1
|
Knight AL, Preti M, Basoalto E. Factors Impacting the Use of an Allelochemical Lure in Pome Fruit for Cydia pomonella (L.) Monitoring. INSECTS 2025; 16:172. [PMID: 40003801 PMCID: PMC11856869 DOI: 10.3390/insects16020172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/18/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025]
Abstract
A four-component blend comprising pear ester, DMNT, linalool oxide, and acetic acid (CM4K) was identified as a potent allelochemical lure for both sexes of codling moth (CM), Cydia pomonella (L.). Studies conducted from 2020 to 2022 in Washington State (USA) examined factors which could impact the lure's relative performance. The CM4K lure was effective across a range of mating disruption programs and was equally attractive in monitoring wild and sterile CM. The lure remained attractive for at least 10 weeks. Total catch in traps baited with the CM4K was significantly less impacted than a sex pheromone lure located near mating disruption dispensers and female catches were largely unaffected. Traps with the CM4K lure caught significantly more females and fewer males when placed near clusters of fruits in a trellised orchard. Two factors were found to significantly impact the relative performance of the CM4K to sex pheromone lures: the CM4K lure was only equivalent to sex pheromone lures in pear MD orchards, and apple and pear orchards with vigorous weed growth. This is the first report of a monitoring lure for a tortricid moth being negatively impacted by the background odor of non-host weed species present within an orchard.
Collapse
Affiliation(s)
| | - Michele Preti
- Independent Integrated Pest Management consultant and researcher, 48018 Faenza, Italy
| | - Esteban Basoalto
- Facultad de Ciencias Agrarias, Instituto de Producción y Sanidad Vegetal, Universidad Austral de Chile, Valdivia 5110566, Chile;
| |
Collapse
|
2
|
Wang Y, Li Y, Shi C, Cheng J, Zhang J, Wang Y, Guo J, Liu X, Li FY. Changes in arthropod family richness, activity-density, biomass and body-size differed along a grazing intensity gradient: Modulation of plant traits and soil moisture conditions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:124133. [PMID: 39826363 DOI: 10.1016/j.jenvman.2025.124133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/11/2025] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
Arthropods play a critical role in the functioning of grassland ecosystems, and are largely affected by herbivore grazing. However, the mechanisms of grazing affecting arthropod community, especially through modulating plant traits and soil properties, are still unclear. We investigated the variation in arthropod community variables including family richness, activity-density, biomass, and body size in typical steppe grasslands subject to grazing at four intensity levels (nil, light, moderate and heavy) in central Inner Mongolia (China), and analyzed the relationships of these variations with grazing-induced changes in plant traits, plant community attributes and soil properties. We found that (i) at the community level, arthropod family richness was lower in moderately-grazed than in both lightly- and heavily-grazed grasslands, but no significant difference was detected between grazing and no-grazing grasslands. The high arthropod community activity-density was found in plant communities with high plant leaf nitrogen content and low water content. (ii) With increasing grazing intensity, the biomass of arthropod community decreased, while the proportion of small-sized arthropods increased, and the family composition, especially the families of Coleoptera changed. (iii) The response of arthropods to grazing intensity differed among arthropod orders. The family richness of Coleoptera, Diptera and Homoptera increased with the increase of plant leaf water content and C:N ratio or the decrease of leaf nitrogen content; Orthoptera activity-density declined with increasing grazing intensity, but showed no significant correlation with plant leaf traits, community attributes, or soil water content; Hymenoptera activity-density declined with the increase of plant height, biomass and cover, and the decrease of plant individual density and family richness; a greater Lepidoptera activity-density was found in the grassland with high vegetation cover and moist soil; and Diptera exhibited larger biomass and body size in grasslands with increased plant nitrogen content. (iv) Depending on grazing conditions, some arthropod families may alter their feeding preferences and select more stable environmental conditions for survival, potentially weakening the inherent relationship between arthropods and plants. Our study implies it is necessary to incorporate the dynamics of ground arthropods into the grassland management for conservation and sustainable use of grassland ecosystems.
Collapse
Affiliation(s)
- Yadong Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Hohhot, 010021, China
| | - Yanlong Li
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Hohhot, 010021, China
| | - Chunjun Shi
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Hohhot, 010021, China
| | - Jianwei Cheng
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; School of Geography Science, Taiyuan Normal University, Jinzhong, 030619, Shanxi, China
| | - Jialu Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Hohhot, 010021, China
| | - Yanan Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Hohhot, 010021, China
| | - Jingpeng Guo
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Hohhot, 010021, China
| | - Xinmin Liu
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot, 010022, China
| | - Frank Yonghong Li
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education of China, Hohhot, 010021, China.
| |
Collapse
|
3
|
Müllerová J, Kent R, Brůna J, Bučas M, Estrany J, Manfreda S, Michez A, Mokroš M, Tsiafouli MA, Gago X. Understanding spatio-temporal complexity of vegetation using drones, what could we improve? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123656. [PMID: 39662432 DOI: 10.1016/j.jenvman.2024.123656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/07/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024]
Abstract
Unraveling the intricate spatial and temporal complexities of vegetation represents a crucial key to understanding ecosystem functioning. Drones, as cutting-edge technology, hold immense potential in bridging the gap between on-ground measurements and satellite remote sensing data. Nonetheless, a multitude of challenges still looms, with one of the foremost being the nuanced identification of scales that strike a balance between capturing maximum complexity while minimizing measurement errors. To explore how current research deals with the above-mentioned challenges, we carried out a literature survey on research studies employing drones to characterize natural and semi-natural vegetation. We selected papers related to the role of spatial and/or temporal complexity in ecosystem state, function and/or services. Our result showed that most studies focused on ecosystem state, whereas function and services were barely addressed. Similarly, the effects of spatial or temporal scales on vegetation heterogeneity (complexity) are rarely studied even though drone technology seems ideal for this task. Since heterogeneity differs between ecosystems and its comprehension is greatly influenced by the features of the survey, careful design is important to maximize the efficiency and the range of complexity captured by the survey. However, in reality, most studies do not follow any specific planning of the drone survey according to the case study characteristics. In fact, we found a positive trend between spatial resolution and extent of the study area, and no significant relationship between spatial resolution and accuracy, regardless of the characteristics of the given ecosystem type. Specifically designed studies need to be carried out to further explore the effects of changing spatial and temporal resolution on complexity captured across ecosystem gradients, and establish the optimal resolution for different ecosystem types to assure transferability and operational use in land management. Despite the mentioned challenges and research gaps, drones represent a powerful and effective tool to explore vegetation complexity in new ways and dimensions. Nevertheless, there is an urgent need to define the appropriate methods for each scope.
Collapse
Affiliation(s)
- Jana Müllerová
- Jan Evangelista Purkyně University in Ústí n. Labem, Faculty of Environment, Ústí n. Labem, Czech Republic.
| | - Rafi Kent
- Independent Researcher, Bahan, Israel
| | - Josef Brůna
- Institute of Botany of the Czech Academy of Sciences, Průhonice, Czech Republic
| | | | - Joan Estrany
- University of the Balearic Islands/Instituto de Agroecología y Economía del Agua (INAGEA), Palma de Mallorca, Spain
| | | | - Adrien Michez
- University of Liège, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, Gembloux, Belgium
| | - Martin Mokroš
- University College London, Gower Street, London, UK; Technical University in Zvolen, Zvolen, Slovakia; Czech University of Life Sciences Prague, Prague, Czech Republic
| | | | - Xurxo Gago
- University of the Balearic Islands/Instituto de Agroecología y Economía del Agua (INAGEA), Palma de Mallorca, Spain
| |
Collapse
|
4
|
Cortez AO, Yoshinaga N, Mori N, Hwang SY. Plant growth-promoting rhizobacteria modulate induced corn defense against Spodoptera litura (Lepidoptera: Noctuidae). Biosci Biotechnol Biochem 2024; 88:872-884. [PMID: 38782714 DOI: 10.1093/bbb/zbae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Common cutworm, Spodoptera litura is an important pest of corn causing significant crop yield loss. Synthetic insecticides have mostly been used to combat this pest, raising human and environmental health concerns. Plant growth-promoting rhizobacteria (PGPR) could compensate for or augment the harmful effects of agrochemicals. Herein, we aimed to assess whether PGPR-induced defenses in corn plants impact the host-plant selection behavior of S. litura. Headspace volatile organic compounds were analyzed using gas chromatography-mass spectrometry. Larvae fed inoculated corn exhibited lower weights and relative growth rate than noninoculated plants. Under choice experiments, PGPR-treated plants significantly reduced percentage leaf damage area and oviposition rate compared to untreated plants. Volatile organic compound ratio emission varied significantly between control and PGPR treatments, which, in part, explains feeding and oviposition deterrence in PGPR-treated plants. The results demonstrate that PGPR inoculation can enhance corn resistance to S. litura, making it a promising candidate for crop protection strategies.
Collapse
Affiliation(s)
- Amado O Cortez
- Insect-Plant Interaction Laboratory, Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
- Department of Crop Science, College of Agriculture, Isabela State University, Echague, Isabela, the Philippines
| | - Naoko Yoshinaga
- Chemical Ecology Laboratory, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Naoki Mori
- Chemical Ecology Laboratory, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shaw-Yhi Hwang
- Insect-Plant Interaction Laboratory, Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
5
|
Serdo DF. Insects' perception and behavioral responses to plant semiochemicals. PeerJ 2024; 12:e17735. [PMID: 39035155 PMCID: PMC11260073 DOI: 10.7717/peerj.17735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/23/2024] [Indexed: 07/23/2024] Open
Abstract
Insect-plant interactions are shaped by the exchange of chemical cues called semiochemicals, which play a vital role in communication between organisms. Plants release a variety of volatile organic compounds in response to environmental cues, such as herbivore attacks. These compounds play a crucial role in mediating the interactions between plants and insects. This review provides an in-depth analysis of plant semiochemicals, encompassing their classification, current understanding of extraction, identification, and characterization using various analytical techniques, including gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS), nuclear magnetic resonance (NMR) spectroscopy, and infrared (IR) spectroscopy. The article also delves into the manner in which insects perceive and respond to plant semiochemicals, as well as the impact of environmental factors on plant odor emission and insect orientation. Furthermore, it explores the underlying mechanisms by which insects perceive and interpret these chemical cues, and how this impacts their behavioral responses, including feeding habits, oviposition patterns, and mating behaviors. Additionally, the potential applications of plant semiochemicals in integrated pest management strategies are explored. This review provides insight into the intricate relationships between plants and insects mediated by semiochemicals, highlighting the significance of continued research in this field to better understand and leverage these interactions for effective pest control.
