1
|
Luib E, Demleitner AF, Cordts I, Westenberg E, Rau P, Pürner D, Haller B, Lingor P. Reduced tear fluid production in neurological diseases: a cohort study in 708 patients. J Neurol 2024; 271:1824-1836. [PMID: 38063868 PMCID: PMC10973005 DOI: 10.1007/s00415-023-12104-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 03/28/2024]
Abstract
BACKGROUND Tear fluid (TF) production is an important component of normal ocular function. It is regulated by parasympathetic and sympathetic innervation. Because parasympathetic nerve fibers originate in the brainstem, pathology in this brain region may affect TF production. For example, a reduction in TF production has been described in patients with Parkinson's disease (PD). METHODS TF was collected at one center from 772 individuals, 708 of which were patients with different neurological diseases, and 64 healthy controls. Wetting lengths (WL) were recorded using Schirmer test strips with a collection time of 10 min. RESULTS WL correlated negatively with age and was significantly reduced in subgroups of patients with neurodegenerative diseases (NDDs) (PD, Amyotrophic lateral sclerosis (ALS), other motor neuron diseases (MNDs)), as well as inflammatory/autoimmune/infectious central nervous system (CNS) diseases and vascular CNS diseases (VCDs), even if corrected for age or sex. While temperature had a significant negative effect on TF production, other environmental factors, such as hours of sunlight and humidity, did not. CONCLUSION WL was altered in many neurological diseases compared to healthy controls. Most importantly, we observed a reduction of WL in NDDs, independent of age or sex. This study highlights the potential of WL as an easily obtainable parameter and suggests functional alterations in the autonomic innervation in various neurological disorders.
Collapse
Affiliation(s)
- Elena Luib
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Antonia F Demleitner
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Isabell Cordts
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Erica Westenberg
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Petra Rau
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Dominik Pürner
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Bernhard Haller
- Institute of AI and Informatics in Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Paul Lingor
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
- DZNE, German Center for Neurodegenerative Diseases, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
2
|
Shiju TM, Yuan A. Extracellular vesicle biomarkers in ocular fluids associated with ophthalmic diseases. Exp Eye Res 2024; 241:109831. [PMID: 38401855 DOI: 10.1016/j.exer.2024.109831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/26/2024]
Abstract
Extracellular vesicles (EVs) are released as highly stable lipid bilayer particles carrying proteins, lipids, glycans and miRNAs. The contents of EVs vary based on the cellular origin, biogenesis route and the functional state of the cell suggesting certain diseased conditions. A growing body of evidence show that EVs carry important molecules implicated in the development and progression of ophthalmic diseases. EVs associated with ophthalmic diseases are mainly carried by one of the three ocular biofluids which include tears, aqueous humor and vitreous humor. This review summarizes the list of EV derived biomarkers identified thus far in ocular fluids for ophthalmic disease diagnosis. Further, the methods used for sample collection, sample volume and the sample numbers used in these studies have been highlighted. Emphasis has been given to describe the EV isolation and the characterization methods used, EV size profiled and the EV concentrations analyzed by these studies, thus providing a roadmap for future EV biomarker studies in ocular fluids.
