1
|
Veena M, Sameena PP, Sarath NG, Noble L, Aswathi KPR, Amritha MS, Johnson R, Joel JM, Anjitha KS, Hou HJM, Puthur JT. Revelations on photosystem II, thermoluminescence, and artificial photosynthesis: a retrospective of Govindjee from fundamentals to applications. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1225-1238. [PMID: 38024954 PMCID: PMC10678879 DOI: 10.1007/s12298-023-01373-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/08/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
Photosynthesis, as one of the most important chemical reactions, has powered our planet for over four billion years on a massive scale. This review summarizes and highlights the major contributions of Govindjee from fundamentals to applications in photosynthesis. His research included primary photochemistry measurements, in the picosecond time scale, in both Photosystem I and II and electron transport leading to NADP reduction, using two light reactions. He was the first to suggest the existence of P680, the reaction center of PSII, and to prove that it was not an artefact of Chlorophyll a fluorescence. For most photobiologists, Govindjee is best known for successfully exploiting Chlorophyll a fluorescence to understand the various steps in photosynthesis as well as to predict plant productivity. His contribution in resolving the controversy on minimum number of quanta in favor of 8-12 vs 3-4, needed for the evolution of one molecule of oxygen, is a milestone in the area of photosynthesis research. Furthermore, together with Don DeVault, he is the first to provide the correct theory of thermoluminescence in photosynthetic systems. His research productivity is very high: ~ 600 published articles and total citations above 27,000 with an h-index of 82. He is a recipient of numerous awards and honors including a 2022: Lifetime Achievement Award of the International Society of Photosynthesis Research. We hope that the retrospective of Govindjee described in this work will inspire and stimulate the readers to continue probing the photosynthetic apparatuses with new discoveries and breakthroughs.
Collapse
Affiliation(s)
- Mathew Veena
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus, P.O. Malappuram, Kerala 673635 India
| | - P. P. Sameena
- Department of Botany, PSMO College, Tirurangadi, Malappuram, Kerala 676 306 India
| | - Nair G. Sarath
- Department of Botany, Mar Athanasius College, Kothamangalam College, P.O., Kothamangalam, Kerala 686 666 India
| | - Louis Noble
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus, P.O. Malappuram, Kerala 673635 India
| | - K. P. Raj Aswathi
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus, P.O. Malappuram, Kerala 673635 India
| | - M. S. Amritha
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus, P.O. Malappuram, Kerala 673635 India
| | - Riya Johnson
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus, P.O. Malappuram, Kerala 673635 India
| | - Joy M. Joel
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus, P.O. Malappuram, Kerala 673635 India
| | - K. S. Anjitha
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus, P.O. Malappuram, Kerala 673635 India
| | - Harvey J. M. Hou
- Laboratory of Forensic Analysis and Photosynthesis, Department of Physical and Forensic Sciences, Alabama State University, Montgomery, AL 36104 USA
| | - Jos T. Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C. U. Campus, P.O. Malappuram, Kerala 673635 India
| |
Collapse
|
2
|
Gorantla KR, Mallik BS. Copper Complex Catalyzed Two-Electron and Proton Shuttle Mechanism of O-O Bond Formation from DFT-Based Metadynamics Simulations. J Phys Chem A 2023; 127:3788-3795. [PMID: 37094099 DOI: 10.1021/acs.jpca.3c00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We performed first-principles metadynamics simulations to explore the mechanistic pathway of oxygen-oxygen bond formation catalyzed by cis-bis(hydroxo) and cis-(hydroxo)oxo copper complexes. The ligands of considered complexes involve modified bipyridine ligands with oxo and hydroxo groups on 6, 6' positions. The study focuses on the kinetics and thermodynamics of the oxygen-oxygen bond formation. The individual migration of the proton to the hydroxyl group and hydroxide to the oxo and hydroxo moieties of the complexes was examined. The proton transfer requires more kinetic barrier than the hydroxide migration. The nature of the electronic density was analyzed with the help of spin population analysis. The molecular orbitals and natural orbital analysis were carried out to examine the nature of the orbitals involved in the oxygen-oxygen bond formation. The σ*(dx2-y2-px) molecular orbital of the Cu-O or Cu-OH bond overlaps with the pz orbital of the hydroxide ion in forming the oxygen-oxygen bond. The two-electron two-centered (2e--2C) bond is observed in the oxygen-oxygen bond formation. In the oxidation process, these ligands stabilize the electron density from the water or hydroxide ion. These redox-active ligands also help stabilize the formed hydrogen peroxide or peroxide complexes.
Collapse
Affiliation(s)
- Koteswara Rao Gorantla
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangaredddy, Telangana 502285, India
| | - Bhabani S Mallik
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangaredddy, Telangana 502285, India
| |
Collapse
|
3
|
Jayabharathi J, Karthikeyan B, Vishnu B, Sriram S. Research on engineered electrocatalysts for efficient water splitting: a comprehensive review. Phys Chem Chem Phys 2023; 25:8992-9019. [PMID: 36928479 DOI: 10.1039/d2cp05522h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Water electrolysis plays an interesting role toward hydrogen generation for overcoming global environmental crisis and solving the energy storage problem. However, there is still a deficiency of efficient electrocatalysts to overcome sluggish kinetics for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Great efforts have been employed to produce potential catalysts with low overpotential, rapid kinetics, and excellent stability for HER and OER. At present, hydrogen economy is driven by electrocatalysts with excellent characteristics; thus, systematic design strategy has become the driving force to exploit earth-abundant transition metal-based electrocatalysts toward H2 economy. In this review, the recent progress on newer materials including metals, alloys, and transition metal oxides (manganese oxides, cobalt oxides, nickel oxides, PBA-derived metal oxides, and metal complexes) as photocatalysts/electrocatalysts has been overviewed together with some methodologies for efficient water splitting. Metal-organic framework (MOF)-based electrocatalysts have been highly exploited owing to their interesting functionalities. The photovoltaic-electrocatalytic (PV-EC) process focused on harvesting high solar-to-hydrogen efficiency (STH) among various solar energy conversion as well as storage systems. Electrocatalysts/photocatalysts with high efficiency have become an urgent need for overall water splitting. Also, cutting-edge achievements in the fabrication of electrocatalysts along with theoretical consideration have been discussed.
Collapse
Affiliation(s)
- Jayaraman Jayabharathi
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalainagar, Tamilnadu 608002, India.
| | - Balakrishnan Karthikeyan
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalainagar, Tamilnadu 608002, India.
| | - Bakthavachalam Vishnu
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalainagar, Tamilnadu 608002, India.
| | - Sundarraj Sriram
- Department of Chemistry, Material Science Lab, Annamalai University, Annamalainagar, Tamilnadu 608002, India.
| |
Collapse
|
4
|
Gorantla KR, Mallik BS. Three-Electron Two-Centered Bond and Single-Electron Transfer Mechanism of Water Splitting via a Copper-Bipyridine Complex. J Phys Chem A 2023; 127:160-168. [PMID: 36594604 DOI: 10.1021/acs.jpca.2c07630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We report the atomistic and electronic details of the mechanistic pathway of the oxygen-oxygen bond formation catalyzed by a copper-2,2'-bipyridine complex. Density functional theory-based molecular dynamics simulations and enhanced sampling methods were employed for this study. The thermodynamics and electronic structure of the oxygen-oxygen bond formation are presented in this study by considering the cis-bishydroxo, [CuIII(bpy)(OH)2]+, and cis-(hydroxo)oxo, [CuIV(bpy)(OH)(═O)]+, complexes as active catalysts. In the cis-bishydroxo complex, the hydroxide transfer requires a higher kinetic barrier than the proton transfer process. In the case of [CuIV(bpy)(OH)(═O)]+, the proton transfer requires a higher free energy than the hydroxide one. The peroxide bond formation is thermodynamically favorable for the [CuIV(bpy)(OH)(═O)]+ complex compared with the other. The hydroxide ion is transferred to one of the Cu-OH moieties, and the proton is transferred to the solvent. The free energy barrier for this migration is higher than that for the former transfer. From the analysis of molecular orbitals, it is found that the electron density is primarily present on the water molecules near the active sites in the highest occupied molecular orbital (HOMO) state and lowest unoccupied molecular orbital (LUMO) of the ligands. Natural bond orbital (NBO) analysis reveals the electron transfer process during the oxygen-oxygen bond formation. The σ*Cu(dxz)-O(p) orbitals are involved in the oxygen-oxygen bond formation. During the bond formation, three-electron two-centered (3e--2C) bonds are observed in [CuIII(bpy)(OH)2]+ during the transfer of the hydroxide before the formation of the oxygen-oxygen bond.