Collapse
|
6
|
Clemente-Orta G, Cabello Á, Garzo E, Moreno A, Fereres A. Aphidius colemani Behavior Changes Depending on Volatile Organic Compounds Emitted by Plants Infected with Viruses with Different Modes of Transmission. INSECTS 2024; 15:92. [PMID: 38392512 PMCID: PMC10889700 DOI: 10.3390/insects15020092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024]
Abstract
Natural enemies are an additional component that may interact directly with the plant-virus-vector association, affecting viral dispersion. In our study, we conducted olfactometry assays to explore how single and mixed infections with CMV or/and CABYV modify the attractiveness of A. colemani to aphid-free and aphid-infested melon plants using two melon genotypes. Subsequently, we investigated the influence of CABYV-infected plants infested by A. gossypii on the parasitism rate and emergence of A. colemani in a dual-choice assay under greenhouse conditions. Our study demonstrates that males showed no preference for either infected or non-infected plants. Female parasitoids exhibit a preference for volatiles emitted by CMV and mixed-infected melon plants over clean air but not over mock-inoculated plants, suggesting a response influenced by plant genotype. Female parasitoid responses to CABYV and its interactions with aphids revealed a preference for mock-inoculated plants over CABYV-infected plants and a parasitism rate slightly higher (7.12%) on non-infected plants. Our study revealed that (1) parasitoids may reject olfactory cues from CABYV-infected plants, potentially interfering with the plant's "cry for help" response; (2) in the case of CMV, whether in single or mixed infections, non-infected plants are as attractive as infected ones to parasitoids. Our findings suggest that persistent viruses manipulate aphid parasitoid behavior to their advantage, promoting virus disease in melon crops.
Collapse
Affiliation(s)
- Gemma Clemente-Orta
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas (ICA-CSIC), C/Serrano 115 dpdo, 28006 Madrid, Spain
- Departament de Producció Vegetal i Ciència Forestal, AGROTECNIO Center, Universitat de Lleida, Rovira Roure 191, 25198 Lleida, Spain
| | - Ángel Cabello
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas (ICA-CSIC), C/Serrano 115 dpdo, 28006 Madrid, Spain
| | - Elisa Garzo
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas (ICA-CSIC), C/Serrano 115 dpdo, 28006 Madrid, Spain
| | - Aranzazu Moreno
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas (ICA-CSIC), C/Serrano 115 dpdo, 28006 Madrid, Spain
| | - Alberto Fereres
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas (ICA-CSIC), C/Serrano 115 dpdo, 28006 Madrid, Spain
| |
Collapse
|
7
|
Lucatero A, Jha S, Philpott SM. Local Habitat Complexity and Its Effects on Herbivores and Predators in Urban Agroecosystems. INSECTS 2024; 15:41. [PMID: 38249047 PMCID: PMC10816164 DOI: 10.3390/insects15010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024]
Abstract
In urban community gardens, cultivated vegetation provides variable levels of habitat complexity, which can suppress pests by promoting predator diversity and improving pest control. In this study, we examine three components of the structural complexity of garden vegetation (cover, diversity, and connectivity) to investigate whether higher garden vegetation complexity leads to fewer herbivores, more predators, and higher predation. We worked in eight community gardens where we quantified vegetation complexity, sampled the arthropod community, and measured predation on corn earworm eggs. We found that plots with high vegetation cover supported higher species richness and greater abundance of predatory insects. High vegetation cover also supported a greater abundance and species richness of spiders. In contrast, high vegetation diversity was negatively associated with predator abundance. While high predator abundance was positively associated with egg predation, greater predator species richness had a negative impact on egg predation, suggesting that antagonism between predators may limit biological control. Community gardeners may thus manipulate vegetation cover and diversity to promote higher predator abundance and diversity in their plots. However, the species composition of predators and the prevalence of interspecific antagonism may ultimately determine subsequent impacts on biological pest control.
Collapse
Affiliation(s)
- Azucena Lucatero
- Environmental Studies Department, University of California, Santa Cruz, CA 95064, USA;
| | - Shalene Jha
- Integrative Biology Department, University of Texas at Austin, Austin, TX 78712, USA;
- Lady Bird Johnson Wildflower Center, University of Texas at Austin, Austin, TX 78739, USA
| | - Stacy M. Philpott
- Environmental Studies Department, University of California, Santa Cruz, CA 95064, USA;
| |
Collapse
|
8
|
Yang Y, Zhang Y, Zhang J, Wang A, Liu B, Zhao M, Wyckhuys KAG, Lu Y. Plant volatiles mediate Aphis gossypii settling but not predator foraging in intercropped cotton. PEST MANAGEMENT SCIENCE 2023; 79:4481-4489. [PMID: 37410545 DOI: 10.1002/ps.7650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND The cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae) is an important pest of cotton and horticultural crops globally. In China, smallholder farmers regularly intercrop cotton with garlic or onion. Aside from higher farm-level revenue, cotton intercrops are typified by lower Aphis gossypii abundance than monocrops. So far, the mechanistic basis of this lowered pest pressure has not been empirically assessed. RESULTS Field trials showed that Aphis gossypii abundance is lower and (relative) abundance of aphid predators higher in early-season cotton intercrops than in monocrops. Cage trials and Y-tube olfactometer tests further indicated that garlic and onion volatiles repel Aphis gossypii alates. Electrophysiological bioassays and gas chromatography-mass spectrometry (GC-MS) identified two physiologically active volatiles, that is, diallyl disulfide and propyl disulfide from garlic and onion respectively. Next, behavioral tests confirmed that both sulfur compounds exert a repellent effect on alate Aphis gossypii. CONCLUSION Garlic and onion volatiles interfere with Aphis gossypii settling, but do not affect its main (ladybird) predators. Meanwhile, early-season cotton/onion intercrops bear higher numbers of Aphis gossypii predators and fewer aphids. By thus unveiling the ecological underpinnings of aphid biological control in diversified cropping systems, our work advances non-chemical management of a globally-important crop pest. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuanxue Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ying Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianhua Zhang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Aiyu Wang
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Bing Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ming Zhao
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Kris A G Wyckhuys
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| |
Collapse
|
9
|
Ribeiro LG, Silva AO, Vaz KA, Dos Santos JV, Nunes CA, Carneiro MAC. Soil arthropod community responses to restoration in areas impacted by iron mining tailings deposition after Fundão dam failure. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1299. [PMID: 37828343 DOI: 10.1007/s10661-023-11843-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/04/2023] [Indexed: 10/14/2023]
Abstract
In 2015, the failure of the Fundão dam in Mariana, Brazil released ~43 million m3 of iron mining tailings into the environment. Despite restoration initiatives in the following years, few studies-and most focused on revegetation-have evaluated the effectiveness of the restoration process in areas impacted by the disaster. We aimed to evaluate the responses of the arthropod community in areas impacted by iron mining tailings deposition from the Fundão dam that is in the restoration process. We defined sampling units in the riparian zone of the Gualaxo do Norte River, which is under restoration, and in a native not impacted riparian zone. We collected soil arthropods using pitfall traps and sampled environmental variables in the same sites. We used generalize least squares models (GLS) to test if the restored areas already presented values of arthropod diversity and functional group abundance similar to the reference area and to test which environmental variables are influencing arthropod diversity. We also tested how large the differences of arthropod community composition between the study areas and used the index of indicator species (IndVal) to verify which species could be used as an indicator of reference or restoration areas. The diversity of arthropods and the functional groups of detritivores and omnivores were higher in the native riparian zone. Understory density, soil density, organic matter content, and microbial biomass carbon were the environmental variables that significantly explained the diversity and species composition of arthropods. We show that restoration areas still have different soil arthropod diversity values and community composition when compared to reference areas. Evaluating the response of the arthropod community to the restoration process and long-term monitoring are essential to achieve a satisfactory result in this process and achieve a self-sustaining ecosystem.
Collapse
Affiliation(s)
- Letícia Gonçalves Ribeiro
- Departamento de Ciência do Solo - Lavras, Escola de Ciências Agrárias, Universidade Federal de Lavras, Lavras, Minas Gerais, 37200-900, Brazil
| | - Aline Oliveira Silva
- Departamento de Ciência do Solo - Lavras, Escola de Ciências Agrárias, Universidade Federal de Lavras, Lavras, Minas Gerais, 37200-900, Brazil
| | - Kátia Augusta Vaz
- Departamento de Ciência do Solo - Lavras, Escola de Ciências Agrárias, Universidade Federal de Lavras, Lavras, Minas Gerais, 37200-900, Brazil
| | - Jessé Valentim Dos Santos
- Departamento de Ciência do Solo - Lavras, Escola de Ciências Agrárias, Universidade Federal de Lavras, Lavras, Minas Gerais, 37200-900, Brazil
| | - Cássio Alencar Nunes
- Departamento de Ecologia e Conservação - Lavras, Instituto de Ciências Naturais, Universidade Federal de Lavras, Lavras, Minas Gerais, 37200-900, Brazil
| | - Marco Aurélio Carbone Carneiro
- Departamento de Ciência do Solo - Lavras, Escola de Ciências Agrárias, Universidade Federal de Lavras, Lavras, Minas Gerais, 37200-900, Brazil.
