1
|
Pei R, Wang J, He P, Yu Q, Zhang S, Shi G, Liu G, Li X. Risk factors for type 2 diabetes mellitus in Chinese rheumatoid arthritis patients from 2018 to 2022: a real-world, single-center, retrospective study. Front Immunol 2024; 15:1445639. [PMID: 39430749 PMCID: PMC11486693 DOI: 10.3389/fimmu.2024.1445639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/12/2024] [Indexed: 10/22/2024] Open
Abstract
Introduction In patients with rheumatoid arthritis (RA), the increased risk of concomitant type 2 diabetes mellitus (T2D) is an important contributor to increased mortality and decreased quality of life; however, the mechanisms and pathogenetic factors remain unknown. Methods In this study, we aimed to assess the risk factors for T2D in patients with RA. We recruited 206 healthy controls and 488 patients with RA, 160 of whom had comorbid T2D. General clinical information, disease characteristics, and circulating lymphocyte levels detected using modified flow cytometry were collected from all participants. Logistic regression models adjusted for confounders were fitted to estimate the risk factors of T2D in patients with RA. Results The incidence of RA in patients with T2D was 15.6%. Patients with RA and T2D had a longer disease duration, higher BMI, and a higher incidence of hypertension and a family history of diabetes than those with RA but no T2D. The absolute numbers of T helper 2 cell (Th2) and Regulatory T cells (Treg) decreased in patients with RA and T2D, which led to an increase in the ratios of Th1/Th2 and Th17/Treg cells. Multivariate logistic regression analysis showed that a family history of diabetes, a higher incidence of hypertension, higher neutrophil-lymphocyte ratio (NLR) levels, lower platelet-lymphocyte ratio (PLR) levels, and fewer circulating Th2 and Treg cells were associated with an increased risk of T2D in patients with RA. Discussion The levels of peripheral lymphocytes, especially Th2 and Treg cells, are closely related to the occurrence of T2D in patients with RA; however, the influence of body mass index (BMI), family history of diabetes, and systemic inflammation should not be ignored.
Collapse
Affiliation(s)
- Ruomeng Pei
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- School of Management, Shanxi Medical University, Taiyuan, China
- Institute of Medical Data Science, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
| | - Jia Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Peifeng He
- School of Management, Shanxi Medical University, Taiyuan, China
- Institute of Medical Data Science, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Qi Yu
- School of Management, Shanxi Medical University, Taiyuan, China
- Institute of Medical Data Science, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, China
| | - Shengxiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Gaoxiang Shi
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Institute of Medical Data Science, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Geliang Liu
- School of Management, Shanxi Medical University, Taiyuan, China
- Institute of Medical Data Science, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China
| | - Xiaofeng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
2
|
Alobaid MA, Alqabandi BS. SARS-CoV-2 induced vitamin D deficiency and psychological stress: a manifestation of autoimmune disease onset. Front Immunol 2024; 15:1434486. [PMID: 39416791 PMCID: PMC11479920 DOI: 10.3389/fimmu.2024.1434486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction The global SARS-CoV-2 pandemic significantly altered lifestyles, access to healthcare, and social interactions, introducing unprecedented physical and psychological stress all over the world. This study explores the relationship between psychological stress, vitamin D (Vit-D) levels, and autoimmune connective tissue diseases, including systemic lupus erythematosus, systemic sclerosis, polymyositis, dermatomyositis, and rheumatoid arthritis. Methods The analysis was based on over one million patient data points derived from anti-nuclear antibody (ANA) testing conducted both before and during the COVID-19 pandemic 2017-2021. In a subset of patients, longitudinal data were collected bi-yearly to yearly over 5-8 years using the same three-month criteria. The dataset was analyzed using GraphPad Prism9 using paired t-tests or ordinary one-way ANOVA with a significance threshold of p < 0.05 to ensure robust correlations between the variables. Results Data indicated that Vit-D levels peaked between 2017 and 2019 before declining, while ANA data demonstrated a rise in autoimmune connective tissue disease cases during the pandemic, reaching a peak in 2021. A clear correlation was observed, with autoimmune disease incidence increasing as Vit-D levels decreased. In-depth case analysis revealed that declining Vit-D levels preceded higher ANA titers and increased autoimmune disease severity, whereas improvements in Vit-D levels were associated with reduced ANA titers and less severe disease manifestations. Conclusions The findings suggest that maintaining mental health and ensuring adequate Vit-D supplementation could be essential strategies for mitigating autoimmune disease risks and maintaining immune stability, particularly in pandemic scenarios. Clinically, these results underscore the need for early interventions targeting both psychological well-being and Vit-D levels to reduce the burden of autoimmune diseases.
Collapse
Affiliation(s)
- Meshal A. Alobaid
- Immunology & Allergy, American International University, Al-Jahra, Saad Al Abdullah, Kuwait
| | - Bshaier S. Alqabandi
- Department of Chemical & Medical Engineering, Al-Sabah Hospital, Industrial Shuwaikh, Kuwait
| |
Collapse
|
3
|
Zhao J, Gui Y, Wu W, Li X, Wang L, Wang H, Luo Y, Zhou G, Yuan C. The function of long non-coding RNA IFNG-AS1 in autoimmune diseases. Hum Cell 2024; 37:1325-1335. [PMID: 39004663 DOI: 10.1007/s13577-024-01103-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
The prevalence of autoimmune diseases ranks as the third most common disease category globally, following cancer and heart disease. Numerous studies indicate that long non-coding RNA (lncRNA) plays a pivotal role in regulating human growth, development, and the pathogenesis of various diseases. It is more than 200 nucleotides in length and is mostly involve in the regulation of gene expression. Furthermore, lncRNAs are crucial in the development and activation of immune cells, with an expanding body of research exploring their association with autoimmune disorders in humans. LncRNA Ifng antisense RNA 1 (IFNG-AS1), a key regulatory factor in the immune system, also named NeST or TMEVPG1, is proximally located to IFNG and participates in the regulation of it. The dysregulation of IFNG-AS1 is implicated in the pathogenesis of several autoimmune diseases. This study examines the role and mechanism of IFNG-AS1 in various autoimmune diseases and considers its potential as a therapeutic target.
Collapse
Affiliation(s)
- Jiale Zhao
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
| | - Yibei Gui
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Wei Wu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
| | - Xueqing Li
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
| | - Lijun Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Hailin Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
| | - Yiyang Luo
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
| | - Gang Zhou
- College of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China.
- Yichang Hospital of Traditional Chinese Medicine, Yichang, 443002, China.
| | - Chengfu Yuan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China.
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China.
- College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
4
|
Antia A, Aomreore K, Udongwo N, Menon S, Ibebuogu U. In-hospital outcomes and trends of patients with autoimmune diseases undergoing percutaneous coronary intervention: A nationwide analysis. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2024; 65:37-43. [PMID: 38531708 DOI: 10.1016/j.carrev.2024.02.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND The risk of coronary artery disease is exaggerated in patients with autoimmune diseases (AID). A higher risk of complications has been reported during and after percutaneous coronary intervention (PCI) in these patients. We aimed to analyze the in-hospital outcomes and trends of patients with AID, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE) and inflammatory bowel disease (IBD) undergoing PCI. METHOD We identified all PCI procedures using the National In-patient Sample database from 2016 to 2020. Stratified them into cohorts with RA, SLE and IBD and compared them to cohorts without AID. The Chi-square test and multivariate logistic regression were used for analysis. A p-value <0.005 was considered statistically significant. RESULT We identified 2,367,475 patients who underwent PCI. Of these, 1.6 %, 0.5 %, and 0.4 % had RA, IBD and SLE respectively. The odds of mortality were lower among patients with IBD (aOR: 0.56; CI 0.38-0.81, p = 0.002) but patients with RA had higher odds of having composite major complications [(MC) including cerebrovascular accident (CVA), cardiac arrest, acute heart failure (AHF), ventricular arrhythmia (VA), major bleeding, and acute kidney injury (AKI)] (aOR: 0.90; CI 0.83-0.98, p = 0.013). Our SLE cohort had higher rates of CVA (p = 0.017) and AKI (p = 0.002). Our cohort with IBD had lower rates of cardiac arrest but had longer hospital length of stay (4.9 days vs 3.9 days) and they incurred higher hospital charges compared to cohort without IBD. CONCLUSION This study depicts the immediate adverse outcomes observed in patients with AID undergoing PCI. In contrast to those without AID, our cohorts with RA exhibited worse outcomes, as indicated by the higher odds of major complications. IBD is associated with lower risks of in-hospital adverse outcomes but with higher resource utilization.
Collapse
Affiliation(s)
- Akanimo Antia
- Department of Medicine, Lincoln Medical Center, Bronx, NY, United States of America.
| | - Kessiena Aomreore
- Department of Medicine, Lincoln Medical Center, Bronx, NY, United States of America
| | - Ndausung Udongwo
- Department of Medicine, Division of Cardiovascular Medicine, Morehouse School of Medicine, Atlanta, GA, United States of America
| | - Sharika Menon
- Department of Medicine, Division of Rheumatology, Lincoln Medical Center, Bronx, NY, United States of America
| | - Uzoma Ibebuogu
- Department of Medicine, Division of Cardiovascular Medicine, University of Tennessee Health Science Center, Memphis, TN, United States of America
| |
Collapse
|
5
|
Ruscitti P, Allanore Y, Baldini C, Barilaro G, Bartoloni Bocci E, Bearzi P, Bellis E, Berardicurti O, Biaggi A, Bombardieri M, Cantarini L, Cantatore FP, Caporali R, Caso F, Cervera R, Ciccia F, Cipriani P, Chatzis L, Colafrancesco S, Conti F, Corberi E, Costa L, Currado D, Cutolo M, D'Angelo S, Del Galdo F, Di Cola I, Di Donato S, Distler O, D'Onofrio B, Doria A, Fautrel B, Fasano S, Feist E, Fisher BA, Gabini M, Gandolfo S, Gatto M, Genovali I, Gerli R, Grembiale RD, Guggino G, Hoffmann-Vold AM, Iagnocco A, Iaquinta FS, Liakouli V, Manoussakis MN, Marino A, Mauro D, Montecucco C, Mosca M, Naty S, Navarini L, Occhialini D, Orefice V, Perosa F, Perricone C, Pilato A, Pitzalis C, Pontarini E, Prete M, Priori R, Rivellese F, Sarzi-Puttini P, Scarpa R, Sebastiani G, Selmi C, Shoenfeld Y, Triolo G, Trunfio F, Yan Q, Tzioufas AG, Giacomelli R. Tailoring the treatment of inflammatory rheumatic diseases by a better stratification and characterization of the clinical patient heterogeneity. Findings from a systematic literature review and experts' consensus. Autoimmun Rev 2024; 23:103581. [PMID: 39069240 DOI: 10.1016/j.autrev.2024.103581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Inflammatory rheumatic diseases are different pathologic conditions associated with a deregulated immune response, codified along a spectrum of disorders, with autoinflammatory and autoimmune diseases as two-end phenotypes of this continuum. Despite pathogenic differences, inflammatory rheumatic diseases are commonly managed with a limited number of immunosuppressive drugs, sometimes with partial evidence or transferring physicians' knowledge in different patients. In addition, several randomized clinical trials, enrolling these patients, did not meet the primary pre-established outcomes and these findings could be linked to the underlying molecular diversities along the spectrum of inflammatory rheumatic disorders. In fact, the resulting patient heterogeneity may be driven by differences in underlying molecular pathology also resulting in variable responses to immunosuppressive drugs. Thus, the identification of different clinical subsets may possibly overcome the major obstacles that limit the development more effective therapeutic strategies for these patients with inflammatory rheumatic diseases. This clinical heterogeneity could require a diverse therapeutic management to improve patient outcomes and increase the frequency of clinical remission. Therefore, the importance of better patient stratification and characterization is increasingly pointed out according to the precision medicine principles, also suggesting a new approach for disease treatment. In fact, based on a better proposed patient profiling, clinicians could more appropriately balance the therapeutic management. On these bases, we synthetized and discussed the available literature about the patient profiling in regard to therapy in the context of inflammatory rheumatic diseases, mainly focusing on randomized clinical trials. We provided an overview of the importance of a better stratification and characterization of the clinical heterogeneity of patients with inflammatory rheumatic diseases identifying this point as crucial in improving the management of these patients.