Collapse
Affiliation(s)
- Koteswara Rao Gorantla
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy502284, Telangana, India
| | - Bhabani S Mallik
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy502284, Telangana, India
| |
Collapse
|
5
|
Huang C, Lin B, Chen C, Wang H, Lin X, Liu J, Ren Q, Tao J, Zhao P, Xu Y. Synergistic Reinforcing of Immunogenic Cell Death and Transforming Tumor-Associated Macrophages Via a Multifunctional Cascade Bioreactor for Optimizing Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207593. [PMID: 36245299 DOI: 10.1002/adma.202207593] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/06/2022] [Indexed: 02/05/2023]
Abstract
Immunogenic cell death (ICD) has aroused widespread attention because it can reconstruct a tumor microenvironment and activate antitumor immunity. This study proposes a two-way enhancement of ICD based on a CaO2 @CuS-MnO2 @HA (CCMH) nanocomposite to overcome the insufficient damage-associated molecular patterns (DAMPs) of conventional ICD-inducers. The near-infrared (NIR) irradiation (1064 nm) of CuS nanoparticles generates 1 O2 through photodynamic therapy (PDT) to trigger ICD, and it also damages the Ca2+ buffer function of mitochondria. Additionally, CaO2 nanoparticles react with H2 O to produce a large amount of O2 and Ca2+ , which respectively lead to enhanced PDT and Ca2+ overload during mitochondrial damage, thereby triggering a robust ICD activation. Moreover, oxidative-damaged mitochondrial DNA, induced by PDT and released from tumor cells, reprograms the immunosuppressive tumor microenvironment by transforming tumor-associated macrophages to the M1 subphenotype. This study shows that CCMH with NIR-II irradiation can elicit adequate DAMPs and an active tumor-immune microenvironment for both 4T1 and CT26 tumor models. Combining this method with an immune checkpoint blockade can realize an improved immunotherapy efficacy and long-term protection effect for body.
Collapse
Affiliation(s)
- Cong Huang
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Bingquan Lin
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chuyao Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Huaiming Wang
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Xiaosheng Lin
- The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Jiamin Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qingfan Ren
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jia Tao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Peng Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
6
|
Titi A, Touzani R, Moliterni A, Giacobbe C, Baldassarre F, Taleb M, Al-Zaqri N, Zarrouk A, Warad I. Ultrasonic Clusterization Process to Prepare [(NNCO) 6Co 4Cl 2] as a Novel Double-Open-Co 4O 6 Cubane Cluster: SXRD Interactions, DFT, Physicochemical, Thermal Behaviors, and Biomimicking of Catecholase Activity. ACS OMEGA 2022; 7:32949-32958. [PMID: 36157745 PMCID: PMC9494679 DOI: 10.1021/acsomega.1c07032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A novel double-open-cubane (NNCO)6Co4Cl2 cluster with a Co4O6 core was made available under aqua-ultrasonic open atmosphere conditions for the first time. The ultrasonic clusterization of the (3,5-dimethyl-1H-pyrazol-1-yl)methanol (NNCOH) ligand with CoCl2·6H2O salts in ethanol yielded a high-purity and high-yield cluster product. Energy-dispersive X-ray (EDX), Fourier transform infrared (FT-IR), and ultraviolet (UV)-visible techniques were used to elucidate the clusterization process. The double-open-Co4O6 cubane structure of the (NNCO)6Co4Cl2 cluster was solved by synchrotron single-crystal X-ray diffraction (SXRD) and supported by density functional theory (DFT) optimization and thermogravimetric/differential TG (TG/DTG) measurements; moreover, the DFT structural parameters correlated with the ones determined by SXRD. Molecular electrostatic potential (MEP), Mulliken atomic charge/natural population analysis (MAC/NPA), highest occupied molecular orbital/lowest unoccupied molecular orbital (HOMO/LUMO), density of states (DOS), and GRD quantum analyses were computed at the DFT/B3LYP/6-311G(d,p) theory level. The thermal behavior of the cluster was characterized to support the formation of the Co4O6 core as a stable final product. The catalytic property of the (NNCO)6Co4Cl2 cluster was predestined for the oxidation process of 3,5-DTBC diol (3,5-di-tert-butylbenzene-1,2-diol) to 3,5-DTBQ dione (3,5-di-tert-butylcyclohexa-3,5-diene-1,2-dione).
Collapse
Affiliation(s)
- Abderrahim Titi
- Laboratory
of Applied and Environmental Chemistry, Mohammed First University, Oujda60000, Morocco
| | - Rachid Touzani
- Laboratory
of Applied and Environmental Chemistry, Mohammed First University, Oujda60000, Morocco
| | - Anna Moliterni
- Institute
of Crystallography, CNR, Via Amendola, 122/O, Bari70126, Italy
| | - Carlotta Giacobbe
- European
Synchrotron Radiation Facility, 71 Avenue Des Martyrs, Grenoble38040, France
| | | | - Mustapha Taleb
- Laboratory
of Engineering, Organometallic, Molecular and Environment (LIMOME),
Faculty of Science, Université Sidi
Mohamed Ben Abdellah, Fez30000, Morocco
| | - Nabil Al-Zaqri
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh11451, Saudi Arabia
| | - Abdelkader Zarrouk
- Laboratory
of Materials, Nanotechnology, and Environment, Faculty of Sciences, Mohammed V University in Rabat, P.O. Box 1014, Agdal-Rabat11000, Morocco
| | - Ismail Warad
- Department
of Chemistry, AN-Najah National University, P.O. Box 7, Nablus P400, Palestine
| |
Collapse
|
7
|
Gorantla KR, Mallik BS. Mechanistic Insight into the O 2 Evolution Catalyzed by Copper Complexes with Tetra- and Pentadentate Ligands. J Phys Chem A 2021; 125:6461-6473. [PMID: 34282907 DOI: 10.1021/acs.jpca.1c06008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mononuclear complexes ([(bztpen)Cu] (BF4)2 (bztpen = N-benzyl-N,N',N'-tris (pyridin-2-yl methyl ethylenediamine))) and ([(dbzbpen)Cu(OH2)] (BF4)2 (dbzbpen = N,N'-dibenzyl-N,N'-bis(pyridin-2-ylmethyl) ethylenediamine)) have been reported as water oxidation catalysts in basic medium (pH = 11.5). We explore the O2 evolution process catalyzed by these copper catalysts with various ligands (L) by applying the first-principles molecular dynamics simulations. First, the oxidation of catalysts to the metal-oxo intermediates [LCu(O)]2+ occurs through the proton-coupled electron transfer (PCET) process. These intermediates are involved in the oxygen-oxygen bond formation through the water-nucleophilic addition process. Here, we have considered two types of oxygen-oxygen bond formation. The first one is the transfer of the hydroxide of the water molecule to the Cu═O moiety; the proton transfer to the solvent leads to the formation of the peroxide complex ([LCu(OOH)]+). The other is the formation of the hydrogen peroxide complex ([LCu(HOOH)]2+) by the transfer of proton and hydroxide of the water molecule to the metal-oxo intermediate. The formation of the peroxide complex requires less activation free energy than hydrogen peroxide formation for both catalysts. We found two transition states in the well-tempered metadynamics simulations: one for proton transfer and another for hydroxide transfer. In both cases, the proton transfer requires higher free energy. Following the formation of the oxygen-oxygen bond, we study the release of the dioxygen molecule. The formed peroxide and hydrogen peroxide complexes are converted into the superoxide complex ([LCu(OO)]2+) through the transfer of proton, electron, and PCET processes. The superoxide complex releases an oxygen molecule upon the addition of a water molecule. The free energy of activation for the release of the dioxygen molecule is lesser than that of the oxygen-oxygen bond formation. When we observe the entire water oxidation process, the oxygen-oxygen bond formation is the rate-determining step. We calculated the rates of reaction by using the Eyring equation and found them to be close to the experimental values.
