to assess the immune profiles of patients with psoriasis with multiple cytokine analysis. MATERIAL AND METHODS Fifty-two male psoriatic patients and 24 healthy male volunteers were recruited. Granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon gamma (IFN-gamma), interleukin (IL)-1 beta, IL-2, Il-4, IL-5, IL-6, IL-9, IL-10, IL-12p70, IL-13, IL-17A, IL-18, IL-21, IL-22, IL-23, IL-27, and tumor necrosis factor (TNF)-alpha were measured in patients' serum with a Th1/Th2/Th9/Th17/Th22/Treg Cytokine 18-Plex Human ProcartaPlex Panel, based on Luminex xMAP technology. RESULTS The median fluorescence intensities of serum GM-CSF, IL-2, IL-5, IL-10, IL-13, IL-17A, IL-21, and IL-22 were not intensive enough to calculate the cytokine concentration. We observed elevated levels of IL-6 (P=0.001) and IL-9 (P=0.003) in patients, compared with the control group. The levels of IL-1beta (P=0.008) and IL-27 (P=0.006) were decreased. In patients with psoriatic arthritis, we noticed a decreased level of IL-9 compared with that in patients without arthritis (P=0.034). The levels of IL-12 (P<0.05) and IL-18 (P<0.05) correlated positively with the Psoriasis Area and Severity Index. We found negative correlations of IL-9 (P<0.05), IL-12 (P<0.05), and IL-23 (P<0.05) with the age of psoriatic patients; IL-12 (P<0.05) and IL-23 (P<0.05) with psoriasis duration; and IL-6 (P<0.05) and IL-9 (P<0.05) with the Nail Psoriasis Severity Index. CONCLUSIONS Multiple cytokine analysis seems to be an important form of individual immune profile assessment before treatment selection.
Collapse
Affiliation(s)
- Anna Michalak-Stoma
- Chair and Department of Dermatology, Venereology and Pediatric Dermatology, Medical University of Lublin, Lublin, Poland
| | - Joanna Bartosińska
- Department of Cosmetology and Aesthetic Medicine, Medical University of Lublin, Lublin, Poland
| | - Dorota Raczkiewicz
- Department of Medical Statistics, School of Public Health, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Małgorzata Kowal
- Chair and Department of Dermatology, Venereology and Pediatric Dermatology, Medical University of Lublin, Lublin, Poland
| | - Joanna Kozak
- Chair of Human Anatomy, Department of Normal Anatomy, Medical University of Lublin, Lublin, Poland
| | - Mariusz Gujski
- Department of Public Health, Medical University of Warsaw, Warsaw, Poland
| | - Dorota Krasowska
- Chair and Department of Dermatology, Venereology and Pediatric Dermatology, Medical University of Lublin, Lublin, Poland
| | - Grażyna Chodorowska
- Chair and Department of Dermatology, Venereology and Pediatric Dermatology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
39
|
Liu S, Gong W, Liu L, Yan R, Wang S, Yuan Z. Integrative Analysis of Transcriptome-Wide Association Study and Gene-Based Association Analysis Identifies In Silico Candidate Genes Associated with Juvenile Idiopathic Arthritis. Int J Mol Sci 2022; 23:13555. [PMID: 36362342 PMCID: PMC9656154 DOI: 10.3390/ijms232113555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 07/02/2024] Open
Abstract
Genome-wide association study (GWAS) of Juvenile idiopathic arthritis (JIA) suffers from low power due to limited sample size and the interpretation challenge due to most signals located in non-coding regions. Gene-level analysis could alleviate these issues. Using GWAS summary statistics, we performed two typical gene-level analysis of JIA, transcriptome-wide association studies (TWAS) using FUnctional Summary-based ImputatiON (FUSION) and gene-based analysis using eQTL Multi-marker Analysis of GenoMic Annotation (eMAGMA), followed by comprehensive enrichment analysis. Among 33 overlapped significant genes from these two methods, 11 were previously reported, including TYK2 (PFUSION = 5.12 × 10-6, PeMAGMA = 1.94 × 10-7 for whole blood), IL-6R (PFUSION = 8.63 × 10-7, PeMAGMA = 2.74 × 10-6 for cells EBV-transformed lymphocytes), and Fas (PFUSION = 5.21 × 10-5, PeMAGMA = 1.08 × 10-6 for muscle skeletal). Some newly plausible JIA-associated genes are also reported, including IL-27 (PFUSION = 2.10 × 10-7, PeMAGMA = 3.93 × 10-8 for Liver), LAT (PFUSION = 1.53 × 10-4, PeMAGMA = 4.62 × 10-7 for Artery Aorta), and MAGI3 (PFUSION = 1.30 × 10-5, PeMAGMA = 1.73 × 10-7 for Muscle Skeletal). Enrichment analysis further highlighted 4 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and 10 Gene Ontology (GO) terms. Our findings can benefit the understanding of genetic determinants and potential therapeutic targets for JIA.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Weiming Gong