Collapse
Affiliation(s)
| | - Alex Yuan
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
3
|
Vinekar A, Nair AP, Sinha S, Vaidya T, Shetty R, Ghosh A, Sethu S. Early detection and correlation of tear fluid inflammatory factors that influence angiogenesis in premature infants with and without retinopathy of prematurity. Indian J Ophthalmol 2023; 71:3465-3472. [PMID: 37870008 PMCID: PMC10752326 DOI: 10.4103/ijo.ijo_3407_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 10/24/2023] Open
Abstract
Purpose To measure the levels of inflammatory factors in tear fluid of pre-term infants with and without retinopathy of prematurity (ROP). Methods The cross-sectional pilot study included 29 pre-term infants undergoing routine ROP screening. Pre-term infants were grouped as those without ROP (no ROP; n = 14) and with ROP (ROP; n = 15). Sterile Schirmer's strips were used to collect the tear fluid from pre-term infants. Inflammatory factors such as interleukin (IL)-6, IL-8, MCP1 (Monocyte Chemoattractant Protein 1; CCL2), RANTES (Regulated on Activation, Normal T Cell Expressed and Secreted; CCL5), and soluble L-selectin (sL-selectin) were measured by cytometric bead array using a flow cytometer. Results Birth weight (BW) and gestation age (GA) were significantly (P < 0.05) lower in pre-term infants with ROP compared with those without ROP. Higher levels of RANTES (P < 0.05) and IL-8 (P = 0.09) were observed in the tear fluid of pre-term infants with ROP compared with those without ROP. Lower levels of tear fluid IL-6 (P = 0.14) and sL-selectin (P = 0.18) were measured in pre-term infants with ROP compared with those without ROP. IL-8 and RANTES were significantly (P < 0.05) higher in the tear fluid of pre-term infants with stage 3 ROP compared with those without ROP. Tear fluid RANTES level was observed to be inversely associated with GA and BW of pre-term infants with ROP and not in those without ROP. Furthermore, the area under the curve and odds ratio analysis demonstrated the relevance of RANTES/BW (AUC = 0.798; OR-7.2) and RANTES/MCP1 (AUC = 0.824; OR-6.8) ratios in ROP. Conclusions Distinct changes were observed in the levels of tear inflammatory factors in ROP infants. The status of RANTES in ROP suggests its possible role in pathobiology and warrants further mechanistic studies to harness it in ROP screening and management.
Collapse
Affiliation(s)
- Anand Vinekar
- Department of Pediatric Retina, Narayana Nethralaya Eye Institute, Bangaluru, Karnataka, India
| | | | - Shivani Sinha
- Department of Pediatric Retina, Narayana Nethralaya Eye Institute, Bangaluru, Karnataka, India
| | - Tanuja Vaidya
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, Karnataka, India
| | - Rohit Shetty
- Division of Cornea and Refractive Surgery, Narayana Nethralaya Eye Institute, Bengaluru, Karnataka, India
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, Karnataka, India
| | - Swaminathan Sethu
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, Karnataka, India
| |
Collapse
|
4
|
Król-Grzymała A, Sienkiewicz-Szłapka E, Fiedorowicz E, Rozmus D, Cieślińska A, Grzybowski A. Tear Biomarkers in Alzheimer's and Parkinson's Diseases, and Multiple Sclerosis: Implications for Diagnosis (Systematic Review). Int J Mol Sci 2022; 23:10123. [PMID: 36077520 PMCID: PMC9456033 DOI: 10.3390/ijms231710123] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/19/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Biological material is one of the most important aspects that allow for the correct diagnosis of the disease, and tears are an interesting subject of research because of the simplicity of collection, as the well as the relation to the components similar to other body fluids. In this review, biomarkers for Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS) in tears are investigated and analyzed. Records were obtained from the PubMed and Google Scholar databases in a timeline of 2015-2022. The keywords were: tear film/tear biochemistry/tear biomarkers + diseases (AD, PD, or MS). The recent original studies were analyzed, discussed, and biomarkers present in tears that can be used for the diagnosis and management of AD, PD, and MS diseases were shown. α-synTotal and α-synOligo, lactoferrin, norepinephrine, adrenaline, epinephrine, dopamine, α-2-macroglobulin, proteins involved in immune response, lipid metabolism and oxidative stress, apolipoprotein superfamily, and others were shown to be biomarkers in PD. For AD as potential biomarkers, there are: lipocalin-1, lysozyme-C, and lacritin, amyloid proteins, t-Tau, p-Tau; for MS there are: oligoclonal bands, lipids containing choline, free carnitine, acylcarnitines, and some amino acids. Information systematized in this review provides interesting data and new insight to help improve clinical outcomes for patients with neurodegenerative disorders.