Collapse
Affiliation(s)
- Piero Ruscitti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Yannick Allanore
- Rheumatology Department, Cochin Hospital, APHP, INSERM U1016, Université Paris Cité, Paris, France
| | - Chiara Baldini
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giuseppe Barilaro
- Department of Autoimmune Diseases, Reference Centre for Systemic Autoimmune Diseases, Vasculitis and Autoinflammatory Diseases of the Catalan and Spanish Health Systems, Member of ERN-ReCONNET/RITA, Hospital Clínic, University of Barcelona, Barcelona, Catalonia, Spain
| | - Elena Bartoloni Bocci
- Section of Rheumatology, Department of Medicine and Surgery, University of Perugia, Italy
| | - Pietro Bearzi
- Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Rome "Campus Bio-Medico", 00128 Rome, Italy; Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Elisa Bellis
- Academic Rheumatology Centre, Dipartimento di Scienze Cliniche e Biologiche Università di Torino - AO Mauriziano di Torino, Turin, Italy
| | - Onorina Berardicurti
- Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Rome "Campus Bio-Medico", 00128 Rome, Italy; Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Alice Biaggi
- Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Rome "Campus Bio-Medico", 00128 Rome, Italy; Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Michele Bombardieri
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts NIHR BRC & NHS Trust & National Institute for Health and Care Research (NIHR) Barts Biomedical Research Centre (BRC), London, UK
| | - Luca Cantarini
- Department of Medical Sciences, Surgery and Neurosciences, Research Center of Systemic Autoinflammatory Diseases and Behçet's Disease Clinic, University of Siena, Siena, Italy; Azienda Ospedaliero-Universitaria Senese [European Reference Network (ERN) for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) Center] Siena, Italy
| | - Francesco Paolo Cantatore
- Rheumatology Clinic, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Roberto Caporali
- Department of Clinical Sciences and Community Health, University of Milan, Paediatric Rheumatology Unit, and Clinical Rheumatology Unit, ASST Pini-CTO, Milan, Italy
| | - Francesco Caso
- Rheumatology Research Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Ricard Cervera
- Department of Autoimmune Diseases, Reference Centre for Systemic Autoimmune Diseases, Vasculitis and Autoinflammatory Diseases of the Catalan and Spanish Health Systems, Member of ERN-ReCONNET/RITA, Hospital Clínic, University of Barcelona, Barcelona, Catalonia, Spain
| | - Francesco Ciccia
- Rheumatology Unit, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Paola Cipriani
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Loukas Chatzis
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Greece
| | - Serena Colafrancesco
- Department of Internal Medicine and Medical Specialties, Rheumatology Unit, Sapienza University of Rome, Viale del Policlinico 155, 00185 Rome, Italy
| | - Fabrizio Conti
- Department of Internal Medicine and Medical Specialties, Rheumatology Unit, Sapienza University of Rome, Viale del Policlinico 155, 00185 Rome, Italy
| | - Erika Corberi
- Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Rome "Campus Bio-Medico", 00128 Rome, Italy; Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Luisa Costa
- Rheumatology Research Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Damiano Currado
- Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Rome "Campus Bio-Medico", 00128 Rome, Italy; Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Maurizio Cutolo
- Laboratory of Experimental Rheumatology and Academic Division of Rheumatology, Department of Internal Medicine and Specialties, University of Genova Italy, IRCCS Polyclinic Hospital, Genova, Italy
| | - Salvatore D'Angelo
- Rheumatology Depatment of Lucania, San Carlo Hospital of Potenza and Madonna delle Grazie Hospital of Matera, Potenza, Italy
| | - Francesco Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK; NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Ilenia Di Cola
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Stefano Di Donato
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK; NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Oliver Distler
- Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Bernardo D'Onofrio
- Department of Internal Medicine and Therapeutics, Università di Pavia, Division of Rheumatology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Andrea Doria
- Rheumatology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Bruno Fautrel
- Sorbonne Université - Assistance Publique Hôpitaux de Paris, INSERM UMRS 1136, Hôpital de La Pitié Salpêtrière, Paris, France
| | - Serena Fasano
- Rheumatology Unit, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Eugen Feist
- Department of Rheumatology, Helios Fachklinik, Sophie-von-Boetticher-Straße 1, 39245, Vogelsang-Gommern, Germany; Charité - Universitätsmedizin Berlin, Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Berlin, Germany
| | - Benjamin A Fisher
- Institute of Inflammation and Ageing, University Hospitals Birmingham, Birmingham, UK; Department of Rheumatology, National Institute for Health Research (NIHR), Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Marco Gabini
- Rheumatology Unit, Santo Spirito Hospital, Pescara, Italy
| | - Saviana Gandolfo
- Unit of Rheumatology, San Giovanni Bosco Hospital, Naples, Italy
| | - Mariele Gatto
- Academic Rheumatology Centre, Dipartimento di Scienze Cliniche e Biologiche Università di Torino - AO Mauriziano di Torino, Turin, Italy
| | - Irene Genovali
- Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Rome "Campus Bio-Medico", 00128 Rome, Italy; Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Roberto Gerli
- Section of Rheumatology, Department of Medicine and Surgery, University of Perugia, Italy
| | - Rosa Daniela Grembiale
- Rheumatology Research Unit, Dipartimento di Scienze della Salute, Università degli studi "Magna Graecia" di Catanzaro, Catanzaro, Italy
| | - Giuliana Guggino
- Rheumatology Unit, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Italy
| | - Anna Maria Hoffmann-Vold
- Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Rheumatology, Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Annamaria Iagnocco
- Academic Rheumatology Centre, Dipartimento di Scienze Cliniche e Biologiche Università di Torino - AO Mauriziano di Torino, Turin, Italy
| | - Francesco Salvatore Iaquinta
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts NIHR BRC & NHS Trust & National Institute for Health and Care Research (NIHR) Barts Biomedical Research Centre (BRC), London, UK
| | - Vasiliki Liakouli
- Rheumatology Unit, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Menelaos N Manoussakis
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Greece
| | - Annalisa Marino
- Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Rome "Campus Bio-Medico", 00128 Rome, Italy; Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Daniele Mauro
- Rheumatology Unit, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Carlomaurizio Montecucco
- Department of Internal Medicine and Therapeutics, Università di Pavia, Division of Rheumatology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Marta Mosca
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Saverio Naty
- Department of Health Sciences, "Magna Græcia" University of Catanzaro, 88100 Catanzaro, Italy
| | - Luca Navarini
- Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Rome "Campus Bio-Medico", 00128 Rome, Italy; Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Daniele Occhialini
- Rheumatic and Systemic Autoimmune Diseases Unit, Department of Interdisciplinary Medicine (DIM), University of Bari Medical School, Italy
| | - Valeria Orefice
- Rheumatology Unit, San Camillo-Forlanini Hospital, Rome, Italy
| | - Federico Perosa
- Rheumatic and Systemic Autoimmune Diseases Unit, Department of Interdisciplinary Medicine (DIM), University of Bari Medical School, Italy
| | - Carlo Perricone
- Section of Rheumatology, Department of Medicine and Surgery, University of Perugia, Italy
| | - Andrea Pilato
- Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Rome "Campus Bio-Medico", 00128 Rome, Italy; Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts NIHR BRC & NHS Trust & National Institute for Health and Care Research (NIHR) Barts Biomedical Research Centre (BRC), London, UK; Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Elena Pontarini
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts NIHR BRC & NHS Trust & National Institute for Health and Care Research (NIHR) Barts Biomedical Research Centre (BRC), London, UK
| | - Marcella Prete
- Rheumatic and Systemic Autoimmune Diseases Unit, Department of Interdisciplinary Medicine (DIM), University of Bari Medical School, Italy
| | - Roberta Priori
- Department of Internal Medicine and Medical Specialties, Rheumatology Unit, Sapienza University of Rome, Viale del Policlinico 155, 00185 Rome, Italy
| | - Felice Rivellese
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts NIHR BRC & NHS Trust & National Institute for Health and Care Research (NIHR) Barts Biomedical Research Centre (BRC), London, UK
| | - Piercarlo Sarzi-Puttini
- Rheumatology Department, ASST Fatebenefratelli Luigi Sacco University Hospital, Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Raffaele Scarpa
- Rheumatology Research Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | | | - Carlo Selmi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Yehuda Shoenfeld
- Zabludovwicz autoimmunity center, Sheba medical center, Tel Hashomer Israel, Reichman University, Herzeliya, Israel
| | - Giovanni Triolo
- Rheumatology Unit, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Italy
| | - Francesca Trunfio
- Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Rome "Campus Bio-Medico", 00128 Rome, Italy; Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Qingran Yan
- Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Athanasios G Tzioufas
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, Greece
| | - Roberto Giacomelli
- Rheumatology and Clinical Immunology, Department of Medicine, School of Medicine, University of Rome "Campus Bio-Medico", 00128 Rome, Italy; Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| |
Collapse
|
6
|
Zeng L, Yang K, He Q, Zhu X, Long Z, Wu Y, Chen J, Li Y, Zeng J, Cui G, Xiang W, Hao W, Sun L. Efficacy and safety of gut microbiota-based therapies in autoimmune and rheumatic diseases: a systematic review and meta-analysis of 80 randomized controlled trials. BMC Med 2024; 22:110. [PMID: 38475833 PMCID: PMC10935932 DOI: 10.1186/s12916-024-03303-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Previous randomized controlled trials (RCTs) suggested that gut microbiota-based therapies may be effective in treating autoimmune diseases, but a systematic summary is lacking. METHODS Pubmed, EMbase, Sinomed, and other databases were searched for RCTs related to the treatment of autoimmune diseases with probiotics from inception to June 2022. RevMan 5.4 software was used for meta-analysis after 2 investigators independently screened literature, extracted data, and assessed the risk of bias of included studies. RESULTS A total of 80 RCTs and 14 types of autoimmune disease [celiac sprue, SLE, and lupus nephritis (LN), RA, juvenile idiopathic arthritis (JIA), spondyloarthritis, psoriasis, fibromyalgia syndrome, MS, systemic sclerosis, type 1 diabetes mellitus (T1DM), oral lichen planus (OLP), Crohn's disease, ulcerative colitis] were included. The results showed that gut microbiota-based therapies may improve the symptoms and/or inflammatory factor of celiac sprue, SLE and LN, JIA, psoriasis, PSS, MS, systemic sclerosis, Crohn's disease, and ulcerative colitis. However, gut microbiota-based therapies may not improve the symptoms and/or inflammatory factor of spondyloarthritis and RA. Gut microbiota-based therapies may relieve the pain of fibromyalgia syndrome, but the effect on fibromyalgia impact questionnaire score is not significant. Gut microbiota-based therapies may improve HbA1c in T1DM, but its effect on total insulin requirement does not seem to be significant. These RCTs showed that probiotics did not increase the incidence of adverse events. CONCLUSIONS Gut microbiota-based therapies may improve several autoimmune diseases (celiac sprue, SLE and LN, JIA, psoriasis, fibromyalgia syndrome, PSS, MS, T1DM, Crohn's disease, and ulcerative colitis).
