1
|
Liang H, Deng J, Wang Y, Gao G, Yang R. The first complete mitochondrial genome of Curcuma amarissima (Zingiberaceae): insights into multi-branch structure, codon usage, and phylogenetic evolution. BMC Genomics 2025; 26:343. [PMID: 40188039 PMCID: PMC11971759 DOI: 10.1186/s12864-025-11540-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/27/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND As a key genus in Zingiberaceae, Curcuma is widely studied for its taxonomic diversity, the presence of bioactive curcuminoids and volatile oils, and its extensive applications in traditional medicine and economic products such as spices and cosmetics. Although chloroplast genomes have been assembled and published for over 20 Curcuma species, mitochondrial genomic data remain limited. RESULTS We successfully sequenced, assembled, and annotated the mitogenome of Curcuma amarissima (C. amarissima) using both Illumina short reads and Nanopore long reads, achieving the first complete mitogenome characterization in the Zingiberaceae family. The C. amarissima mitogenome features a unique multi-branched structure, spanning 6,505,655 bp and consisting of 39 distinct segments. It contains a total of 43 protein-coding genes, 63 tRNA genes, and 4 rRNA genes, with a GC content of 44.04%. Codon usage analysis indicated a weak bias, with neutrality plot analysis suggesting natural selection as a key factor shaping mitochondrial codon usage in C. amarissima. The mitogenome provides valuable insights into genome size, coding genes, structural features, RNA editing, repetitive sequences, and sequence migration, enhancing our understanding of the evolution and molecular biology of multi-branched mitochondria in Zingiberaceae. The high frequency of repeat sequences may contribute to the structural stability of the mitochondria. Comparing chloroplast genome, phylogenetic analysis based on the mitochondrial genome establishes a foundation for further exploration of evolutionary relationships within Zingiberaceae. CONCLUSIONS In short, the mitochondrial genome characterized here advances our understanding of multi-branched mitogenome organization in Zingiberaceae and offers useful genomic resources that may support future breeding, germplasm conservation, and phylogenetic studies, though further research is necessary.
Collapse
Affiliation(s)
- Heng Liang
- Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan Province, 625014, China
| | - Jiabin Deng
- College of Chuanjiu, Sichuan Vocational College of Chemical Technology, Luzhou, 646300, China
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan Province, 625014, China
| | - Yidan Wang
- School of Life Sciences, Technical University of Munich, Freising, 85354, Germany
| | - Gang Gao
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, Sichuan, China.
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan Province, 625014, China.
| | - Ruiwu Yang
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan Province, 625014, China
| |
Collapse
|
2
|
Roussou S, Pan M, Krömer JO, Lindblad P. Exploring and increased acetate biosynthesis in Synechocystis PCC 6803 through insertion of a heterologous phosphoketolase and overexpressing phosphotransacetylase. Metab Eng 2025; 88:250-260. [PMID: 39863056 DOI: 10.1016/j.ymben.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Acetate is a biological anion with many applications in the chemical and food industries. In addition to being a common microbial fermentative end-product, acetate can be produced by photosynthetic cyanobacteria from CO2 using solar energy. Using wild-type cells of the unicellular model cyanobacterium Synechocystis PCC 6803 only low levels of acetate are observed outside the cells. By inserting a heterologous phosphoketolase (PKPa) in the acs locus, encoding acetyl-CoA synthetase responsible for the irreversible conversion of acetate to acetyl-CoA, an increased level of 40 times was observed. Metabolite analyses indicate an enhanced Calvin-Benson-Bassham cycle, based on increased levels of glyceraldehyde 3-phosphate and fructose-1,6-biphosphate, while the decreased levels of 3-phosphoglycerate and pyruvate suggest a quick consumption of the fixed carbon. Acetyl-P and erythrose-4-phosphate showed significantly increased levels, as products of phosphoketolase, while acetyl-CoA remained stable through the experiment. The results of intra- and extra-cellular acetate levels clearly demonstrate an efficient excretion of produced acetate from the cells in the engineered strain. Knock-out of ach and pta showed a reduction in acetate production however, it was not as low as in cells with a single knock-out of ach. Overexpressing acetyl-CoA hydrolase (Ach) and acetate kinase (AckA) did not significantly increase production. In contrast, overexpressing phosphotransacetylase (Pta) in cells containing an inserted PKPa resulted in 80 times more acetate reaching 2.3 g/L after 14 days of cultivation.
Collapse
Affiliation(s)
- Stamatina Roussou
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Minmin Pan
- Systems Biotechnology, Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany
| | - Jens O Krömer
- Systems Biotechnology, Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research - UFZ, 04318, Leipzig, Germany
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
3
|
Fragkopoulos AA, Böhme F, Drewes N, Bäumchen O. Metabolic activity controls the emergence of coherent flows in microbial suspensions. Proc Natl Acad Sci U S A 2025; 122:e2413340122. [PMID: 39847325 PMCID: PMC11789023 DOI: 10.1073/pnas.2413340122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
Photosynthetic microbes have evolved and successfully adapted to the ever-changing environmental conditions in complex microhabitats throughout almost all ecosystems on Earth. In the absence of light, they can sustain their biological functionalities through aerobic respiration, and even in anoxic conditions through anaerobic metabolic activity. For a suspension of photosynthetic microbes in an anaerobic environment, individual cellular motility is directly controlled by its photosynthetic activity, i.e. the intensity of the incident light absorbed by chlorophyll. The effects of the metabolic activity on the collective motility on the population level, however, remain elusive so far. Here, we demonstrate that at high light intensities, a suspension of photosynthetically active microbes exhibits a stable reverse sedimentation profile of the cell density due to the microbes' natural bias to move against gravity. With decreasing photosynthetic activity, and therefore suppressed individual motility, the living suspension becomes unstable giving rise to coherent bioconvective flows. The collective motility is fully reversible and manifests as regular, three-dimensional plume structures, in which flow rates and cell distributions are directly controlled via the light intensity. The coherent flows emerge in the highly unfavorable condition of lacking both light and oxygen and, thus, might help the microbial collective to expand the exploration of their natural habitat in search for better survival conditions.
Collapse
Affiliation(s)
- Alexandros A. Fragkopoulos
- Experimental Physics V, Department of Physics, University of Bayreuth, D-95447Bayreuth, Germany
- Max Planck Institute for Dynamics and Self-Organization, D-37077Göttingen, Germany
| | - Florian Böhme
- Experimental Physics V, Department of Physics, University of Bayreuth, D-95447Bayreuth, Germany
| | - Nicole Drewes
- Max Planck Institute for Dynamics and Self-Organization, D-37077Göttingen, Germany
| | - Oliver Bäumchen
- Experimental Physics V, Department of Physics, University of Bayreuth, D-95447Bayreuth, Germany
- Max Planck Institute for Dynamics and Self-Organization, D-37077Göttingen, Germany
| |
Collapse
|
4
|
Sun X, LaVoie M, Lefebvre PA, Gallaher SD, Glaesener AG, Strenkert D, Mehta R, Merchant SS, Silflow CD. Identification of a gene controlling levels of the copper response regulator 1 transcription factor in Chlamydomonas reinhardtii. THE PLANT CELL 2024; 37:koae300. [PMID: 39777451 PMCID: PMC11708838 DOI: 10.1093/plcell/koae300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/08/2024] [Indexed: 01/11/2025]
Abstract
Oxygen prevents hydrogen production in Chlamydomonas (Chlamydomonas reinhardtii), in part by inhibiting the transcription of hydrogenase genes. We developed a screen for mutants showing constitutive accumulation of iron hydrogenase 1 (HYDA1) transcripts in normoxia. A reporter gene required for ciliary motility placed under the control of the HYDA1 promoter conferred motility only in hypoxia. By selecting for mutants able to swim even in normoxia, we obtained strains that constitutively express the reporter gene. One identified mutant was affected in a gene encoding an F-box protein 3 (FBXO3) that participates in ubiquitylation and proteasomal degradation pathways in other eukaryotes. Transcriptome profiles revealed that the mutation, termed cehc1-1 (constitutive expression of hydrogenases and copper-responsive genes), triggers the upregulation of genes known to be targets of copper response regulator 1 (CRR1), a transcription factor involved in the nutritional copper signaling pathway and in the hypoxia response pathway. CRR1 was required for upregulating the HYDA1 reporter gene expression in response to hypoxia and for the constitutive expression of the reporter gene in cehc1-1 mutant cells. The CRR1 protein, normally degraded in Cu-supplemented cells, was stabilized in cehc1-1 cells, supporting the conclusion that CEHC1 facilitates CRR1 degradation. Our results describe a previously unknown pathway for CRR1 inhibition and possibly other pathways leading to complex metabolic changes.