Collapse
Affiliation(s)
- Angelika Król-Grzymała
- Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | | | - Ewa Fiedorowicz
- Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Dominika Rozmus
- Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Anna Cieślińska
- Faculty of Biology and Biotechnology, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Andrzej Grzybowski
- Department of Ophthalmology, University of Warmia and Mazury, 10-719 Olsztyn, Poland
- Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, 61-553 Poznan, Poland
| |
Collapse
|
5
|
Raposo AC, Lebrilla C, Portela RW, Xu G, Oriá AP. The glycoproteomics of hawk and caiman tears. BMC Vet Res 2021; 17:381. [PMID: 34886864 PMCID: PMC8656020 DOI: 10.1186/s12917-021-03088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 11/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glycoproteins are important tear components that participate in the stability of the ocular surface. However, the glycopeptides that are present in the tears of wild animals have not yet been described. This work aimed to describe the glycoproteomic profile of roadside hawk (Rupornis magnirostris) and caiman (Caiman latirostris) tears. METHODS Tears collected from 10 hawks and 70 caimans using Schirmer tear test strips were used in this study. The samples were submitted to trypsin digestion and separated using a reverse-phase column coupled to a mass spectrometer associated to a nanospray ionization source. The glycoproteins were categorized as: cellular components, biological processes and molecular function, according to the UniProt Knowledgebase. RESULTS As shown by the liquid chromatography-mass spectrometry, all glycopeptides found were classified as N-type. Of the 51 glycoproteins that were identified in the hawk tear film, the most abundant were ovotransferrin, globulins and complement system proteins. In the caiman tear film, 29 glycoproteins were identified. The most abundant caiman glycoproteins were uncharacterized proteins, ATPases, globulins and proteasome components. Ontological characterization revealed that the glycoproteins were extracellular, and the most identified molecular function was endopeptidase activity for both species. CONCLUSION Glycoproteins are abundant in the tear film of the bird and reptile species studied herein, and all these molecules were shown to have N-type modifications. Location at the extracellular space and an endopeptidase inhibitor activity were the main cell component and molecular function for both species, respectively. These profiles showed differences when compared to human tears, are possibly linked to adaptive processes and can be the basis for further studies on the search of disease biomarkers.
Collapse
Affiliation(s)
- Ana Cláudia Raposo
- School of Veterinary Medicine, Federal University of Bahia, Brazil, Salvador, 40.110-060, Brazil
| | - Carlito Lebrilla
- Chemistry Department, Mass Spectrometry Facilities Campus, University of California, Davis, CA, 95616-8585, USA
| | - Ricardo Wagner Portela
- Institute of Health Sciences, Federal University of Bahia, Brazil, Salvador, 40.110-100, Brazil
| | - Gege Xu
- Chemistry Department, Mass Spectrometry Facilities Campus, University of California, Davis, CA, 95616-8585, USA
| | - Arianne Pontes Oriá
- School of Veterinary Medicine, Federal University of Bahia, Brazil, Salvador, 40.110-060, Brazil.
| |
Collapse
|
6
|
Abstract
The common approach of the diagnosis of Alzheimer’s Disease (AD) is made with an analysis of the cerebrospinal fluid or the study of retinal fundus and the plaques formation through optical corneal tomography (OCT), or more simply with a fundus camera. Tears analysis is widely discussed in literature as an essential method to describe molecular and biochemical alterations in different diseases. The aim of our study was the identification with immunocytochemistry of Amyloid Beta-42 in tears from patients with or without familiarity for Alzheimer Disease, in order to make the diagnosis earlier and more accessible compared to other invasive methods. Our study was performed on tears from three phenotypically healthy subjects: two of them were Caucasian with Alzheimer familiarity (48 and 55 years old) and the other one was Asian without Alzheimer familiarity (45 years old) and affected by an adenoviral keratoconjunctivitis at the moment of withdrawal. Tear samples were collected from eye fornix and were examinated by immunocytochemistry (ICC) assay using anti-Amyloid Beta X-42 antibody. Two out of three tears samples showed positive Amyloid Beta-42. Considering that our patients were phenotypically healthy, the identification of Amyloid Beta-42 by ICC could be a candidable method to make the diagnosis of the disease earlier and more accessible and available then other current and invasive methods and it could be a candidate for a screening method too.