| |
Collapse
|
10
|
He H, Li J, Zhang Z, Yan M, Zhang B, Zhu C, Yan W, Shi B, Wang Y, Zhao C, Yan F. A plant virus enhances odorant-binding protein 5 (OBP5) in the vector whitefly for more actively olfactory orientation to the host plant. PEST MANAGEMENT SCIENCE 2023; 79:1410-1419. [PMID: 36480018 DOI: 10.1002/ps.7313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/12/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) is a notorious agricultural pest and the effective vector of many plant viruses worldwide. Cucurbit chlorotic yellows virus (CCYV), exclusively transmitted by B. tabaci in a semipersistent manner, is a serious causal agent in cucurbit crops in many countries. Plant viruses can manipulate the behaviors of insect vectors to promote the spread of themselves, but underlying mechanisms are remaining unclear. RESULTS In this study, our observations indicated that B. tabaci, when carrying CCYV, oriented more actively to the host plant cucumber. Transcriptome analysis and quantitative polymerase chain reaction with reverse transcription analysis showed that the odorant-binding protein 5 (OBP5) was upregulated with viral acquisition. Sequence and phylogenetic analysis showed that BtabOBP5 was highly homologous with nine OBPs from other hemipteran insects. In addition, OBP5-silenced whiteflies significantly altered their orientation behavior towards cucumber plants and towards some typical volatile organic compounds released from cucumbers. CONCLUSION This study described a novel mechanism by which the olfactory system of vector insects could be regulated by a semipersistent plant virus, thereby affecting insect olfactory behavior and relationship with host plants. These results provided a basis for developing potential olfaction-based pest management strategies in the future. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Haifang He
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Jingjing Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Zelong Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Minghui Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Beibei Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Chaoqiang Zhu
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Weili Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Baozheng Shi
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Yaxin Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Chenchen Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Fengming Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
11
|
de Paz V, Asís JD, Holzschuh A, Baños-Picón L. Effects of Traditional Orchard Abandonment and Landscape Context on the Beneficial Arthropod Community in a Mediterranean Agroecosystem. INSECTS 2023; 14:277. [PMID: 36975963 PMCID: PMC10056667 DOI: 10.3390/insects14030277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Agricultural abandonment is one of the main land-use changes in Europe, and its consequences on biodiversity are context- and taxa-dependent. While several studies have worked on this topic, few have focused on traditional orchards, especially in different landscapes and under a Mediterranean climate. In this context, we aimed to determine the effects of almond orchard abandonment on the communities of three groups of beneficial arthropods and the role of the landscape context in modulating these effects. Between February and September 2019, four samplings were carried out in twelve almond orchards (three abandoned and three traditional (active orchards under traditional agricultural management) located in simple landscapes as well as three abandoned and three traditional in complex landscapes). Abandoned and traditional almond orchards harbor different arthropod communities and diversity metrics that are strongly conditioned by seasonality. Abandoned orchards can favor pollinators and natural enemies, providing alternative resources in simple landscapes. However, the role that abandoned orchards play in simple landscapes disappears as the percentage of semi-natural habitats in the landscape increases. Our results show that landscape simplification, through the loss of semi-natural habitats, has negative consequences on arthropod biodiversity, even in traditional farming landscapes with small fields and high crop diversity.
Collapse
Affiliation(s)
- Víctor de Paz
- Departmento de Biología Animal, Ecología, Parasitología, Edafología y Química Agrícola, Facultad de Farmacia, Campus Miguel de Unamuno s/n, Universidad de Salamanca, 37007 Salamanca, Spain; (V.d.P.); (L.B.-P.)
| | - Josep D. Asís
- Departmento de Biología Animal, Ecología, Parasitología, Edafología y Química Agrícola, Facultad de Farmacia, Campus Miguel de Unamuno s/n, Universidad de Salamanca, 37007 Salamanca, Spain; (V.d.P.); (L.B.-P.)
| | - Andrea Holzschuh
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany;
| | - Laura Baños-Picón
- Departmento de Biología Animal, Ecología, Parasitología, Edafología y Química Agrícola, Facultad de Farmacia, Campus Miguel de Unamuno s/n, Universidad de Salamanca, 37007 Salamanca, Spain; (V.d.P.); (L.B.-P.)
| |
Collapse
|
12
|
Ziaja D, Müller C. Intraspecific chemodiversity provides plant individual- and neighbourhood-mediated associational resistance towards aphids. FRONTIERS IN PLANT SCIENCE 2023; 14:1145918. [PMID: 37082343 PMCID: PMC10111025 DOI: 10.3389/fpls.2023.1145918] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/06/2023] [Indexed: 05/03/2023]
Abstract
Some plant species express an extraordinarily high intraspecific diversity in phytochemicals (= chemodiversity). As discussed for biodiversity, higher chemodiversity may provide better protection against environmental stress, including herbivory. However, little is known about whether the resistance of a plant individual towards herbivores is mostly governed by its own chemodiversity or by associational resistance provided by conspecific neighbours. To investigate the role of chemodiversity in plant-aphid interactions, we used the Asteraceae Tanacetum vulgare, whose individuals differ pronouncedly in the composition of leaf terpenoids, forming distinct chemotypes. Plants were set up in a field consisting of plots containing five individuals of either the same or different chemotypes. Presence of winged aphids, indicating attraction, and abundance of winged and unwinged aphids, indicating fitness, were counted weekly on each plant. During the peak abundance of aphids, leaf samples were taken from all plants for re-analyses of the terpenoid composition and quantification of terpenoid chemodiversity, calculated on an individual plant (Shannon index, Hsind, also considered as α-chemodiversity) and plot level (Hsplot, = β-chemodiversity). Aphid attraction was neither influenced by chemotype nor plot-type. The real-time odour environment may be very complex in this setting, impeding clear preferences. In contrast, the abundance was affected by both chemotype and plot-type. On average, more Uroleucon tanaceti aphids were found on plants of two of the chemotypes growing in homogenous compared to heterogenous plots, supporting the associational resistance hypothesis. For Macrosiphoniella tanacetaria aphids, the probability of presence differed between plot-types on one chemotype. Terpenoid chemodiversity expressed as a gradient revealed negative Hsplot effects on U. tanaceti, but a positive correlation of Hsind with M. tanacetaria abundance. Aphids of M. fuscoviride were not affected by any level of chemodiversity. In conclusion, this study shows that not only the chemotype and chemodiversity of individual plants but also that of conspecific neighbours can influence certain plant-herbivore interactions. These effects are highly specific with regard to the plant chemotype and differ between aphid species and their morphs (winged vs. unwinged). Furthermore, our results highlight the importance of analysing chemodiversity at different levels.
Collapse
|
13
|
Callejas-Chavero A, Martínez-Hernández DG, Vargas-Mendoza CF, Flores-Martínez A. Herbivory in Myrtillocactus geometrizans (Cactaceae): Do Parasitoids Provide Indirect Defense or a Direct Advantage? PLANTS (BASEL, SWITZERLAND) 2022; 12:47. [PMID: 36616177 PMCID: PMC9824105 DOI: 10.3390/plants12010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 11/27/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Plants respond to herbivory in diverse, complex ways, ranging from avoidance or tolerance to indirect defense mechanisms such as attracting natural enemies of herbivores, i.e., parasitoids or predators, to strengthen their defense. Defense provided by parasitoids to cultivated plants is well documented and is used in biological control programs. However, its effectiveness on wild plants under natural conditions has been little studied. Such is the case of the cactus Myrtilllocactus geometrizans (known in Mexico as garambullo), which is consumed by the soft-scale insect Toumeyella martinezae (herbivore) which, in turn, is host to the parasitoid wasp Mexidalgus toumeyellus, and mutualist with the ant Liometopum apiculatum, that tenders and protects it. This study explores the role of the parasitoid as an indirect defense, by examining its effect on both the herbivore and the plant, and how this interaction is affected by the presence of the mutualistic ant. We found that scales adversely affect the cactus' growth, flower, and fruit production, as well as its progeny's performance, as seedlings from scale-infested garambullo plants were shorter, and it also favors the presence of fungus (sooty mold). The parasitoid responded positively to herbivore abundance, but the presence of ants reduced the intensity of parasitism. Our results show that parasitoids can function as an indirect defense, but their effectiveness is reduced by the presence of the herbivore's mutualistic ant.
Collapse
Affiliation(s)
- Alicia Callejas-Chavero
- Laboratorio de Ecología Vegetal, Departamento de Botánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Diana Guadalupe Martínez-Hernández
- Laboratorio de Ecología Vegetal, Departamento de Botánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Carlos Fabian Vargas-Mendoza
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Arturo Flores-Martínez
- Laboratorio de Ecología Vegetal, Departamento de Botánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| |
Collapse
|
14
|
Plasticity in Chemical Host Plant Recognition in Herbivorous Insects and Its Implication for Pest Control. BIOLOGY 2022; 11:biology11121842. [PMID: 36552352 PMCID: PMC9775997 DOI: 10.3390/biology11121842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Chemical communication is very important in herbivorous insects, with many species being important agricultural pests. They often use olfactory cues to find their host plants at a distance and evaluate their suitability upon contact with non-volatile cues. Responses to such cues are modulated through interactions between various stimuli of biotic and abiotic origin. In addition, the response to the same stimulus can vary as a function of, for example, previous experience, age, mating state, sex, and morph. Here we summarize recent advances in the understanding of plant localization and recognition in herbivorous insects with a focus on the interplay between long- and short-range signals in a complex environment. We then describe recent findings illustrating different types of plasticity in insect plant choice behavior and the underlying neuronal mechanisms at different levels of the chemosensory pathway. In the context of strong efforts to replace synthetic insecticides with alternative pest control methods, understanding combined effects between long- and close-range chemical cues in herbivore-plant interactions and their complex environment in host choice are crucial to develop effective plant protection methods. Furthermore, plasticity of behavioral and neuronal responses to chemical cues needs to be taken into account to develop effective sustainable pest insect control through behavioral manipulation.
Collapse
|
15
|
Oviposition Preference and Performance of a Specialist Herbivore Is Modulated by Natural Enemies, Larval Odors, and Immune Status. J Chem Ecol 2022; 48:670-682. [DOI: 10.1007/s10886-022-01363-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022]
|
16
|
Monticelli LS, Labonté A, Turpin M, Biju‐Duval L, Felten E, Laurent E, Matejicek A, Vieren E, Deytieux V, Cordeau S, Vanbergen AJ. Agroecological farming, flowering phenology and the pollinator‐herbivore‐parasitoid nexus regulate non‐crop plant reproduction. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lucie S. Monticelli
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche‐Comté, F‐21000 Dijon France
- Université Côte d’Azur INRAE, CNRS, UMR ISA Nice France
| | - Audrey Labonté
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche‐Comté, F‐21000 Dijon France
| | - Mélinda Turpin
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche‐Comté, F‐21000 Dijon France
| | - Luc Biju‐Duval
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche‐Comté, F‐21000 Dijon France
| | - Emeline Felten
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche‐Comté, F‐21000 Dijon France
| | - Emilien Laurent
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche‐Comté, F‐21000 Dijon France
| | - Annick Matejicek
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche‐Comté, F‐21000 Dijon France
| | - Eric Vieren
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche‐Comté, F‐21000 Dijon France
| | - Violaine Deytieux
- U2E, INRAE, Unité Expérimentale du Domaine d’Epoisses, F‐21110 Breteniere France
| | - Stephane Cordeau
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche‐Comté, F‐21000 Dijon France
| | - Adam J. Vanbergen
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche‐Comté, F‐21000 Dijon France
| |
Collapse
|
17
|
More phylogenetically diverse polycultures inconsistently suppress insect herbivore populations. Oecologia 2022; 198:1057-1072. [PMID: 35380273 DOI: 10.1007/s00442-022-05153-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/23/2022] [Indexed: 10/18/2022]
Abstract
Because the diet of many herbivorous insects is restricted to closely related taxa with similar chemistry, intercropping with diverse plant communities may reduce both pest populations and reliance on chemical pesticides in agroecosystems. We tested whether the effectiveness of intercropping against herbivorous insects depends on the phylogenetic relatedness of neighboring crops, using butternut squash (Cucurbita moschata) as a focal crop species in a series of different intercropping combinations. We found that increased phylogenetic divergence of neighboring plants could reduce abundance of herbivorous insects, but the effect was only detectable mid-season. In addition, we tested two hypothesized mechanisms for a negative association between phylogenetic distance of neighboring plants and reduced herbivore populations: one, we tested using Y-tube olfactometer and choice cage trials whether diverse volatile cues impede host-plant location by the dominant pest of butternut squash in our experiment, striped cucumber beetle Acalymma vittatum. Two, we recorded predator and parasitoid abundance relative to crop phylodiversity to test whether diverse crops support larger natural-enemy populations that can better control pest species. Our results, however, did not support either hypothesis. Striped cucumber beetles preferentially oriented toward non-host-plant volatiles, and predator populations more often decreased with phylodiversity than increased. Thus, the mechanisms driving associations in the field between phylogenetic divergence and herbivore populations remain unclear.