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Kailin Yang
- Hunan University of Chinese Medicine, Changsha, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | | | - Zhiyong Long
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Yang Wu
- Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | | | - Yuwei Li
- Hunan University of Science and Technology, Xiangtan, China
| | - Jinsong Zeng
- Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ge Cui
- Department of Epidemiology and Statistics, School of Public Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wang Xiang
- Department of Rheumatology, The First People's Hospital Changde City, Changde, China
| | - Wensa Hao
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
7
|
Wu YY, Xing J, Li XF, Yang YL, Shao H, Li J. Roles of interferon induced protein with tetratricopeptide repeats (IFIT) family in autoimmune disease. Autoimmun Rev 2023; 22:103453. [PMID: 37741527 DOI: 10.1016/j.autrev.2023.103453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Interferon-induced tetrapeptide repeat (IFIT) family proteins are an important component of the antiviral immune response. There are four known members of the human IFIT family, namely IFIT1, IFIT2, IFIT3 and IFIT5. More and more evidence shows that IFIT family members are involved in a variety of pathophysiological processes in vivo, regulate the homeostasis and differentiation of a variety of cells including immune cells, and are closely related to a variety of autoimmune diseases, which is expected to become a new therapeutic target. This review reviews the biological roles of different IFIT proteins in various autoimmune diseases, and highlights the potential use of these molecules as biomarkers and prognostic factors in autoimmune diseases, with a view to providing ideas for exploring the diagnosis and treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Yuan-Yuan Wu
- Department of Pharmacy, Zhong da Hospital of Southeast University, No. 87 Ding Jia Qiao, Nanjing 210009, China
| | - Jun Xing
- China Medical University, Shenyang 110122, China
| | - Xiao-Feng Li
- Anhui Institute of Innovative Drugs, the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province; School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Ying-Li Yang
- Anhui Institute of Innovative Drugs, the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province; School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Hua Shao
- Department of Pharmacy, Zhong da Hospital of Southeast University, No. 87 Ding Jia Qiao, Nanjing 210009, China.
| | - Jun Li
- Anhui Institute of Innovative Drugs, the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province; School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
8
|
He Y, Sun Z, Bai J, Zhang Y, Qian Y, Zhao X, Chen S. Citrus peel polyphenols alleviate intestinal inflammation in mice with dextran sulfate sodium-induced acute colitis. Heliyon 2023; 9:e18137. [PMID: 37539135 PMCID: PMC10393610 DOI: 10.1016/j.heliyon.2023.e18137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/01/2023] [Accepted: 07/09/2023] [Indexed: 08/05/2023] Open
Abstract
Citrus peel polyphenols have possess the distinct anti-inflammatory activities. However, its underlying mechanism on ulcerative colitis have not been elucidated. The aim of this research was to investigate the anti-inflammatory effect and action mechanisms of citrus peel polyphenols. Total citrus peel polyphenols were concentrated using macroporous resins and separated into water-soluble citrus polyphenols and ester-soluble citrus peel polyphenols. These extracts were then gavaged to acute colitis mice induced by dextran sulfate sodium for 14 days using a dose of 300 mg/kg▪bw. High performance liquid chromatography results showed that the extracts contained flavanones, flavonoids, and phenolic acids. Compared to the dextran sulfate sodium group, total citrus peel polyphenols, water-soluble citrus polyphenols, and ester-soluble citrus peel polyphenols significantly ameliorated the severity of colitis symptoms. Additionally, citrus peel polyphenols reduced the activity of myeloperoxidase, lowered secretion of tumor necrosis factor-α and interleukin-6, and increased interleukin-10. Meanwhile, total citrus peel polyphenols, water-soluble citrus polyphenols, and ester-soluble citrus peel polyphenols effectively blocked the activation of the nuclear factor-kappa B. These results demonstrated that citrus peel polyphenols alleviated ulcerative colitis in mice by damping pro-inflammatory cytokine secretion and suppressing the nuclear factor-kappa B pathway activation.
Collapse
Affiliation(s)
- Yajing He
- Citrus Research Institute, National Citrus Engineering Technology Research Center, Southwest University, Chongqing, China
| | - Zhigao Sun
- Citrus Research Institute, National Citrus Engineering Technology Research Center, Southwest University, Chongqing, China
| | - JunYing Bai
- Citrus Research Institute, National Citrus Engineering Technology Research Center, Southwest University, Chongqing, China
| | - Yu Zhang
- School of Food Science, Southwest University, Chongqing, China
| | - Yu Qian
- School of Food ScienChongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
- College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Xin Zhao
- School of Food ScienChongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, China
- College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, China
| | - Shanshan Chen
- Citrus Research Institute, National Citrus Engineering Technology Research Center, Southwest University, Chongqing, China
| |
Collapse
|
9
|
Olayinka-Adefemi F, Hou S, Marshall AJ. Dual inhibition of phosphoinositide 3-kinases delta and gamma reduces chronic B cell activation and autoantibody production in a mouse model of lupus. Front Immunol 2023; 14:1115244. [PMID: 37234154 PMCID: PMC10206234 DOI: 10.3389/fimmu.2023.1115244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Phosphoinositide 3-kinase delta (PI3Kδ) plays key roles in normal B cell activation and is chronically activated in malignant B cells. Targeting of PI3Kδ using FDA-approved drugs Idelalisib or Umbralisib has shown efficacy in treatment of multiple B cell malignancies. Duvelisib, an inhibitor targeting both PI3Kδ and PI3Kγ (PI3Kδγi) has also been used for treatment of several leukemias and lymphomas and was suggested to offer potential additional benefits in supressing T cell and inflammatory responses. Transcriptomics analyses indicated that while most B cell subsets predominantly express PI3Kδ, plasma cells upregulate PI3Kγ. We thus assessed whether PI3Kδγi treatment can impact chronic B cell activation in the context of an autoantibody-mediated disease. Using the TAPP1R218LxTAPP2R211L (TAPP KI) mouse model of lupus-like disease driven by dysregulated PI3K pathway activity, we performed 4 week PI3Kδγi treatments and found significant reduction in CD86+ B cells, germinal center B cells, follicular helper T cells and plasma cells in multiple tissues. This treatment also significantly attenuated the abnormally elevated serum levels of IgG isotypes observed in this model. The profile of autoantibodies generated was markedly altered by PI3Kδγi treatment, with significant reductions in IgM and IgG targeting nuclear antigens, matrix proteins and other autoantigens. Kidney pathology was also impacted, with reduced IgG deposition and glomerulonephritis. These results indicate that dual inhibition of PI3Kδ and PI3Kγ can target autoreactive B cells and may have therapeutic benefits in autoantibody-mediated disease.
Collapse
|
10
|
Wang S, Zhang L, Zhou Y, Huang J, Zhou Z, Liu Z. A review on pharmacokinetics of sinomenine and its anti-inflammatory and immunomodulatory effects. Int Immunopharmacol 2023; 119:110227. [PMID: 37119677 DOI: 10.1016/j.intimp.2023.110227] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/02/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
Autoimmune diseases (ADs), with significant effects on morbidity and mortality, are a broad spectrum of disorders featured by body's immune responses being directed against its own tissues, resulting in chronic inflammation and tissue damage. Sinomenine (SIN) is an alkaloid isolated from the root and stem of Sinomenium acutum which is mainly used to treat pain, inflammation and immune disorders for centuries in China. Its potential anti-inflammatory role for treating immune-related disorders in experimental animal models and in some clinical applications have been reported widely, suggesting an inspiring application prospect of SIN. In this review, the pharmacokinetics, drug delivery systems, pharmacological mechanisms of action underlying the anti-inflammatory and immunomodulatory effects of SIN, and the possibility of SIN as adjuvant to disease-modifying anti-rheumatic drugs (DMARDs) therapy were summarized and evaluated. This paper aims to reveal the potential prospects and limitations of SIN in the treatment of inflammatory and immune diseases, and to provide ideas for compensating its limitations and reducing the side effects, and thus to make SIN better translate to the clinic.
Collapse
Affiliation(s)
- Siwei Wang
- Medical Department, Yangtze University, Jingzhou 434023, Hubei Province, China; Honghu Hospital of Traditional Chinese Medicine, Honghu 433299, Hubei Province, China
| | - Lvzhuo Zhang
- Medical Department, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Yanhua Zhou
- Honghu Hospital of Traditional Chinese Medicine, Honghu 433299, Hubei Province, China
| | - Jiangrong Huang
- Medical Department, Yangtze University, Jingzhou 434023, Hubei Province, China; Jingzhou Central Hospital Affiliated to Yangtze University, Jingzhou 434020, Hubei Province, China.
| | - Zushan Zhou
- Medical Department, Yangtze University, Jingzhou 434023, Hubei Province, China; Honghu Hospital of Traditional Chinese Medicine, Honghu 433299, Hubei Province, China.
| | - Zhenzhen Liu
- Medical Department, Yangtze University, Jingzhou 434023, Hubei Province, China.
| |
Collapse
|
11
|
Zhao C, Zhang R, Liu S, Li X, Sun D, Jiang Y, Yang M. Photoacoustic/ultrasound-guided gene silencing: Multifunctional microbubbles for treating adjuvant-induced arthritis. Int Immunopharmacol 2023; 117:109978. [PMID: 37012868 DOI: 10.1016/j.intimp.2023.109978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/05/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023]
Abstract
AIMS To effectively deliver small interfering RNA (siRNA) to inflammatory tissues for treating rheumatoid arthritis (RA), we developed the multifunctional microbubbles (MBs) to perform photoacoustic/ultrasound-guided gene silencing. METHODS Fluorescein amidite (FAM)-labelled tumour necrosis factor-α (TNF-α)-siRNA and cationic MBs were mixed to fabricate FAM-TNF-α-siRNA-cMBs. The cell transfection efficacy of FAM-TNF-α-siRNA-cMBs was evaluated in vitro on RAW264.7 cells. Subsequently, wistar rats with adjuvant-induced arthritis (AIA) were injected intravenously with MBs and simultaneously subjected to low-frequency ultrasound for ultrasound-targeted microbubble destruction (UTMD). Photoacoustic imaging (PAI) was utilized to visualize the distribution of siRNA. And the clinical and pathological changes of AIA rats was estimated. RESULTS FAM-TNF-α-siRNA-cMBs were evenly distributed within the RAW264.7 cells and significantly reduced TNF-α mRNA levels of the cells. For AIA rats, the entering and collapsing of MBs was visualized by contrast-enhanced ultrasound (CEUS). Photoacoustic imaging showed markedly enhanced signals following injection, indicating localization of the FAM-labelled siRNA. The articular tissues of the AIA rats treated with TNF-α-siRNA-cMBs and UTMD showed decreased TNF-α expression levels. CONCLUSIONS The theranostic MBs exhibited a TNF-α gene silencing effect under the guidance of CEUS and PAI. The theranostic MBs served as vehicles for delivering siRNA as well as contrast agents for CEUS and PAI.