Collapse
Affiliation(s)
- Koteswara Rao Gorantla
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy 502285, Telangana, India
| | - Bhabani S Mallik
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy 502285, Telangana, India
| |
Collapse
|
8
|
Gorantla KR, Mallik BS. Mechanism and Dynamics of Formation of Bisoxo Intermediates and O-O Bond in the Catalytic Water Oxidation Process. J Phys Chem A 2021; 125:279-290. [PMID: 33370125 DOI: 10.1021/acs.jpca.0c09943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work elucidates the reactivity of water molecules toward the tridentate nitrogen-containing iron complex in the water oxidation process. Here, we consider the FeV-bisoxo complex {[FeV(Me3tacn)(OH2)(═O)2]+} to be responsible for the oxygen-oxygen bond formation. This O-O bond formation happens through the addition of water as a nucleophile. The transition state was determined by the synchronous transit-guided quasi-Newton method using reactants and products and verified by intrinsic reaction coordinates (IRCs). From the IRC calculations, we observe that the FeV═O moiety is attacked by water and assisted by the H-bonded interaction with the oxygen atom of the bisoxo complex. The hydrogen atom is transferred to the oxygen atom of the bisoxo complex through the transition state, and subsequently, the hydroxide is transferred to another oxygen of the bisoxo complex, resulting in the formation of the oxygen-oxygen bond. This work also explains the effect of explicit water molecules on the oxygen-oxygen bond formation. Our results also show how the formation of superoxide plays an essential role in O2 evolution. We used the potential energy scan method to compute the transition state in the oxygen evolution step. In the present work, we study the effect of chlorine on the formation of the oxygen-oxygen bond formation. In this study, the changes in the oxidation state, spin density, and spin multiplicity of the complexes are investigated for each successive step. Apart from these static theoretical calculations, we also studied the oxygen-oxygen bond formation through first-principles molecular dynamics with the aid of the well-tempered metadynamics sampling technique. From the observation of the free energy surfaces from metadynamics simulations, it is evident that the hydroxide transfer has a lesser free energetic reaction as compared to the proton transfer. This complete mechanistic study may give an idea to design a suitable water oxidation catalyst.
Collapse
Affiliation(s)
- Koteswara Rao Gorantla
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy 502285 Telangana, India
| | - Bhabani S Mallik
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy 502285 Telangana, India
| |
Collapse
|
9
|
Zhang L, Mathew S, Hessels J, Reek JNH, Yu F. Homogeneous Catalysts Based on First-Row Transition-Metals for Electrochemical Water Oxidation. CHEMSUSCHEM 2021; 14:234-250. [PMID: 32991076 PMCID: PMC7820963 DOI: 10.1002/cssc.202001876] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/17/2020] [Indexed: 05/06/2023]
Abstract
Strategies that enable the renewable production of storable fuels (i. e. hydrogen or hydrocarbons) through electrocatalysis continue to generate interest in the scientific community. Of central importance to this pursuit is obtaining the requisite chemical (H+ ) and electronic (e- ) inputs for fuel-forming reduction reactions, which can be met sustainably by water oxidation catalysis. Further possibility exists to couple these redox transformations to renewable energy sources (i. e. solar), thus creating a carbon neutral solution for long-term energy storage. Nature uses a Mn-Ca cluster for water oxidation catalysis via multiple proton-coupled electron-transfers (PCETs) with a photogenerated bias to perform this process with TOF 100∼300 s-1 . Synthetic molecular catalysts that efficiently perform this conversion commonly utilize rare metals (e. g., Ru, Ir), whose low abundance are associated to higher costs and scalability limitations. Inspired by nature's use of 1st row transition metal (TM) complexes for water oxidation catalysts (WOCs), attempts to use these abundant metals have been intensively explored but met with limited success. The smaller atomic size of 1st row TM ions lowers its ability to accommodate the oxidative equivalents required in the 4e- /4H+ water oxidation catalysis process, unlike noble metal catalysts that perform single-site electrocatalysis at lower overpotentials (η). Overcoming the limitations of 1st row TMs requires developing molecular catalysts that exploit biomimetic phenomena - multiple-metal redox-cooperativity, PCET and second-sphere interactions - to lower the overpotential, preorganize substrates and maintain stability. Thus, the ultimate goal of developing efficient, robust and scalable WOCs remains a challenge. This Review provides a summary of previous research works highlighting 1st row TM-based homogeneous WOCs, catalytic mechanisms, followed by strategies for catalytic activity improvements, before closing with a future outlook for this field.
Collapse
Affiliation(s)
- Lu‐Hua Zhang
- School of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130P. R. China
| | - Simon Mathew
- van't Hoff Institute for Molecular SciencesUniversiteit van AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Joeri Hessels
- van't Hoff Institute for Molecular SciencesUniversiteit van AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Joost N. H. Reek
- van't Hoff Institute for Molecular SciencesUniversiteit van AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Fengshou Yu
- School of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130P. R. China
| |
Collapse
|
10
|
Stirbet A, Lazár D, Guo Y, Govindjee G. Photosynthesis: basics, history and modelling. ANNALS OF BOTANY 2020; 126:511-537. [PMID: 31641747 PMCID: PMC7489092 DOI: 10.1093/aob/mcz171] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/06/2019] [Accepted: 10/21/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND With limited agricultural land and increasing human population, it is essential to enhance overall photosynthesis and thus productivity. Oxygenic photosynthesis begins with light absorption, followed by excitation energy transfer to the reaction centres, primary photochemistry, electron and proton transport, NADPH and ATP synthesis, and then CO2 fixation (Calvin-Benson cycle, as well as Hatch-Slack cycle). Here we cover some of the discoveries related to this process, such as the existence of two light reactions and two photosystems connected by an electron transport 'chain' (the Z-scheme), chemiosmotic hypothesis for ATP synthesis, water oxidation clock for oxygen evolution, steps for carbon fixation, and finally the diverse mechanisms of regulatory processes, such as 'state transitions' and 'non-photochemical quenching' of the excited state of chlorophyll a. SCOPE In this review, we emphasize that mathematical modelling is a highly valuable tool in understanding and making predictions regarding photosynthesis. Different mathematical models have been used to examine current theories on diverse photosynthetic processes; these have been validated through simulation(s) of available experimental data, such as chlorophyll a fluorescence induction, measured with fluorometers using continuous (or modulated) exciting light, and absorbance changes at 820 nm (ΔA820) related to redox changes in P700, the reaction centre of photosystem I. CONCLUSIONS We highlight here the important role of modelling in deciphering and untangling complex photosynthesis processes taking place simultaneously, as well as in predicting possible ways to obtain higher biomass and productivity in plants, algae and cyanobacteria.
Collapse
Affiliation(s)
| | - Dušan Lazár
- Department of Biophysics, Center of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Ya Guo
- Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Jiangnan University, Wuxi, China
- University of Missouri, Columbia, MO, USA
| | - Govindjee Govindjee
- Department of Biochemistry, Department of Plant Biology, and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
11
|
Edwards EH, Bren KL. Light-driven catalysis with engineered enzymes and biomimetic systems. Biotechnol Appl Biochem 2020; 67:463-483. [PMID: 32588914 PMCID: PMC9598052 DOI: 10.1002/bab.1976] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/21/2020] [Indexed: 01/01/2023]
Abstract
Efforts to drive catalytic reactions with light, inspired by natural processes like photosynthesis, have a long history and have seen significant recent growth. Successfully engineering systems using biomolecular and bioinspired catalysts to carry out light-driven chemical reactions capitalizes on advantages offered from the fields of biocatalysis and photocatalysis. In particular, driving reactions under mild conditions and in water, in which enzymes are operative, using sunlight as a renewable energy source yield environmentally friendly systems. Furthermore, using enzymes and bioinspired systems can take advantage of the high efficiency and specificity of biocatalysts. There are many challenges to overcome to fully capitalize on the potential of light-driven biocatalysis. In this mini-review, we discuss examples of enzymes and engineered biomolecular catalysts that are activated via electron transfer from a photosensitizer in a photocatalytic system. We place an emphasis on selected forefront chemical reactions of high interest, including CH oxidation, proton reduction, water oxidation, CO2 reduction, and N2 reduction.