Collapse
|
7
|
Bogdanov V, Kim A, Nodel M, Pavlenko T, Pavlova E, Blokhin V, Chesnokova N, Ugrumov M. A Pilot Study of Changes in the Level of Catecholamines and the Activity of α-2-Macroglobulin in the Tear Fluid of Patients with Parkinson's Disease and Parkinsonian Mice. Int J Mol Sci 2021; 22:ijms22094736. [PMID: 33947010 PMCID: PMC8125625 DOI: 10.3390/ijms22094736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
Development of differential and early (preclinical) diagnostics of Parkinson’s disease (PD) is among the priorities in neuroscience. We searched for changes in the level of catecholamines and α-2-macroglobulin activity in the tear fluid (TF) in PD patients at an early clinical stage. It was shown that TF in patients is characterized by an increased level of noradrenaline mainly on the ipsilateral side of pronounced motor symptoms (72%, p = 0.049), a decreased level of adrenaline on both sides (ipsilateral—53%, p = 0.004; contralateral—42%, p = 0.02), and an increased α-2-macroglobulin activity on both sides (ipsilateral—53%, p = 0.03; contralateral—56%, p = 0.037) compared to controls. These changes are considered as potential biomarkers for differential diagnosis. Similar changes in the TF were found in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice when modeling clinical and preclinical stages of PD. These data show the adequacy of models to the pathogenesis of PD along the selected metabolic pathways, and also suggest that the found TF changes can be considered as potential biomarkers for preclinical diagnosis of PD. In Parkinsonian mice, the level of catecholamines also changes in the lacrimal glands, which makes it possible to consider them as one of the sources of catecholamines in the TF.
Collapse
Affiliation(s)
- Vsevolod Bogdanov
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 26 Vavilova Street, 119334 Moscow, Russia; (V.B.); (A.K.); (E.P.); (V.B.)
| | - Alexander Kim
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 26 Vavilova Street, 119334 Moscow, Russia; (V.B.); (A.K.); (E.P.); (V.B.)
| | - Marina Nodel
- Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, 8/2 Trubetskaya Street, 119991 Moscow, Russia;
- Russian Clinical and Research Center of Gerontology, 16 1st Leonova Street, 129226 Moscow, Russia
| | - Tatiana Pavlenko
- Helmholtz Moscow Research Institute of Eye Diseases of the Ministry of Health of the Russian Federation, 14/19 Sadovaya-Chernogryazskaya Street, 105062 Moscow, Russia; (T.P.); (N.C.)
| | - Ekaterina Pavlova
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 26 Vavilova Street, 119334 Moscow, Russia; (V.B.); (A.K.); (E.P.); (V.B.)
| | - Victor Blokhin
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 26 Vavilova Street, 119334 Moscow, Russia; (V.B.); (A.K.); (E.P.); (V.B.)
| | - Natalia Chesnokova
- Helmholtz Moscow Research Institute of Eye Diseases of the Ministry of Health of the Russian Federation, 14/19 Sadovaya-Chernogryazskaya Street, 105062 Moscow, Russia; (T.P.); (N.C.)
| | - Michael Ugrumov
- Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 26 Vavilova Street, 119334 Moscow, Russia; (V.B.); (A.K.); (E.P.); (V.B.)