Collapse
Affiliation(s)
- Xiaoqing Sun
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Matthew LaVoie
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Paul A Lefebvre
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Sean D Gallaher
- Quantitative Biosciences Institute, University of California, Berkeley, CA 94720, USA
| | - Anne G Glaesener
- Quantitative Biosciences Institute, University of California, Berkeley, CA 94720, USA
| | - Daniela Strenkert
- Quantitative Biosciences Institute, University of California, Berkeley, CA 94720, USA
| | - Radhika Mehta
- Quantitative Biosciences Institute, University of California, Berkeley, CA 94720, USA
| | - Sabeeha S Merchant
- Quantitative Biosciences Institute, University of California, Berkeley, CA 94720, USA
| | - Carolyn D Silflow
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
5
|
Fakhimi N, Grossman AR. Photosynthetic Electron Flows and Networks of Metabolite Trafficking to Sustain Metabolism in Photosynthetic Systems. PLANTS (BASEL, SWITZERLAND) 2024; 13:3015. [PMID: 39519934 PMCID: PMC11548211 DOI: 10.3390/plants13213015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/03/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Photosynthetic eukaryotes have metabolic pathways that occur in distinct subcellular compartments. However, because metabolites synthesized in one compartment, including fixed carbon compounds and reductant generated by photosynthetic electron flows, may be integral to processes in other compartments, the cells must efficiently move metabolites among the different compartments. This review examines the various photosynthetic electron flows used to generate ATP and fixed carbon and the trafficking of metabolites in the green alga Chlamydomomas reinhardtii; information on other algae and plants is provided to add depth and nuance to the discussion. We emphasized the trafficking of metabolites across the envelope membranes of the two energy powerhouse organelles of the cell, the chloroplast and mitochondrion, the nature and roles of the major mobile metabolites that move among these compartments, and the specific or presumed transporters involved in that trafficking. These transporters include sugar-phosphate (sugar-P)/inorganic phosphate (Pi) transporters and dicarboxylate transporters, although, in many cases, we know little about the substrate specificities of these transporters, how their activities are regulated/coordinated, compensatory responses among transporters when specific transporters are compromised, associations between transporters and other cellular proteins, and the possibilities for forming specific 'megacomplexes' involving interactions between enzymes of central metabolism with specific transport proteins. Finally, we discuss metabolite trafficking associated with specific biological processes that occur under various environmental conditions to help to maintain the cell's fitness. These processes include C4 metabolism in plants and the carbon concentrating mechanism, photorespiration, and fermentation metabolism in algae.
Collapse
Affiliation(s)
- Neda Fakhimi
- Department of Biosphere Sciences and Engineering, The Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA;
| | - Arthur R. Grossman
- Department of Biosphere Sciences and Engineering, The Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA;
- Courtesy Appointment, Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
6
|
Milrad Y, Mosebach L, Buchert F. Regulation of Microalgal Photosynthetic Electron Transfer. PLANTS (BASEL, SWITZERLAND) 2024; 13:2103. [PMID: 39124221 PMCID: PMC11314055 DOI: 10.3390/plants13152103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
The global ecosystem relies on the metabolism of photosynthetic organisms, featuring the ability to harness light as an energy source. The most successful type of photosynthesis utilizes a virtually inexhaustible electron pool from water, but the driver of this oxidation, sunlight, varies on time and intensity scales of several orders of magnitude. Such rapid and steep changes in energy availability are potentially devastating for biological systems. To enable a safe and efficient light-harnessing process, photosynthetic organisms tune their light capturing, the redox connections between core complexes and auxiliary electron mediators, ion passages across the membrane, and functional coupling of energy transducing organelles. Here, microalgal species are the most diverse group, featuring both unique environmental adjustment strategies and ubiquitous protective mechanisms. In this review, we explore a selection of regulatory processes of the microalgal photosynthetic apparatus supporting smooth electron flow in variable environments.
Collapse
Affiliation(s)
- Yuval Milrad
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Laura Mosebach
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| | - Felix Buchert
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany
| |
Collapse
|
7
|
Reed EK, Smith KA. Using our understanding of interactions between helminth metabolism and host immunity to target worm survival. Trends Parasitol 2024; 40:549-561. [PMID: 38853079 DOI: 10.1016/j.pt.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 06/11/2024]
Abstract
Helminths can adapt to environmental conditions in the host, utilising anaerobic processes like fermentation and malate dismutation to produce energy from carbohydrate. Although targeting carbohydrate metabolism is an established therapeutic strategy to combat helminth infection, questions remain over the metabolic pathways they employ as adults to survive and evade host immunity. Helminths also use amino acid, polyunsaturated fatty acid (PUFA), and cholesterol metabolism, a possible strategy favouring the production of immunomodulatory compounds that may influence survival in the host. Here, we discuss the significance of these differing metabolic pathways and whether targeting of helminth metabolic pathways may allow for the development of novel anthelmintics.
Collapse
Affiliation(s)
- Ella K Reed
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | | |
Collapse
|
8
|
Rodríguez-Bolaños M, Vargas-Romero G, Jaguer-García G, Aguilar-Gonzalez ZI, Lagos-Romero V, Miranda-Astudillo HV. Antares I: a Modular Photobioreactor Suitable for Photosynthesis and Bioenergetics Research. Appl Biochem Biotechnol 2024; 196:2176-2195. [PMID: 37486539 PMCID: PMC11035454 DOI: 10.1007/s12010-023-04629-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2023] [Indexed: 07/25/2023]
Abstract
Oxygenic photosynthesis is responsible for most of the fixation of atmospheric CO2. The microalgal community can transport atmospheric carbon into biological cycles in which no additional CO2 is created. This represents a resource to confront the actual climate change crisis. These organisms have evolved to adapt to several environments and different spectral distribution of light that may strongly influence their metabolism. Therefore, there is a need for development of photobioreactors specialized in addressing spectral optimization. Here, a multi-scale modular photobioreactor made from standard glass materials, ad hoc light circuits, and easily accessible, small commercial devices is described. The system is suitable to manage the principal culture variables of research in bioenergetics and photosynthesis. Its performance was tested by growing four evolutionary-distant microalgal species with different endosymbiotic scenarios: Chlamydomonas reinhardtii (Archaeplastida, green primary plastid), Polytomella parva (Archaeplastida, colorless plastid), Euglena gracilis (Discoba, green secondary plastid), and Phaeodactylum tricornutum (Stramenophiles, red secondary plastid). Our results show an improvement of biomass production, as compared to the traditional flask system. The modulation of the incident light spectra allowed us to observe a far-red adaptation in Euglena gracilis with a difference on paramylon production, and it also significantly increased the maximal cell density of the diatom species under green light. Together, these confirm that for photobioreactors with artificial light, manipulation of the light spectrum is a critical parameter for controlling the optimal performance, depending on the downstream goals.
Collapse
Affiliation(s)
- Mónica Rodríguez-Bolaños
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gloria Vargas-Romero
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Girian Jaguer-García
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Zhaida I Aguilar-Gonzalez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Verónica Lagos-Romero
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Héctor V Miranda-Astudillo
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
9
|
Sun X, LaVoie M, Lefebvre PA, Gallaher SD, Glaesener AG, Strenkert D, Mehta R, Merchant SS, Silflow CD. Mutation of negative regulatory gene CEHC1 encoding an FBXO3 protein results in normoxic expression of HYDA genes in Chlamydomonas reinhardtii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586359. [PMID: 38586028 PMCID: PMC10996464 DOI: 10.1101/2024.03.22.586359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Oxygen is known to prevent hydrogen production in Chlamydomonas, both by inhibiting the hydrogenase enzyme and by preventing the accumulation of HYDA-encoding transcripts. We developed a screen for mutants showing constitutive accumulation of HYDA1 transcripts in the presence of oxygen. A reporter gene required for ciliary motility, placed under the control of the HYDA1 promoter, conferred motility only in hypoxic conditions. By selecting for mutants able to swim even in the presence of oxygen we obtained strains that express the reporter gene constitutively. One mutant identified a gene encoding an F-box only protein 3 (FBXO3), known to participate in ubiquitylation and proteasomal degradation pathways in other eukaryotes. Transcriptome profiles revealed that the mutation, termed cehc1-1 , leads to constitutive expression of HYDA1 and other genes regulated by hypoxia, and of many genes known to be targets of CRR1, a transcription factor in the nutritional copper signaling pathway. CRR1 was required for the constitutive expression of the HYDA1 reporter gene in cehc1-1 mutants. The CRR1 protein, which is normally degraded in Cu-supplemented cells, was stabilized in cehc1-1 cells, supporting the conclusion that CEHC1 acts to facilitate the degradation of CRR1. Our results reveal a novel negative regulator in the CRR1 pathway and possibly other pathways leading to complex metabolic changes associated with response to hypoxia.