Collapse
Affiliation(s)
- Emily H. Edwards
- Department of Chemistry, University of Rochester, Rochester, NY 1462-0216
| | - Kara L. Bren
- Department of Chemistry, University of Rochester, Rochester, NY 1462-0216
| |
Collapse
|
12
|
Winter A, Schubert US. Metal‐Terpyridine Complexes in Catalytic Application – A Spotlight on the Last Decade. ChemCatChem 2020. [DOI: 10.1002/cctc.201902290] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Andreas Winter
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University Jena Humboldtstr. 10 07743 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena) Philosophenweg 7a 07743 Jena Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University Jena Humboldtstr. 10 07743 Jena Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena) Philosophenweg 7a 07743 Jena Germany
| |
Collapse
|
13
|
Govindjee. A sixty-year tryst with photosynthesis and related processes: an informal personal perspective. PHOTOSYNTHESIS RESEARCH 2019; 139:15-43. [PMID: 30343396 DOI: 10.1007/s11120-018-0590-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/01/2018] [Indexed: 06/08/2023]
Abstract
After briefly describing my early collaborative work at the University of Allahabad, that had laid the foundation of my research life, I present here some of our research on photosynthesis at the University of Illinois at Urbana-Champaign, randomly selected from light absorption to NADP+ reduction in plants, algae, and cyanobacteria. These include the fact that (i) both the light reactions I and II are powered by light absorbed by chlorophyll (Chl) a of different spectral forms; (ii) light emission (fluorescence, delayed fluorescence, and thermoluminescence) by plants, algae, and cyanobacteria provides detailed information on these reactions and beyond; (iii) primary photochemistry in both the photosystems I (PS I) and II (PS II) occurs within a few picoseconds; and (iv) most importantly, bicarbonate plays a unique role on the electron acceptor side of PS II, specifically at the two-electron gate of PS II. Currently, the ongoing research around the world is, and should be, directed towards making photosynthesis better able to deal with the global issues (such as increasing population, dwindling resources, and rising temperature) particularly through genetic modification. However, basic research is necessary to continue to provide us with an understanding of the molecular mechanism of the process and to guide us in reaching our goals of increasing food production and other chemicals we need for our lives.
Collapse
|
14
|
Shevela D, Björn LO. Evolution of the Z-scheme of photosynthesis: a perspective. PHOTOSYNTHESIS RESEARCH 2017; 133:5-15. [PMID: 28160125 DOI: 10.1007/s11120-016-0333-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/29/2016] [Indexed: 05/08/2023]
Abstract
The concept of the Z-scheme of oxygenic photosynthesis is in all the textbooks. However, its evolution is not. We focus here mainly on some of the history of its biophysical aspects. We have arbitrarily divided here the 1941-2016 period into three sub-periods: (a) Origin of the concept of two light reactions: first hinted at, in 1941, by James Franck and Karl Herzfeld; described and explained, in 1945, by Eugene Rabinowitch; and a clear hypothesis, given in 1956 by Rabinowitch, of the then available cytochrome experiments: one light oxidizing it and another reducing it; (b) Experimental discovery of the two light reactions and two pigment systems and the Z-scheme of photosynthesis: Robert Emerson's discovery, in 1957, of enhancement in photosynthesis when two light beams (one in the far-red region, and the other of shorter wavelengths) are given together than when given separately; and the 1960 scheme of Robin Hill & Fay Bendall; and
Collapse
Affiliation(s)
- Dmitriy Shevela
- Department of Chemistry, Chemical Biological Centre, Umeå University, 90187, Umeå, Sweden
| | - Lars Olof Björn
- Department of Biology, Molecular Cell Biology, Lund University, Sölvegatan 35, 22362, Lund, Sweden
| |
Collapse
|
15
|
Najafpour MM. From manganese complexes to nano-sized manganese oxides as water-oxidizing catalysts for artificial photosynthetic systems: Insights from the Zanjan team. CR CHIM 2017. [DOI: 10.1016/j.crci.2015.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
16
|
Zheng JY, Kim CW, Pawar AU, Kang YS. Fabrication of p-Cu2O/n-Bi-WO3heterojunction thin films: optical and photoelectrochemical properties. NEW J CHEM 2017. [DOI: 10.1039/c6nj02432g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Lovyagina ER, Semin BK. Mechanism of inhibition and decoupling of oxygen evolution from electron transfer in photosystem II by fluoride, ammonia and acetate. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2016; 158:145-53. [PMID: 26971280 DOI: 10.1016/j.jphotobiol.2016.02.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/08/2016] [Accepted: 02/11/2016] [Indexed: 11/25/2022]
Abstract
Ca(2+) extraction from oxygen-evolving complex (OEC) of photosystem II (PSII) is accompanied by decoupling of oxygen evolution/electron transfer processes [Semin et al. Photosynth. Res. 98 (2008) 235] and appearance of a broad EPR signal at g=2 (split "S3" signal) what can imply the relationship between these effects. Split signal have been observed not only in Ca-depleted PSII but also in PSII membranes treated by fluoride anions, sodium acetate, and NH4Cl. Here we investigated the question: can such compounds induce the decoupling effect during treatment of PSII like Ca(2+) extraction does? We found that F(-), sodium acetate, and NH4Cl inhibit O2 evolution in PSII membranes more effectively than the reduction of artificial electron acceptor 2,6-dichlorophenolindophenol, i.e. the action of these compounds is accompanied by decoupling of these processes in OEC. Similarity of effects observed after Ca(2+) extraction and F(-), CH3COO(-) or NH4Cl treatments suggests that these compounds can inactivate function of Ca(2+). Such inactivation could originate from disturbance of the network of functionally active hydrogen bonds around OEC formed with participation of Ca(2+). This inhibition effect is observed in the region of low concentration of inhibitors. Increasing of inhibitor concentration is accompanied by appearance of other sites of inhibition.
Collapse
Affiliation(s)
- E R Lovyagina
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - B K Semin
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia.
| |
Collapse
|
18
|
Semin BK, Seibert M. Substituting Fe for two of the four Mn ions in photosystem II-effects on water-oxidation. J Bioenerg Biomembr 2016; 48:227-40. [PMID: 26847716 DOI: 10.1007/s10863-016-9651-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/28/2016] [Indexed: 10/22/2022]
Abstract
We have investigated the interaction of Fe(II) cations with Ca-depleted PSII membranes (PSII[-Ca,4Mn]) in the dark and found that Fe(II) incubation removes 2 of 4 Mn ions from the tetranuclear Mn cluster of the photosynthetic O2-evolving complex (OEC). The reduction of Mn ions in PSII(-Ca,4Mn) by Fe(II) and the concomitant release of two Mn(II) cations is accompanied by the binding of newly generated Fe(III) in at least one vacated Mn site. Flash-induced chlorophyll (Chl) fluorescence yield measurements of this new 2Mn/nFe cluster (PSII[-Ca,2Mn,nFe]) show that charge recombination in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) occurs between Qa (-) and the remaining Mn/Fe cluster (but not YZ (●)) in the OEC, and extraction of 2 Mn occurs uniformly in all PSII complexes. No O2 evolution is observed, but the heteronuclear metal cluster in PSII(-Ca,2Mn,nFe) samples is still able to supply electrons for reduction of the exogenous electron acceptor, 2,6-dichlorophrenolindophenol, by photooxidizing water and producing H2O2 in the absence of an exogenous donor as seen previously with PSII(-Ca,4Mn). Selective extraction of Mn or Fe cations from the 2Mn/nFe heteronuclear cluster demonstrates that the high-affinity Mn-binding site is occupied by one of the iron cations. It is notable that partial water-oxidation function still occurs when only two Mn cations are present in the PSII OEC.
Collapse
Affiliation(s)
- Boris K Semin
- BioEnergy Sciences & Technology Directorate, National Renewable Energy Laboratory, Golden, CO, 80401, USA. .,Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 119234, Moscow, Russia.
| | - Michael Seibert
- BioEnergy Sciences & Technology Directorate, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| |
Collapse
|
19
|
Kärkäs MD, Åkermark B. Water oxidation using earth-abundant transition metal catalysts: opportunities and challenges. Dalton Trans 2016; 45:14421-61. [DOI: 10.1039/c6dt00809g] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Catalysts for the oxidation of water are a vital component of solar energy to fuel conversion technologies. This Perspective summarizes recent advances in the field of designing homogeneous water oxidation catalysts (WOCs) based on Mn, Fe, Co and Cu.