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Lu Liu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Ran Yan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Shukang Wang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Zhongshang Yuan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
40
|
Interferon-γ Stimulates Interleukin-27 Derived from Dendritic Cells to Regulate Th9 Differentiation through STAT1/3 Pathway. DISEASE MARKERS 2022; 2022:1542112. [PMID: 36304255 PMCID: PMC9596272 DOI: 10.1155/2022/1542112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022]
Abstract
The initiation and progression of allergic asthma (AA) are associated with complex interactions between inflammation and immune response. Herein, we report the specific mechanisms underlying the molecular action of interferon (IFN)-γ in AA regulation. We speculated that IFN-γ inhibits Th9 differentiation by regulating the secretion of interleukin (IL)-27 from dendritic cells (DCs), thereby suppressing airway inflammation in asthma. We constructed a mouse model of ovalbumin-induced AA and overexpressed IFN-γ to evaluate the effect on the IL-27/Th9 axis via the in vitro effect of IFN-γ on IL-27 secretion by DCs and their influence on Th9 differentiation and asthmatic inflammation. IFN-γ overexpression reduced the proportion of Th9 cells and DCs and altered lung morphology and cytokine production in AA-induced mice, thus suppressing the AA phenotype. In addition, exogenous IFN-γ stimulation promoted the secretion of IL-27 and suppressed Th9 differentiation of CD4+ T cells via signal transducer and activator of transcription 1/3 (STAT1/3) signaling in a time-dependent manner. This study aimed to clarify the regulatory effect and mechanism of the IFN-γ/DCs/IL-27/Th9 axis on AA and provide novel insights for effective targeted treatment of asthma.
Collapse
|
41
|
Lindbohm JV, Mars N, Sipilä PN, Singh-Manoux A, Runz H, Livingston G, Seshadri S, Xavier R, Hingorani AD, Ripatti S, Kivimäki M. Immune system-wide Mendelian randomization and triangulation analyses support autoimmunity as a modifiable component in dementia-causing diseases. NATURE AGING 2022; 2:956-972. [PMID: 37118290 PMCID: PMC10154235 DOI: 10.1038/s43587-022-00293-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/05/2022] [Indexed: 04/30/2023]
Abstract
Immune system and blood-brain barrier dysfunction are implicated in the development of Alzheimer's and other dementia-causing diseases, but their causal role remains unknown. We performed Mendelian randomization for 1,827 immune system- and blood-brain barrier-related biomarkers and identified 127 potential causal risk factors for dementia-causing diseases. Pathway analyses linked these biomarkers to amyloid-β, tau and α-synuclein pathways and to autoimmunity-related processes. A phenome-wide analysis using Mendelian randomization-based polygenic risk score in the FinnGen study (n = 339,233) for the biomarkers indicated shared genetic background for dementias and autoimmune diseases. This association was further supported by human leukocyte antigen analyses. In inverse-probability-weighted analyses that simulate randomized controlled drug trials in observational data, anti-inflammatory methotrexate treatment reduced the incidence of Alzheimer's disease in high-risk individuals (hazard ratio compared with no treatment, 0.64, 95% confidence interval 0.49-0.88, P = 0.005). These converging results from different lines of human research suggest that autoimmunity is a modifiable component in dementia-causing diseases.
Collapse
Affiliation(s)
- Joni V Lindbohm
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, The Klarman Cell Observatory, Cambridge, MA, USA.
- Department of Epidemiology and Public Health, University College London, London, UK.