Collapse
|
18
|
Correa CMA, da Silva PG. Environmental drivers of taxonomic and functional diversity of dung beetles across a chronosequence of tropical grasslands with different cattle grazing removal ages. AUSTRAL ECOL 2022. [DOI: 10.1111/aec.13174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- César M. A. Correa
- Programa de Pós‐Graduação em Entomologia Universidade Federal de Lavras Lavras 37200‐000 Brazil
- Laboratório de Scarabaeoidologia Universidade Federal de Mato Grosso Cuiabá Brazil
| | - Pedro Giovâni da Silva
- Programa de Pós‐Graduação em Ecologia, Conservação e Manejo da Vida Silvestre Universidade Federal de Minas Gerais Belo Horizonte Brazil
| |
Collapse
|
19
|
Burnett NP, Badger MA, Combes SA. Wind and route choice affect performance of bees flying above versus within a cluttered obstacle field. PLoS One 2022; 17:e0265911. [PMID: 35325004 PMCID: PMC8947135 DOI: 10.1371/journal.pone.0265911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/09/2022] [Indexed: 11/28/2022] Open
Abstract
Bees flying through natural landscapes frequently encounter physical challenges, such as wind and cluttered vegetation, but the influence of these factors on flight performance remains unknown. We analyzed 548 videos of wild-caught honeybees (Apis mellifera) flying through an enclosure containing a field of vertical obstacles that bees could choose to fly within (through open corridors, without maneuvering) or above. We varied obstacle field height and wind condition (still, headwinds or tailwinds), and examined how these factors affected bees’ flight altitude, ground speed, and side-to-side casting motions (lateral excursions). When obstacle fields were short, bees flew at altitudes near the midpoint between the tunnel floor and ceiling. When obstacle fields approached or exceeded this midpoint, bees tended to increase their altitude, but they did not always avoid flying through obstacles, despite having the freedom to do so. Bees that flew above the obstacles exhibited 40% faster ground speeds and 36% larger lateral excursions than bees that flew within the obstacle fields. Wind did not affect flight altitude, but bees flew 12–19% faster in tailwinds, and their lateral excursions were 19% larger when flying in headwinds or tailwinds, as compared to still air. Our results show that bees flying through complex environments display flexibility in their route choices (i.e., flying above obstacles in some trials and through them in others), which affects their overall flight performance. Similar choices in natural landscapes could have broad implications for foraging efficiency, pollination, and mortality in wild bees.
Collapse
Affiliation(s)
- Nicholas P. Burnett
- Department of Neurobiology, Physiology, and Behavior, University of California at Davis, Davis, California, United States of America
- * E-mail:
| | - Marc A. Badger
- Department of Neurobiology, Physiology, and Behavior, University of California at Davis, Davis, California, United States of America
- Department of Computer and Information Science, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Stacey A. Combes
- Department of Neurobiology, Physiology, and Behavior, University of California at Davis, Davis, California, United States of America
| |
Collapse
|
20
|
Plant Diversity Increased Arthropod Diversity and Crop Yield in Traditional Agroforestry Systems but Has No Effect on Herbivory. SUSTAINABILITY 2022. [DOI: 10.3390/su14052942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Improving agricultural production in response to the increasing food demand remains a major challenge in agroecology. The world has made significant efforts to meet this issue by developing several cultivation techniques, such as the use of chemical fertilizers and arable land conversion into agricultural land. However, most of these techniques have caused a significant loss of biodiversity and ecosystems services. Recent data suggest that biological conservation within and around agroforestry systems are potential solutions that can both reduce biodiversity loss and guarantee crop production. This logic is based on the hypothesis that increasing plant diversity in and around agricultural systems can limit the pest attack rate and increase crop yield. We tested this hypothesis using structural equation modeling on empirical data collected in agroforestry systems around the Pendjari biosphere reserve in West Africa. We measured crop diversity, crop yield, arthropod pest diversity, abundance, the rate of crop herbivory, and the diversity of plants in surrounding natural vegetation in 32 permanent plots. We estimated arthropod diversity and abundance using pitfall traps. We found a direct positive effect for plant diversity and a direct negative effect of arthropod herbivory on crop yield. The diversity of plants in surrounding natural vegetation had a direct positive effect on arthropod pest diversity but a marginal negative direct effect on the rate of crop herbivory. We found no significant direct or indirect effect for crop diversity. Our findings underline the important role of biodiversity conservation in agricultural production improvement. We suggest that the conservation of plant diversity around agroforestry systems may be an effective option to control herbivory damage. Its combination with other pest control techniques may further limit crop depredation and ensure the long-term conservation of wildlife.
Collapse
|
21
|
Compositional Attributes of Invaded Forests Drive the Diversity of Insect Functional Groups. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
22
|
de Paz V, Tobajas E, Rosas-Ramos N, Tormos J, Asís JD, Baños-Picón L. Effect of Organic Farming and Agricultural Abandonment on Beneficial Arthropod Communities Associated with Olive Groves in Western Spain: Implications for Bactrocera oleae Management. INSECTS 2022; 13:insects13010048. [PMID: 35055891 PMCID: PMC8778029 DOI: 10.3390/insects13010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022]
Abstract
Agricultural abandonment and intensification are among the main land-use changes in Europe. Along with these processes, different proposals have been developed to counteract the negative effects derived from agricultural intensification, including organic management. In this context, we aimed to determine how organic management and farmland abandonment affect Bactrocera oleae and its main groups of natural enemies: hymenopteran parasitoids, spiders, ants, carabids, and staphylinids. Between May and October 2018, four samplings were carried out in nine olive groves (three under organic management, three under traditional management, and three abandoned) in a rural area on the border between Spain and Portugal (Salamanca, Western Spain). Our results suggested differences between the natural enemy community composition of abandoned and organic groves, with slightly higher levels of richness and abundance in abandoned groves. We found no differences between organic and traditional groves. The managed olive groves sustained a different natural enemy community but were similarly rich and diverse compared with the more complex abandoned groves, with the latter not acting as a reservoir of B. oleae in our study area. Both systems may provide complementary habitats; however, further abandonment could cause a reduction in heterogeneity at the landscape scale and, consequently, a biodiversity loss.
Collapse
|
23
|
Ecological and distribution traits of the large white-faced darter Leucorrhinia pectoralis (Charpentier, 1825) in Slovakia. EKOLÓGIA (BRATISLAVA) 2021. [DOI: 10.2478/eko-2021-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The dragonfly Leucorrhinia pectoralis was recorded in Slovakia at 38 sites in 112 findings and there were 707 imagoes. Reproduction was confirmed in seven sites by finding of 35 larvae and exuviae. The highest number of sites with the occurrence of L. pectoralis is located in the Záhorská nížina lowland; most sites in Slovakia are located at an altitude of 213–351 m. L. pectoralis was recorded together with 49 species of dragonflies, and the average number of L. pectoralis was 9.56 individuals per site. It occurs in the communities as a dominant species (9.5%) together with eudominants Coenagrion puella, C. hastulatum and Libellula quadrimaculata. By non-metric multidimensional scaling (NMDS), we found a coenotic correlation to peat species Libellula quadrimaculata, Leucorrhinia rubicunda, L. dubia and Sympetrum danae. By redundancy linear analysis (RDA), we found a Monte Carlo permutation test to make a non-random contribution to the explained variability of seven factors (p = 0.012–0.034). L. pectoralis statistically significantly prefers habitats in the forest landscape (r = 0.62, p = 0.0063), the presence of vegetation (r = 0.94, p = 0.0003) and peatbogs (r = 0.61, p = 0.0058). We did not confirm a significant correlation to altitude. Based on easy determination, territoriality (especially males) and bioindicative sensitivity of larvae, L. pectoralis is accepted as an umbrella species. L. pectoralis has a high dispersion potential and is suitable for creating the meta-population character of local populations, which is important for the conservation management of the species.
Collapse
|
24
|
Thöming G. Behavior Matters-Future Need for Insect Studies on Odor-Mediated Host Plant Recognition with the Aim of Making Use of Allelochemicals for Plant Protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10469-10479. [PMID: 34482687 DOI: 10.1021/acs.jafc.1c03593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Allelochemicals, chemical cues that, among other things, mediate insect-plant interactions, such as host plant recognition, have attracted notable interest as tools for ecological control of pest insects. Advances have recently been made in methods for sampling and analyzing volatile compounds and technology for tracking insects in their natural habitat. However, progress in odor-mediated behavioral bioassays of insects has been relatively slow. This perspective highlights this odor-mediated insect behavior, particularly in a natural setting and considering the whole behavioral sequence involved in the host location, which is the key to understanding the mechanisms underlying host plant recognition. There is thus a need to focus on elaborate behavioral bioassays in future studies, particularly if the goal is to use allelochemicals in pest control. Future directions for research are discussed.