Collapse
Affiliation(s)
- Markus D. Kärkäs
- Department of Organic Chemistry
- Arrhenius Laboratory
- Stockholm University
- SE-106 91 Stockholm
- Sweden
| | - Björn Åkermark
- Department of Organic Chemistry
- Arrhenius Laboratory
- Stockholm University
- SE-106 91 Stockholm
- Sweden
| |
Collapse
|
20
|
Domarus M, Kuznetsov ML, Marçalo J, Pombeiro AJL, da Silva JAL. Amavadin and Homologues as Mediators of Water Oxidation. Angew Chem Int Ed Engl 2015; 55:1489-92. [PMID: 26663718 DOI: 10.1002/anie.201509604] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/13/2015] [Indexed: 01/13/2023]
Abstract
The vanadium(IV) N-hydroxyiminodicarboxylate complexes [V(HIDPA)2](2-) and [V(HIDA)2](2-), close models of the amavadin (a natural product from Amanita fungi lacking the V=O group but exhibiting a rare NO-bound oxyiminate moiety), are shown to be the first recognized complexes of the early transition metals (up to periodic Group 7) that mediate the oxidation of water. The reactions were analyzed by visible spectrophotometry, mass spectrometry, and measurement of evolved dioxygen using Ce(4+) as sacrificial oxidant. A mechanism proposed on the basis of DFT calculations involves the reversible oxidation to the mononuclear V(V)-{OṄ<} center, where the redox active oxyimino group plays a key role and metal oxidation state variation is only one unit. The more similar model of the metallobiomolecule, [V(HIDPA)2](2-), displays a lower oxidation rate than [V(HIDA)2](2-) but does not undergo appreciable degradation, in contrast to the latter.
Collapse
Affiliation(s)
- Magdalena Domarus
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisboa, Portugal
| | - Maxim L Kuznetsov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisboa, Portugal
| | - Joaquim Marçalo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066, Bobadela LRS, Portugal
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisboa, Portugal.
| | - José Armando L da Silva
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisboa, Portugal.
| |
Collapse
|
21
|
Domarus M, Kuznetsov ML, Marçalo J, Pombeiro AJL, da Silva JAL. Amavadin and Homologues as Mediators of Water Oxidation. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201509604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Magdalena Domarus
- Centro de Química Estrutural; Instituto Superior Técnico; Universidade de Lisboa; Av. Rovisco Pais, 1 1049-001 Lisboa Portugal
| | - Maxim L. Kuznetsov
- Centro de Química Estrutural; Instituto Superior Técnico; Universidade de Lisboa; Av. Rovisco Pais, 1 1049-001 Lisboa Portugal
| | - Joaquim Marçalo
- Centro de Ciências e Tecnologias Nucleares; Instituto Superior Técnico; Universidade de Lisboa; 2695-066 Bobadela LRS Portugal
| | - Armando J. L. Pombeiro
- Centro de Química Estrutural; Instituto Superior Técnico; Universidade de Lisboa; Av. Rovisco Pais, 1 1049-001 Lisboa Portugal
| | - José Armando L. da Silva
- Centro de Química Estrutural; Instituto Superior Técnico; Universidade de Lisboa; Av. Rovisco Pais, 1 1049-001 Lisboa Portugal
| |
Collapse
|
22
|
Complex formation equilibria of 2,2′-bipyridyl and 1,10-phenanthroline with manganese(II) in methanol. KARBALA INTERNATIONAL JOURNAL OF MODERN SCIENCE 2015. [DOI: 10.1016/j.kijoms.2015.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
23
|
Krewald V, Neese F, Pantazis DA. Resolving the Manganese Oxidation States in the Oxygen-evolving Catalyst of Natural Photosynthesis. Isr J Chem 2015. [DOI: 10.1002/ijch.201500051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
24
|
Mattioli G, Zaharieva I, Dau H, Guidoni L. Atomistic Texture of Amorphous Manganese Oxides for Electrochemical Water Splitting Revealed by Ab Initio Calculations Combined with X-ray Spectroscopy. J Am Chem Soc 2015. [DOI: 10.1021/jacs.5b05174] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Giuseppe Mattioli
- Istituto di Struttura della Materia del CNR, v. Salaria Km 29,300 - C.P. 10 I-00015 Monterotondo Stazione, Rome, Italy
| | - Ivelina Zaharieva
- Fachbereich
Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Holger Dau
- Fachbereich
Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Leonardo Guidoni
- Dipartimento
di Scienze Fisiche e Chimiche, Università degli Studi de L’Aquila, Via Vetoio 2, Coppito, I-67100 L’Aquila, Italy
| |
Collapse
|
25
|
Najafpour MM, Hołyńska M, Shamkhali AN, Kazemi SH, Hillier W, Amini E, Ghaemmaghami M, Jafarian Sedigh D, Nemati Moghaddam A, Mohamadi R, Zaynalpoor S, Beckmann K. The role of nano-sized manganese oxides in the oxygen-evolution reactions by manganese complexes: towards a complete picture. Dalton Trans 2015; 43:13122-35. [PMID: 25046248 DOI: 10.1039/c4dt01367k] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Eighteen Mn complexes with N-donor and carboxylate ligands have been synthesized and characterized. Three Mn complexes among them are new and are reported for the first time. The reactions of oxygen evolution in the presence of oxone (2KHSO5·KHSO4·K2SO4) and cerium(iv) ammonium nitrate catalyzed by these complexes are studied and characterized by UV-visible spectroscopy, X-ray diffraction spectrometry, dynamic light scattering, Fourier transform infrared spectroscopy, electron paramagnetic resonance spectroscopy, transmission electron microscopy, scanning electron microscopy, membrane-inlet mass spectrometry and electrochemistry. Some of these complexes evolve oxygen in the presence of oxone as a primary oxidant. CO2 and MnO4(-) are other products of these reactions. Based on spectroscopic studies, the true catalysts for oxygen evolution in these reactions are different. We proposed that for the oxygen evolution reactions in the presence of oxone, the true catalysts are both high valent Mn complexes and Mn oxides, but for the reactions in the presence of cerium(iv) ammonium nitrate, the active catalyst is most probably a Mn oxide.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Retegan M, Cox N, Lubitz W, Neese F, Pantazis DA. The first tyrosyl radical intermediate formed in the S2-S3 transition of photosystem II. Phys Chem Chem Phys 2015; 16:11901-10. [PMID: 24760184 DOI: 10.1039/c4cp00696h] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The EPR "split signals" represent key intermediates of the S-state cycle where the redox active D1-Tyr161 (YZ) has been oxidized by the reaction center of the photosystem II enzyme to its tyrosyl radical form, but the successive oxidation of the Mn4CaO5 cluster has not yet occurred (SiYZ˙). Here we focus on the S2YZ˙ state, which is formed en route to the final metastable state of the catalyst, the S3 state, the state which immediately precedes O-O bond formation. Quantum chemical calculations demonstrate that both isomeric forms of the S2 state, the open and closed cubane isomers, can form states with an oxidized YZ˙ residue without prior deprotonation of the Mn4CaO5 cluster. The two forms are expected to lie close in energy and retain the electronic structure and magnetic topology of the corresponding S2 state of the inorganic core. As expected, tyrosine oxidation results in a proton shift towards His190. Analysis of the electronic rearrangements that occur upon formation of the tyrosyl radical suggests that a likely next step in the catalytic cycle is the deprotonation of a terminal water ligand (W1) of the Mn4CaO5 cluster. Diamagnetic metal ion substitution is used in our calculations to obtain the molecular g-tensor of YZ˙. It is known that the gx value is a sensitive probe not only of the extent of the proton shift between the tyrosine-histidine pair, but also of the polarization environment of the tyrosine, especially about the phenolic oxygen. It is shown for PSII that this environment is determined by the Ca(2+) ion, which locates two water molecules about the phenoxyl oxygen, indirectly modulating the oxidation potential of YZ.