- Clinicum, Department of Public Health, University of Helsinki, Helsinki, Finland.
| | - Nina Mars
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, The Klarman Cell Observatory, Cambridge, MA, USA
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Pyry N Sipilä
- Clinicum, Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Archana Singh-Manoux
- Department of Epidemiology and Public Health, University College London, London, UK
- Université de Paris, Inserm U1153, Epidemiology of Ageing and Neurodegenerative diseases, Paris, France
| | - Heiko Runz
- Research & Development, Biogen Inc., Cambridge, MA, USA
| | - Gill Livingston
- Division of Psychiatry, University College London, London, UK
- Camden and Islington NHS Foundation Trust, London, UK
| | - Sudha Seshadri
- Glenn Biggs Institute of Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, USA
- Boston University School of Public Health, Boston, MA, USA
- New York University Grossman School of Medicine, New York, NY, USA
- Boston University School of Medicine, Boston, MA, USA
| | - Ramnik Xavier
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, The Klarman Cell Observatory, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Aroon D Hingorani
- Institute of Cardiovascular Science, University College London, London, UK
- University College London, British Heart Foundation Research Accelerator, London, UK
- Health Data Research UK, London, UK
| | - Samuli Ripatti
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, The Klarman Cell Observatory, Cambridge, MA, USA
- Clinicum, Department of Public Health, University of Helsinki, Helsinki, Finland
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Mika Kivimäki
- Department of Epidemiology and Public Health, University College London, London, UK
- Clinicum, Department of Public Health, University of Helsinki, Helsinki, Finland
- Division of Psychiatry, University College London, London, UK
| |
Collapse
|
42
|
Li R, Li H, Yang X, Hu H, Liu P, Liu H. Crosstalk between dendritic cells and regulatory T cells: Protective effect and therapeutic potential in multiple sclerosis. Front Immunol 2022; 13:970508. [PMID: 36177043 PMCID: PMC9513370 DOI: 10.3389/fimmu.2022.970508] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system related to autoimmunity and is characterized by demyelination, neuroinflammation, and neurodegeneration. Cell therapies mediated by dendritic cells (DCs) and regulatory T cells (Tregs) have gradually become accumulating focusing in MS, and the protective crosstalk mechanisms between DCs and Tregs provide the basis for the efficacy of treatment regimens. In MS and its animal model experimental autoimmune encephalomyelitis, DCs communicate with Tregs to form immune synapses and complete a variety of complex interactions to counteract the unbalanced immune tolerance. Through different co-stimulatory/inhibitory molecules, cytokines, and metabolic enzymes, DCs regulate the proliferation, differentiation and function of Tregs. On the other hand, Tregs inhibit the mature state and antigen presentation ability of DCs, ultimately improving immune tolerance. In this review, we summarized the pivotal immune targets in the interaction between DCs and Tregs, and elucidated the protective mechanisms of DC-Treg cell crosstalk in MS, finally interpreted the complex cell interplay in the manner of inhibitory feedback loops to explore novel therapeutic directions for MS.
Collapse
Affiliation(s)
- Ruoyu Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyan Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huiru Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peidong Liu
- Department of Neurosurgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Translational Medicine Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongbo Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Translational Medicine Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Hongbo Liu,
| |
Collapse
|
43
|
Lemaître F, Farzam-Kia N, Carmena Moratalla A, Carpentier Solorio Y, Clenet ML, Tastet O, Cleret-Buhot A, Guimond JV, Haddad E, Duquette P, Girard JM, Prat A, Larochelle C, Arbour N. IL-27 shapes the immune properties of human astrocytes and their impact on encountered human T lymphocytes. J Neuroinflammation 2022; 19:212. [PMID: 36050707 PMCID: PMC9434874 DOI: 10.1186/s12974-022-02572-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/23/2022] [Indexed: 11/10/2022] Open
Abstract
Background Interleukin-27 (IL-27) can trigger both pro- and anti-inflammatory responses. This cytokine is elevated in the central nervous system (CNS) of multiple sclerosis (MS) patients, but how it influences neuroinflammatory processes remains unclear. As astrocytes express the receptor for IL-27, we sought to determine how these glial cells respond to this cytokine and whether such exposure alters their interactions with infiltrating activated T lymphocytes. To determine whether inflammation shapes the impact of IL-27, we compared the effects of this cytokine in non-inflamed and inflamed conditions induced by an IL-1β exposure. Main body Transcriptomic analysis of IL-27-exposed human astrocytes showed an upregulation of multiple immune genes. Human astrocytes increased the secretion of chemokines (CXCL9, CXCL10, and CXCL11) and the surface expression of proteins (PD-L1, HLA-E, and ICAM-1) following IL-27 exposure. To assess whether exposure of astrocytes to IL-27 influences the profile of activated T lymphocytes infiltrating the CNS, we used an astrocyte/T lymphocyte co-culture model. Activated human CD4+ or CD8+ T lymphocytes were co-cultured with astrocytes that have been either untreated or pre-exposed to IL‑27 or IL-1β. After 24 h, we analyzed T lymphocytes by flow cytometry for transcription factors and immune molecules. The contact with IL-27-exposed astrocytes increased the percentages of T-bet, Eomes, CD95, IL-18Rα, ICAM-1, and PD-L1 expressing CD4+ and CD8+ T lymphocytes and reduced the proportion of CXCR3-positive CD8+ T lymphocytes. Human CD8+ T lymphocytes co-cultured with human IL-27-treated astrocytes exhibited higher motility than when in contact with untreated astrocytes. These results suggested a preponderance of kinapse-like over synapse-like interactions between CD8+ T lymphocytes and IL-27-treated astrocytes. Finally, CD8+ T lymphocytes from MS patients showed higher motility in contact with IL-27-exposed astrocytes compared to healthy donors’ cells. Conclusion Our results establish that IL-27 alters the immune functions of human astrocytes and shapes the profile and motility of encountered T lymphocytes, especially CD8+ T lymphocytes from MS patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02572-1.