Collapse
Affiliation(s)
- Gunda Thöming
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Høgskoleveien 7, NO-1433 Ås, Norway
| |
Collapse
|
25
|
|
26
|
Excessive Nitrogen Fertilization Favors the Colonization, Survival, and Development of Sogatella furcifera via Bottom-Up Effects. PLANTS 2021; 10:plants10050875. [PMID: 33925283 PMCID: PMC8146788 DOI: 10.3390/plants10050875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 11/22/2022]
Abstract
Fertilization can trigger bottom-up effects on crop plant–insect pest interactions. The intensive use of nitrogen fertilizer has been a common practice in rice production, while the yield has long been challenged by the white-backed planthopper, Sogatella furcifera (Horváth). High nitrogen fertilization can facilitate S. furcifera infestation, however, how nitrogen fertilizer leads to high S. furcifera infestation and the nutritional interactions between rice and S. furcifera are poorly understood. Here, we evaluated the effects of various levels of nitrogen fertilizer application (0–350 kg/ha) on rice, and subsequently on S. furcifera performance. We found that higher nitrogen fertilizer application: (1) increases the preference of infestation behaviors (feeding and oviposition), (2) extends infestation time (adult lifespan), and (3) shortens generation reproduction time (nymph, pre-oviposition, and egg period), which explain the high S. furcifera infestation ratio on rice paddies under high nitrogen conditions. Moreover, high nitrogen fertilizer application increased all tested rice physical indexes (plant height, leaf area, and leaf width) and physiological indexes (chlorophyll content, water content, dry matter mass, and soluble protein content), except for leaf thickness, which was reduced. Correlation analysis indicated that the specific rice physical and/or physiological indexes were conducive to the increased infestation behavior preference, extended infestation time, and shortened generation reproduction time of S. furcifera. The results suggested that nitrogen fertilizer triggers bottom-up effects on rice and increases S. furcifera populations. The present study provides an insight into how excess nitrogen fertilization shapes rice–planthopper interactions and the consequent positive effect on S. furcifera infestation.
Collapse
|
27
|
Ayelo PM, Pirk CWW, Yusuf AA, Chailleux A, Mohamed SA, Deletre E. Exploring the Kairomone-Based Foraging Behaviour of Natural Enemies to Enhance Biological Control: A Review. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.641974] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Kairomones are chemical signals that mediate interspecific interactions beneficial to organisms that detect the cues. These attractants can be individual compounds or mixtures of herbivore-induced plant volatiles (HIPVs) or herbivore chemicals such as pheromones, i.e., chemicals mediating intraspecific communication between herbivores. Natural enemies eavesdrop on kairomones during their foraging behaviour, i.e., location of oviposition sites and feeding resources in nature. Kairomone mixtures are likely to elicit stronger olfactory responses in natural enemies than single kairomones. Kairomone-based lures are used to enhance biological control strategies via the attraction and retention of natural enemies to reduce insect pest populations and crop damage in an environmentally friendly way. In this review, we focus on ways to improve the efficiency of kairomone use in crop fields. First, we highlight kairomone sources in tri-trophic systems and discuss how these attractants are used by natural enemies searching for hosts or prey. Then we summarise examples of field application of kairomones (pheromones vs. HIPVs) in recruiting natural enemies. We highlight the need for future field studies to focus on the application of kairomone blends rather than single kairomones which currently dominate the literature on field attractants for natural enemies. We further discuss ways for improving kairomone use through attract and reward technique, olfactory associative learning, and optimisation of kairomone lure formulations. Finally, we discuss why the effectiveness of kairomone use for enhancing biological control strategies should move from demonstration of increase in the number of attracted natural enemies, to reducing pest populations and crop damage below economic threshold levels and increasing crop yield.
Collapse
|
28
|
Use of odor by host-finding insects: the role of real-time odor environment and odor mixing degree. CHEMOECOLOGY 2021. [DOI: 10.1007/s00049-021-00342-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Stewart PS, Hill RA, Stephens PA, Whittingham MJ, Dawson W. Impacts of invasive plants on animal behaviour. Ecol Lett 2021; 24:891-907. [PMID: 33524221 DOI: 10.1111/ele.13687] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 01/08/2023]
Abstract
The spread of invasive species is a threat to ecosystems worldwide. However, we know relatively little about how invasive species affect the behaviour of native animals, even though behaviour plays a vital role in the biotic interactions which are key to understanding the causes and impacts of biological invasions. Here, we explore how invasive plants - one of the most pervasive invasive taxa - impact the behaviour of native animals. To promote a mechanistic understanding of these behavioural impacts, we begin by introducing a mechanistic framework which explicitly considers the drivers and ecological consequences of behavioural change, as well as the moderating role of environmental context. We then synthesise the existing literature within this framework. We find that while some behavioural impacts of invasive plants are relatively well-covered in the literature, others are supported by only a handful of studies and should be explored further in the future. We conclude by identifying priority topics for future research, which will benefit from an interdisciplinary approach uniting invasion ecology with the study of animal behaviour and cognition.
Collapse
Affiliation(s)
- Peter S Stewart
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Russell A Hill
- Department of Anthropology, Durham University, Durham, DH1 3LE, UK
| | | | - Mark J Whittingham
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-Upon-Tyne, NE1 7RU, UK
| | - Wayne Dawson
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| |
Collapse
|
30
|
Plant Volatiles Modulate Seasonal Dynamics between Hosts of the Polyphagous Mirid Bug Apolygus lucorum. J Chem Ecol 2021; 47:87-98. [PMID: 33405043 DOI: 10.1007/s10886-020-01236-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
Plant-derived volatiles play a significant role in host selection of phytophagous insects, but their role in seasonal host shifts remain unclear. The polyphagous mirid bug Apolygus lucorum displays marked seasonal host alternation. During summer, volatiles from flowering plants play a key role in A. lucorum foraging. Though A. lucorum adults deposit overwintering eggs on jujube (Ziziphus jujuba) and grape (Vitis vinifera) during autumn, it is unclear whether plant volatiles equally mediate this host selection behavior. During 2015 and 2016, we found that population densities of A. lucorum adults on cotton (Gossypium hirsutum) during August were higher than those in September, whereas the opposite pattern was observed on fruit trees (i.e., jujube and grape). The dispersal factor of the adult population that dispersed from cotton fields during September was higher than in August, whereas opposite patterns were observed in the neighboring jujube/grape orchard. In Y-tube olfactometer trials, A. lucorum adults preferred cotton plant volatiles over fruit tree odors in August, whereas the opposite patterns were found in September. Three electro-physiologically active volatiles (butyl acrylate, butyl propionate and butyl butyrate) were identified from jujube and grape plants. During September, active volatiles are emitted in considerably greater amounts by jujube and grape than in August, while the amount of volatile emissions in cotton decreases in September. Temporal shifts in plant volatile emission thus may modulate host plant foraging of A. lucorum, and appear to guide its colonization of different host plants. Our findings help understand the role of plant volatiles in the host plant selection and seasonal dynamics of polyphagous herbivores.
Collapse
|
31
|
Aartsma Y, Pappagallo S, van der Werf W, Dicke M, Bianchi FJJA, Poelman EH. Spatial scale, neighbouring plants and variation in plant volatiles interactively determine the strength of host–parasitoid relationships. OIKOS 2020. [DOI: 10.1111/oik.07484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yavanna Aartsma
- Farming Systems Ecology, Wageningen Univ. Wageningen the Netherlands
- Laboratory of Entomology, Wageningen Univ. Wageningen the Netherlands
| | - Silvia Pappagallo
- Laboratory of Entomology, Wageningen Univ. Wageningen the Netherlands
| | - Wopke van der Werf
- Centre for Crop Systems Analysis, Wageningen Univ. Wageningen the Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen Univ. Wageningen the Netherlands
| | | | - Erik H. Poelman
- Laboratory of Entomology, Wageningen Univ. Wageningen the Netherlands
| |
Collapse
|
32
|
Desurmont GA, von Arx M, Turlings TCJ, Schiestl FP. Floral Odors Can Interfere With the Foraging Behavior of Parasitoids Searching for Hosts. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
33
|
Delgado de la flor YA, Perry KI, Turo KJ, Parker DM, Thompson JL, Gardiner MM. Local and landscape‐scale environmental filters drive the functional diversity and taxonomic composition of spiders across urban greenspaces. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13636] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
| | - Kayla I. Perry
- Department of Entomology The Ohio State University Columbus OH USA
| | | | | | | | - Mary M. Gardiner
- Department of Entomology The Ohio State University Columbus OH USA
| |
Collapse
|
34
|
Knegt B, Meijer TT, Kant MR, Kiers ET, Egas M. Tetranychus evansi spider mite populations suppress tomato defenses to varying degrees. Ecol Evol 2020; 10:4375-4390. [PMID: 32489604 PMCID: PMC7246200 DOI: 10.1002/ece3.6204] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 03/30/2019] [Accepted: 04/13/2019] [Indexed: 01/30/2023] Open
Abstract
Plant defense suppression is an offensive strategy of herbivores, in which they manipulate plant physiological processes to increase their performance. Paradoxically, defense suppression does not always benefit the defense-suppressing herbivores, because lowered plant defenses can also enhance the performance of competing herbivores and can expose herbivores to increased predation. Suppression of plant defense may therefore entail considerable ecological costs depending on the presence of competitors and natural enemies in a community. Hence, we hypothesize that the optimal magnitude of suppression differs among locations. To investigate this, we studied defense suppression across populations of Tetranychus evansi spider mites, a herbivore from South America that is an invasive pest of solanaceous plants including cultivated tomato, Solanum lycopersicum, in other parts of the world. We measured the level of expression of defense marker genes in tomato plants after infestation with mites from eleven different T. evansi populations. These populations were chosen across a range of native (South American) and non-native (other continents) environments and from different host plant species. We found significant variation at three out of four defense marker genes, demonstrating that T. evansi populations suppress jasmonic acid- and salicylic acid-dependent plant signaling pathways to varying degrees. While we found no indication that this variation in defense suppression was explained by differences in host plant species, invasive populations tended to suppress plant defense to a smaller extent than native populations. This may reflect either the genetic lineage of T. evansi-as all invasive populations we studied belong to one linage and both native populations to another-or the absence of specialized natural enemies in invasive T. evansi populations.