Collapse
Affiliation(s)
- Marius Retegan
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-38, 45470 Mülheim an der Ruhr, Germany.
| | | | | | | | | |
Collapse
|
27
|
Hasni I, Yaakoubi H, Hamdani S, Tajmir-Riahi HA, Carpentier R. Mechanism of interaction of Al3+ with the proteins composition of photosystem II. PLoS One 2015; 10:e0120876. [PMID: 25806795 PMCID: PMC4373732 DOI: 10.1371/journal.pone.0120876] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/27/2015] [Indexed: 11/29/2022] Open
Abstract
The inhibitory effect of Al3+on photosystem II (PSII) electron transport was investigated using several biophysical and biochemical techniques such as oxygen evolution, chlorophyll fluorescence induction and emission, SDS-polyacrylamide and native green gel electrophoresis, and FTIR spectroscopy. In order to understand the mechanism of its inhibitory action, we have analyzed the interaction of this toxic cation with proteins subunits of PSII submembrane fractions isolated from spinach. Our results show that Al 3+, especially above 3 mM, strongly inhibits oxygen evolution and affects the advancement of the S states of the Mn4O5Ca cluster. This inhibition was due to the release of the extrinsic polypeptides and the disorganization of the Mn4O5Ca cluster associated with the oxygen evolving complex (OEC) of PSII. This fact was accompanied by a significant decline of maximum quantum yield of PSII (Fv/Fm) together with a strong damping of the chlorophyll a fluorescence induction. The energy transfer from light harvesting antenna to reaction centers of PSII was impaired following the alteration of the light harvesting complex of photosystem II (LHCII). The latter result was revealed by the drop of chlorophyll fluorescence emission spectra at low temperature (77 K), increase of F0 and confirmed by the native green gel electrophoresis. FTIR measurements indicated that the interaction of Al 3+ with the intrinsic and extrinsic polypeptides of PSII induces major alterations of the protein secondary structure leading to conformational changes. This was reflected by a major reduction of α-helix with an increase of β-sheet and random coil structures in Al 3+-PSII complexes. These structural changes are closely related with the functional alteration of PSII activity revealed by the inhibition of the electron transport chain of PSII.
Collapse
Affiliation(s)
- Imed Hasni
- Research Group in Plant Biology, Department of Chemistry, Biochemistry and Physics, University of Quebec at Trois-Rivieres, Trois-Rivieres, Quebec, Canada
| | - Hnia Yaakoubi
- Research Group in Plant Biology, Department of Chemistry, Biochemistry and Physics, University of Quebec at Trois-Rivieres, Trois-Rivieres, Quebec, Canada
| | - Saber Hamdani
- Plant Systems Biology Group, Partner Institute of Computational Biology, Chinese Academy of Sciences, Shanghai, China
| | - Heidar-Ali Tajmir-Riahi
- Research Group in Plant Biology, Department of Chemistry, Biochemistry and Physics, University of Quebec at Trois-Rivieres, Trois-Rivieres, Quebec, Canada
| | - Robert Carpentier
- Research Group in Plant Biology, Department of Chemistry, Biochemistry and Physics, University of Quebec at Trois-Rivieres, Trois-Rivieres, Quebec, Canada
| |
Collapse
|
28
|
Comparison of nano-sized Mn oxides with the Mn cluster of photosystem II as catalysts for water oxidation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:294-306. [DOI: 10.1016/j.bbabio.2014.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/12/2014] [Accepted: 11/18/2014] [Indexed: 11/20/2022]
|
29
|
Chen J, Yoon H, Lee YM, Seo MS, Sarangi R, Fukuzumi S, Nam W. Tuning the Reactivity of Mononuclear Nonheme Manganese(IV)-Oxo Complexes by Triflic Acid. Chem Sci 2015; 6:3624-3632. [PMID: 26146538 PMCID: PMC4486364 DOI: 10.1039/c5sc00535c] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Triflic acid (HOTf)-bound nonheme Mn(IV)-oxo complexes, [(L)MnIV(O)]2+-(HOTf)2 (L = N4Py and Bn-TPEN; N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) and Bn-TPEN = N-benzyl-N,N',N'-tris(2-pyridylmethyl)ethane-1,2-diamine), were synthesized by adding HOTf to the solutions of the [(L)MnIV(O)]2+ complexes and were characterized by various spectroscopies. The one-electron reduction potentials of the MnIV(O) complexes exhibited a significant positive shift upon binding of HOTf. The driving force dependence of electron transfer (ET) from electron donors to the MnIV(O) and MnIV(O)-(HOTf)2 complexes were examined and evaluated in light of the Marcus theory of ET to determine the reorganization energies of ET. The smaller reorganization energies and much more positive reduction potentials of the [(L)MnIV(O)]2+-(HOTf)2 complexes resulted in much enhanced oxidation capacity towards one-electron reductants and para-X-substituted-thioanisoles. The reactivities of the Mn(IV)-oxo complexes were markedly enhanced by binding of HOTf, such as a 6.4 × 105-fold increase in the oxygen atom transfer (OAT) reaction (i.e., sulfoxidation). Such a remarkable acceleration in the OAT reaction results from the enhancement of ET from para-X-substituted-thioanisoles to the MnIV(O) complexes as revealed by the unified ET driving force dependence of the rate constants of OAT and ET reactions of [(L)MnIV(O)]2+-(HOTf)2. In contrast, deceleration was observed in the rate of H-atom transfer (HAT) reaction of [(L)MnIV(O)]2+-(HOTf)2 complexes with 1,4-cyclohexadiene as compared with those of the [(L)MnIV(O)]2+ complexes. Thus, the binding of two HOTf molecules to the MnIV(O) moiety resulted in remarkable acceleration of the ET rate when the ET is thermodynamically feasible. When the ET reaction is highly endergonic, the rate of the HAT reaction is decelerated due to the steric effect of the counter anion of HOTf.
Collapse
Affiliation(s)
- Junying Chen
- Department of Chemistry and Nano Science, Department of Bioinspired Science, Center for Biomimetic System, Ewha Womans University, Seoul 120-750, Korea
| | - Heejung Yoon
- Department of Material and Life Science, Graduate School of Engineering, ALCA, JST, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Department of Bioinspired Science, Center for Biomimetic System, Ewha Womans University, Seoul 120-750, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Department of Bioinspired Science, Center for Biomimetic System, Ewha Womans University, Seoul 120-750, Korea
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Department of Bioinspired Science, Center for Biomimetic System, Ewha Womans University, Seoul 120-750, Korea ; Department of Material and Life Science, Graduate School of Engineering, ALCA, JST, Osaka University, Suita, Osaka 565-0871, Japan
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Department of Bioinspired Science, Center for Biomimetic System, Ewha Womans University, Seoul 120-750, Korea
| |
Collapse
|
30
|
Hamilton CR, Gau MR, Baglia RA, McWilliams SF, Zdilla MJ. Mechanistic elucidation of the stepwise formation of a tetranuclear manganese pinned butterfly cluster via N-N bond cleavage, hydrogen atom transfer, and cluster rearrangement. J Am Chem Soc 2014; 136:17974-86. [PMID: 25424971 DOI: 10.1021/ja508244x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A mechanistic pathway for the formation of the structurally characterized manganese-amide-hydrazide pinned butterfly complex, Mn4(μ3-PhN-NPh-κ(3)N,N')2(μ-PhN-NPh-κ(2)-N,N')(μ-NHPh)2L4 (L = THF, py), is proposed and supported by the use of labeling studies, kinetic measurements, kinetic competition experiments, kinetic isotope effects, and hydrogen atom transfer reagent substitution, and via the isolation and characterization of intermediates using X-ray diffraction and electron paramagnetic resonance spectroscopy. The data support a formation mechanism whereby bis[bis(trimethylsilyl)amido]manganese(II) (Mn(NR2)2, where R = SiMe3) reacts with N,N'-diphenylhydrazine (PhNHNHPh) via initial proton transfer, followed by reductive N-N bond cleavage to form a long-lived Mn(IV) imido multinuclear complex. Coordinating solvents activate this cluster for abstraction of hydrogen atoms from an additional equivalent of PhNHNHPh resulting in a Mn(II)phenylamido dimer, Mn2(μ-NHPh)2(NR2)2L2. This dimeric complex further assembles in fast steps with two additional equivalents of PhNHNHPh replacing the terminal silylamido ligands with η(1)-hydrazine ligands to give a dimeric Mn2(μ-NHPh)2(PhN-NHPh)2L4 intermediate, and finally, the addition of two additional equivalents of Mn(NR2)2 and PhNHNHPh gives the pinned butterfly cluster.