- Correspondence:
| |
Collapse
|
8
|
Tear Proteases and Protease Inhibitors: Potential Biomarkers and Disease Drivers in Ocular Surface Disease. Eye Contact Lens 2021; 46 Suppl 2:S70-S83. [PMID: 31369467 DOI: 10.1097/icl.0000000000000641] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tears are highly concentrated in proteins relative to other biofluids, and a notable fraction of tear proteins are proteases and protease inhibitors. These components are present in a delicate equilibrium that maintains ocular surface homeostasis in response to physiological and temporal cues. Dysregulation of the activity of protease and protease inhibitors in tears occurs in ocular surface diseases including dry eye and infection, and ocular surface conditions including wound healing after refractive surgery and contact lens (CL) wear. Measurement of these changes can provide general information regarding ocular surface health and, increasingly, has the potential to give specific clues regarding disease diagnosis and guidance for treatment. Here, we review three major categories of tear proteases (matrix metalloproteinases, cathepsins, and plasminogen activators [PAs]) and their endogenous inhibitors (tissue inhibitors of metalloproteinases, cystatins, and PA inhibitors), and the changes in these factors associated with dry eye, infection and allergy, refractive surgery, and CLs. We highlight suggestions for development of these and other protease/protease inhibitor biomarkers in this promising field.
Collapse
|
9
|
Kang J, Kim JW, Heo H, Lee J, Park KY, Yoon JH, Chang J. Identification of BAG2 and Cathepsin D as Plasma Biomarkers for Parkinson's Disease. Clin Transl Sci 2020; 14:606-616. [PMID: 33202088 PMCID: PMC7993325 DOI: 10.1111/cts.12920] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/10/2020] [Indexed: 12/30/2022] Open
Abstract
The current diagnosis of Parkinson’s disease (PD) mostly relies on clinical rating scales related to motor dysfunction. Given that clinical symptoms of PD appear after significant neuronal cell death in the brain, it is required to identify accessible, objective, and quantifiable biomarkers for early diagnosis of PD. In this study, a total of 20 patients with idiopathic PD and 20 age‐matched patients with essential tremor according to the UK Brain Bank Criteria were consecutively enrolled to identify peripheral blood biomarkers for PD. Clinical data were obtained by clinical survey and assessment. Using albumin‐depleted and immunoglobulin G‐depleted plasma samples, we performed immunoblot analysis of seven autophagy‐related proteins and compared the levels of proteins to those of the control group. We also analyzed the correlation between the levels of candidate proteins and clinical characteristics. Finally, we validated our biomarker models using receiver operating characteristic curve analysis. We found that the levels of BCL2‐associated athanogene 2 (BAG2) and cathepsin D were significantly decreased in plasma of patients with PD (P = 0.009 and P = 0.0077, respectively). The level of BAG2 in patients with PD was significantly correlated with Cross‐Culture Smell Identification Test score, which indicates olfactory dysfunction. We found that our biomarker model distinguishes PD with 87.5% diagnostic accuracy (area under the curve (AUC) = 0.875, P < 0.0001). Our result suggests BAG2 and cathepsin D as candidates for early‐diagnosis plasma biomarkers for PD. We provide the possibility of plasma biomarkers related to the autophagy pathway, by which decreased levels of BAG2 and cathepsin D might lead to dysfunction of autophagy.
Collapse
Affiliation(s)
- Juhee Kang
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Jae Whan Kim
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Hansol Heo
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Jihyun Lee
- Department of Brain Science, Ajou University School of Medicine, Suwon, Korea
| | - Kwan Yong Park
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea
| | - Jung Han Yoon
- Department of Neurology, Ajou University School of Medicine, Suwon, Korea
| | - Jaerak Chang
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Korea.,Department of Brain Science, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
10
|
Hamm-Alvarez SF, Janga SR, Edman MC, Feigenbaum D, Freire D, Mack WJ, Okamoto CT, Lew MF. Levels of oligomeric α-Synuclein in reflex tears distinguish Parkinson's disease patients from healthy controls. Biomark Med 2019; 13:1447-1457. [PMID: 31552762 DOI: 10.2217/bmm-2019-0315] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Due to active engagement of sensory and afferent nerve fibers in reflex tearing which could be affected in Parkinson's disease (PD), we tested reflex tears as a source of potential PD biomarkers. Patients & methods: Reflex tears collected from 84 PD and 84 age- and sex-equivalent healthy controls (HC) were used to measure levels of oligomeric α-Syn (α-SynOligo), total α-Syn (α-SynTotal), CCL2, DJ-1, lactoferrin and MMP9. Results: α-synOligo (p < 0.0001), CCL2 (p = 0.003) and lactoferrin (p = 0.002) were significantly elevated in PD patient tears relative to HC tears. Tear flow was significantly lower in PD relative to HC (p = 0.001). Conclusion: Reflex tears are a potential source for detection of characteristic changes in PD patients.