Collapse
Affiliation(s)
- Chenyang Zhao
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Ultrasonography, Peking University Shenzhen hospital, Shenzhen, China
| | - Rui Zhang
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sirui Liu
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuelan Li
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Desheng Sun
- Department of Ultrasonography, Peking University Shenzhen hospital, Shenzhen, China
| | - Yuxin Jiang
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Yang
- Department of Ultrasound, State Key Laboratory of Complex Severe and Rare Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
12
|
Laurindo LF, de Carvalho GM, de Oliveira Zanuso B, Figueira ME, Direito R, de Alvares Goulart R, Buglio DS, Barbalho SM. Curcumin-Based Nanomedicines in the Treatment of Inflammatory and Immunomodulated Diseases: An Evidence-Based Comprehensive Review. Pharmaceutics 2023; 15:pharmaceutics15010229. [PMID: 36678859 PMCID: PMC9861982 DOI: 10.3390/pharmaceutics15010229] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Curcumin (CUR) is a polyphenol extracted from the rhizome of Curcuma longa that possesses potent anti-inflammatory and antioxidant potential. Despite CUR's numerous beneficial effects on human health, it has limitations, such as poor absorption. Nano-based drug delivery systems have recently been applied to improve CUR's solubility and bioavailability and potentialize its health effects. This review investigated the effects of different CUR-based nanomedicines on inflammatory and immunomodulated diseases. PUBMED, EMBASE, COCHRANE, and GOOGLE SCHOLAR databases were searched, and the Scale for Assessment of Narrative Review Articles (SANRA) was used for quality assessment and PRISMA guidelines. Overall, 66 studies were included comprising atherosclerosis, rheumatoid arthritis (RA), Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), Huntington's disease (HD), inflammatory bowel diseases (IBD), psoriasis, liver fibrosis, epilepsy, and COVID-19. The available scientific studies show that there are many known nanoformulations with curcumin. They can be found in nanosuspensions, nanoparticles, nanoemulsions, solid lipid particles, nanocapsules, nanospheres, and liposomes. These formulations can improve CUR bioavailability and can effectively be used as adjuvants in several inflammatory and immune-mediated diseases such as atheroma plaque formation, RA, dementia, AD, PD, MS, IBD, psoriasis, epilepsy, COVID-19, and can be used as potent anti-fibrotic adjuvants in fibrotic liver disease.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
| | - Gabriel Magno de Carvalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
| | - Bárbara de Oliveira Zanuso
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
| | - Maria Eduardo Figueira
- Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Ricardo de Alvares Goulart
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
| | - Daiene Santos Buglio
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marília, São Paulo 17525-902, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Avenida Castro Alves, 62, Marília, São Paulo 17500-000, Brazil
- Correspondence: ; Tel.: +55-14-99655-3190
| |
Collapse
|
13
|
Heng H, Li D, Su W, Liu X, Yu D, Bian Z, Li J. Exploration of comorbidity mechanisms and potential therapeutic targets of rheumatoid arthritis and pigmented villonodular synovitis using machine learning and bioinformatics analysis. Front Genet 2023; 13:1095058. [PMID: 36685864 PMCID: PMC9853060 DOI: 10.3389/fgene.2022.1095058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/21/2022] [Indexed: 01/08/2023] Open
Abstract
Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease. Pigmented villonodular synovitis (PVNS) is a tenosynovial giant cell tumor that can involve joints. The mechanisms of co-morbidity between the two diseases have not been thoroughly explored. Therefore, this study focused on investigating the functions, immunological differences, and potential therapeutic targets of common genes between RA and PVNS. Methods: Through the dataset GSE3698 obtained from the Gene Expression Omnibus (GEO) database, the differentially expressed genes (DEGs) were screened by R software, and weighted gene coexpression network analysis (WGCNA) was performed to discover the modules most relevant to the clinical features. The common genes between the two diseases were identified. The molecular functions and biological processes of the common genes were analyzed. The protein-protein interaction (PPI) network was constructed using the STRING database, and the results were visualized in Cytoscape software. Two machine learning algorithms, least absolute shrinkage and selection operator (LASSO) logistic regression and random forest (RF) were utilized to identify hub genes and predict the diagnostic efficiency of hub genes as well as the correlation between immune infiltrating cells. Results: We obtained a total of 107 DEGs, a module (containing 250 genes) with the highest correlation with clinical characteristics, and 36 common genes after taking the intersection. Moreover, using two machine learning algorithms, we identified three hub genes (PLIN, PPAP2A, and TYROBP) between RA and PVNS and demonstrated good diagnostic performance using ROC curve and nomogram plots. Single sample Gene Set Enrichment Analysis (ssGSEA) was used to analyze the biological functions in which three genes were mostly engaged. Finally, three hub genes showed a substantial association with 28 immune infiltrating cells. Conclusion: PLIN, PPAP2A, and TYROBP may influence RA and PVNS by modulating immunity and contribute to the diagnosis and therapy of the two diseases.
Collapse
Affiliation(s)
- Hongquan Heng
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Dazhuang Li
- Department of Orthopedics, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Wenxing Su
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China
| | - Xinyue Liu
- Department of Radiology, Wangjiang Hospital of Sichuan University, Chengdu, China
| | - Daojiang Yu
- Department of Plastic and Burn Surgery, The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Chengdu, China,*Correspondence: Daojiang Yu, ; Zhengjun Bian, ; Jian Li,
| | - Zhengjun Bian
- Department of Orthopedics, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China,*Correspondence: Daojiang Yu, ; Zhengjun Bian, ; Jian Li,
| | - Jian Li
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China,*Correspondence: Daojiang Yu, ; Zhengjun Bian, ; Jian Li,
| |
Collapse
|
14
|
Mora VP, Loaiza RA, Soto JA, Bohmwald K, Kalergis AM. Involvement of trained immunity during autoimmune responses. J Autoimmun 2022:102956. [DOI: 10.1016/j.jaut.2022.102956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022]
|
15
|
The role of iron in chronic inflammatory diseases: from mechanisms to treatment options in anemia of inflammation. Blood 2022; 140:2011-2023. [PMID: 35994752 DOI: 10.1182/blood.2021013472] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/09/2022] [Indexed: 11/20/2022] Open
Abstract
Anemia of inflammation (AI) is a highly prevalent comorbidity in patients affected by chronic inflammatory disorders, such as chronic kidney disease, inflammatory bowel disease, or cancer, that negatively affect disease outcome and quality of life. The pathophysiology of AI is multifactorial, with inflammatory hypoferremia and iron-restricted erythropoiesis playing a major role in the context of disease-specific factors. Here, we review the recent progress in our understanding of the molecular mechanisms contributing to iron dysregulation in AI, the impact of hypoferremia and anemia on the course of the underlying disease, and (novel) therapeutic strategies applied to treat AI.
Collapse
|
16
|
Zhou LY, Xie Y, Li Y. Bifidobacterium infantis regulates the programmed cell death 1 pathway and immune response in mice with inflammatory bowel disease. World J Gastroenterol 2022; 28:3164-3176. [PMID: 36051332 PMCID: PMC9331522 DOI: 10.3748/wjg.v28.i26.3164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/12/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is caused by an abnormal immune response. Programmed cell death 1 (PD-1) is an immunostimulatory molecule, which interacts with PD ligand (PD-L1) playing a prime important role among autoimmune diseases. Bifidobacterium infantis (B. infantis) can promote the differentiation of CD (cluster of differentiation) 4+ T cells into regulatory T cells (Tregs). Tregs participate in the development of IBD and may be related to disease activity. B. infantis amplify the expression level of PD-1, PD-L1 and Tregs’ nuclear transcription factor forkhead box protein 3 (Foxp3). But the mechanism of B. infantis on PD-1/PD-L1 signaling remains unclear.
AIM To explore the mechanism of B. infantis regulating the immune response in IBD.
METHODS Forty-eight-week-old BALB/c mice were randomly divided into five groups: The control group, dextran sulphate sodium (DSS) model group, DSS + B. infantis group, DSS + B. infantis + anti-PD-L1 group, and DSS + anti-PD-L1 group. The control group mice were given drinking water freely, the other four groups were given drinking water containing 5% DSS freely. The control group, DSS model group, and DSS + anti-PD-L1 group were given normal saline (NS) 400 μL daily by gastric lavage, and the DSS + B. infantis group and DSS + B. infantis + anti-PD-L1 group were given NS and 1 × 109 colony-forming unit of B. infantis daily by gastric lavage. The DSS + B. infantis + anti-PD-L1 group and DSS + anti-PD-L1 group were given 200 μg of PD-L1 blocker intraperitoneally at days 0, 3, 5, and 7; the control group, DSS + anti-PD-L1 group, and DSS + B. infantis group were given an intraperitoneal injection of an equal volume of phosphate buffered saline (PBS). Changes in PD-L1, PD-1, Foxp3, interleukin (IL)-10, and transforming growth factor β (TGF-β) 1 protein and gene expression were observed. Flow cytometry was used to observe changes in CD4+, CD25+, Foxp3+ cell numbers in the blood and spleen.
RESULTS Compared to the control group, the expression of PD-1, Foxp3, IL-10, and TGF-β1 was significantly decreased in the intestinal tract of the DSS mice (P < 0.05). Compared to the control group, the proportion of CD4+, CD25+, Foxp3+ cells in spleen and blood of DSS group was visibly katabatic (P < 0.05). B. infantis upgraded the express of PD-L1, PD-1, Foxp3, IL-10, and TGF-β1 (P < 0.05) and increased the proportion of CD4+, CD25+, Foxp3+ cells both in spleen and blood (P < 0.05). After blocking PD-L1, the increase in Foxp3, IL-10, and TGF-β1 protein and gene by B. infantis was inhibited (P < 0.05), and the proliferation of CD4+, CD25+, Foxp3+ cells in the spleen and blood was also inhibited (P < 0.05). After blocking PD-L1, the messenger ribonucleic acid and protein expression of PD-1 were invariant.