Collapse
Affiliation(s)
- Clifton R Hamilton
- Department of Chemistry, Temple University , 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | | | | | | | | |
Collapse
|
31
|
Sharon S, Salomon E, Kranzler C, Lis H, Lehmann R, Georg J, Zer H, Hess WR, Keren N. The hierarchy of transition metal homeostasis: Iron controls manganese accumulation in a unicellular cyanobacterium. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1990-1997. [DOI: 10.1016/j.bbabio.2014.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 01/04/2023]
|
32
|
Najafpour MM, Ghobadi MZ, Haghighi B, Tomo T, Carpentier R, Shen JR, Allakhverdiev SI. A nano-sized manganese oxide in a protein matrix as a natural water-oxidizing site. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 81:3-15. [PMID: 24560883 DOI: 10.1016/j.plaphy.2014.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/26/2014] [Indexed: 06/03/2023]
Abstract
The purpose of this review is to present recent advances in the structural and functional studies of water-oxidizing center of Photosystem II and its surrounding protein matrix in order to synthesize artificial catalysts for production of clean and efficient hydrogen fuel.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran; Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.
| | - Mohadeseh Zarei Ghobadi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Behzad Haghighi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran; Center of Climate Change and Global Warming, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Tatsuya Tomo
- Department of Biology, Faculty of Science, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku, Tokyo 162-8601, Japan; PRESTO, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Robert Carpentier
- Departement de Chimie Biochimie et Physique, Université du Québec à Trois Rivières, C.P. 500, Québec G9A 5H7, Canada
| | - Jian-Ren Shen
- Graduate School of Natural Science and Technology, Faculty of Science, Okayama University, Okayama 700-8530, Japan
| | - Suleyman I Allakhverdiev
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia.
| |
Collapse
|
33
|
Kalaji HM, Oukarroum A, Alexandrov V, Kouzmanova M, Brestic M, Zivcak M, Samborska IA, Cetner MD, Allakhverdiev SI, Goltsev V. Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 81:16-25. [PMID: 24811616 DOI: 10.1016/j.plaphy.2014.03.029] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 03/29/2014] [Indexed: 05/05/2023]
Abstract
The impact of some macro (Ca, S, Mg, K, N, P) and micro (Fe) nutrients deficiency on the functioning of the photosynthetic machinery in tomato (Solanum lycopersicum L.) and maize (Zea mays L.) plants grown in hydroponic cultures were investigated. Plants grown on a complete nutrient solution (control) were compared with those grown in a medium, which lacked one of macro- or microelements. The physiological state of the photosynthetic machinery in vivo was analysed after 14-days of deficient condition by the parameters of JIP-test based on fast chlorophyll a fluorescence records. In most of the nutrient-deficient samples, the decrease of photochemical efficiency, increase in non-photochemical dissipation and decrease of the number of active photosystem II (PSII) reaction centres were observed. However, lack of individual nutrients also had nutrient-specific effects on the photochemical processes. In Mg and Ca-deficient plants, the most severe decrease in electron donation by oxygen evolving complex (OEC) was indicated. Sulphur deficiency caused limitation of electron transport beyond PSI, probably due to decrease in the PSI content or activity of PSI electron acceptors; in contrary, Ca deficiency had an opposite effect, where the PSII activity was affected much more than PSI. Despite the fact that clear differences in nutrient deficiency responses between tomato and maize plants were observed, our results indicate that some of presented fluorescence parameters could be used as fluorescence phenotype markers. The principal component analysis of selected JIP-test parameters was presented as a possible species-specific approach to identify/predict the nutrient deficiency using the fast chlorophyll fluorescence records.
Collapse
Affiliation(s)
- Hazem M Kalaji
- Department of Plant Physiology, Warsaw University of Life Sciences SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Abdallah Oukarroum
- Department of Chemistry and Biochemistry, University of Québec in Montréal, Montréal, Quebec, C.P. 8888, Succ. Centre-Ville, H3C 3P8 Canada
| | - Vladimir Alexandrov
- Department of Biophysics and Radiobiology, University of Sofia, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Margarita Kouzmanova
- Department of Biophysics and Radiobiology, University of Sofia, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Marian Brestic
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Marek Zivcak
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Izabela A Samborska
- Department of Plant Physiology, Warsaw University of Life Sciences SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Magdalena D Cetner
- Department of Plant Physiology, Warsaw University of Life Sciences SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Suleyman I Allakhverdiev
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia.
| | - Vasilij Goltsev
- Department of Biophysics and Radiobiology, University of Sofia, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria.
| |
Collapse
|
34
|
Najafpour MM, Ghobadi MZ, Haghighi B, Eaton-Rye JJ, Tomo T, Shen JR, Allakhverdiev SI. Nano-sized manganese-calcium cluster in photosystem II. BIOCHEMISTRY (MOSCOW) 2014; 79:324-36. [DOI: 10.1134/s0006297914040026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Najafpour MM, Heidari S, Amini E, Khatamian M, Carpentier R, Allakhverdiev SI. Nano-sized layered Mn oxides as promising and biomimetic water oxidizing catalysts for water splitting in artificial photosynthetic systems. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 133:124-39. [DOI: 10.1016/j.jphotobiol.2014.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/02/2014] [Accepted: 03/07/2014] [Indexed: 01/22/2023]
|
36
|
Najafpour MM, Ghobadi MZ, Sedigh DJ, Haghighi B. Nano-sized layered manganese oxide in a poly-L-glutamic acid matrix: a biomimetic, homogenized, heterogeneous structural model for the water-oxidizing complex in photosystem II. RSC Adv 2014. [DOI: 10.1039/c4ra04719b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Here, we report a nano-sized layered Mn–Ca oxide in poly-L-glutamic acid as a structural model for a biological water-oxidizing site in plants, algae and cyanobacteria.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan, Iran
- Center of Climate Change and Global Warming
- Institute for Advanced Studies in Basic Sciences (IASBS)
| | | | - Davood Jafarian Sedigh
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan, Iran
| | - Behzad Haghighi
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan, Iran
- Center of Climate Change and Global Warming
- Institute for Advanced Studies in Basic Sciences (IASBS)
| |
Collapse
|
37
|
Najafpour MM, Abbasi Isaloo M, Abasi M, Hołyńska M. Manganese oxide as a water-oxidizing catalyst: from the bulk to Ångström-scale. NEW J CHEM 2014. [DOI: 10.1039/c3nj01393f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
38
|
Najafpour MM, Isaloo MA. Mechanism of water oxidation by nanolayered manganese oxide: a step forward. RSC Adv 2014. [DOI: 10.1039/c3ra46925e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
New insights into the mechanism of water oxidation by layered Mn oxide are reported.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan, Iran
- Center of Climate Change and Global Warming
- Institute for Advanced Studies in Basic Sciences (IASBS)
| | - Mohsen Abbasi Isaloo
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan, Iran
| |
Collapse
|
39
|
Faiella M, Roy A, Sommer D, Ghirlanda G. De novo design of functional proteins: Toward artificial hydrogenases. Biopolymers 2013; 100:558-71. [DOI: 10.1002/bip.22420] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 07/08/2013] [Accepted: 09/18/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Marina Faiella
- Department of Chemistry and Biochemistry; Arizona State University; Tempe AZ
| | - Anindya Roy
- Department of Chemistry and Biochemistry; Arizona State University; Tempe AZ
| | - Dayn Sommer
- Department of Chemistry and Biochemistry; Arizona State University; Tempe AZ
| | - Giovanna Ghirlanda
- Department of Chemistry and Biochemistry; Arizona State University; Tempe AZ
| |
Collapse
|
40
|
Eaton-Rye JJ. Govindjee at 80: more than 50 years of free energy for photosynthesis. PHOTOSYNTHESIS RESEARCH 2013; 116:111-44. [PMID: 24113923 DOI: 10.1007/s11120-013-9921-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 08/26/2013] [Indexed: 05/23/2023]
Abstract
We provide here a glimpse of Govindjee and his pioneering contributions on the two light reactions and the two pigment systems, particularly on the water-plastoquinone oxido-reductase, Photosystem II. His focus has been on excitation energy transfer; primary photochemistry, and the role of bicarbonate in electron and proton transfer. His major tools have been kinetics and spectroscopy (absorption and fluorescence), and he has provided an understanding of both thermoluminescence and delayed light emission in plants and algae. He pioneered the use of lifetime of fluorescence measurements to study the phenomenon of photoprotection in plants and algae. He, however, is both a generalist and a specialist all at the same time. He communicates very effectively his passion for photosynthesis to the novice as well as professionals. He has been a prolific author, outstanding lecturer and an editor par excellence. He is the founder not only of the Historical Corner of Photosynthesis Research, but of the highly valued Series Advances in Photosynthesis and Respiration Including Bioenergy and Related Processes. He reaches out to young people by distributing Z-scheme posters, presenting Awards of books, and through tri-annual articles on "Photosynthesis Web Resources". At home, at the University of Illinois at Urbana-Champaign, he has established student Awards for Excellence in Biological Sciences. On behalf of all his former graduate students and associates, I wish him a Happy 80th birthday. I have included here several tributes to Govindjee by his well-wishers. These write-ups express the high regard the photosynthesis community holds for "Gov" and illuminate the different facets of his life and associations.