Collapse
Affiliation(s)
- Florent Lemaître
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM), 900 St-Denis Street, Room R09.464, Montreal, QC, H2X 0A9, Canada
| | - Negar Farzam-Kia
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM), 900 St-Denis Street, Room R09.464, Montreal, QC, H2X 0A9, Canada
| | - Ana Carmena Moratalla
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM), 900 St-Denis Street, Room R09.464, Montreal, QC, H2X 0A9, Canada
| | - Yves Carpentier Solorio
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM), 900 St-Denis Street, Room R09.464, Montreal, QC, H2X 0A9, Canada
| | - Marie-Laure Clenet
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM), 900 St-Denis Street, Room R09.464, Montreal, QC, H2X 0A9, Canada
| | - Olivier Tastet
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM), 900 St-Denis Street, Room R09.464, Montreal, QC, H2X 0A9, Canada
| | - Aurélie Cleret-Buhot
- Centre de Recherche du Centre Hospitalier de L'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Jean Victor Guimond
- CLSC Des Faubourgs, CIUSSS du Centre-Sud-de-L'Ile-de-Montréal, Montréal, QC, Canada
| | - Elie Haddad
- Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics, Centre de Recherche du Centre Hospitalier, Université de Montréal, Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, QC, Canada
| | - Pierre Duquette
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM), 900 St-Denis Street, Room R09.464, Montreal, QC, H2X 0A9, Canada.,MS-CHUM Clinic, 900 St-Denis Street, Montreal, QC, H2X 0A9, Canada
| | - J Marc Girard
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM), 900 St-Denis Street, Room R09.464, Montreal, QC, H2X 0A9, Canada.,MS-CHUM Clinic, 900 St-Denis Street, Montreal, QC, H2X 0A9, Canada
| | - Alexandre Prat
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM), 900 St-Denis Street, Room R09.464, Montreal, QC, H2X 0A9, Canada.,MS-CHUM Clinic, 900 St-Denis Street, Montreal, QC, H2X 0A9, Canada
| | - Catherine Larochelle
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM), 900 St-Denis Street, Room R09.464, Montreal, QC, H2X 0A9, Canada.,MS-CHUM Clinic, 900 St-Denis Street, Montreal, QC, H2X 0A9, Canada
| | - Nathalie Arbour
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM), 900 St-Denis Street, Room R09.464, Montreal, QC, H2X 0A9, Canada.
| |
Collapse
|
44
|
JAK-STAT Signaling Pathway in Non-Infectious Uveitis. Biochem Pharmacol 2022; 204:115236. [PMID: 36041544 DOI: 10.1016/j.bcp.2022.115236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022]
Abstract
Non-infectious uveitis (NIU) refers to various intraocular inflammatory disorders responsible for severe visual loss. Cytokines participate in the regulation of ocular homeostasis and NIU pathological processes. Cytokine receptors transmit signals by activating Janus kinase (JAK) and signal transducer and activator of transcription (STAT) proteins. Increasing evidence from human NIU and experimental models reveals the involvement of the JAK-STAT signaling pathway in NIU pathogenesis. Several small-molecule drugs that potentially inhibit multiple cytokine-dependent pathways are under investigation for treating autoimmune diseases, implicating possible applications for NIU treatment. This review summarizes the current understanding of the diverse roles of the JAK-STAT signaling pathway in ocular homeostasis and NIU pathology, providing a rationale for targeting JAKs and STATs for NIU treatment. Moreover, available evidence for the safety and efficacy of JAK inhibitors for refractory uveitis and potential approaches for treatment optimization are discussed.