Collapse
|
10
|
Akange ET, Aende AA, Rastegari H, Odeyemi OA, Kasan NA. Swinging between the beneficial and harmful microbial community in biofloc technology: A paradox. Heliyon 2024; 10:e25228. [PMID: 38352782 PMCID: PMC10861956 DOI: 10.1016/j.heliyon.2024.e25228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/28/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
Biofloc Technology (BFT) is proven to be the fulcrum of sustainable recirculating aquaculture system especially under zero water discharge condition. The efficiency of BFT system is reinforced by an unswerving microbial community in the system. Several researchers have made copious reports on the microorganisms in BFT and identified heterotrophic bacteria predominant in the microbial composition. A summary of these researches considers these microorganisms playing the role of chemo-photosynthetic autotrophs, organic detoxifiers, probiotic, decomposers/bioflocculants, bio-leachers and pathogens. Although these functional roles are well identified, the reports have failed to sufficiently illustrate the borderline at which these microbial communities fail to serve their beneficial roles in BFT system. This review paper firstly presents a snapshot of some indispensable water quality conditions and zootechnical variables aided by the microbial community in floc as well as the amphibolic process that synthesizes nutrient from the organic deposit in BFT. Furthermore, information on the microbial community in BFT is evaluated to have Bacillus sp., Lecane sp. and Pseudomonas sp. serving all-encompassing role in BFT while Vibrio sp. and Enterobacter sp. are pathogenic under unsuitable water quality conditions. Functional characterisation of the commonly reported microorganisms in BFT categorised 21.95 % as most critical, whose abundance indicates an efficient BFT.
Collapse
Affiliation(s)
- Edward Terhemen Akange
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
- Department of Fisheries and Aquaculture, Joseph Sarwuan Tarka University (formerly, Federal University of Agriculture), Makurdi, P.M.B.2373, Benue State, Nigeria
| | - Athanasius Aondohemen Aende
- Department of Fisheries and Aquaculture, Joseph Sarwuan Tarka University (formerly, Federal University of Agriculture), Makurdi, P.M.B.2373, Benue State, Nigeria
| | - Hajar Rastegari
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Olumide A. Odeyemi
- Office of Research Services, Research Division, University of Tasmania, Launceston, Australia
| | - Nor Azman Kasan
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
11
|
Wu X, Tong Y, Li T, Guo J, Liu W, Mo J. Metabolomic Response of Thalassiosira weissflogii to Erythromycin Stress: Detoxification Systems, Steroidal Metabolites, and Energy Metabolism. PLANTS (BASEL, SWITZERLAND) 2024; 13:354. [PMID: 38337887 PMCID: PMC10856835 DOI: 10.3390/plants13030354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 02/12/2024]
Abstract
Erythromycin, a macrolide antibiotic, is a prioritized pollutant that poses a high risk to environmental health. It has been detected in different environmental matrices and can cause undesired effects in aquatic organisms, particularly freshwater algae, which are primary producers. However, the impact of erythromycin on marine algae remains largely unexplored. Erythromycin has been reported to induce hormetic effects in the marine diatom Thalassiosira weissflogii (T. weissflogii). These effects are associated with the molecular pathways and biological processes of ribosome assembly, protein translation, photosynthesis, and oxidative stress. However, the alterations in the global gene expression have yet to be validated at the metabolic level. The present study used non-targeted metabolomic analysis to reveal the altered metabolic profiles of T. weissflogii under erythromycin stress. The results showed that the increased cell density was possibly attributed to the accumulation of steroidal compounds with potential hormonic action at the metabolic level. Additionally, slight increases in the mitochondrial membrane potential (MMP) and viable cells were observed in the treatment of 0.001 mg/L of erythromycin (an environmentally realistic level). Contrarily, the 0.75 and 2.5 mg/L erythromycin treatments (corresponding to EC20 and EC50, respectively) showed decreases in the MMP, cell density, and viable algal cells, which were associated with modified metabolic pathways involving ATP-binding cassette (ABC) transporters, the metabolism of hydrocarbons and lipids, thiamine metabolism, and the metabolism of porphyrin and chlorophyll. These findings suggest that metabolomic analysis, as a complement to the measurement of apical endpoints, could provide novel insights into the molecular mechanisms of hormesis induced by antibiotic agents in algae.
Collapse
Affiliation(s)
- Xintong Wu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China (W.L.)
| | - Yongqi Tong
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China (W.L.)
| | - Tong Li
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China (W.L.)
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi’an 710127, China;
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China (W.L.)
| | - Jiezhang Mo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China (W.L.)
| |
Collapse
|
12
|
Alavi G, Engelbrecht V, Hemschemeier A, Happe T. The Alga Uronema belkae Has Two Structural Types of [FeFe]-Hydrogenases with Different Biochemical Properties. Int J Mol Sci 2023; 24:17311. [PMID: 38139142 PMCID: PMC10744039 DOI: 10.3390/ijms242417311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Several species of microalgae can convert light energy into molecular hydrogen (H2) by employing enzymes of early phylogenetic origin, [FeFe]-hydrogenases, coupled to the photosynthetic electron transport chain. Bacterial [FeFe]-hydrogenases consist of a conserved domain that harbors the active site cofactor, the H-domain, and an additional domain that binds electron-conducting FeS clusters, the F-domain. In contrast, most algal hydrogenases characterized so far have a structurally reduced, so-termed M1-type architecture, which consists only of the H-domain that interacts directly with photosynthetic ferredoxin PetF as an electron donor. To date, only a few algal species are known to contain bacterial-type [FeFe]-hydrogenases, and no M1-type enzymes have been identified in these species. Here, we show that the chlorophycean alga Uronema belkae possesses both bacterial-type and algal-type [FeFe]-hydrogenases. Both hydrogenase genes are transcribed, and the cells produce H2 under hypoxic conditions. The biochemical analyses show that the two enzymes show features typical for each of the two [FeFe]-hydrogenase types. Most notable in the physiological context is that the bacterial-type hydrogenase does not interact with PetF proteins, suggesting that the two enzymes are integrated differently into the alga's metabolism.
Collapse
Affiliation(s)
| | | | - Anja Hemschemeier
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr University Bochum, 44801 Bochum, Germany; (G.A.); (V.E.)
| | - Thomas Happe
- Faculty of Biology and Biotechnology, Photobiotechnology, Ruhr University Bochum, 44801 Bochum, Germany; (G.A.); (V.E.)
| |
Collapse
|
13
|
Nakazawa M, Inui H. Understanding wax ester synthesis in Euglena gracilis: Insights into mitochondrial anaerobic respiration. Protist 2023; 174:125996. [PMID: 38041972 DOI: 10.1016/j.protis.2023.125996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/31/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023]
Abstract
Euglena gracilis, photosynthetic protist, has a unique ability to generate wax esters in the absence of oxygen, employing a distinctive fatty acid synthesis mechanism. Through comprehensive inhibitor assays and gene-silencing techniques, our research clearly emphasized the indispensable role of the mitochondrial anaerobic respiratory chain in this biosynthesis. We identified acyl-CoA dehydrogenase, electron transfer flavoprotein (ETF), and rhodoquinone (RQ) as central molecular components in the pathway. These findings strongly indicated a potential reversal of beta-oxidation occurring within mitochondria for fatty acid production in anaerobic conditions. Furthermore, our analysis revealed the pivotal function of nicotinamide nucleotide transhydrogenase (NNT) in efficiently managing the NADPH/NAD+ conversion essential for sustaining anaerobic metabolism. This review outlines our key findings and provides a comprehensive understanding of the molecular mechanisms that enable E. gracilis to produce wax ester anaerobically.
Collapse
Affiliation(s)
- Masami Nakazawa
- Department of Applied Biological Chemistry, Faculty of Agriculture, Osaka Metropolitan University, Sakai, Osaka, Japan.
| | - Hiroshi Inui
- Department of Applied Biological Chemistry, Faculty of Agriculture, Osaka Metropolitan University, Sakai, Osaka, Japan; Department of Health and Nutrition, Otemae University, Osaka, Japan
| |
Collapse
|
14
|
Monjot A, Bronner G, Courtine D, Cruaud C, Da Silva C, Aury JM, Gavory F, Moné A, Vellet A, Wawrzyniak I, Colombet J, Billard H, Debroas D, Lepère C. Functional diversity of microbial eukaryotes in a meromictic lake: Coupling between metatranscriptomic and a trait-based approach. Environ Microbiol 2023; 25:3406-3422. [PMID: 37916456 DOI: 10.1111/1462-2920.16531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/19/2023] [Indexed: 11/03/2023]
Abstract
The advent of high-throughput sequencing has led to the discovery of a considerable diversity of microbial eukaryotes in aquatic ecosystems, nevertheless, their function and contribution to the trophic food web functioning remain poorly characterized especially in freshwater ecosystems. Based on metabarcoding data obtained from a meromictic lake ecosystem (Pavin, France), we performed a morpho-physio-phenological traits-based approach to infer functional groups of microbial eukaryotes. Metatranscriptomic data were also analysed to assess the metabolic potential of these groups across the diel cycle, size fraction, sampling depth, and periods. Our analysis highlights a huge microbial eukaryotic diversity in the monimolimnion characterized by numerous saprotrophs expressing transcripts related to sulfur and nitrate metabolism as well as dissolved and particulate organic matter degradation. We also describe strong seasonal variations of microbial eukaryotes in the mixolimnion, especially for parasites and mixoplankton. It appears that the water mixing (occurring during spring and autumn) which benefits photosynthetic host communities also promotes parasitic fungi dissemination and over-expression of genes involved in the zoospore phototaxis and stage transition in the parasitic cycle. Mixoplanktonic haptophytes over-expressing photosynthesis-, endocytosis- and phagosome-linked genes under nutrient limitation also suggest that phagotrophy may provide them an advantage over non-phagotrophic phytoplankton.