Collapse
Affiliation(s)
- Julian J Eaton-Rye
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand,
| |
Collapse
|
41
|
Tikhonov AN. pH-dependent regulation of electron transport and ATP synthesis in chloroplasts. PHOTOSYNTHESIS RESEARCH 2013; 116:511-34. [PMID: 23695653 DOI: 10.1007/s11120-013-9845-y] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 04/25/2013] [Indexed: 05/02/2023]
Abstract
This review is focused on pH-dependent mechanisms of regulation of photosynthetic electron transport and ATP synthesis in chloroplasts. The light-induced acidification of the thylakoid lumen is known to decelerate the plastoquinol oxidation by the cytochrome b 6 f complex, thus impeding the electron flow between photosystem II and photosystem I. Acidification of the lumen also triggers the dissipation of excess energy in the light-harvesting antenna of photosystem II, thereby protecting the photosynthetic apparatus against a solar stress. After brief description of structural and functional organization of the chloroplast electron transport chain, our attention is focused on the nature of the rate-limiting step of electron transfer between photosystem II and photosystem I. In the context of pH-dependent mechanism of photosynthetic control in chloroplasts, the mechanisms of plastoquinol oxidation by the cytochrome b 6 f complex have been considered. The light-induced alkalization of stroma is another factor of pH-dependent regulation of electron transport in chloroplasts. Alkalization of stroma induces activation of the Bassham-Benson-Calvin cycle reactions, thereby promoting efflux of electrons from photosystem I to NADP(+). The mechanisms of the light-induced activation of ATP synthase are briefly considered.
Collapse
Affiliation(s)
- Alexander N Tikhonov
- Department of Biophysics, Faculty of Physics, M. V. Lomonosov, Moscow State University, Moscow, Russia,
| |
Collapse
|
42
|
Hasni I, Hamdani S, Carpentier R. Destabilization of the Oxygen Evolving Complex of Photosystem II by Al3+. Photochem Photobiol 2013; 89:1135-42. [DOI: 10.1111/php.12116] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 06/11/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Imed Hasni
- Groupe de Recherche en Biologie Végétale (GRBV); Département de chimie; biochimie et physique; Université du Québec à Trois-Rivières; Trois-Rivières; QC; Canada
| | - Saber Hamdani
- Groupe de Recherche en Biologie Végétale (GRBV); Département de chimie; biochimie et physique; Université du Québec à Trois-Rivières; Trois-Rivières; QC; Canada
| | - Robert Carpentier
- Groupe de Recherche en Biologie Végétale (GRBV); Département de chimie; biochimie et physique; Université du Québec à Trois-Rivières; Trois-Rivières; QC; Canada
| |
Collapse
|
43
|
Najafpour MM, Amouzadeh Tabrizi M, Haghighi B, Govindjee. A 2-(2-hydroxyphenyl)-1H-benzimidazole-manganese oxide hybrid as a promising structural model for the tyrosine 161/histidine 190-manganese cluster in photosystem II. Dalton Trans 2013. [PMID: 23178300 DOI: 10.1039/c2dt32236f] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this communication, we report the synthesis, characterization, and electrochemistry of a 2-(2-hydroxyphenyl)-1H-benzimidazole-manganese oxide hybrid. Our results suggest that this compound is a promising model for the manganese cluster together with tyrosine-161 and histidine-190 in photosystem II of plants, algae and cyanobacteria.
Collapse
Affiliation(s)
- Mohammad Mahdi Najafpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences, Zanjan, 45137-66731, Iran.
| | | | | | | |
Collapse
|
44
|
Krewald V, Neese F, Pantazis DA. On the magnetic and spectroscopic properties of high-valent Mn3CaO4 cubanes as structural units of natural and artificial water-oxidizing catalysts. J Am Chem Soc 2013; 135:5726-39. [PMID: 23527603 DOI: 10.1021/ja312552f] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Mn(IV)3CaO4 cubane is a structural motif present in the oxygen-evolving complex (OEC) of photosystem II and in water-oxidizing Mn/Ca layered oxides. This work investigates the magnetic and spectroscopic properties of two recently synthesized complexes and a series of idealized models that incorporate this structural unit. Magnetic interactions, accessible spin states, and (55)Mn isotropic hyperfine couplings are computed with quantum chemical methods and form the basis for structure-property correlations. Additionally, the effects of oxo-bridge protonation and one-electron reduction are examined. The calculated properties are found to be in excellent agreement with available experimental data. It is established that all synthetic and model Mn(IV)3CaO4 cubane complexes have the same high-spin S = (9)/2 ground state. The magnetic coupling conditions under which different ground spin states can be accessed are determined. Substitution of Mn(IV) magnetic centers by diamagnetic ions [e.g., Ge(IV)] allows one to "switch off" specific spin sites in order to examine the magnetic orbitals along individual Mn-Mn exchange pathways, which confirms the predominance of ferromagnetic interactions within the cubane framework. The span of the Heisenberg spin ladder is found to correlate inversely with the number of protonated oxo bridges. Energetic comparisons for protonated models show that the tris-μ-oxo bridge connecting only Mn ions in the cubane has the lowest proton affinity and that the average relaxation energy per additional proton is on the order of 18 kcal·mol(-1), thus making access to ground states other than the high-spin S = (9)/2 state in these cubanes unlikely. The relevance of these cubanes for the OEC and synthetic oxides is discussed.
Collapse
Affiliation(s)
- Vera Krewald
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-38, 45470 Mülheim an der Ruhr, Germany
| | | | | |
Collapse
|
45
|
Moore GF, Sharp ID. A Noble-Metal-Free Hydrogen Evolution Catalyst Grafted to Visible Light-Absorbing Semiconductors. J Phys Chem Lett 2013; 4:568-572. [PMID: 26281867 DOI: 10.1021/jz400028z] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report a method for facile connection of a nickel bisdiphosphine-based functional mimic of the active site of hydrogenase to photocathodes that are relevant to artificial photosynthesis. This procedure exploits the UV-induced immobilization chemistry of alkenes to gallium phosphide and silicon surfaces. The photochemical grafting provides a means for patterning molecular linkers with attachment points to catalysts. Successful grafting is characterized by grazing angle attenuated total reflection Fourier transform infrared spectroscopy (GATR-FTIR), which shows catalyst vibrational modes, as well as X-ray photoelectron spectroscopy (XPS), which confirms the presence of intact Ni complex on the surface. The modular nature of this approach allows independent modification of the light absorber, bridging material, anchoring functionality, or catalyst as new materials and discoveries emerge.
Collapse
Affiliation(s)
- Gary F Moore
- Joint Center for Artificial Photosynthesis (JCAP), Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ian D Sharp
- Joint Center for Artificial Photosynthesis (JCAP), Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
46
|
Najafpour MM, Kompany-Zareh M, Zahraei A, Jafarian Sedigh D, Jaccard H, Khoshkam M, Britt RD, Casey WH. Mechanism, decomposition pathway and new evidence for self-healing of manganese oxides as efficient water oxidizing catalysts: new insights. Dalton Trans 2013; 42:14603-11. [DOI: 10.1039/c3dt51406d] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Najafpour MM, Leonard KC, Fan FRF, Tabrizi MA, Bard AJ, King'ondu CK, Suib SL, Haghighi B, Allakhverdiev SI. Nano-size layered manganese–calcium oxide as an efficient and biomimetic catalyst for water oxidation under acidic conditions: comparable to platinum. Dalton Trans 2013; 42:5085-91. [DOI: 10.1039/c3dt32864c] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
48
|
Najafpour MM, Pashaei B, Zand Z. Photodamage of the manganese–calcium oxide: a model for UV-induced photodamage of the water oxidizing complex in photosystem II. Dalton Trans 2013; 42:4772-6. [DOI: 10.1039/c3dt50280e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Najafpour MM, Nemati Moghaddam A, Sakha Y. A simple mathematical model for manganese oxide-coated montmorillonite as a catalyst for water oxidation: from nano to macro sized manganese oxide. Dalton Trans 2013; 42:11012-20. [DOI: 10.1039/c3dt50972a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Najafpour MM, Sedigh DJ, Pashaei B, Nayeri S. Water oxidation by nano-layered manganese oxides in the presence of cerium(iv) ammonium nitrate: important factors and a proposed self-repair mechanism. NEW J CHEM 2013. [DOI: 10.1039/c3nj00372h] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|