Collapse
|
45
|
IL-27 regulates autophagy in rheumatoid arthritis fibroblast-like synoviocytes via STAT3 signaling. Immunobiology 2022; 227:152241. [PMID: 35820245 DOI: 10.1016/j.imbio.2022.152241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/19/2022] [Accepted: 07/02/2022] [Indexed: 02/06/2023]
Abstract
Rheumatoid arthritis (RA) is a highly prevalent autoimmune condition associated with pronounced synovial inflammation. The majority of RA patients required long-term treatment to control disease progression, thus imposing a significant financial burden on affected individuals. The development of RA is critically influenced by fibroblast-like synoviocytes (FLSs) within the synovial lining. IL-27 is an IL-6/IL-12 family cytokine that has recently been shown to play varied pro-inflammatory or protective roles in particular autoimmune diseases. However, the effects of IL-27 on FLSs in the context of RA have yet to be clarified and warrant further research. This study was developed to evaluate the impact of IL-27 treatment on apoptotic and autophagic activity in RA-associated FLSs, with a particular focus on the role of the STAT3 pathway in this regulatory context. Through these experiments, we found that IL-27 was able to suppress FLS proliferation and autophagic activity, with a high dose of this cytokine (100 ng/mL) markedly suppressing autophagy while simultaneously inducing some level of cellular apoptosis. The STAT3 inhibitor STA21 was found to reverse the IL-27-mediated suppression of autophagic activity in these RA-associated FLSs. Imbalanced cellular proliferation and apoptosis is of critical importance in the context of RA progression, and we found that IL-27 was able to regulate such imbalance and to enhance the apoptotic activity of RA FLSs by inhibiting rapamycin-activated autophagy. Together, these results indicate that IL-27 can regulate autophagic activity within RA-associated FLSs via the STAT3 signaling pathway, leading to inhibition of cellular proliferation.
Collapse
|
46
|
Lu J, Ji X, Wang L, Sun F, Huang C, Peng H, Jiang Y, Guo Z, Liu X, Ji Y, Lu D. Interleukin‑27 ameliorates allergic asthma by alleviating the lung Th2 inflammatory environment. Int J Mol Med 2022; 49:86. [PMID: 35514302 PMCID: PMC9106376 DOI: 10.3892/ijmm.2022.5142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/20/2022] [Indexed: 11/22/2022] Open
Abstract
Interleukin (IL)‑27 can inhibit the differentiation of Th2 cells and plays a role in the development of asthma. However, whether the therapeutic administration of IL‑27 in a mouse model of asthma can inhibit allergic responses remains a matter of debate. Additionally, the mechanisms through which IL‑27 ameliorates inflammatory responses in asthma are not yet fully understood. Thus, the aim of the present study was to examine the effects of IL‑27 on asthma using a mouse model and to elucidate the underlying mechanisms. For this purpose, mice received an intranasal administration of IL‑27 and the total and differential cell counts, levels of cytokines and type 1 regulatory T (Tr1) cells in the lungs were detected. The protein and mRNA levels of signal transducer and activator of transcription (STAT)1 and STAT3 were analyzed and airway remodeling was assessed. The results indicated that IL‑27 did not ameliorate airway inflammation, airway hyperresponsiveness, and airway remolding when administrated therapeutically. Preventatively, the administration of IL‑27 decreased the concentrations of Th2 cytokines and increased the number of Tr1 cells. The protein and mRNA levels of STAT1 and STAT3 were increased. Taken together, these findings demonstrate that the prophylactic administration of IL‑27 ameliorates asthma by alleviating the lung Th2 inflammatory environment through the restoration of both the STAT1 and STAT3 pathways. IL‑27 may thus prove to be useful as a novel agent for the prevention of asthma.