CONCLUSION It is potential that B. infantis boost the proliferation of CD4+, CD25+, Foxp3+ T cells in both spleen and blood, as well as the expression of Foxp3 in the intestinal tract by activating the PD-1/PD-L1 pathway.
Collapse
Affiliation(s)
- Lin-Yan Zhou
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Ying Xie
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| | - Yan Li
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
| |
Collapse
|
17
|
Ortega MA, García-Montero C, Fraile-Martinez O, Alvarez-Mon MA, Gómez-Lahoz AM, Lahera G, Monserrat J, Rodriguez-Jimenez R, Quintero J, Álvarez-Mon M. Immune-Mediated Diseases from the Point of View of Psychoneuroimmunoendocrinology. BIOLOGY 2022; 11:973. [PMID: 36101354 PMCID: PMC9312038 DOI: 10.3390/biology11070973] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 12/18/2022]
Abstract
Immune-mediated inflammatory diseases (IMIDs) represent a large group of diseases (Crohn's, ulcerative colitis, psoriasis, lupus, and rheumatoid arthritis) evidenced by systemic inflammation and multiorgan involvement. IMIDs result in a reduced quality of life and an economic burden for individuals, health care systems, and countries. In this brief descriptive review, we will focus on some of the common biological pathways of these diseases from the point of view of psychoneuroimmunoendocrinology (PNIE). PNIE consists of four medical disciplines (psychology, nervous system, immune system, and endocrine system), which are key drivers behind the health-disease concept that a human being functions as a unit. We examine these drivers and emphasize the need for integrative treatments that addresses the disease from a psychosomatic point of view.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (M.A.A.-M.); (A.M.G.-L.); (G.L.); (J.M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (M.A.A.-M.); (A.M.G.-L.); (G.L.); (J.M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (M.A.A.-M.); (A.M.G.-L.); (G.L.); (J.M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (M.A.A.-M.); (A.M.G.-L.); (G.L.); (J.M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain;
| | - Ana Maria Gómez-Lahoz
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (M.A.A.-M.); (A.M.G.-L.); (G.L.); (J.M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (M.A.A.-M.); (A.M.G.-L.); (G.L.); (J.M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias (CIBERSAM), 28806 Alcalá de Henares, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (M.A.A.-M.); (A.M.G.-L.); (G.L.); (J.M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Roberto Rodriguez-Jimenez
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
- Institute for Health Research 12 de Octubre Hospital, (Imas 12)/CIBERSAM (Biomedical Research Networking Centre in Mental Health), 28041 Madrid, Spain
| | - Javier Quintero
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain;
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (C.G.-M.); (O.F.-M.); (M.A.A.-M.); (A.M.G.-L.); (G.L.); (J.M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Spain
| |
Collapse
|
18
|
Geng L, Qu W, Wang S, Chen J, Xu Y, Kong W, Xu X, Feng X, Zhao C, Liang J, Zhang H, Sun L. Prediction of diagnosis results of rheumatoid arthritis patients based on autoantibodies and cost-sensitive neural network. Clin Rheumatol 2022; 41:2329-2339. [PMID: 35404026 DOI: 10.1007/s10067-022-06109-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/19/2022] [Accepted: 02/15/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVES To analyze and evaluate the effectiveness of the detection of single autoantibody and combined autoantibodies in patients with rheumatoid arthritis (RA) and related autoimmune diseases and establish a machine learning model to predict the disease of RA. METHODS A total of 309 patients with joint pain as the first symptom were retrieved from the database. The effectiveness of single and combined antibodies tests was analyzed and evaluated in patients with RA, a cost-sensitive neural network (CSNN) model was used to integrate multiple autoantibodies and patient symptoms to predict the diagnosis of RA, and the ROC curve was used to analyze the diagnosis performance and calculate the optimal cutoff value. RESULTS There are differences in the seropositive rate of autoimmune diseases, the sensitivity and specificity of single or multiple autoantibody tests were insufficient, and anti-CCP performed best in RA diagnosis and had high diagnostic value. The cost-sensitive neural network prediction model had a sensitivity of up to 0.90 and specificity of up to 0.86, which was better than a single antibody and combined multiple antibody detection. CONCLUSION In-depth analysis of autoantibodies and reliable early diagnosis based on the neural network could guide specialized physicians to develop different treatment plans to prevent deterioration and enable early treatment with antirheumatic drugs for remission. Key Points • There are differences in the seropositive rate of autoimmune diseases. • This is the first study to use a cost-sensitive neural network model to diagnose RA disease in patients. • The diagnosis effect of the cost-sensitive neural network model is better than a single antibody and combined multiple antibody detection.
Collapse
Affiliation(s)
- Linyu Geng
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital, Nanjing University Medical School, 321 Zhongshan Road, Nanjing, China
| | - Wenqiang Qu
- School of Computer and Information, Hohai University, Nanjing, China
| | - Sen Wang
- Department of Clinical Laboratory Medicine, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jiaqi Chen
- School of Computer and Information, Hohai University, Nanjing, China
| | - Yang Xu
- The 7Th Outpatient Clinic, Jinling Hospital, Nanjing, China
| | - Wei Kong
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital, Nanjing University Medical School, 321 Zhongshan Road, Nanjing, China
| | - Xue Xu
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital, Nanjing University Medical School, 321 Zhongshan Road, Nanjing, China
| | - Xuebing Feng
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital, Nanjing University Medical School, 321 Zhongshan Road, Nanjing, China
| | - Cheng Zhao
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital, Nanjing University Medical School, 321 Zhongshan Road, Nanjing, China.
| | - Jun Liang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital, Nanjing University Medical School, 321 Zhongshan Road, Nanjing, China.
| | - Huayong Zhang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital, Nanjing University Medical School, 321 Zhongshan Road, Nanjing, China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital, Nanjing University Medical School, 321 Zhongshan Road, Nanjing, China
| |
Collapse
|
19
|
Zhu J, Chen W, Sun Y, Huang X, Chu R, Wang R, Zhou D, Ye S. Recent advances on drug delivery nanoplatforms for the treatment of autoimmune inflammatory diseases. MATERIALS ADVANCES 2022; 3:7687-7708. [DOI: 10.1039/d2ma00814a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
As one of the current research hotspots, drug release nanoplatforms have great potential in the treatment of autoimmune inflammatory diseases.
Collapse
Affiliation(s)
- Jing Zhu
- College of Science & State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Weihong Chen
- Department of Emergency Surgery, the Second Hospital of Anhui Medical University, Hefei, Anhui 230001, China
| | - Yuansong Sun
- Department of Emergency Surgery, the Second Hospital of Anhui Medical University, Hefei, Anhui 230001, China
| | - Xiaoyi Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Ruixi Chu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Rui Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Deqing Zhou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Sheng Ye
- College of Science & State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
| |
Collapse
|
20
|
The Role of Exposomes in the Pathophysiology of Autoimmune Diseases I: Toxic Chemicals and Food. PATHOPHYSIOLOGY 2021; 28:513-543. [PMID: 35366249 PMCID: PMC8830458 DOI: 10.3390/pathophysiology28040034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/11/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Autoimmune diseases affect 5–9% of the world’s population. It is now known that genetics play a relatively small part in the pathophysiology of autoimmune disorders in general, and that environmental factors have a greater role. In this review, we examine the role of the exposome, an individual’s lifetime exposure to external and internal factors, in the pathophysiology of autoimmune diseases. The most common of these environmental factors are toxic chemicals, food/diet, and infections. Toxic chemicals are in our food, drink, common products, the air, and even the land we walk on. Toxic chemicals can directly damage self-tissue and cause the release of autoantigens, or can bind to human tissue antigens and form neoantigens, which can provoke autoimmune response leading to autoimmunity. Other types of autoimmune responses can also be induced by toxic chemicals through various effects at the cellular and biochemical levels. The food we eat every day commonly has colorants, preservatives, or packaging-related chemical contamination. The food itself may be antigenic for susceptible individuals. The most common mechanism for food-related autoimmunity is molecular mimicry, in which the food’s molecular structure bears a similarity with the structure of one or more self-tissues. The solution is to detect the trigger, remove it from the environment or diet, then repair the damage to the individual’s body and health.
Collapse
|
21
|
Bakutenko IY, Haurylchyk ID, Sechko EV, Tchitchko AM, Batyan GM, Sukalo AV, Ryabokon NI. AGER gene variant as a risk factor for juvenile idiopathic arthritis. J Gene Med 2021; 24:e3399. [PMID: 34806241 DOI: 10.1002/jgm.3399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/20/2021] [Accepted: 11/04/2021] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND The AGER gene encodes a cell surface multiligand receptor of advanced glycation end-products that is also capable of binding other molecules and is involved in numerous pathways related to inflammation, apoptosis, immunity and so on. In the present study, we aimed to investigate whether the AGER rs1035798 (G>A) intronic polymorphism, showing an association with multiple sclerosis and rheumatoid arthritis in adults, is related to juvenile idiopathic arthritis (JIA). METHODS Caucasian children from the Belarusian population were enrolled in the study. In total, there were 201 cases with JIA, 37 with juvenile systemic lupus erythematosus, 222 children with the articular syndrome of non-autoimmune etiology (positive control for JIA) and 365 negative controls (children without any autoimmune or inflammatory diseases). Genomic DNA samples from the patients and controls were genotyped by a real-time polymerase chain reaction. RESULTS A marked association of the homozygous AA rs1035798 genotype with JIA (p = 5 × 10-4 ) was found. Allele A was also associated with JIA (p = 0.0058), as well as with the articular syndrome of non-autoimmune etiology (p = 0.0264). The highest frequencies of the AA genotype were found in the subgroups of JIA patients with polyarthritis or severe oligoarthritis. The AA genotype patients also had the smallest mean age of the JIA onset. CONCLUSIONS Our results demonstrate that the AGER rs1035798 AA genotype is a risk factor for JIA in Belarusian children. They also suggest a link between the AGER AA genotype and the risk of JIA early onset and severity. However, the functional relevance of the rs1035798 polymorphism is still unclear.