Collapse
Affiliation(s)
- Arthur Monjot
- CNRS, Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Gisèle Bronner
- CNRS, Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Damien Courtine
- CNRS, Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Corinne Cruaud
- Genoscope, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique (CEA), Université Paris-Saclay, Evry, France
| | - Corinne Da Silva
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Frederick Gavory
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Anne Moné
- CNRS, Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Agnès Vellet
- CNRS, Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Ivan Wawrzyniak
- CNRS, Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Jonathan Colombet
- CNRS, Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Hermine Billard
- CNRS, Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Didier Debroas
- CNRS, Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Cécile Lepère
- CNRS, Laboratoire Microorganismes: Génome et Environnement, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
15
|
Gain G, Berne N, Feller T, Godaux D, Cenci U, Cardol P. Induction of photosynthesis under anoxic condition in Thalassiosira pseudonana and Euglena gracilis: interactions between fermentation and photosynthesis. FRONTIERS IN PLANT SCIENCE 2023; 14:1186926. [PMID: 37560033 PMCID: PMC10407231 DOI: 10.3389/fpls.2023.1186926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/28/2023] [Indexed: 08/11/2023]
Abstract
INTRODUCTION In their natural environment, microalgae can be transiently exposed to hypoxic or anoxic environments. Whereas fermentative pathways and their interactions with photosynthesis are relatively well characterized in the green alga model Chlamydomonas reinhardtii, little information is available in other groups of photosynthetic micro-eukaryotes. In C. reinhardtii cyclic electron flow (CEF) around photosystem (PS) I, and light-dependent oxygen-sensitive hydrogenase activity both contribute to restoring photosynthetic linear electron flow (LEF) in anoxic conditions. METHODS Here we analyzed photosynthetic electron transfer after incubation in dark anoxic conditions (up to 24 h) in two secondary microalgae: the marine diatom Thalassiosira pseudonana and the excavate Euglena gracilis. RESULTS Both species showed sustained abilities to prevent over-reduction of photosynthetic electron carriers and to restore LEF. A high and transient CEF around PSI was also observed specifically in anoxic conditions at light onset in both species. In contrast, at variance with C. reinhardtii, no sustained hydrogenase activity was detected in anoxic conditions in both species. DISCUSSION Altogether our results suggest that another fermentative pathway might contribute, along with CEF around PSI, to restore photosynthetic activity in anoxic conditions in E. gracilis and T. pseudonana. We discuss the possible implication of the dissimilatory nitrate reduction to ammonium (DNRA) in T. pseudonana and the wax ester fermentation in E. gracilis.
Collapse
Affiliation(s)
- Gwenaëlle Gain
- InBioS – PhytoSYSTEMS, Laboratoire de Génétique et Physiologie des Microalgues, ULiège, Liège, Belgium
| | - Nicolas Berne
- InBioS – PhytoSYSTEMS, Laboratoire de Génétique et Physiologie des Microalgues, ULiège, Liège, Belgium
| | - Tom Feller
- InBioS – PhytoSYSTEMS, Laboratoire de Génétique et Physiologie des Microalgues, ULiège, Liège, Belgium
| | - Damien Godaux
- InBioS – PhytoSYSTEMS, Laboratoire de Génétique et Physiologie des Microalgues, ULiège, Liège, Belgium
| | - Ugo Cenci
- Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, CNRS, UMR8576 – UGSF, Lille, France
| | - Pierre Cardol
- InBioS – PhytoSYSTEMS, Laboratoire de Génétique et Physiologie des Microalgues, ULiège, Liège, Belgium
| |
Collapse
|
16
|
Pang X, Nawrocki WJ, Cardol P, Zheng M, Jiang J, Fang Y, Yang W, Croce R, Tian L. Weak acids produced during anaerobic respiration suppress both photosynthesis and aerobic respiration. Nat Commun 2023; 14:4207. [PMID: 37452043 PMCID: PMC10349137 DOI: 10.1038/s41467-023-39898-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/02/2023] [Indexed: 07/18/2023] Open
Abstract
While photosynthesis transforms sunlight energy into sugar, aerobic and anaerobic respiration (fermentation) catabolizes sugars to fuel cellular activities. These processes take place within one cell across several compartments, however it remains largely unexplored how they interact with one another. Here we report that the weak acids produced during fermentation down-regulate both photosynthesis and aerobic respiration. This effect is mechanistically explained with an "ion trapping" model, in which the lipid bilayer selectively traps protons that effectively acidify subcellular compartments with smaller buffer capacities - such as the thylakoid lumen. Physiologically, we propose that under certain conditions, e.g., dim light at dawn, tuning down the photosynthetic light reaction could mitigate the pressure on its electron transport chains, while suppression of respiration could accelerate the net oxygen evolution, thus speeding up the recovery from hypoxia. Since we show that this effect is conserved across photosynthetic phyla, these results indicate that fermentation metabolites exert widespread feedback control over photosynthesis and aerobic respiration. This likely allows algae to better cope with changing environmental conditions.
Collapse
Affiliation(s)
- Xiaojie Pang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Wojciech J Nawrocki
- Department of Physics and Astronomy and LaserLab Amsterdam Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, UMR7141, Centre National de la Recherche Scientifique, Sorbonne Université, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005, Paris, France
| | - Pierre Cardol
- Génétique et Physiologie des Microalgues, InBioS/Phytosystems, Institut de Botanique, Université de Liège, B22, 4000, Liège, Belgium
| | - Mengyuan Zheng
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jingjing Jiang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
| | - Yuan Fang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Wenqiang Yang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Roberta Croce
- Department of Physics and Astronomy and LaserLab Amsterdam Faculty of Science, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Lijin Tian
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, 100093, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
17
|
Mueller B, Brocke HJ, Rohwer FL, Dittmar T, Huisman J, Vermeij MJA, de Goeij JM. Nocturnal dissolved organic matter release by turf algae and its role in the microbialization of reefs. Funct Ecol 2022; 36:2104-2118. [PMID: 36247100 PMCID: PMC9543674 DOI: 10.1111/1365-2435.14101] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 04/29/2022] [Indexed: 11/27/2022]
Abstract
The increased release of dissolved organic matter (DOM) by algae has been associated with the fast but inefficient growth of opportunistic microbial pathogens and the ongoing degradation of coral reefs. Turf algae (consortia of microalgae and macroalgae commonly including cyanobacteria) dominate benthic communities on many reefs worldwide. Opposite to other reef algae that predominantly release DOM during the day, turf algae containing cyanobacteria may additionally release large amounts of DOM at night. However, this night-DOM release and its potential contribution to the microbialization of reefs remains to be investigated.We first tested the occurrence of hypoxic conditions at the turf algae-water interface, as a lack of oxygen will facilitate the production and release of fermentation intermediates as night-time DOM. Second, the dissolved organic carbon (DOC) release by turf algae was quantified during day time and nighttime, and the quality of day and night exudates as food for bacterioplankton was tested. Finally, DOC release rates of turf algae were combined with estimates of DOC release based on benthic community composition in 1973 and 2013 to explore how changes in benthic community composition affected the contribution of night-DOC to the reef-wide DOC production.A rapid shift from supersaturated to hypoxic conditions at the turf algae-water interface occurred immediately after the onset of darkness, resulting in night-DOC release rates similar to those during daytime. Bioassays revealed major differences in the quality between day and night exudates: Night-DOC was utilized by bacterioplankton two times faster than day-DOC, but yielded a four times lower growth efficiency. Changes in benthic community composition were estimated to have resulted in a doubling of DOC release since 1973, due to an increasing abundance of benthic cyanobacterial mats (BCMs), with night-DOC release by BCMs and turf algae accounting for >50% of the total release over a diurnal cycle.Night-DOC released by BCMs and turf algae is likely an important driver in the microbialization of reefs by stimulating microbial respiration at the expense of energy and nutrient transfer to higher trophic levels via the microbial loop, thereby threatening the productivity and biodiversity of these unique ecosystems. Read the free Plain Language Summary for this article on the Journal blog.