Collapse
Affiliation(s)
- Bram Knegt
- Department of Evolutionary and Population BiologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Tomas T. Meijer
- Department of Evolutionary and Population BiologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Merijn R. Kant
- Department of Evolutionary and Population BiologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - E. Toby Kiers
- Department of Ecological ScienceVU UniversityAmsterdamThe Netherlands
| | - Martijn Egas
- Department of Evolutionary and Population BiologyInstitute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
35
|
Shao X, Zhang Q, Liu Y, Yang X. Effects of wind speed on background herbivory of an insect herbivore. ECOSCIENCE 2020. [DOI: 10.1080/11956860.2019.1666549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Xinliang Shao
- College of Forestry, Henan Agricultural University, Zhengzhou, China
| | - Qin Zhang
- Department of Research and Development, Zhengzhou Yaoling Technology Co., Ltd, Zhengzhou, China
| | - Yuhui Liu
- Department of Research and Development, Zhengzhou Yaoling Technology Co., Ltd, Zhengzhou, China
| | - Xitian Yang
- College of Forestry, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
36
|
Wetzel WC, Whitehead SR. The many dimensions of phytochemical diversity: linking theory to practice. Ecol Lett 2019; 23:16-32. [PMID: 31724320 DOI: 10.1111/ele.13422] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 01/11/2023]
Abstract
Research on the ecological and evolutionary roles of phytochemicals has recently progressed from studying single compounds to examining chemical diversity itself. A key conceptual advance enabling this progression is the use of species diversity metrics for quantifying phytochemical diversity. In this perspective, we extend the theory developed for species diversity to further our understanding of what exactly phytochemical diversity is and how its many dimensions impact ecological and evolutionary processes. First, we discuss the major dimensions of phytochemical diversity - richness, evenness, functional diversity, and alpha, gamma and beta diversity. We describe their potential independent roles in biotic interactions and the practical challenges associated with their analysis. Second, we re-analyse the published and unpublished datasets to reveal that the phytochemical diversity experienced by an organism (or observed by a researcher) depends strongly on the scale of the interaction and the total amount of phytochemicals involved. We argue that we must account for these frames of reference to meaningfully understand diversity. Moving from a general notion of phytochemical diversity as a single measure to a precise definition of its multidimensional and multiscale nature yields overlooked testable predictions that will facilitate novel insights about the evolutionary ecology of plant biotic interactions.
Collapse
Affiliation(s)
- William C Wetzel
- Department of Entomology, Michigan State University, East Lansing, MI, 48824, USA.,Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Susan R Whitehead
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| |
Collapse
|
37
|
Abdullah NA, Radzi SNF, Asri LN, Idris NS, Husin S, Sulaiman A, Khamis S, Sulaiman N, Hazmi IR. Insect community in riparian zones of Sungai Sepetang, Sungai Rembau and Sungai Chukai of Peninsular Malaysia. Biodivers Data J 2019; 7:e35679. [PMID: 31582889 PMCID: PMC6761210 DOI: 10.3897/bdj.7.e35679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/02/2019] [Indexed: 11/12/2022] Open
Abstract
Riparian areas hold vast number of flora and fauna with exceptional contributions to the ecosystem. A study was conducted in Sungai Sepetang, Sungai Rembau and Sungai Chukai to identify the insect community in a riparian zone of Peninsular Malaysia. Sampling was conducted in six consecutive months from December 2017 to May 2018 during both day and night using sweep nets. Twenty sampling stations (S1-S20) had been assembled along the riverbanks with an average distance of 200 m between each station. The 17,530 collected insects were from 11 orders and consisted of Diptera, Coleoptera, Hemiptera, Hymenoptera, Lepidoptera, Neuroptera, Orthoptera, Blattodea, Thysanoptera, Mantodea and Odonata. The three most abundant orders were Diptera (33.84%; 5933 individuals), Coleoptera (28.82%; 5053 individuals) and Hemiptera (25.62%: 4491 individuals). The collected insect community consisted of different guilds such as the scavenger, predator, herbivore, pollinator and parasitoid. Sungai Sepetang and Sungai Rembau were dominated by mangrove flora, Sonneratiacaseolaris (Myrtales: Lythraceae), while Sungai Chukai was dominated by Barringtoniaracemosa. There was a significant difference (p < 0.05) in the composition of insects between the three rivers though clustering analysis showed that the insect communities in Sungai Sepetang and Sungai Rembau were 100% similar compared to Sungai Chukai which consisted of a totally different community. There is a significant negative correlation between abundance of insects with salinity and wind speed at Sungai Chukai and Sungai Sepetang.
Collapse
Affiliation(s)
- Nur-Athirah Abdullah
- Center of Ecosystem Management and Natural Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bandar Baru Bangi, Selangor, Malaysia Center of Ecosystem Management and Natural Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bandar Baru Bangi, Selangor Malaysia.,Center for Insect Systematics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bandar Baru Bangi, Selangor, Malaysia Center for Insect Systematics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bandar Baru Bangi, Selangor Malaysia
| | - Siti Nur Fatehah Radzi
- Center of Ecosystem Management and Natural Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bandar Baru Bangi, Selangor, Malaysia Center of Ecosystem Management and Natural Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bandar Baru Bangi, Selangor Malaysia
| | - Lailatul-Nadhirah Asri
- Center for Insect Systematics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bandar Baru Bangi, Selangor, Malaysia Center for Insect Systematics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bandar Baru Bangi, Selangor Malaysia.,Center of Ecosystem Management and Natural Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bandar Baru Bangi, Selangor, Malaysia Center of Ecosystem Management and Natural Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bandar Baru Bangi, Selangor Malaysia
| | - Nor Shafikah Idris
- Centre for Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bandar Baru Bangi, Selangor, Malaysia Centre for Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bandar Baru Bangi, Selangor Malaysia
| | - Shahril Husin
- TNB Research Sdn. Bhd, No. 1, Lorong Ayer Hitam, Kawasan Institut Penyelidikan, 43000, Kajang, Selangor, Malaysia TNB Research Sdn. Bhd No. 1, Lorong Ayer Hitam, Kawasan Institut Penyelidikan, 43000, Kajang, Selangor Malaysia
| | - Azman Sulaiman
- Center of Ecosystem Management and Natural Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bandar Baru Bangi, Selangor, Malaysia Center of Ecosystem Management and Natural Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bandar Baru Bangi, Selangor Malaysia.,Center for Insect Systematics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bandar Baru Bangi, Selangor, Malaysia Center for Insect Systematics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bandar Baru Bangi, Selangor Malaysia
| | - Shamsul Khamis
- Center of Ecosystem Management and Natural Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bandar Baru Bangi, Selangor, Malaysia Center of Ecosystem Management and Natural Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bandar Baru Bangi, Selangor Malaysia
| | - Norela Sulaiman
- Center for Insect Systematics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bandar Baru Bangi, Selangor, Malaysia Center for Insect Systematics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bandar Baru Bangi, Selangor Malaysia.,Center of Ecosystem Management and Natural Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bandar Baru Bangi, Selangor, Malaysia Center of Ecosystem Management and Natural Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bandar Baru Bangi, Selangor Malaysia
| | - Izfa Riza Hazmi
- Center of Ecosystem Management and Natural Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bandar Baru Bangi, Selangor, Malaysia Center of Ecosystem Management and Natural Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bandar Baru Bangi, Selangor Malaysia.,Center for Insect Systematics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bandar Baru Bangi, Selangor, Malaysia Center for Insect Systematics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bandar Baru Bangi, Selangor Malaysia
| |
Collapse
|
38
|
Vosteen I, van den Meiracker N, Poelman EH. Getting confused: learning reduces parasitoid foraging efficiency in some environments with non-host-infested plants. Oecologia 2019; 189:919-930. [PMID: 30929072 PMCID: PMC6486909 DOI: 10.1007/s00442-019-04384-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 03/13/2019] [Indexed: 10/27/2022]
Abstract
Foraging animals face the difficult task to find resources in complex environments that contain conflicting information. The presence of a non-suitable resource that provides attractive cues can be expected to confuse foraging animals and to reduce their foraging efficiency. We used the parasitoid Cotesia glomerata to study the effect of non-host-infested plants and associative learning on parasitoid foraging efficiency. Inexperienced C. glomerata did not prefer volatiles emitted from host (Pieris brassicae)-infested plants over volatiles from non-host (Mamestra brassicae)-infested plants and parasitoids that had to pass non-host-infested plants needed eight times longer to reach the host-infested plant compared to parasitoids that had to pass undamaged plants. Contrary to our expectations, oviposition experience on a host-infested leaf decreased foraging efficiency due to more frequent visits of non-host-infested plants. Oviposition experience did not only increase the responsiveness of C. glomerata to the host-infested plants, but also the attraction towards herbivore-induced plant volatiles in general. Experience with non-host-infested leaves on the contrary resulted in a reduced attraction towards non-host-infested plants, but did not increase foraging efficiency. Our study shows that HIPVs emitted by non-host-infested plants can confuse foraging parasitoids and reduce their foraging efficiency when non-host-infested plants are abundant. Our results further suggest that the effect of experience on foraging efficiency in the presence of non-host-infested plants depends on the similarity between the rewarding and the non-rewarding cue as well as on the completeness of information that parasitoids have acquired about the rewarding and non-rewarding cues.
Collapse
Affiliation(s)
- Ilka Vosteen
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands.
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany.
| | | | - Erik H Poelman
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
39
|
Multiple plant diversity components drive consumer communities across ecosystems. Nat Commun 2019; 10:1460. [PMID: 30926809 PMCID: PMC6440984 DOI: 10.1038/s41467-019-09448-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 03/05/2019] [Indexed: 01/22/2023] Open
Abstract
Humans modify ecosystems and biodiversity worldwide, with negative consequences for ecosystem functioning. Promoting plant diversity is increasingly suggested as a mitigation strategy. However, our mechanistic understanding of how plant diversity affects the diversity of heterotrophic consumer communities remains limited. Here, we disentangle the relative importance of key components of plant diversity as drivers of herbivore, predator, and parasitoid species richness in experimental forests and grasslands. We find that plant species richness effects on consumer species richness are consistently positive and mediated by elevated structural and functional diversity of the plant communities. The importance of these diversity components differs across trophic levels and ecosystems, cautioning against ignoring the fundamental ecological complexity of biodiversity effects. Importantly, plant diversity effects on higher trophic-level species richness are in many cases mediated by modifications of consumer abundances. In light of recently reported drastic declines in insect abundances, our study identifies important pathways connecting plant diversity and consumer diversity across ecosystems. Here, Schuldt et al. collate data from two long-term grassland and forest biodiversity experiments to ask how plant diversity facets affect the diversity of higher trophic levels. The results show that positive effects of plant diversity on consumer diversity are mediated by plant structural and functional diversity, and vary across ecosystems and trophic levels.