Collapse
Affiliation(s)
- Ivan Yurievich Bakutenko
- Laboratory of Molecular Basis of Genome Stability, Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
| | - Irena Dmitrievna Haurylchyk
- Laboratory of Molecular Basis of Genome Stability, Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
| | - Elena Vladimirovna Sechko
- 1st Department of Childhood Diseases, Belarusian State Medical University, Minsk, Republic of Belarus
| | | | - Galina Mihajlovna Batyan
- 1st Department of Childhood Diseases, Belarusian State Medical University, Minsk, Republic of Belarus
| | | | - Nadezhda Ivanovna Ryabokon
- Laboratory of Molecular Basis of Genome Stability, Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
| |
Collapse
|
22
|
Liu X, Ding Y, Zheng X, Huang H, Shi L, Yang X, Wei J, Li Y, Kao W, Zhang F, Qian J. Small RNAs encoded by human endogenous retrovirus K overexpressed in PBMCs may contribute to the diagnosis and evaluation of systemic lupus erythematosus as novel biomarkers. Hum Mol Genet 2021; 31:1407-1416. [PMID: 34761271 DOI: 10.1093/hmg/ddab327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/09/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
This study aimed to identify the genes and small RNAs (sRNAs) expressed by the human endogenous retrovirus K (HERV-K) HML2 and their associations with the immune process of systemic lupus erythematosus (SLE). RNA-Seq data including 99 SLE patients and 18 controls (GSE72420) was obtained from the Gene Expression Omnibus. Differentially expressed genes (DEGs) as well as HML2-DEGs between SLE patients and normal controls were identified. Five HML2-DEGs involved in immune-regulating function were identified using weighted gene co-expression network analysis (WGCNA). The associations between these genes and the proportions of immune cells were determined by CIBERSORT. Ten candidate HML2-encoded sRNAs were identified based on specific criteria, and three of them were further validated in SLE patients by qRT-PCR. The diagnostic values of these three sRNAs were evaluated in SLE and lupus nephritis (LN). This study suggested that HML2 genes and their encoded sRNAs might be involved in the immune regulation and progress of SLE. These potential sRNAs might function as regulatory molecules and diagnostic biomarkers of SLE and LN.
Collapse
Affiliation(s)
- Xinyi Liu
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, 150081, China.,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Pathogen Biology, Harbin, 150081, China
| | - Yanjun Ding
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, 150081, China.,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Pathogen Biology, Harbin, 150081, China
| | - Xiaoqiu Zheng
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, 150081, China.,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Pathogen Biology, Harbin, 150081, China
| | - He Huang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Liyu Shi
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, 150081, China.,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Pathogen Biology, Harbin, 150081, China
| | - Xiaolan Yang
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, 150081, China.,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Pathogen Biology, Harbin, 150081, China
| | - Jing Wei
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, 150081, China.,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Pathogen Biology, Harbin, 150081, China
| | - Yang Li
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Wenping Kao
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, 150081, China.,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Pathogen Biology, Harbin, 150081, China
| | - Fengmin Zhang
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, 150081, China.,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Pathogen Biology, Harbin, 150081, China
| | - Jun Qian
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Harbin, 150081, China.,Heilongjiang Provincial Key Laboratory of Infection and Immunity, Pathogen Biology, Harbin, 150081, China
| |
Collapse
|
23
|
Gatti S, Gelzoni G, Catassi GN, Catassi C. The Clinical Spectrum of Inflammatory Bowel Disease Associated With Specific Genetic Syndromes: Two Novel Pediatric Cases and a Systematic Review. Front Pediatr 2021; 9:742830. [PMID: 34765575 PMCID: PMC8576358 DOI: 10.3389/fped.2021.742830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/22/2021] [Indexed: 12/21/2022] Open
Abstract
Background and Aims: Inflammatory bowel disease (IBD) is a typical polygenic disorder and less frequently shows a monogenic origin. Furthermore, IBD can originate in the context of specific genetic syndromes associated with a risk of autoimmune disorders. We aimed to systematically evaluate the prevalence of IBD in specific genetic syndromes and to review the clinical characteristics of the published cases. Methods: According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, studies describing patients with IBD and a genetic syndrome and/or studies indicating the prevalence or incidence of IBD in subjects with a genetic syndrome were included. Results: Forty-six studies describing a total of 67 cases of IBD in six genetic syndromes and two personally assessed unpublished cases were included in the review. The majority of cases were associated with Turner syndrome (TS) (38 cases), Down syndrome (DS) (18 cases) and neurofibromatosis type 1 (NF1) (8 cases). Sporadic cases were described in DiGeorge syndrome (2), Kabuki syndrome (2), and Williams syndrome (1). The prevalence of IBD ranged from 0.67 to 4% in TS and from 0.2 to 1.57% in DS. The incidence of IBD was increased in TS and DS compared to the general population. Eight cases of IBD in TS had a severe/lethal course, many of which described before the year 2000. Two IBD cases in DS were particularly severe. Conclusion: Evidence of a greater prevalence of IBD is accumulating in TS, DS, and NF1. Management of IBD in patients with these genetic conditions should consider the presence of comorbidities and possible drug toxicities. Systematic Review Registration: PROSPERO, identifier: CRD42021249820.
Collapse
Affiliation(s)
- Simona Gatti
- Department of Pediatrics, Polytechnic University of Marche, G. Salesi Children's Hospital, Ancona, Italy
| | - Giulia Gelzoni
- Department of Pediatrics, Polytechnic University of Marche, G. Salesi Children's Hospital, Ancona, Italy
| | - Giulia N. Catassi
- Department of Maternal and Child Health, Pediatric Gastroenterology and Liver Unit, Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Carlo Catassi
- Department of Pediatrics, Polytechnic University of Marche, G. Salesi Children's Hospital, Ancona, Italy
| |
Collapse
|
24
|
Chen WJ, Yu X, Yuan XR, Chen BJ, Cai N, Zeng S, Sun YS, Li HW. The Role of IL-36 in the Pathophysiological Processes of Autoimmune Diseases. Front Pharmacol 2021; 12:727956. [PMID: 34675805 PMCID: PMC8523922 DOI: 10.3389/fphar.2021.727956] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
A member of the interleukin (IL)-1 superfamily was IL-36, which contained IL-36α, IL-36β, IL-36γ, and IL-36Ra. Heterotrimer complexes, consisting of heterodimeric receptor complexes and IL-36 agonist, gave signals through intracellular functional domains, so as to bind to downstream proteins and induce inflammatory response. IL-36 agonists upregulated mature-associated CD80, CD86, MHCII, and inductively produced several pro-inflammatory cytokines through the IL-36R-dependent manner in dendritic cells (DCs). Besides, DCs had the ability to initiate the differentiation of helper T (Th) cells. Up to date, the role of IL-36 in immunity, inflammation and other diseases is of great importance. Additionally, autoimmune diseases were characterized by excessive immune response, resulting in damage and dysfunction of specific or multiple organs and tissues. Most autoimmune diseases were related to inflammatory response. In this review, we will conclude the recent research advances of IL-36 in the occurrence and development of autoimmune diseases, which may provide new insight for the future research and the treatment of these diseases.
Collapse
Affiliation(s)
- Wen-jian Chen
- Department of Orthopaedics, Anhui Provincial Children’s Hospital, Hefei, China
| | - Xiao Yu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xin-Rong Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bang-jie Chen
- The First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Na Cai
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Shuo Zeng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yuan-song Sun
- Department of Emergency Surgery, The Second Hospital of Anhui Medical University, Hefei, China
| | - Hai-wen Li
- Department of Gastroenterology, The Third Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
25
|
Mirzaei R, Zamani F, Hajibaba M, Rasouli-Saravani A, Noroozbeygi M, Gorgani M, Hosseini-Fard SR, Jalalifar S, Ajdarkosh H, Abedi SH, Keyvani H, Karampoor S. The pathogenic, therapeutic and diagnostic role of exosomal microRNA in the autoimmune diseases. J Neuroimmunol 2021; 358:577640. [PMID: 34224949 DOI: 10.1016/j.jneuroim.2021.577640] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
Exosomes are a nano-vesicle surrounded by a bilipid layer that can release from almost all cells and could be detected in tissues and biological liquids. These vesicles contain lipids, proteins, and nucleic acids (including DNA, mRNA, and miRNA) inside and on the exosomes' surface constitute their content. Exosomes can transfer their cargo into the recipient cell, which can modify recipient cells' biological activities. Recently it has been deciphering that the miRNA pattern of exosomes reveals the cellular pathophysiological situation and modifies various biological processes. Increasing data regarding exosomes highlights that the exosomes and their cargo, especially miRNAs, are implicated in the pathophysiology of various disorders, such as autoimmune disease. The current evidence on the deciphering of mechanisms in which exosomal miRNAs contributed to autoimmunity was indicated that exosomal miRNA might hold information that can reprogram the function of many of the immune cells involved in autoimmune diseases' pathogenesis. In the present study, we summarized the pathogenic role of exosomal miRNAs in several autoimmune diseases, including myasthenia gravis (MG), psoriasis, inflammatory bowel disease (IBD), type 1 diabetes (T1D), multiple sclerosis (MS), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), Sjogren's Syndrome (SS), systemic sclerosis (SSc), vitiligo, and autoimmune thyroid diseases (AITD). Moreover, in this work, we present evidence of the potential role of exosomal miRNAs as therapeutic and diagnostic agents in autoimmune diseases.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farhad Zamani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Hajibaba
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ashkan Rasouli-Saravani
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mina Noroozbeygi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Melika Gorgani
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Hosseini-Fard
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Jalalifar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Ajdarkosh
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Hassnan Abedi
- Department of Internal Medicine, Rohani Hospital, Babol University of Medical Science, Babol, Iran
| | - Hossein Keyvani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Sindhu RK, Madaan P, Chandel P, Akter R, Adilakshmi G, Rahman MH. Therapeutic Approaches for the Management of Autoimmune Disorders via Gene Therapy: Prospects, Challenges, and Opportunities. Curr Gene Ther 2021; 22:245-261. [PMID: 34530709 DOI: 10.2174/1566523221666210916113609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/05/2021] [Accepted: 06/24/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Autoimmune diseases are the diseases that result due to the overactive immune response, and comprise systemic autoimmune diseases like rheumatoid arthritis (RA), sjӧgren's syndrome (SS), and organ-specific autoimmune diseases like type-1 diabetes mellitus (T1DM), myasthenia gravis (MG), and inflammatory bowel disease (IBD). Currently, there is no long-term cure; but, several treatments exist which retard the evolution of the disease, embracing gene therapy, which has been scrutinized to hold immense aptitude for the management of autoimmune diseases. OBJECTIVE The review highlights the pathogenic mechanisms and genes liable for the development of autoimmune diseases, namely T1DM, type-2 diabetes mellitus (T2DM), RA, SS, IBD, and MG. Furthermore, the review focuses on investigating the outcomes of delivering the corrective genes with their specific viral vectors in various animal models experiencing these diseases to determine the effectiveness of gene therapy. METHODS Numerous review and research articles emphasizing the tremendous potential of gene therapy in the management of autoimmune diseases were procured from PubMed, MEDLINE, Frontier, and other databases and thoroughly studied for writing this review article. RESULTS The various animal models that experienced treatment with gene therapy have displayed regulation in the levels of proinflammatory cytokines, infiltration of lymphocytes, manifestations associated with autoimmune diseases, and maintained equilibrium in the immune response, thereby hinder the progression of autoimmune diseases. CONCLUSION Gene therapy has revealed prodigious aptitude in the management of autoimmune diseases in various animal studies, but further investigation is essential to combat the limitations associated with it and before employing it on humans.