Collapse
Affiliation(s)
- Sarah F Hamm-Alvarez
- Department of Ophthalmology & Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.,Department of Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - Srikanth R Janga
- Department of Ophthalmology & Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Maria C Edman
- Department of Ophthalmology & Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Danielle Feigenbaum
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Daniel Freire
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Wendy J Mack
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Curtis T Okamoto
- Department of Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - Mark F Lew
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
11
|
Moreddu R, Vigolo D, Yetisen AK. Contact Lens Technology: From Fundamentals to Applications. Adv Healthc Mater 2019; 8:e1900368. [PMID: 31183972 DOI: 10.1002/adhm.201900368] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/20/2019] [Indexed: 12/29/2022]
Abstract
Contact lenses are ocular prosthetic devices used by over 150 million people worldwide. Primary applications of contact lenses include vision correction, therapeutics, and cosmetics. Contact lens materials have significantly evolved over time to minimize adverse effects associated with contact lens wearing, to maintain a regular corneal metabolism, and to preserve tear film stability. This article encompasses contact lens technology, including materials, chemical and physical properties, manufacturing processes, microbial contamination, and ocular complications. The function and the composition of the tear fluid are discussed to assess its potential as a diagnostic media. The regulatory standards of contact lens devices with regard to biocompatibility and contact lens market are presented. Future prospects in contact lens technology are evaluated, with particular interest given to theranostic applications for in situ continuous monitoring the ocular physiology.
Collapse
Affiliation(s)
- Rosalia Moreddu
- Department of Chemical EngineeringImperial College London SW7 2AZ London UK
- School of Chemical EngineeringUniversity of Birmingham B15 2TT Birmingham UK
| | - Daniele Vigolo
- School of Chemical EngineeringUniversity of Birmingham B15 2TT Birmingham UK
| | - Ali K. Yetisen
- Department of Chemical EngineeringImperial College London SW7 2AZ London UK
| |
Collapse
|
12
|
Camerlingo C, Lisitskiy M, Lepore M, Portaccio M, Montorio D, Prete SD, Cennamo G. Characterization of Human Tear Fluid by Means of Surface-Enhanced Raman Spectroscopy. SENSORS 2019; 19:s19051177. [PMID: 30866575 PMCID: PMC6427673 DOI: 10.3390/s19051177] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/26/2019] [Accepted: 03/04/2019] [Indexed: 11/16/2022]
Abstract
Tears are exceptionally rich sources of information on the health status of the eyes, as well as of whole body functionality, due to the presence of a large variety of salts and organic components whose concentration can be altered by pathologies, eye diseases and/or inflammatory processes. Surface enhanced Raman spectroscopy (SERS) provides a unique method for analyzing low concentrations of organic fluids such as tears. In this work, a home-made colloid of gold nanoparticles has been used for preparing glass substrates able to efficiently induce an SERS effect in fluid samples excited by a He–Ne laser (λ = 633 nm). The method has been preliminary tested on Rhodamine 6G aqueous solutions at different concentrations, proving the possibility to sense substance concentrations as low as few μM, i.e., of the order of the main tear organic components. A clear SERS response has been obtained for human tear samples, allowing an interesting insight into tear composition. In particular, aspartic acid and glutamic acid have been shown to be possible markers for two important human tear components, i.e., lactoferrin and lysozyme.