Collapse
Affiliation(s)
- Benjamin Mueller
- Department for Freshwater and Marine EcologyUniversity of AmsterdamAmsterdamThe Netherlands
- CARMABI FoundationWillemstadCuraçao
- Department of Oceanography and Sea Grant College ProgramCenter for Microbial Oceanography: Research and Education, University of Hawai'i at MānoaHonoluluHawaiiUSA
| | - Hannah J. Brocke
- Max‐Plank Institute for Marine Microbiology (MPI Bremen)BremenGermany
| | - Forest L. Rohwer
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
| | - Thorsten Dittmar
- Institute for Chemistry and Biology of the Marine EnvironmentUniversity of OldenburgOldenburgGermany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB)University of OldenburgOldenburgGermany
| | - Jef Huisman
- Department for Freshwater and Marine EcologyUniversity of AmsterdamAmsterdamThe Netherlands
| | - Mark J. A. Vermeij
- Department for Freshwater and Marine EcologyUniversity of AmsterdamAmsterdamThe Netherlands
- CARMABI FoundationWillemstadCuraçao
| | - Jasper M. de Goeij
- Department for Freshwater and Marine EcologyUniversity of AmsterdamAmsterdamThe Netherlands
- CARMABI FoundationWillemstadCuraçao
| |
Collapse
|
18
|
Swanner ED, Wüstner M, Leung T, Pust J, Fatka M, Lambrecht N, Chmiel HE, Strauss H. Seasonal phytoplankton and geochemical shifts in the subsurface chlorophyll maximum layer of a dimictic ferruginous lake. Microbiologyopen 2022; 11:e1287. [PMID: 35765183 PMCID: PMC9108440 DOI: 10.1002/mbo3.1287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/27/2022] [Indexed: 11/10/2022] Open
Abstract
Subsurface chlorophyll maxima layers (SCML) are ubiquitous features of stratified aquatic systems. Availability of the micronutrient iron is known to influence marine SCML, but iron has not been explored in detail as a factor in the development of freshwater SCML. This study investigates the relationship between dissolved iron and the SCML within the dimictic, ferruginous lake Grosses Heiliges Meer in northern Germany. The occurrence of the SCML under nonferruginous conditions in the spring and ferruginous conditions in the fall are context to explore temporal changes in the phytoplankton community and indicators of primary productivity. Results indicate that despite more abundant chlorophyll in the spring, the SCML sits below a likely primary productivity maximum within the epilimnion, inferred based on colocated dissolved oxygen, δ13 CDIC , and pH maxima. The peak amount of chlorophyll in the SCML is lower in the fall than in the spring, but in the fall the SCML is colocated with elevated dissolved iron concentrations and a local δ13 CDIC maximum. Cyanobacteria and Chlorophyta have elevated abundances within the SCML in the fall. Further investigation of the relationship of iron to primary productivity within ferruginous SCML may help to understand the environmental controls on primary productivity in past ferruginous oceans.
Collapse
Affiliation(s)
| | - Marina Wüstner
- Center for Applied GeoscienceUniversity of TübingenTübingenGermany
| | - Tania Leung
- Department of Geological & Atmospheric SciencesIowa State UniversityAmesIowaUSA
| | - Jürgen Pust
- Naturschutzgebietes Heiliges MeerLandschaftsverband Westfalen‐Lippe (LWL) Museum für NaturkundeReckeGermany
| | - Micah Fatka
- Department of Geological & Atmospheric SciencesIowa State UniversityAmesIowaUSA
| | - Nick Lambrecht
- Department of Geological & Atmospheric SciencesIowa State UniversityAmesIowaUSA
| | - Hannah E. Chmiel
- Environmental Engineering InstituteÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Harald Strauss
- Institute for Geology and PaleontologyUniversity of MünsterMünsterGermany
| |
Collapse
|
19
|
Proteomic analysis of hexahydro-β-acids/hydroxypropyl-β-cyclodextrin inhibit Listeria monocytogenes. Appl Microbiol Biotechnol 2022; 106:755-771. [DOI: 10.1007/s00253-022-11764-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 01/12/2023]
|
20
|
Carvalho VCF, Kessler M, Fradinho JC, Oehmen A, Reis MAM. Achieving nitrogen and phosphorus removal at low C/N ratios without aeration through a novel phototrophic process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 793:148501. [PMID: 34171805 DOI: 10.1016/j.scitotenv.2021.148501] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/12/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Conventional wastewater treatment technologies for biological nutrient removal (BNR) are highly dependent on aeration for oxygen supply, which represents a major operational cost of the process. Recently, phototrophic enhanced biological phosphorus removal (photo-EBPR) has been suggested as an alternative system for phosphorus removal, based on a consortium of photosynthetic microorganisms and chemotrophic bacteria, eliminating the need for costly aeration. However, wastewater treatment plants must couple nitrogen and phosphorus removal to achieve discharge limits. For this reason, a new microalgae-bacterial based system for phosphorus and nitrogen removal is proposed in this work. The photo-BNR system studied here consists of a sequencing batch reactor operated with dark anaerobic, light aerobic, dark anoxic and idle periods, to allow both N and P removal. Results of the study show that the photo-BNR system was able to remove 100% of the 40 mg N/L of ammonia fed to the reactor and 94 ± 3% of the total nitrogen (Influent COD:N ratio of 300:40, similar to domestic wastewater). Moreover, an average of 25 ± 9.2 mg P/L was simultaneously removed in the photo-BNR tests, representing the P removal capacity of this system, which exceeds the level of P removal required from typical domestic wastewater. Full ammonia removal was achieved during the light phase, with 67 ± 5% of this ammonia being assimilated by the microbial culture and the remaining 33 ± 5% being converted into nitrate. The assimilated P corresponded to 2.8 ± 0.23 mg P/L, which only represented, approximately, 1/9 of the P removal capacity of the system. Half of the nitrified ammonia was subsequently denitrified during the dark anoxic phase (50 ± 24%). Overall, the photo-BNR system represents the first treatment alternative for N and P from domestic wastewater with no need of mechanical aeration or supplemental carbon addition, representing an alternative low-energy technology of interest.
Collapse
Affiliation(s)
- V C F Carvalho
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - M Kessler
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - J C Fradinho
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - A Oehmen
- School of Chemical Engineering, University of Queensland, Brisbane, QLD 4072, Australia
| | - M A M Reis
- UCIBIO-REQUIMTE, Department of Chemistry, Faculty of Sciences and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
21
|
Muñoz-Gómez SA, Kreutz M, Hess S. A microbial eukaryote with a unique combination of purple bacteria and green algae as endosymbionts. SCIENCE ADVANCES 2021; 7:eabg4102. [PMID: 34117067 PMCID: PMC8195481 DOI: 10.1126/sciadv.abg4102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/27/2021] [Indexed: 05/08/2023]
Abstract
Oxygenic photosynthesizers (cyanobacteria and eukaryotic algae) have repeatedly become endosymbionts throughout evolution. In contrast, anoxygenic photosynthesizers (e.g., purple bacteria) are exceedingly rare as intracellular symbionts. Here, we report on the morphology, ultrastructure, lifestyle, and metagenome of the only "purple-green" eukaryote known. The ciliate Pseudoblepharisma tenue harbors green algae and hundreds of genetically reduced purple bacteria. The latter represent a new candidate species of the Chromatiaceae that lost known genes for sulfur dissimilation. The tripartite consortium is physiologically complex because of the versatile energy metabolism of each partner but appears to be ecologically specialized as it prefers hypoxic sediments. The emergent niche of this complex symbiosis is predicted to be a partial overlap of each partners' niches and may be largely defined by anoxygenic photosynthesis and possibly phagotrophy. This purple-green ciliate thus represents an extraordinary example of how symbiosis merges disparate physiologies and allows emergent consortia to create novel ecological niches.
Collapse
Affiliation(s)
- Sergio A Muñoz-Gómez
- Institute for Zoology, Cologne Biocenter, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany.
- Center for Mechanism of Evolution, The Biodesign Institute, School of Life Sciences, Arizona State University, 727 E. Tyler St., Tempe, AZ 85281-5001, USA
| | - Martin Kreutz
- Private Laboratory, Am See 27, 78465 Constance, Germany
| | - Sebastian Hess
- Institute for Zoology, Cologne Biocenter, University of Cologne, Zülpicher Str. 47b, 50674 Cologne, Germany.
| |
Collapse
|
22
|
Sánchez-Contreras MI, Morales-Arrieta S, Okoye PU, Guillén-Garcés RA, Sebastian PJ, Arias DM. Recycling industrial wastewater for improved carbohydrate-rich biomass production in a semi-continuous photobioreactor: Effect of hydraulic retention time. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 284:112065. [PMID: 33561761 DOI: 10.1016/j.jenvman.2021.112065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/02/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
This study aimed to investigate a mixed microalgae culture's capacity to simultaneously remove nutrients and organic matter from industrial effluents while producing carbohydrate-rich biomass. A culture initially dominated by filamentous cyanobacteria Geitlerinema sp. was inoculated in a lab-scale stirred tank photobioreactor, operating at 10, 8, and 6 days hydraulic retention time (HRT). The results show that different HRT led to different inorganic carbon profiles and N:P ratios in the culture, influencing microbial changes, and carbohydrate content. Hence, higher N-NH4+ removal efficiencies were obtained at HRT of 10 d and decreased with decreasing HRT. Whereas, complete depletion of P-PO43- was achieved only at HRT of 8 d and 6 d. Also, the highest COD removal efficiency (60%) was achieved at 6 d of HRT. The maximum accumulation of carbohydrates was achieved at HRT of 8 d, which presented an N:P ratio of 22:1 and carbon availability, recording a constant carbohydrate content of 57% without any additional carbon source. Furthermore, this operational condition reached the best biomass production of 0.033 g L-1d-1 of easy-settling cyanobacteria dominated culture. According to the results, this process presents an alternative to recycling industrial effluents and, at the same time, grow valuable biomass, closing a loop for sustainable economy.