Collapse
Affiliation(s)
- Rakesh K Sindhu
- Chitkara College of Pharmacy, Chitkara University, Punjab. India
| | - Piyush Madaan
- Chitkara College of Pharmacy, Chitkara University, Punjab. India
| | - Parteek Chandel
- Chitkara College of Pharmacy, Chitkara University, Punjab. India
| | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka-1100. Bangladesh
| | - G Adilakshmi
- Department of PhysicxVikramaSimahpuri University, P.G. Centre, kavil-524201, Andhra Pradesh. India
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka-1213. Bangladesh
| |
Collapse
|
27
|
Mahroum N, Zoubi M, Lavine N, Ohayon A, Amital H, Shoenfeld Y. The mosaic of autoimmunity - A taste for more. The 12th international congress of autoimmunity 2021 (AUTO12) virtual. Autoimmun Rev 2021; 20:102945. [PMID: 34509655 DOI: 10.1016/j.autrev.2021.102945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 12/22/2022]
Abstract
Notwithstanding the fact that the 12th international congress of autoimmunity (AUTO12) was held virtual this year, the number of the abstracts submitted and those presented crossed the thousand marks. Leading investigators and researchers from all over the world presented the latest developments of their research in the domain of autoimmunity and its correlation with various diseases. In terms of mechanisms of autoimmunity, an update on the mechanisms behind the association of autoimmunity with systemic diseases focusing on hyperstimulation was presented during AUTO12. In addition, a new mechanism of ASIA syndrome caused by an intrauterine contraceptive device was revealed demonstrating a complete resolution of symptoms following device removal. In regard to the correlation between autoimmunity and neurogenerative diseases, the loss of structural protein integrity as the trigger of immunological response was shown. Schizophrenia as well, and its correlation to pro-inflammatory cytokines was also addressed. Furthermore, and as it was said AUTO12 virtual due to COVID-19 pandemic, various works were dedicated to SARS-CoV-2 infection and COVID-19 in terms of autoimmune mechanisms involved in the pathogenesis, treatment and complications of COVID-19. For instance, the correlation between autoimmunity and the severity of COVID-19 was viewed. Moreover, the presence and association of autoantibodies in COVID-19 was also demonstrated, as well as the clinical outcomes of COVID-19 in patients with rheumatic diseases. Finally, immune-mediated reactions and processes secondary to SARS-CoV-2 vaccination was displayed. Due to the immense importance of all of the topics addressed and while several hundreds of works were presented which cannot be summed up in one paper, we aimed hereby to highlight some of the outstanding abstracts and presentations during AUTO12.
Collapse
Affiliation(s)
- Naim Mahroum
- Internal Medicine B and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Ramat-Gan, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; International School of Medicine, Istanbul Medipol University, Istanbul, Turkey.
| | - Magdi Zoubi
- Internal Medicine B and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Ramat-Gan, Israel
| | - Noy Lavine
- Internal Medicine B and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Ramat-Gan, Israel; St. George School of Medicine, University of London, London, UK
| | - Aviran Ohayon
- Internal Medicine B and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Ramat-Gan, Israel; St. George School of Medicine, University of London, London, UK
| | - Howard Amital
- Internal Medicine B and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Ramat-Gan, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yehuda Shoenfeld
- Ariel University, Ariel, Israel; Saint Petersburg State University, Saint-Petersburg, Russia
| |
Collapse
|
28
|
Wu YH, Kuo CF, Hsieh AH, Hsieh HL, Chan YF, Hwang TL. Upregulation of miR-210-5p impairs dead cell clearance by macrophages through the inhibition of Sp1-and HSCARG-dependent NADPH oxidase pathway. Free Radic Biol Med 2021; 172:441-450. [PMID: 34197940 DOI: 10.1016/j.freeradbiomed.2021.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 12/11/2022]
Abstract
The deficiency of dead cell clearance is a prominent pathogenic factor in systemic lupus erythematosus (SLE). In this study, the overexpression of miR-210-5p resulted in the accumulation of secondary necrotic cells (SNECs) in macrophages through the reduction of protein degradation. The upreguation of miR-210-5p inhibited NADPH oxidase (NOX) activation, reactive oxygen species (ROS) generation, and SNEC clearance. miR-210-5p overexpression suppressed Sp1 and HSCARG expression, and the knockdown of SP1 and HSCARG inhibited NOX expression and superoxide production in macrophages. Furthermore, patients with active SLE expressed a higher level of miR-210-5p and lower expression of SP1 and HSCARG in peripheral blood mononuclear cells. In summary, our findings indicate that the upregulation of miR-210-5p increases the accumulation of SNECs through a decrease in the Sp1-and HSCARG-mediated NOX activity and ROS generation in macrophages. Our results also suggest that targeting miR-210-5p may have therapeutic potential for SLE.
Collapse
Affiliation(s)
- Yi-Hsuan Wu
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan.
| | - Chang-Fu Kuo
- Center for Artificial Intelligence in Medicine, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan; School of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Ao-Ho Hsieh
- Division of Rheumatology, Allergy and Immunology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Hsi-Lung Hsieh
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan; Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan; Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan; Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan
| | - Yen-Fan Chan
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan
| | - Tsong-Long Hwang
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan; Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan; Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 243, Taiwan.
| |
Collapse
|
29
|
Castejón ML, Montoya T, Alarcón-de-la-Lastra C, González-Benjumea A, Vázquez-Román MV, Sánchez-Hidalgo M. Dietary oleuropein and its acyl derivative ameliorate inflammatory response in peritoneal macrophages from pristane-induced SLE mice via canonical and noncanonical NLRP3 inflammasomes pathway. Food Funct 2021; 11:6622-6631. [PMID: 32656558 DOI: 10.1039/d0fo00235f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease without an effective and safe treatment. Besides, macrophages are the major components of the innate immune system and play a critical role in the inflammation process in SLE. Secoiridoids from olive tree are phenolic compounds which have shown important pharmacological effects. Particularly, oleuropein (OL) has shown antioxidant, anti-inflammatory and immunomodulatory properties suggesting a potential application in a large number of inflammatory and reactive oxygen species (ROS)-mediated diseases. In addition, different studies have shown the importance of acyl derivatives of natural phenols due to their better hydrophilic/lipophilic balance.
Collapse
Affiliation(s)
- M L Castejón
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, Spain.
| | - T Montoya
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, Spain.
| | | | - A González-Benjumea
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Seville, Spain
| | - M V Vázquez-Román
- Department of Normal and Pathological Cytology and Histology, Faculty of Medicine, University of Seville, Seville, Spain
| | - M Sánchez-Hidalgo
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, Seville, Spain.
| |
Collapse
|
30
|
Jiang Q, Yang G, Liu Q, Wang S, Cui D. Function and Role of Regulatory T Cells in Rheumatoid Arthritis. Front Immunol 2021; 12:626193. [PMID: 33868244 PMCID: PMC8047316 DOI: 10.3389/fimmu.2021.626193] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic and heterogeneous autoimmune disease with symmetrical polyarthritis as its critical clinical manifestation. The basic cause of autoimmune diseases is the loss of tolerance to self or harmless antigens. The loss or functional deficiency of key immune cells, regulatory T (Treg) cells, has been confirmed in human autoimmune diseases. The pathogenesis of RA is complex, and the dysfunction of Tregs is one of the proposed mechanisms underlying the breakdown of self-tolerance leading to the progression of RA. Treg cells are a vital component of peripheral immune tolerance, and the transcription factor Foxp3 plays a major immunosuppressive role. Clinical treatment for RA mainly utilizes drugs to alleviate the progression of disease and relieve disease activity, and the ideal treatment strategy should be to re-induce self-tolerance before obvious tissue injury. Treg cells are one of the ideal options. This review will introduce the classification, mechanism of action, and characteristics of Treg cells in RA, which provides insights into clinical RA treatment.
Collapse
Affiliation(s)
- Qi Jiang
- Department of Blood Transfusion, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Guocan Yang
- Department of Blood Transfusion, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Qi Liu
- Department of Blood Transfusion, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.,Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
31
|
Autoimmunity and Genetic Syndromes: A Focus on Down Syndrome. Genes (Basel) 2021; 12:genes12020268. [PMID: 33668420 PMCID: PMC7918365 DOI: 10.3390/genes12020268] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022] Open
Abstract
Within immune system-related diseases, autoimmunity has always represented a field of great interest, although many aspects remain poorly understood even today. Genetic syndromes associated with immunity disorders are common and represent an interesting model for a better understanding of the underlying mechanism of autoimmunity predisposition. Among these conditions, Down syndrome (DS) certainly deserves special attention as it represents the most common genetic syndrome associated with immune dysregulation, involving both innate and adaptive immunity. Autoimmunity represents a well-known complication of DS: it is estimated that people affected by this disease present a risk four to six times higher than the normal population to develop autoimmune diseases such as celiac disease, type 1 diabetes mellitus, and hypo- or hyperthyroidism. Several factors have been considered as possible etiology, including genetic and epigenetic modifications and immune dysregulation. In times in which the life expectancy of people with DS has been extremely prolonged, thanks to improvements in the diagnosis and treatment of congenital heart disease and infectious complications, knowledge of the mechanisms and proper management of autoimmune diseases within this syndrome has become essential. In this short review, we aim to report the current literature regarding the genetic, immune, and environmental factors that have been proposed as the possible underlying mechanism of autoimmunity in individuals with DS, with the intent to provide insight for a comprehensive understanding of these diseases in genetic syndromes.
Collapse
|
32
|
The growing role of precision medicine for the treatment of autoimmune diseases; results of a systematic review of literature and Experts' Consensus. Autoimmun Rev 2020; 20:102738. [PMID: 33326854 DOI: 10.1016/j.autrev.2020.102738] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
Autoimmune diseases (AIDs) share similar serological, clinical, and radiological findings, but, behind these common features, there are different pathogenic mechanisms, immune cells dysfunctions, and targeted organs. In this context, multiple lines of evidence suggest the application of precision medicine principles to AIDs to reduce the treatment failure. Precision medicine refers to the tailoring of therapeutic strategies to the individual characteristics of each patient, thus it could be a new approach for management of AIDS which considers individual variability in genes, environmental exposure, and lifestyle. Precision medicine would also assist physicians in choosing the right treatment, the best timing of administration, consequently trying to maximize drug efficacy, and, possibly, reducing adverse events. In this work, the growing body of evidence is summarized regarding the predictive factors for drug response in patients with AIDs, applying the precision medicine principles to provide high-quality evidence for therapeutic opportunities in improving the management of these patients.