Collapse
Affiliation(s)
- Jiameng Lu
- School of Microelectronics, Shandong University, Jinan, Shandong 250100, P.R. China
| | - Xiaoqing Ji
- Department of Nursing, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Lixia Wang
- Division of Disinfectant and Supply, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Fei Sun
- Graduate School of Shandong First Medical University, Jinan, Shandong 250000, P.R. China
| | - Chuanjun Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, Shandong 250014, P.R. China
| | - Haiying Peng
- Graduate School of Shandong First Medical University, Jinan, Shandong 250000, P.R. China
| | - Yunxiu Jiang
- Graduate School of Shandong First Medical University, Jinan, Shandong 250000, P.R. China
| | - Zihan Guo
- Graduate School of Shandong First Medical University, Jinan, Shandong 250000, P.R. China
| | - Xinyi Liu
- Graduate School of Shandong First Medical University, Jinan, Shandong 250000, P.R. China
| | - Yanbo Ji
- Department of Nursing, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Degan Lu
- Department of Respiratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Institute of Respiratory Diseases, Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
47
|
Chuang ST, Conklin B, Stein JB, Pan G, Lee KB. Nanotechnology-enabled immunoengineering approaches to advance therapeutic applications. NANO CONVERGENCE 2022; 9:19. [PMID: 35482149 PMCID: PMC9047473 DOI: 10.1186/s40580-022-00310-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/12/2022] [Indexed: 05/24/2023]
Abstract
Immunotherapy has reached clinical success in the last decade, with the emergence of new and effective treatments such as checkpoint blockade therapy and CAR T-cell therapy that have drastically improved patient outcomes. Still, these therapies can be improved to limit off-target effects, mitigate systemic toxicities, and increase overall efficacies. Nanoscale engineering offers strategies that enable researchers to attain these goals through the manipulation of immune cell functions, such as enhancing immunity against cancers and pathogens, controlling the site of immune response, and promoting tolerance via the delivery of small molecule drugs or biologics. By tuning the properties of the nanomaterials, such as size, shape, charge, and surface chemistry, different types of immune cells can be targeted and engineered, such as dendritic cells for immunization, or T cells for promoting adaptive immunity. Researchers have come to better understand the critical role the immune system plays in the progression of pathologies besides cancer, and developing nanoengineering approaches that seek to harness the potential of immune cell activities can lead to favorable outcomes for the treatment of injuries and diseases.
Collapse
Affiliation(s)
- Skylar T Chuang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Brandon Conklin
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Joshua B Stein
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - George Pan
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
48
|
Old and New Biomarkers for Infection, Inflammation, and Autoimmunity in Treatment-Resistant Affective and Schizophrenic Spectrum Disorders. Pharmaceuticals (Basel) 2022; 15:ph15030299. [PMID: 35337097 PMCID: PMC8949012 DOI: 10.3390/ph15030299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/24/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
Affective (AF) and Schizophrenic (SZ) Spectrum disorders manifest with risk factors, involving inflammatory processes linked to infections and autoimmunity. This study searched for novel biomarkers in cerebrospinal fluid (CSF) and peripheral blood. A total of 29 AF and 39 SZ patients with treatment-resistant disease were included. In CSF, the chemokine IL-8 was significantly elevated in AF and SZ patients. IL-8 promotes chemotaxis by neutrophils and may originate from different tissues. S100B, a glia-derived brain damage marker, was higher in CSF from AF than SZ patients. Among the plasma-derived biomarkers, ferritin was elevated in AF and SZ. Soluble CD25, indicating Treg dysfunction, was higher in SZ than in AF patients. Interferon-γ, implying virus-specific immune activation, was positive in selective AF patients, only. Both groups showed elevated expression of immunosuppressive CD33 on monocytes, but higher amounts of CD123+ plasmacytoid dendritic cells were restricted to SZ. In conclusion, chemotactic IL-8 indicates neuronal stress and inflammation in the CSF of both groups. Novel plasma-derived biomarkers such as sCD25 and monocytic CD33 distinguish SZ from AF with an autoimmune phenotype.