Collapse
Affiliation(s)
- Carlo Camerlingo
- Consiglio Nazionale delle Ricerche, SPIN-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy.
| | - Mikhail Lisitskiy
- Consiglio Nazionale delle Ricerche, SPIN-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy.
| | - Maria Lepore
- Dipartimento di Medicina Sperimentale, Università della Campania "L. Vanvitelli", 80138 Naples, Italy.
| | - Marianna Portaccio
- Dipartimento di Medicina Sperimentale, Università della Campania "L. Vanvitelli", 80138 Naples, Italy.
| | - Daniela Montorio
- Dipt. di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Universitá di Napoli 'Federico II', 80121 Naples, Italy.
| | - Salvatore Del Prete
- CISME-Centro Interdipartimentale di Microscopia Elettronica, Universitá di Napoli 'Federico II', 80100 Naples, Italy.
| | - Gilda Cennamo
- Dipt. di Sanitá Pubblica, Universitá di Napoli 'Federico II', 80131 Naples, Italy.
| |
Collapse
|
13
|
Funke S, Perumal N, Bell K, Pfeiffer N, Grus FH. The potential impact of recent insights into proteomic changes associated with glaucoma. Expert Rev Proteomics 2017; 14:311-334. [PMID: 28271721 DOI: 10.1080/14789450.2017.1298448] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Glaucoma, a major ocular neuropathy, is still far from being understood on a molecular scale. Proteomic workflows revealed glaucoma associated alterations in different eye components. By using state-of-the-art mass spectrometric (MS) based discovery approaches large proteome datasets providing important information about glaucoma related proteins and pathways could be generated. Corresponding proteomic information could be retrieved from various ocular sample species derived from glaucoma experimental models or from original human material (e.g. optic nerve head or aqueous humor). However, particular eye tissues with the potential for understanding the disease's molecular pathomechanism remains underrepresented. Areas covered: The present review provides an overview of the analysis depth achieved for the glaucomatous eye proteome. With respect to different eye regions and biofluids, proteomics related literature was found using PubMed, Scholar and UniProtKB. Thereby, the review explores the potential of clinical proteomics for glaucoma research. Expert commentary: Proteomics will provide important contributions to understanding the molecular processes associated with glaucoma. Sensitive discovery and targeted MS approaches will assist understanding of the molecular interplay of different eye components and biofluids in glaucoma. Proteomic results will drive the comprehension of glaucoma, allowing a more stringent disease hypothesis within the coming years.
Collapse
Affiliation(s)
- Sebastian Funke
- a Experimental Ophthalmology , University Medical Center , Mainz , Germany
| | - Natarajan Perumal
- a Experimental Ophthalmology , University Medical Center , Mainz , Germany
| | - Katharina Bell
- a Experimental Ophthalmology , University Medical Center , Mainz , Germany
| | - Norbert Pfeiffer
- a Experimental Ophthalmology , University Medical Center , Mainz , Germany
| | - Franz H Grus
- a Experimental Ophthalmology , University Medical Center , Mainz , Germany
| |
Collapse
|
14
|
Hagan S, Martin E, Enríquez-de-Salamanca A. Tear fluid biomarkers in ocular and systemic disease: potential use for predictive, preventive and personalised medicine. EPMA J 2016; 7:15. [PMID: 27413414 PMCID: PMC4942926 DOI: 10.1186/s13167-016-0065-3] [Citation(s) in RCA: 230] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/03/2016] [Indexed: 11/10/2022]
Abstract
In the field of predictive, preventive and personalised medicine, researchers are keen to identify novel and reliable ways to predict and diagnose disease, as well as to monitor patient response to therapeutic agents. In the last decade alone, the sensitivity of profiling technologies has undergone huge improvements in detection sensitivity, thus allowing quantification of minute samples, for example body fluids that were previously difficult to assay. As a consequence, there has been a huge increase in tear fluid investigation, predominantly in the field of ocular surface disease. As tears are a more accessible and less complex body fluid (than serum or plasma) and sampling is much less invasive, research is starting to focus on how disease processes affect the proteomic, lipidomic and metabolomic composition of the tear film. By determining compositional changes to tear profiles, crucial pathways in disease progression may be identified, allowing for more predictive and personalised therapy of the individual. This article will provide an overview of the various putative tear fluid biomarkers that have been identified to date, ranging from ocular surface disease and retinopathies to cancer and multiple sclerosis. Putative tear fluid biomarkers of ocular disorders, as well as the more recent field of systemic disease biomarkers, will be shown.