Collapse
Affiliation(s)
- Ma Isabel Sánchez-Contreras
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos. CP, 62580, Mexico; Universidad Politécnica del Estado de Morelos, Boulevard Cuauhnáhuac No. 566 Col, Lomas del Texcal, Jiutepec, Morelos. CP, 62550, Mexico
| | - Sandra Morales-Arrieta
- Universidad Politécnica del Estado de Morelos, Boulevard Cuauhnáhuac No. 566 Col, Lomas del Texcal, Jiutepec, Morelos. CP, 62550, Mexico
| | - Patrick U Okoye
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos. CP, 62580, Mexico
| | - Rosa Angélica Guillén-Garcés
- Universidad Politécnica del Estado de Morelos, Boulevard Cuauhnáhuac No. 566 Col, Lomas del Texcal, Jiutepec, Morelos. CP, 62550, Mexico
| | - P J Sebastian
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos. CP, 62580, Mexico
| | - Dulce María Arias
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos. CP, 62580, Mexico.
| |
Collapse
|
23
|
Occurrence, Evolution and Specificities of Iron-Sulfur Proteins and Maturation Factors in Chloroplasts from Algae. Int J Mol Sci 2021; 22:ijms22063175. [PMID: 33804694 PMCID: PMC8003979 DOI: 10.3390/ijms22063175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/25/2021] [Accepted: 03/17/2021] [Indexed: 01/08/2023] Open
Abstract
Iron-containing proteins, including iron-sulfur (Fe-S) proteins, are essential for numerous electron transfer and metabolic reactions. They are present in most subcellular compartments. In plastids, in addition to sustaining the linear and cyclic photosynthetic electron transfer chains, Fe-S proteins participate in carbon, nitrogen, and sulfur assimilation, tetrapyrrole and isoprenoid metabolism, and lipoic acid and thiamine synthesis. The synthesis of Fe-S clusters, their trafficking, and their insertion into chloroplastic proteins necessitate the so-called sulfur mobilization (SUF) protein machinery. In the first part, we describe the molecular mechanisms that allow Fe-S cluster synthesis and insertion into acceptor proteins by the SUF machinery and analyze the occurrence of the SUF components in microalgae, focusing in particular on the green alga Chlamydomonas reinhardtii. In the second part, we describe chloroplastic Fe-S protein-dependent pathways that are specific to Chlamydomonas or for which Chlamydomonas presents specificities compared to terrestrial plants, putting notable emphasis on the contribution of Fe-S proteins to chlorophyll synthesis in the dark and to the fermentative metabolism. The occurrence and evolutionary conservation of these enzymes and pathways have been analyzed in all supergroups of microalgae performing oxygenic photosynthesis.
Collapse
|
24
|
van Lis R, Couté Y, Brugière S, Tourasse NJ, Laurent B, Nitschke W, Vallon O, Atteia A. Phylogenetic and functional diversity of aldehyde-alcohol dehydrogenases in microalgae. PLANT MOLECULAR BIOLOGY 2021; 105:497-511. [PMID: 33415608 DOI: 10.1007/s11103-020-01105-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
The study shows the biochemical and enzymatic divergence between the two aldehyde-alcohol dehydrogenases of the alga Polytomella sp., shedding light on novel aspects of the enzyme evolution amid unicellular eukaryotes. Aldehyde-alcohol dehydrogenases (ADHEs) are large metalloenzymes that typically perform the two-step reduction of acetyl-CoA into ethanol. These enzymes consist of an N-terminal acetylating aldehyde dehydrogenase domain (ALDH) and a C-terminal alcohol dehydrogenase (ADH) domain. ADHEs are present in various bacterial phyla as well as in some unicellular eukaryotes. Here we focus on ADHEs in microalgae, a diverse and polyphyletic group of plastid-bearing unicellular eukaryotes. Genome survey shows the uneven distribution of the ADHE gene among free-living algae, and the presence of two distinct genes in various species. We show that the non-photosynthetic Chlorophyte alga Polytomella sp. SAG 198.80 harbors two genes for ADHE-like enzymes with divergent C-terminal ADH domains. Immunoblots indicate that both ADHEs accumulate in Polytomella cells growing aerobically on acetate or ethanol. ADHE1 of ~ 105-kDa is found in particulate fractions, whereas ADHE2 of ~ 95-kDa is mostly soluble. The study of the recombinant enzymes revealed that ADHE1 has both the ALDH and ADH activities, while ADHE2 has only the ALDH activity. Phylogeny shows that the divergence occurred close to the root of the Polytomella genus within a clade formed by the majority of the Chlorophyte ADHE sequences, next to the cyanobacterial clade. The potential diversification of function in Polytomella spp. unveiled here likely took place after the loss of photosynthesis. Overall, our study provides a glimpse at the complex evolutionary history of the ADHE in microalgae which includes (i) acquisition via different gene donors, (ii) gene duplication and (iii) independent evolution of one of the two enzymatic domains.
Collapse
Affiliation(s)
- Robert van Lis
- Aix Marseille Université, CNRS, BIP UMR 7281, Marseille, France
- LBE, Univ Montpellier, INRAE, Narbonne, France
| | - Yohann Couté
- Univ Grenoble Alpes, CEA, INSERM, IRIG, Grenoble, BGE, France
| | - Sabine Brugière
- Univ Grenoble Alpes, CEA, INSERM, IRIG, Grenoble, BGE, France
| | - Nicolas J Tourasse
- UMR7141 CNRS-Sorbonne Université, Institut de Biologie Physico-Chimique, Paris, France
| | - Benoist Laurent
- FR 550 CNRS, Institut de Biologie Physico-Chimique, Paris, France
| | | | - Olivier Vallon
- UMR7141 CNRS-Sorbonne Université, Institut de Biologie Physico-Chimique, Paris, France
| | - Ariane Atteia
- Aix Marseille Université, CNRS, BIP UMR 7281, Marseille, France.
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France.
- MARBEC, Station Ifremer, Avenue Jean Monnet, Sète, France.
| |
Collapse
|
25
|
Gawryluk RMR, Stairs CW. Diversity of electron transport chains in anaerobic protists. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148334. [PMID: 33159845 DOI: 10.1016/j.bbabio.2020.148334] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/21/2020] [Accepted: 10/30/2020] [Indexed: 01/06/2023]
Abstract
Eukaryotic microbes (protists) that occupy low-oxygen environments often have drastically different mitochondrial metabolism compared to their aerobic relatives. A common theme among many anaerobic protists is the serial loss of components of the electron transport chain (ETC). Here, we discuss the diversity of the ETC across the tree of eukaryotes and review hypotheses for how ETCs are modified, and ultimately lost, in protists. We find that while protists have converged to some of the same metabolism as anaerobic animals, there are clear protist-specific strategies to thrive without oxygen.
Collapse
Affiliation(s)
- Ryan M R Gawryluk
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Courtney W Stairs
- Department of Biology, Lund University, Sölvegatan 35, 223 62 Lund, Sweden; Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123 Uppsala, Sweden.
| |
Collapse
|
26
|
Puzanskiy RK, Romanyuk DA, Kirpichnikova AA, Shishova MF. Alteration in the Expression of Genes Encoding Primary Metabolism Enzymes and Plastid Transporters during the Culture Growth of Chlamydomonas reinhardtii. Mol Biol 2020. [DOI: 10.1134/s0026893320040147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
|
28
|
Huang J, Li JJ. Multiple Dynamics in Tumor Microenvironment Under Radiotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1263:175-202. [PMID: 32588328 DOI: 10.1007/978-3-030-44518-8_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The tumor microenvironment (TME) is an evolutionally low-level and embryonically featured tissue comprising heterogenic populations of malignant and stromal cells as well as noncellular components. Under radiotherapy (RT), the major modality for the treatment of malignant diseases [1], TME shows an adaptive response in multiple aspects that affect the efficacy of RT. With the potential clinical benefits, interests in RT combined with immunotherapy (IT) are intensified with a large scale of clinical trials underway for an array of cancer types. A better understanding of the multiple molecular aspects, especially the cross talks of RT-mediated energy reprogramming and immunoregulation in the irradiated TME (ITME), will be necessary for further enhancing the benefit of RT-IT modality. Coming studies should further reveal more mechanistic insights of radiation-induced instant or permanent consequence in tumor and stromal cells. Results from these studies will help to identify critical molecular pathways including cancer stem cell repopulation, metabolic rewiring, and specific communication between radioresistant cancer cells and the infiltrated immune active lymphocytes. In this chapter, we will focus on the following aspects: radiation-repopulated cancer stem cells (CSCs), hypoxia and re-oxygenation, reprogramming metabolism, and radiation-induced immune regulation, in which we summarize the current literature to illustrate an integrated image of the ITME. We hope that the contents in this chapter will be informative for physicians and translational researchers in cancer radiotherapy or immunotherapy.