Collapse
|
49
|
Wan X, Zhang Y, Tang H, Li M, Jiang T, He J, Bao C, Wang J, Song Y, Xiao P, Liu Y, Lai L, Wang Q. IL‐27 signaling negatively regulates FcɛRI‐mediated mast cell activation and allergic response. J Leukoc Biol 2022; 112:411-424. [PMID: 35075687 DOI: 10.1002/jlb.2ma1221-637r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 11/29/2021] [Accepted: 12/28/2021] [Indexed: 11/08/2022] Open
Affiliation(s)
- Xiaopeng Wan
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
- State Key Laboratory of Veterinary Biotechnology, Harbin Veternary Research Institute Chinese Academy of Agricultural Sciences Harbin China
| | - Yuanyuan Zhang
- Department of Pulmonology, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health Hangzhou China
| | - Huanna Tang
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| | - Mengyao Li
- Department of Pulmonology, Children's Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health Hangzhou China
| | - Tianqi Jiang
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| | - Jia He
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| | - Chunjing Bao
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| | - Junkai Wang
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| | - Yinjing Song
- Department of Dermatology and Venereology Sir Run Run Shaw Hospital, Zhejiang University School of Medicine Hangzhou China
| | - Peng Xiao
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| | - Yang Liu
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| | - Lihua Lai
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
- Department of Pharmacology Zhejiang University School of Medicine Hangzhou China
| | - Qingqing Wang
- Institute of Immunology Zhejiang University School of Medicine Hangzhou China
| |
Collapse
|
50
|
Kwon YJ, Seo EB, Kim SK, Noh KH, Lee H, Joung YW, Shin HM, Jang YA, Kim YM, Lee JT, Ye SK. Chamaecyparis obtusa (Siebold & Zucc.) Endl. leaf extracts prevent inflammatory responses via inhibition of the JAK/STAT axis in RAW264.7 cells. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114493. [PMID: 34364971 DOI: 10.1016/j.jep.2021.114493] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chamaecyparis obtusa (Siebold & Zucc.) Endl. (C. obtusa) has been used as folk medicine in East Asia and has been reported to alleviate inflammatory diseases. However, the detailed mechanisms for the anti-inflammatory effects of C. obtusa remain unclear. AIM OF THE STUDY Although the anti-inflammatory mechanisms of natural products have been studied for decades, it is still important to identify the potential anti-inflammatory effects of natural sources. In this study, we investigated the anti-inflammatory effects and underlying mechanism of C. obtusa leaf extracts. MATERIAL &METHODS The cell viability was determined by MTT and crystal violet staining. NO production in the supernatant was measured using Griess reagent. The cell lysates were analyzed by immunoblotting and RT-qPCR. Secreted cytokines were analyzed using ELISA kit and cytokine array kit. mRNA expression from the GSE9632 database set. Z-scores were calculated for each gene and visualized by heat map. RESULTS Among the extracts of C. obtusa obtained with different extraction methods, the 99% ethanol leaf extract (CO99EL) strongly inhibited lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression and Janus kinase/signaling transducer and activator of transcription (JAK/STAT) phosphorylation in RAW264.7 cells. In addition, CO99EL strongly inhibited LPS-induced interleukin (IL)-1β, IL-6, IL-27, and C-C motif chemokine ligand (CCL)-1 production and directly inhibited LPS-induced JAK/STAT phosphorylation in RAW264.7 cells. CONCLUSIONS These findings demonstrate that CO99EL significantly prevents LPS-induced macrophage activation by inhibiting the JAK/STAT axis. Therefore, we suggest the use of C. obtusa extracts as therapeutic approach for inflammatory diseases.
Collapse
Affiliation(s)
- Yong-Jin Kwon
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea; Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, South Korea.
| | - Eun-Bi Seo
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea; Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, South Korea.
| | - Seul-Ki Kim
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea; Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, South Korea.
| | - Kum Hee Noh
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea; Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, South Korea.
| | - Haeri Lee
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| | - Yeo-Won Joung
- Department of Cosmeceutical Science, Daegu Haany University, Gyeongsan, 38578, South Korea.
| | - Hyun Mu Shin
- Wide River Institute of Immunology, Seoul National University, Hongcheon, 25159, South Korea.
| | - Young-Ah Jang
- Convergence Research Center for Smart Healthcare of KS R & DB Foundation, Kyungsung University, Busan, 48434, South Korea.
| | - Yu Mi Kim
- Binotec Co., Ltd, Daegu, 42149, South Korea.
| | - Jin-Tae Lee
- Department of Cosmetic Science, Kyungsung University, Busan, 48434, South Korea.
| | - Sang-Kyu Ye
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea; Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, South Korea; Wide River Institute of Immunology, Seoul National University, Hongcheon, 25159, South Korea; Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea; Neuro-Immune Information Storage Network Research Center, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| |
Collapse
|