Collapse
Affiliation(s)
- Suzanne Hagan
- Department of Life Sciences, Vision Sciences, Glasgow Caledonian University (GCU ), G4 0BA Glasgow, Scotland, UK
| | - Eilidh Martin
- Department of Life Sciences, Vision Sciences, Glasgow Caledonian University (GCU ), G4 0BA Glasgow, Scotland, UK
| | - Amalia Enríquez-de-Salamanca
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, Valladolid, Spain ; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valladolid, Spain
| |
Collapse
|
15
|
Kim W, Lee JC, Shin JH, Jin KH, Park HK, Choi S. Instrument-Free Synthesizable Fabrication of Label-Free Optical Biosensing Paper Strips for the Early Detection of Infectious Keratoconjunctivitides. Anal Chem 2016; 88:5531-7. [PMID: 27127842 DOI: 10.1021/acs.analchem.6b01123] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We introduce a surface-enhanced Raman scattering (SERS)-functionalized, gold nanoparticle (GNP)-deposited paper strip capable of label-free biofluid sensing for the early detection of infectious eye diseases. The GNP biosensing paper strip was fabricated by the direct synthesis and deposition of GNPs on wax-divided hydrophilic areas of a permeable porous substrate through a facile, power-free synthesizable, and highly reproducible successive ionic layer absorption and reaction (SILAR) technique. To maximize localized surface plasmon resonance-generated SERS activity, the concentration of the reactive solution and number of SILAR cycles were optimized by controlling the size and gap distance of GNPs and verified by computational modeling with geometrical hypotheses of Gaussian-estimated metallic nanoparticles. The responses of our SERS-functionalized GNP paper strip to Raman intensities exhibited an enhancement factor of 7.8 × 10(8), high reproducibility (relative standard deviation of 7.5%), and 1 pM 2-naphthalenethiol highly sensitive detection limit with a correlation coefficient of 0.99, achieved by optimized SILAR conditions including a 10/10 mM/mM HAuCl4/NaBH4 concentration and six SILAR cycles. The SERS-functionalized GNP paper is supported by a multivariate statistics-preprocessed machine learning-judged bioclassification system to provide excellent label-free chemical structure sensitivity for identifying infectious keratoconjunctivitis. The power-free synthesizable fabrication, label-free, rapid analysis, and high sensitivity feature of the SILAR-fabricated SERS-functionalized GNP biosensing paper strip makes it an excellent alternative in point-of-care applications for the early detection of various infectious diseases.
Collapse
Affiliation(s)
- Wansun Kim
- Department of Medical Engineering, Graduate School, Kyung Hee University , Seoul 02447, Korea
| | - Jae-Chul Lee
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University , Seoul 02447, Korea
| | - Jae-Ho Shin
- Department of Ophthalmology, College of Medicine, Kyung Hee University , Seoul 02447, Korea
| | - Kyung-Hyun Jin
- Department of Ophthalmology, College of Medicine, Kyung Hee University , Seoul 02447, Korea
| | - Hun-Kuk Park
- Department of Medical Engineering, Graduate School, Kyung Hee University , Seoul 02447, Korea.,Department of Biomedical Engineering, College of Medicine, Kyung Hee University , Seoul 02447, Korea
| | - Samjin Choi
- Department of Medical Engineering, Graduate School, Kyung Hee University , Seoul 02447, Korea.,Department of Biomedical Engineering, College of Medicine, Kyung Hee University , Seoul 02447, Korea
| |
Collapse
|