Collapse
|
40
|
Plant Approach-Avoidance Response in Locusts Driven by Plant Volatile Sensing at Different Ranges. J Chem Ecol 2019; 45:410-419. [DOI: 10.1007/s10886-019-01053-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/24/2019] [Accepted: 02/05/2019] [Indexed: 10/27/2022]
|
41
|
Kigathi RN, Weisser WW, Reichelt M, Gershenzon J, Unsicker SB. Plant volatile emission depends on the species composition of the neighboring plant community. BMC PLANT BIOLOGY 2019; 19:58. [PMID: 30727963 PMCID: PMC6366091 DOI: 10.1186/s12870-018-1541-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 11/20/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Plants grow in multi-species communities rather than monocultures. Yet most studies on the emission of volatile organic compounds (VOCs) from plants in response to insect herbivore feeding focus on one plant species. Whether the presence and identity of neighboring plants or plant community attributes, such as plant species richness and plant species composition, affect the herbivore-induced VOC emission of a focal plant is poorly understood. METHODS We established experimental plant communities in pots in the greenhouse where the focal plant species, red clover (Trifolium pratense), was grown in monoculture, in a two species mixture together with Geranium pratense or Dactylis glomerata, or in a mixture of all three species. We measured VOC emission of the focal plant and the entire plant community, with and without herbivory of Spodoptera littoralis caterpillars caged on one red clover individual within the communities. RESULTS Herbivory increased VOC emission from red clover, and increasing plant species richness changed emissions of red clover and also from the entire plant community. Neighbor identity strongly affected red clover emission, with highest emission rates for plants growing together with D. glomerata. CONCLUSION The results from this study indicate that the blend of VOCs perceived by host searching insects can be affected by plant-plant interactions.
Collapse
Affiliation(s)
- Rose N. Kigathi
- Institute of Ecology, Friedrich-Schiller-University of Jena, Dornburger Str. 159, 07743 Jena, Germany
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, 07745 Jena, Germany
- Present Address: Department of Biological Sciences, Pwani University, P.O Box 195-80108, Kilifi, Kenya
| | - Wolfgang W. Weisser
- Institute of Ecology, Friedrich-Schiller-University of Jena, Dornburger Str. 159, 07743 Jena, Germany
- Present Address: Terrestrial Ecology Research Group, Department of Ecology and Ecosystem Management, School of Life Sciences Weihenstephan, Technische Universität München, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, 07745 Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, 07745 Jena, Germany
| | - Sybille B. Unsicker
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, 07745 Jena, Germany
| |
Collapse
|
42
|
Minorsky PV. The functions of foliar nyctinasty: a review and hypothesis. Biol Rev Camb Philos Soc 2019; 94:216-229. [PMID: 29998471 PMCID: PMC7379275 DOI: 10.1111/brv.12444] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 06/12/2018] [Accepted: 06/15/2018] [Indexed: 01/24/2023]
Abstract
Foliar nyctinasty is a plant behaviour characterised by a pronounced daily oscillation in leaf orientation. During the day, the blades of nyctinastic plant leaves (or leaflets) assume a more or less horizontal position that optimises their ability to capture sunlight for photosynthesis. At night, the positions that the leaf blades assume, regardless of whether they arise by rising, falling or twisting, are essentially vertical. Among the ideas put forth to explain the raison d'être of foliar nyctinasty are that it: (i) improves the temperature relations of plants; (ii) helps remove surface water from foliage; (iii) prevents the disruption of photoperiodism by moonlight; and (iv) directly discourages insect herbivory. After discussing these previous hypotheses, a novel tritrophic hypothesis is introduced that proposes that foliar nyctinasty constitutes an indirect plant defence against nocturnal herbivores. It is suggested that the reduction in physical clutter that follows from nocturnal leaf closure may increase the foraging success of many types of animals that prey upon or parasitise herbivores. Predators and parasitoids generally use some combination of visual, auditory or olfactory cues to detect prey. In terrestrial environments, it is hypothesised that the vertical orientation of the blades of nyctinastic plants at night would be especially beneficial to flying nocturnal predators (e.g. bats and owls) and parasitoids whose modus operandi is death from above. The movements of prey beneath a plant with vertically oriented foliage would be visually more obvious to gleaning or swooping predators under nocturnal or crepuscular conditions. Such predators could also detect sounds made by prey better without baffling layers of foliage overhead to damp and disperse the signal. Moreover, any volatiles released by the prey would diffuse more directly to the awaiting olfactory apparatus of the predators or parasitoids. In addition to facilitating the demise of herbivores by carnivores and parasitoids, foliar nyctinasty, much like the enhanced illumination of the full moon, may mitigate feeding by nocturnal herbivores by altering their foraging behaviour. Foliar nyctinasty could also provide a competitive advantage by encouraging herbivores, seeking more cover, to forage on or around non-nyctinastic species. As an added advantage, foliar nyctinasty, by decreasing the temperature between plants through its effects on re-radiation, may slow certain types of ectothermic herbivores making them more vulnerable to predation. Foliar nyctinasty also may not solely be a behavioural adaptation against folivores; by discouraging foraging by granivores, the inclusive fitness of nyctinastic plants may be increased.
Collapse
Affiliation(s)
- Peter V. Minorsky
- Department of Natural SciencesMercy College555 Broadway, Dobbs FerryNY10522U.S.A.
| |
Collapse
|
43
|
Silva RF, Rabeschini GBP, Peinado GLR, Cosmo LG, Rezende LHG, Murayama RK, Pareja M. The Ecology of Plant Chemistry and Multi-Species Interactions in Diversified Agroecosystems. FRONTIERS IN PLANT SCIENCE 2018; 9:1713. [PMID: 30524464 PMCID: PMC6262048 DOI: 10.3389/fpls.2018.01713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 11/05/2018] [Indexed: 05/27/2023]
Abstract
Over the past few years, our knowledge of how ecological interactions shape the structure and dynamics of natural communities has rapidly advanced. Plant chemical traits play key roles in these processes because they mediate a diverse range of direct and indirect interactions in a community-wide context. Many chemically mediated interactions have been extensively studied in industrial cropping systems, and thus have focused on simplified, pairwise and linear interactions that rarely incorporate a community perspective. A contrasting approach considers the agroecosystem as a functioning whole, in which food production occurs. It offers an opportunity to better understand how plant chemical traits mediate complex interactions which can enhance or hinder ecosystem functions. In this paper, we argue that studying chemically mediated interactions in agroecosystems is essential to comprehend how agroecosystem services emerge and how they can be guaranteed through ecosystem management. First, we discuss how plant chemical traits affect and are affected by ecological interactions. We then explore research questions and future directions on how studying chemical mediation in complex agroecosystems can help us understand the emergence and management of ecosystem services, specifically biological control and pollination.
Collapse
Affiliation(s)
- Rodolfo F Silva
- Programa de Pós-Graduação em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Gabriela B P Rabeschini
- Programa de Pós-Graduação em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | | | - Leandro G Cosmo
- Programa de Pós-Graduação em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Luiz H G Rezende
- Programa de Pós-Graduação em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Rafael K Murayama
- Programa de Pós-Graduação em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Martín Pareja
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| |
Collapse
|
44
|
Mofikoya AO, Miura K, Ghimire RP, Blande JD, Kivimäenpää M, Holopainen T, Holopainen JK. Understorey Rhododendron tomentosum and Leaf Trichome Density Affect Mountain Birch VOC Emissions in the Subarctic. Sci Rep 2018; 8:13261. [PMID: 30185795 PMCID: PMC6125604 DOI: 10.1038/s41598-018-31084-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/10/2018] [Indexed: 01/25/2023] Open
Abstract
Subarctic vegetation is composed of mountain birch [Betula pubescens ssp. czerepanovii (MB)] forests with shrubs and other species growing in the understorey. The effects of the presence and density of one understorey shrub, Rhododendron tomentosum (RT), on the volatile emissions of MB, were investigated in a Finnish subarctic forest site in early and late growing season. Only MB trees with an RT-understorey emitted the RT-specific sesquiterpenoids, palustrol, ledol and aromadendrene. Myrcene, which is the most abundant RT-monoterpene was also emitted in higher quantities by MB trees with an RT-understorey. The effect of RT understorey density on the recovery of RT compounds from MB branches was evident only during the late season when sampling temperature, as well as RT emissions, were higher. MB sesquiterpene and total emission rates decreased from early season to late season, while monoterpene emission rate increased. Both RT and MB terpenoid emission rates were linked to density of foliar glandular trichomes, which deteriorated over the season on MB leaves and emerged with new leaves in the late season in RT. We show that sesquiterpene and monoterpene compounds emitted by understorey vegetation are adsorbed and re-released by MB, strongly affecting the MB volatile emission profile.
Collapse
Affiliation(s)
- Adedayo O Mofikoya
- Department of Environmental and Biological Sciences, University of Eastern Finland, P. O. Box 1627, 70211, Kuopio, Finland.
| | - Kazumi Miura
- Institute of Biology, Freie Universität Berlin, Haderslebener Str.9, 12163, Berlin, Germany
| | - Rajendra P Ghimire
- Department of Environmental and Biological Sciences, University of Eastern Finland, P. O. Box 1627, 70211, Kuopio, Finland
| | - James D Blande
- Department of Environmental and Biological Sciences, University of Eastern Finland, P. O. Box 1627, 70211, Kuopio, Finland
| | - Minna Kivimäenpää
- Department of Environmental and Biological Sciences, University of Eastern Finland, P. O. Box 1627, 70211, Kuopio, Finland
| | - Toini Holopainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P. O. Box 1627, 70211, Kuopio, Finland
| | - Jarmo K Holopainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P. O. Box 1627, 70211, Kuopio, Finland
| |
Collapse
|
45
|
Pais AL, Li X, (Jenny) Xiang Q. Discovering variation of secondary metabolite diversity and its relationship with disease resistance in Cornus florida L. Ecol Evol 2018; 8:5619-5636. [PMID: 29938079 PMCID: PMC6010843 DOI: 10.1002/ece3.4090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/05/2018] [Accepted: 03/13/2018] [Indexed: 12/31/2022] Open
Abstract
Understanding intraspecific relationships between genetic and functional diversity is a major goal in the field of evolutionary biology and is important for conserving biodiversity. Linking intraspecific molecular patterns of plants to ecological pressures and trait variation remains difficult due to environment-driven plasticity. Next-generation sequencing, untargeted liquid chromatography-mass spectrometry (LC-MS) profiling, and interdisciplinary approaches integrating population genomics, metabolomics, and community ecology permit novel strategies to tackle this problem. We analyzed six natural populations of the disease-threatened Cornus florida L. from distinct ecological regions using genotype-by-sequencing markers and LC-MS-based untargeted metabolite profiling. We tested the hypothesis that higher genetic diversity in C. florida yielded higher chemical diversity and less disease susceptibility (screening hypothesis), and we also determined whether genetically similar subpopulations were similar in chemical composition. Most importantly, we identified metabolites that were associated with candidate loci or were predictive biomarkers of healthy or diseased plants after controlling for environment. Subpopulation clustering patterns based on genetic or chemical distances were largely congruent. While differences in genetic diversity were small among subpopulations, we did observe notable similarities in patterns between subpopulation averages of rarefied-allelic and chemical richness. More specifically, we found that the most abundant compound of a correlated group of putative terpenoid glycosides and derivatives was correlated with tree health when considering chemodiversity. Random forest biomarker and genomewide association tests suggested that this putative iridoid glucoside and other closely associated chemical features were correlated to SNPs under selection.