Collapse
Affiliation(s)
- Jie Huang
- Department of Radiation Oncology, University of California Davis, Sacramento, CA, USA
| | - Jian Jian Li
- Department of Radiation Oncology, University of California Davis, Sacramento, CA, USA. .,NCI-Designated Comprehensive Cancer Center, University of California Davis, Sacramento, CA, USA.
| |
Collapse
|
29
|
Petrova EV, Kukarskikh GP, Krendeleva TE, Antal TK. The Mechanisms and Role of Photosynthetic Hydrogen Production by Green Microalgae. Microbiology (Reading) 2020. [DOI: 10.1134/s0026261720030169] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
30
|
Pendyala B, Hanifzadeh M, Abel GA, Viamajala S, Varanasi S. Production of Organic Acids via Autofermentation of Microalgae: A Promising Approach for Sustainable Algal Biorefineries. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b05493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Brahmaiah Pendyala
- Department of Chemical Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| | - MohammadMatin Hanifzadeh
- Department of Chemical Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Godwin Ameh Abel
- Department of Chemical Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Sridhar Viamajala
- Department of Chemical Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Sasidhar Varanasi
- Department of Chemical Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| |
Collapse
|
31
|
Lipids Are the Preferred Substrate of the Protist Naegleria gruberi, Relative of a Human Brain Pathogen. Cell Rep 2019; 25:537-543.e3. [PMID: 30332635 PMCID: PMC6205838 DOI: 10.1016/j.celrep.2018.09.055] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 08/22/2018] [Accepted: 09/16/2018] [Indexed: 11/24/2022] Open
Abstract
Naegleria gruberi is a free-living non-pathogenic amoeboflagellate and relative of Naegleria fowleri, a deadly pathogen causing primary amoebic meningoencephalitis (PAM). A genomic analysis of N. gruberi exists, but physiological evidence for its core energy metabolism or in vivo growth substrates is lacking. Here, we show that N. gruberi trophozoites need oxygen for normal functioning and growth and that they shun both glucose and amino acids as growth substrates. Trophozoite growth depends mainly upon lipid oxidation via a mitochondrial branched respiratory chain, both ends of which require oxygen as final electron acceptor. Growing N. gruberi trophozoites thus have a strictly aerobic energy metabolism with a marked substrate preference for the oxidation of fatty acids. Analyses of N. fowleri genome data and comparison with those of N. gruberi indicate that N. fowleri has the same type of metabolism. Specialization to oxygen-dependent lipid breakdown represents an additional metabolic strategy in protists. Naegleria gruberi is a strict aerobe and needs oxygen for normal functioning and growth Unique among protists, N. gruberi prefers lipids over glucose as an energy source Lipid breakdown proceeds via a branched respiratory chain, both ends using oxygen N. fowleri, the fatal human brain amoeba, is predicted to have the same food preference
Collapse
|
32
|
Gould SB, Garg SG, Handrich M, Nelson-Sathi S, Gruenheit N, Tielens AGM, Martin WF. Adaptation to life on land at high O 2 via transition from ferredoxin-to NADH-dependent redox balance. Proc Biol Sci 2019; 286:20191491. [PMID: 31431166 PMCID: PMC6732389 DOI: 10.1098/rspb.2019.1491] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pyruvate : ferredoxin oxidoreductase (PFO) and iron only hydrogenase ([Fe]-HYD) are common enzymes among eukaryotic microbes that inhabit anaerobic niches. Their function is to maintain redox balance by donating electrons from food oxidation via ferredoxin (Fd) to protons, generating H2 as a waste product. Operating in series, they constitute a soluble electron transport chain of one-electron transfers between FeS clusters. They fulfil the same function—redox balance—served by two electron-transfers in the NADH- and O2-dependent respiratory chains of mitochondria. Although they possess O2-sensitive FeS clusters, PFO, Fd and [Fe]-HYD are also present among numerous algae that produce O2. The evolutionary persistence of these enzymes among eukaryotic aerobes is traditionally explained as adaptation to facultative anaerobic growth. Here, we show that algae express enzymes of anaerobic energy metabolism at ambient O2 levels (21% v/v), Chlamydomonas reinhardtii expresses them with diurnal regulation. High O2 environments arose on Earth only approximately 450 million years ago. Gene presence/absence and gene expression data indicate that during the transition to high O2 environments and terrestrialization, diverse algal lineages retained enzymes of Fd-dependent one-electron-based redox balance, while the land plant and land animal lineages underwent irreversible specialization to redox balance involving the O2-insensitive two-electron carrier NADH.
Collapse
Affiliation(s)
- S B Gould
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - S G Garg
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - M Handrich
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - S Nelson-Sathi
- Interdisciplinary Biology, Computational Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - N Gruenheit
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - A G M Tielens
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - W F Martin
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
33
|
Zimorski V, Mentel M, Tielens AGM, Martin WF. Energy metabolism in anaerobic eukaryotes and Earth's late oxygenation. Free Radic Biol Med 2019; 140:279-294. [PMID: 30935869 PMCID: PMC6856725 DOI: 10.1016/j.freeradbiomed.2019.03.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 01/09/2023]
Abstract
Eukaryotes arose about 1.6 billion years ago, at a time when oxygen levels were still very low on Earth, both in the atmosphere and in the ocean. According to newer geochemical data, oxygen rose to approximately its present atmospheric levels very late in evolution, perhaps as late as the origin of land plants (only about 450 million years ago). It is therefore natural that many lineages of eukaryotes harbor, and use, enzymes for oxygen-independent energy metabolism. This paper provides a concise overview of anaerobic energy metabolism in eukaryotes with a focus on anaerobic energy metabolism in mitochondria. We also address the widespread assumption that oxygen improves the overall energetic state of a cell. While it is true that ATP yield from glucose or amino acids is increased in the presence of oxygen, it is also true that the synthesis of biomass costs thirteen times more energy per cell in the presence of oxygen than in anoxic conditions. This is because in the reaction of cellular biomass with O2, the equilibrium lies very far on the side of CO2. The absence of oxygen offers energetic benefits of the same magnitude as the presence of oxygen. Anaerobic and low oxygen environments are ancient. During evolution, some eukaryotes have specialized to life in permanently oxic environments (life on land), other eukaryotes have remained specialized to low oxygen habitats. We suggest that the Km of mitochondrial cytochrome c oxidase of 0.1-10 μM for O2, which corresponds to about 0.04%-4% (avg. 0.4%) of present atmospheric O2 levels, reflects environmental O2 concentrations that existed at the time that the eukaryotes arose.
Collapse
Affiliation(s)
- Verena Zimorski
- Institute of Molecular Evolution, Heinrich-Heine-University, 40225, Düsseldorf, Germany.
| | - Marek Mentel
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, 851 04, Bratislava, Slovakia.
| | - Aloysius G M Tielens
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center Rotterdam, The Netherlands; Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - William F Martin
- Institute of Molecular Evolution, Heinrich-Heine-University, 40225, Düsseldorf, Germany.
| |
Collapse
|
34
|
Rickaby REM, Eason Hubbard MR. Upper ocean oxygenation, evolution of RuBisCO and the Phanerozoic succession of phytoplankton. Free Radic Biol Med 2019; 140:295-304. [PMID: 31075497 PMCID: PMC6856715 DOI: 10.1016/j.freeradbiomed.2019.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/10/2019] [Accepted: 05/02/2019] [Indexed: 12/13/2022]
Abstract
Evidence is compiled to demonstrate a redox scale within Earth's photosynthesisers that correlates the specificity of their RuBisCO with organismal metabolic tolerance to anoxia, and ecological selection by dissolved O2/CO2 and nutrients. The Form 1B RuBisCO found in the chlorophyte green algae, has a poor selectivity between the two dissolved substrates, O2 and CO2, at the active site. This enzyme appears adapted to lower O2/CO2 ratios, or more "anoxic" conditions and therefore requires additional energetic or nutrient investment in a carbon concentrating mechanism (CCM) to boost the intracellular CO2/O2 ratio and maintain competitive carboxylation rates under increasingly high O2/CO2 conditions in the environment. By contrast the coccolithophores and diatoms evolved containing the more selective Rhodophyte Form 1D RuBisCO, better adapted to a higher O2/CO2 ratio, or more oxic conditions. This Form 1D RuBisCO requires lesser energetic or nutrient investment in a CCM to attain high carboxylation rates under environmentally high O2/CO2 ratios. Such a physiological relationship may underpin the succession of phytoplankton in the Phanerozoic oceans: the coccolithophores and diatoms took over the oceanic realm from the incumbent cyanobacteria and green algae when the upper ocean became persistently oxygenated, alkaline and more oligotrophic. The facultatively anaerobic green algae, able to tolerate the anoxic conditions of the water column and a periodically inundated soil, were better poised to adapt to the fluctuating anoxia associated with periods of submergence and emergence and transition onto the land. The induction of a CCM may exert a natural limit to the improvement of RuBisCO efficiency over Earth history. Rubisco specificity appears to adapt on the timescale of ∼100 Myrs. So persistent elevation of CO2/O2 ratios in the intracellular environment around the enzyme, may induce a relaxation in RuBisCO selectivity for CO2 relative to O2. The most efficient RuBisCO for net carboxylation is likely to be found in CCM-lacking algae that have been exposed to hyperoxic conditions for at least 100 Myrs, such as intertidal brown seaweeds.