Collapse
|
33
|
Ehteshamfar S, Akhbari M, Afshari JT, Seyedi M, Nikfar B, Shapouri‐Moghaddam A, Ghanbarzadeh E, Momtazi‐Borojeni AA. Anti-inflammatory and immune-modulatory impacts of berberine on activation of autoreactive T cells in autoimmune inflammation. J Cell Mol Med 2020; 24:13573-13588. [PMID: 33135395 PMCID: PMC7754052 DOI: 10.1111/jcmm.16049] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Autoreactive inflammatory CD4+ T cells, such as T helper (Th)1 and Th17 subtypes, have been found to associate with the pathogenesis of autoimmune disorders. On the other hand, CD4+ Foxp3+ T regulatory (Treg) cells are crucial for the immune tolerance and have a critical role in the suppression of the excessive immune and inflammatory response promoted by these Th cells. In contrast, dendritic cells (DCs) and macrophages are immune cells that through their inflammatory functions promote autoreactive T-cell responses in autoimmune conditions. In recent years, there has been increasing attention to exploring effective immunomodulatory or anti-inflammatory agents from the herbal collection of traditional medicine. Berberine, an isoquinoline alkaloid, is one of the main active ingredients extracted from medicinal herbs and has been shown to exert various biological and pharmacological effects that are suggested to be mainly attributed to its anti-inflammatory and immunomodulatory properties. Several lines of experimental study have recently investigated the therapeutic potential of berberine for treating autoimmune conditions in animal models of human autoimmune diseases. Here, we aimed to seek mechanisms underlying immunomodulatory and anti-inflammatory effects of berberine on autoreactive inflammatory responses in autoimmune conditions. Reported data reveal that berberine can directly suppress functions and differentiation of pro-inflammatory Th1 and Th17 cells, and indirectly decrease Th cell-mediated inflammation through modulating or suppressing other cells assisting autoreactive inflammation, such as Tregs, DCs and macrophages.
Collapse
Affiliation(s)
- Seyed‐Morteza Ehteshamfar
- Department of ImmunologyFaculty of MedicineBuAli Research InstituteMashhad University of Medical SciencesMashhadIran
| | - Masoume Akhbari
- Department of Molecular MedicineSchool of MedicineQazvin University of Medical SciencesQazvinIran
| | - Jalil Tavakol Afshari
- Department of ImmunologyFaculty of MedicineBuAli Research InstituteMashhad University of Medical SciencesMashhadIran
| | | | - Banafsheh Nikfar
- Pars Advanced and Minimally Invasive Medical Manners Research CenterPars HospitalIran University of Medical SciencesTehranIran
| | - Abbas Shapouri‐Moghaddam
- Department of ImmunologyFaculty of MedicineBuAli Research InstituteMashhad University of Medical SciencesMashhadIran
| | | | | |
Collapse
|
34
|
Scaldaferri F, Ianiro G, Privitera G, Lopetuso LR, Vetrone LM, Petito V, Pugliese D, Neri M, Cammarota G, Ringel Y, Costamagna G, Gasbarrini A, Boskoski I, Armuzzi A. The Thrilling Journey of SARS-CoV-2 into the Intestine: From Pathogenesis to Future Clinical Implications. Inflamm Bowel Dis 2020; 26:1306-1314. [PMID: 32720978 PMCID: PMC7454647 DOI: 10.1093/ibd/izaa181] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has a direct impact on the gastrointestinal system, as up to 50% of fecal samples from coronavirus disease 2019 (COVID-19) patients contain detectable viral RNA despite a negative rhino-pharyngeal swab. This finding, together with an intestinal expression of angiotensin conversion enzyme 2 protein, suggests a possible fecal-oral transmission for SARS-CoV-2. Furthermore, gastrointestinal (GI) symptoms are common in COVID-19 patients including watery diarrhea, vomiting-particularly in children-nausea, and abdominal pain. Pathogenesis of SARS-CoV-2 infection presents significant similarities to those of some immune-mediated diseases, such as inflammatory bowel diseases or rheumatoid arthritis, leading to the hypothesis that targeted therapies used for the treatment of immune-mediated disease could be effective to treat (and possibly prevent) the main complications of COVID-19. In this review, we synthesize the present and future impact of SARS-CoV-2 infection on the gastrointestinal system and on gastroenterology practice, hypothesizing a potential role of the "gut-lung axis" and perhaps of the gut and lung microbiota into the interindividual differential susceptibility to COVID-19 19 disease. Finally, we speculate on the reorganization of outpatient gastroenterology services, which need to consider, among other factors, the major psychological impact of strict lockdown measures on the whole population.
Collapse
Affiliation(s)
- Franco Scaldaferri
- CEMAD, IBD UNIT - Unità Operativa Complessa di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gianluca Ianiro
- CEMAD, IBD UNIT - Unità Operativa Complessa di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giuseppe Privitera
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Loris Riccardo Lopetuso
- CEMAD, IBD UNIT - Unità Operativa Complessa di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Department of Medicine and Ageing Sciences,"G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Lorenzo Maria Vetrone
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Petito
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Daniela Pugliese
- CEMAD, IBD UNIT - Unità Operativa Complessa di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Matteo Neri
- Department of Medicine and Ageing Sciences,"G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Giovanni Cammarota
- CEMAD, IBD UNIT - Unità Operativa Complessa di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Yehuda Ringel
- Division of Gastroenterology and Hepatology, Meir Medical Center, Kfar Saba, Israel
- University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Guido Costamagna
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- CEMAD, IBD UNIT - Unità Operativa Complessa di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Ivo Boskoski
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Alessandro Armuzzi
- CEMAD, IBD UNIT - Unità Operativa Complessa di Medicina Interna e Gastroenterologia, Dipartimento di Scienze Mediche e Chirurgiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
35
|
Martin B, Schepmann D, Bernal FA, Schmidt TJ, Che T, Loser K, Wünsch B. Enantiomerically Pure Quinoline-Based κ-Opioid Receptor Agonists: Chemoenzymatic Synthesis and Pharmacological Evaluation. ChemMedChem 2020; 15:1408-1420. [PMID: 32492288 PMCID: PMC7496650 DOI: 10.1002/cmdc.202000300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Indexed: 12/13/2022]
Abstract
Racemic K -opioid receptor (KOR) agonist 2-(3,4-dichlorophenyl)-1-[(4aRS,8SR,8aSR)-8-(pyrrolidin-1-yl)-3,4,4a,5,6,7,8,8a-octahydroquinolin-1(2H)-yl]ethan-1-one ((±)-4) was prepared in a diastereoselective synthesis. The first key step of the synthesis was the diastereoselective hydrogenation of the silyl ether of 1,2,3,4-tetrahydroquinoin-8-ol ((±)-9) to afford cis,cis-configured perhydroquinoline derivative (±)-10. Removal of the TBDMS protecting group led to a β-aminoalcohol that reacted with SO2 Cl2 to form an oxathiazolidine. Nucleophilic substitution with pyrrolidine resulted in the desired cis,trans-configured perhydroquinoline upon inversion of the configuration. In order to obtain enantiomerically pure KOR agonists 4 (99.8 % ee) and ent-4 (99.0 % ee), 1,2,3,4-tetrahydroquinolin-8-ols (R)-8 (99.1 % ee) and (S)-8 (98.4 % ee) were resolved by an enantioselective acetylation catalyzed by Amano lipase PS-IM. The absolute configuration was determined by CD spectroscopy. The 4aR,8S,8aS-configured enantiomer 4 showed sub-nanomolar KOR affinity (Ki =0.81 nM), which is more than 200 times higher than the KOR affinity of its enantiomer ent-4. In the cAMP assay and the Tango β-arrestin-2 recruitment assay, 4 behaved as a KOR agonist. Upon incubation of human macrophages, human dendritic cells, and mouse myeloid immune cells with 4, the number of cells expressing co-stimulatory receptor CD86 and proinflammatory cytokines interleukin 6 and tumor necrosis factor α was significantly reduced; this indicates the strong anti-inflammatory activity of 4. The anti-inflammatory effects correlated well with the KOR affinity: (4aR,8S,8aS)-4 was slightly more potent than the racemic mixture (±)-4, and the distomer ent-4 was almost inactive.
Collapse
Affiliation(s)
- Benedikt Martin
- Institut für Pharmazeutische und Medizinische Chemie der Universität MünsterCorrensstraße 4848149MünsterGermany
| | - Dirk Schepmann
- Institut für Pharmazeutische und Medizinische Chemie der Universität MünsterCorrensstraße 4848149MünsterGermany
| | - Freddy A. Bernal
- Institut für Pharmazeutische Biologie und Phytochemie der Universität MünsterCorrensstraße 4848149MünsterGermany
| | - Thomas J. Schmidt
- Institut für Pharmazeutische Biologie und Phytochemie der Universität MünsterCorrensstraße 4848149MünsterGermany
| | - Tao Che
- Department of AnesthesiologyWashington University School of Medicine660 S. Euclid Ave.St. LouisMO 63110USA
| | - Karin Loser
- Department of DermatologyUniversity of Münstervon-Esmarch-Street 5848149MünsterGermany
- Cells-in-Motion Cluster of Excellence (EXC 1003-CiM)Westfälische Wilhelms-Universität Münster48149MünsterGermany
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie der Universität MünsterCorrensstraße 4848149MünsterGermany
- Cells-in-Motion Cluster of Excellence (EXC 1003-CiM)Westfälische Wilhelms-Universität Münster48149MünsterGermany
| |
Collapse
|
36
|
Roccatello D, Fenoglio R, Baldovino S, Naretto C, Ferro M, Barreca A, Rossi D, Sciascia S. Towards a novel target therapy for renal diseases related to plasma cell dyscrasias: The example of AL amyloidosis. Autoimmun Rev 2020; 19:102622. [PMID: 32663622 DOI: 10.1016/j.autrev.2020.102622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/11/2020] [Indexed: 11/24/2022]
Abstract
Immunoglobulin light chain amyloidosis is a rare systemic disease caused by monoclonal light chains (LCs) depositing in tissue as insoluble fibrils resulting in irreversible damage of vital organs. The mechanisms involved in aggregation and deposition of LCs are not fully understood, but CD138/38 plasma cells are undoubtedly involved in monoclonal LC production. We are reporting favorable effects on AL amyloidosis patients with renal involvement using the anti-CD38 monoclonal antibody Daratumumab. We speculate that research for the near future should be devoted to design similar therapeutic approaches for other diseases attributable to a plasma cell dyscrasia.
Collapse
Affiliation(s)
- Dario Roccatello
- Nephrology and Dialysis Unit-CMID, Center of Research of Immunopathology and Rare Diseases, Coordinating Center of the Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hospital of Turin, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy.
| | - Roberta Fenoglio
- Nephrology and Dialysis Unit-CMID, Center of Research of Immunopathology and Rare Diseases, Coordinating Center of the Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hospital of Turin, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Simone Baldovino
- Nephrology and Dialysis Unit-CMID, Center of Research of Immunopathology and Rare Diseases, Coordinating Center of the Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hospital of Turin, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Carla Naretto
- Nephrology and Dialysis Unit-CMID, Center of Research of Immunopathology and Rare Diseases, Coordinating Center of the Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hospital of Turin, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Michela Ferro
- Nephrology and Dialysis Unit-CMID, Center of Research of Immunopathology and Rare Diseases, Coordinating Center of the Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hospital of Turin, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Antonella Barreca
- Pathology Division, Department of Oncology, University of Turin, Italy
| | - Daniela Rossi
- Nephrology and Dialysis Unit-CMID, Center of Research of Immunopathology and Rare Diseases, Coordinating Center of the Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hospital of Turin, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Savino Sciascia
- Nephrology and Dialysis Unit-CMID, Center of Research of Immunopathology and Rare Diseases, Coordinating Center of the Network for Rare Diseases of Piedmont and Aosta Valley, San Giovanni Bosco Hospital of Turin, Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| |
Collapse
|