Collapse
Affiliation(s)
- Andrew L. Pais
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNorth Carolina
| | - Xu Li
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNorth Carolina
- Plants for Human Health InstituteNorth Carolina State UniversityKannapolisNorth Carolina
| | - Qiu‐Yun (Jenny) Xiang
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNorth Carolina
| |
Collapse
|
46
|
Bosc C, Roets F, Hui C, Pauw A. Interactions among predators and plant specificity protect herbivores from top predators. Ecology 2018; 99:1602-1609. [PMID: 29727477 DOI: 10.1002/ecy.2377] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/21/2018] [Accepted: 04/05/2018] [Indexed: 11/10/2022]
Abstract
The worldwide loss of top predators from natural and agricultural systems has heightened the need to understand how important they are in controlling herbivore abundance. The effect of top predators on herbivore species is likely to depend on (1) the importance of the consumption of intermediate predators by top predators (intra-guild predation; IGP), but also on (2) plant specificity by herbivores, because specialists may defend themselves better (enemy-free space; EFS). Insectivorous birds, as top predators, are generally known to effectively control herbivorous insects, despite also consuming intermediate predators such as spiders, but how this effect varies among herbivore species in relation to the cascading effects of IGP and EFS is not known. To explore this, we excluded birds from natural fynbos vegetation in South Africa using large netted cages and recorded changes in abundance relative to control plots for 199 plant-dwelling intermediate predator and 341 herbivore morpho-species that varied in their estimated plant specificity. We found a strong negative effect of birds on the total abundance of all intermediate predators, with especially clear effects on spiders (strong IGP). In contrast with previous studies, which document a negative effect of birds on herbivores, we found an overall neutral effect of birds on herbivore abundance, but the effect varied among species: some species were negatively affected by birds, suggesting that they were mainly consumed by birds, whereas others, likely released from spiders by IGP, were positively affected. Some species were also effectively neutrally affected by birds. These tended to be more specialized to plants compared to the other species, which may imply that some plant specialists benefited from protection provided by EFS from both birds and spiders. These results suggest that the response of herbivore species to top predators may depend on cascading effects of interactions among predators and on their degree of plant specificity.
Collapse
Affiliation(s)
- Christopher Bosc
- Department of Botany and Zoology, Stellenbosch University, Matieland, 7602, South Africa
| | - Francois Roets
- Department of Conservation Ecology and Entomology, Stellenbosch University, Matieland, 7602, South Africa
| | - Cang Hui
- Centre for Invasion Biology, Department of Mathematical Sciences, Stellenbosch University, Matieland, 7602, South Africa
| | - Anton Pauw
- Department of Botany and Zoology, Stellenbosch University, Matieland, 7602, South Africa
| |
Collapse
|
47
|
Zhang J, Luo D, Wu P, Li H, Zhang H, Zheng W. Identification and expression profiles of novel odorant binding proteins and functional analysis of OBP99a in Bactrocera dorsalis. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 98:e21452. [PMID: 29450902 DOI: 10.1002/arch.21452] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Odorant-binding proteins (OBPs) in insects are essential for mating and oviposition host selection. How these OBPs respond to different hosts at the mRNA level and their effects on behavior remain poorly characterized. The oriental fruit fly Bactrocera dorsalis is a highly invasive agricultural pest with an extremely broad host range and high fecundity. Based on our previously constructed B. dorsalis transcriptome, six OBPs that were differentially expressed during three different physiological adult stages were identified. A phylogenetic tree was constructed to illustrate the relationships of these six OBPs with OBP sequences from three other dipteran species (Drosophila melanogaster, Anopheles gambiae, and Ceratitis capitata). The spatiotemporal expression profiles of the six OBPs were analyzed using quantitative real-time PCR. Our results revealed that OBP19c, OBP44a, OBP99a, and OBP99d were abundantly expressed from the prepupa stage to the adult stage, and most of the OBPs were mainly expressed in the head, wings, and antennae. The expression levels of these OBPs were upregulated when female flies were exposed to their preferred hosts. Silencing OBP99a resulted fewer eggs being laid compared with the control group when the females were exposed to their preferred host, that is, banana, whereas more eggs were laid when a non-preferred host, that is, tomato, was used. Furthermore, silencing OBP99a led to sexually dimorphic mating behavior. dsOBP99a-injected males dramatically reduced courtship, whereas enhanced courtship was observed in the treated females. These data indicate that OBPs may participate in different biological processes of B. dorsalis. Our study will provide insight into the molecular mechanism of chemoreception and help develop ecologically friendly pest-control strategies.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology, Ministry of Education and Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Deye Luo
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology, Ministry of Education and Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Peng Wu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology, Ministry of Education and Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Haozhe Li
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology, Ministry of Education and Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongyu Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology, Ministry of Education and Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weiwei Zheng
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology, Ministry of Education and Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
48
|
Fernandez-Conradi P, Borowiec N, Capdevielle X, Castagneyrol B, Maltoni A, Robin C, Selvi F, Van Halder I, Vétillard F, Jactel H. Plant neighbour identity and invasive pathogen infection affect associational resistance to an invasive gall wasp. Biol Invasions 2017. [DOI: 10.1007/s10530-017-1637-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Aartsma Y, Bianchi FJJA, van der Werf W, Poelman EH, Dicke M. Herbivore-induced plant volatiles and tritrophic interactions across spatial scales. THE NEW PHYTOLOGIST 2017; 216:1054-1063. [PMID: 28195346 PMCID: PMC6079636 DOI: 10.1111/nph.14475] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/14/2017] [Indexed: 05/19/2023]
Abstract
Herbivore-induced plant volatiles (HIPVs) are an important cue used in herbivore location by carnivorous arthropods such as parasitoids. The effects of plant volatiles on parasitoids have been well characterised at small spatial scales, but little research has been done on their effects at larger spatial scales. The spatial matrix of volatiles ('volatile mosaic') within which parasitoids locate their hosts is dynamic and heterogeneous. It is shaped by the spatial pattern of HIPV-emitting plants, the concentration, chemical composition and breakdown of the emitted HIPV blends, and by environmental factors such as wind, turbulence and vegetation that affect transport and mixing of odour plumes. The volatile mosaic may be exploited differentially by different parasitoid species, in relation to species traits such as sensory ability to perceive volatiles and the physical ability to move towards the source. Understanding how HIPVs influence parasitoids at larger spatial scales is crucial for our understanding of tritrophic interactions and sustainable pest management in agriculture. However, there is a large gap in our knowledge on how volatiles influence the process of host location by parasitoids at the landscape scale. Future studies should bridge the gap between the chemical and behavioural ecology of tritrophic interactions and landscape ecology.
Collapse
Affiliation(s)
- Yavanna Aartsma
- Farming Systems EcologyWageningen UniversityPO Box 430Wageningen6700 AKthe Netherlands
- Laboratory of EntomologyWageningen UniversityPO Box 16Wageningen6700 AAthe Netherlands
- Centre for Crop Systems AnalysisWageningen UniversityPO Box 430Wageningen6700 AKthe Netherlands
| | | | - Wopke van der Werf
- Centre for Crop Systems AnalysisWageningen UniversityPO Box 430Wageningen6700 AKthe Netherlands
| | - Erik H. Poelman
- Laboratory of EntomologyWageningen UniversityPO Box 16Wageningen6700 AAthe Netherlands
| | - Marcel Dicke
- Laboratory of EntomologyWageningen UniversityPO Box 16Wageningen6700 AAthe Netherlands
| |
Collapse
|
50
|
Nitschke N, Allan E, Zwölfer H, Wagner L, Creutzburg S, Baur H, Schmidt S, Weisser WW. Plant diversity has contrasting effects on herbivore and parasitoid abundance in Centaurea jacea flower heads. Ecol Evol 2017; 7:9319-9332. [PMID: 29187971 PMCID: PMC5696411 DOI: 10.1002/ece3.3142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 05/01/2017] [Accepted: 05/08/2017] [Indexed: 11/12/2022] Open
Abstract
High biodiversity is known to increase many ecosystem functions, but studies investigating biodiversity effects have more rarely looked at multi-trophic interactions. We studied a tri-trophic system composed of Centaurea jacea (brown knapweed), its flower head-infesting tephritid fruit flies and their hymenopteran parasitoids, in a grassland biodiversity experiment. We aimed to disentangle the importance of direct effects of plant diversity (through changes in apparency and resource availability) from indirect effects (mediated by host plant quality and performance). To do this, we compared insect communities in C. jacea transplants, whose growth was influenced by the surrounding plant communities (and where direct and indirect effects can occur), with potted C. jacea plants, which do not compete with the surrounding plant community (and where only direct effects are possible). Tephritid infestation rate and insect load, mainly of the dominant species Chaetorellia jaceae, decreased with increasing plant species and functional group richness. These effects were not seen in the potted plants and are therefore likely to be mediated by changes in host plant performance and quality. Parasitism rates, mainly of the abundant chalcid wasps Eurytoma compressa and Pteromalus albipennis, increased with plant species or functional group richness in both transplants and potted plants, suggesting that direct effects of plant diversity are most important. The differential effects in transplants and potted plants emphasize the importance of plant-mediated direct and indirect effects for trophic interactions at the community level. The findings also show how plant-plant interactions critically affect results obtained using transplants. More generally, our results indicate that plant biodiversity affects the abundance of higher trophic levels through a variety of different mechanisms.
Collapse
Affiliation(s)
- Norma Nitschke
- Institute of EcologyFriedrich‐Schiller‐UniversityJenaGermany
| | - Eric Allan
- Institute of Plant SciencesUniversity of BernBernSwitzerland
| | - Helmut Zwölfer
- Department for Animal Ecology IUniversity of BayreuthBayreuthGermany
| | - Lysett Wagner
- Institute of EcologyFriedrich‐Schiller‐UniversityJenaGermany
| | | | - Hannes Baur
- Abteilung Wirbellose TiereNaturhistorisches Museum BernBernSwitzerland
- Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
| | | | - Wolfgang W. Weisser
- Institute of EcologyFriedrich‐Schiller‐UniversityJenaGermany
- Present address:
Terrestrial Ecology Research GroupDepartment of Ecology and Ecosystem ManagementSchool of Life Sciences WeihenstephanTechnical University of MunichFreisingGermany
| |
Collapse
|