Collapse
Affiliation(s)
- Rosalind E M Rickaby
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, UK.
| | - M R Eason Hubbard
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, UK
| |
Collapse
|
35
|
Li W, Morgan-Kiss RM. Influence of Environmental Drivers and Potential Interactions on the Distribution of Microbial Communities From Three Permanently Stratified Antarctic Lakes. Front Microbiol 2019; 10:1067. [PMID: 31156585 PMCID: PMC6530420 DOI: 10.3389/fmicb.2019.01067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 04/29/2019] [Indexed: 12/14/2022] Open
Abstract
The McMurdo Dry Valley (MDV) lakes represent unique habitats in the microbial world. Perennial ice covers protect liquid water columns from either significant allochthonous inputs or seasonal mixing, resulting in centuries of stable biogeochemistry. Extreme environmental conditions including low seasonal photosynthetically active radiation (PAR), near freezing temperatures, and oligotrophy have precluded higher trophic levels from the food webs. Despite these limitations, diverse microbial life flourishes in the stratified water columns, including Archaea, bacteria, fungi, protists, and viruses. While a few recent studies have applied next generation sequencing, a thorough understanding of the MDV lake microbial diversity and community structure is currently lacking. Here we used Illumina MiSeq sequencing of the 16S and 18S rRNA genes combined with a microscopic survey of key eukaryotes to compare the community structure and potential interactions among the bacterial and eukaryal communities within the water columns of Lakes Bonney (east and west lobes, ELB, and WLB, respectively) and Fryxell (FRX). Communities were distinct between the upper, oxic layers and the dark, anoxic waters, particularly among the bacterial communities residing in WLB and FRX. Both eukaryal and bacterial community structure was influenced by different biogeochemical parameters in the oxic and anoxic zones. Bacteria formed complex interaction networks which were lake-specific. Several eukaryotes exhibit potential interactions with bacteria in ELB and WLB, while interactions between these groups in the more productive FRX were relatively rare.
Collapse
Affiliation(s)
- Wei Li
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, United States
| | | |
Collapse
|
36
|
Degli Esposti M, Mentel M, Martin W, Sousa FL. Oxygen Reductases in Alphaproteobacterial Genomes: Physiological Evolution From Low to High Oxygen Environments. Front Microbiol 2019; 10:499. [PMID: 30936856 PMCID: PMC6431628 DOI: 10.3389/fmicb.2019.00499] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/27/2019] [Indexed: 01/24/2023] Open
Abstract
Oxygen reducing terminal oxidases differ with respect to their subunit composition, heme groups, operon structure, and affinity for O2. Six families of terminal oxidases are currently recognized, all of which occur in alphaproteobacterial genomes, two of which are also present in mitochondria. Many alphaproteobacteria encode several different terminal oxidases, likely reflecting ecological versatility with respect to oxygen levels. Terminal oxidase evolution likely started with the advent of O2 roughly 2.4 billion years ago and terminal oxidases diversified in the Proterozoic, during which oxygen levels remained low, around the Pasteur point (ca. 2 μM O2). Among the alphaproteobacterial genomes surveyed, those from members of the Rhodospirillaceae reveal the greatest diversity in oxygen reductases. Some harbor all six terminal oxidase types, in addition to many soluble enzymes typical of anaerobic fermentations in mitochondria and hydrogenosomes of eukaryotes. Recent data have it that O2 levels increased to current values (21% v/v or ca. 250 μM) only about 430 million years ago. Ecological adaptation brought forth different lineages of alphaproteobacteria and different lineages of eukaryotes that have undergone evolutionary specialization to high oxygen, low oxygen, and anaerobic habitats. Some have remained facultative anaerobes that are able to generate ATP with or without the help of oxygen and represent physiological links to the ancient proteobacterial lineage at the origin of mitochondria and eukaryotes. Our analysis reveals that the genomes of alphaproteobacteria appear to retain signatures of ancient transitions in aerobic metabolism, findings that are relevant to mitochondrial evolution in eukaryotes as well.
Collapse
Affiliation(s)
| | - Marek Mentel
- Faculty of Natural Sciences, Department of Biochemistry, Comenius University in Bratislava, Bratislava, Slovakia
| | - William Martin
- Institute of Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| | - Filipa L Sousa
- Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
37
|
Batista AD, Rosa RM, Machado M, Magalhães AS, Shalaguti BA, Gomes PF, Covell L, Vaz MGMV, Araújo WL, Nunes-Nesi A. Increased urea availability promotes adjustments in C/N metabolism and lipid content without impacting growth in Chlamydomonas reinhardtii. Metabolomics 2019; 15:31. [PMID: 30830512 DOI: 10.1007/s11306-019-1496-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/21/2019] [Indexed: 01/31/2023]
Abstract
INTRODUCTION The use of urea as a nitrogen (N) source by Chlorophytes usually enhances biomass and lipid production when compared to ammonium (NH4+). However, the metabolic shifts displayed by Chlamydomonas reinhardtii growing with this organic N source are not known. OBJECTIVES This study aimed: (i) to characterize the metabolism of C. reinhardtii cultivated in media containing only urea as N source as well as combined with different NH4+ ratios; (ii) to understand how metabolism respond to urea availability. METHODS Specific quantification of metabolites using 96-well microplates, and high-performance liquid chromatography combined with non-targeted metabolite profiling by gas chromatography (GC)-time-of-flight (TOF)-mass spectrometry (MS) were used in this study. In addition, GC analysis was used to determine fatty acid profiling. RESULTS The use of urea did not alter the growth rate in comparison with NH4+. Interestingly, the cell number decreased and the cell size increased proportionally with urea availability. Furthermore, chlorophyll, protein and lipid contents increased with the amount of urea. Regarding the fatty acid profile, oleic acid (C18:1 w8) decreased with amount of urea, while linoleic acid (C18:2 w6) doubled in urea-containing medium. CONCLUSIONS These results indicate that urea promotes remarkable adjustments in metabolism, without drastic changes in biomass, promoting changes in carbohydrate and amino acid metabolism, as well as in lipids production and fatty acid profile.
Collapse
Affiliation(s)
- Aline D Batista
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Rinamara M Rosa
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Mariana Machado
- Instituto de Biociências, Universidade Federal de Goiás - Regional Jataí, Jataí, Goiás, 75801-615, Brazil
| | - Alan S Magalhães
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Bárbara A Shalaguti
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Priscilla F Gomes
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Lidiane Covell
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Marcelo G M V Vaz
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
| |
Collapse
|
38
|
Multiomics resolution of molecular events during a day in the life of Chlamydomonas. Proc Natl Acad Sci U S A 2019; 116:2374-2383. [PMID: 30659148 PMCID: PMC6369806 DOI: 10.1073/pnas.1815238116] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The unicellular green alga Chlamydomonas reinhardtii displays metabolic flexibility in response to a changing environment. We analyzed expression patterns of its three genomes in cells grown under light-dark cycles. Nearly 85% of transcribed genes show differential expression, with different sets of transcripts being up-regulated over the course of the day to coordinate cellular growth before undergoing cell division. Parallel measurements of select metabolites and pigments, physiological parameters, and a subset of proteins allow us to infer metabolic events and to evaluate the impact of the transcriptome on the proteome. Among the findings are the observations that Chlamydomonas exhibits lower respiratory activity at night compared with the day; multiple fermentation pathways, some oxygen-sensitive, are expressed at night in aerated cultures; we propose that the ferredoxin, FDX9, is potentially the electron donor to hydrogenases. The light stress-responsive genes PSBS, LHCSR1, and LHCSR3 show an acute response to lights-on at dawn under abrupt dark-to-light transitions, while LHCSR3 genes also exhibit a later, second burst in expression in the middle of the day dependent on light intensity. Each response to light (acute and sustained) can be selectively activated under specific conditions. Our expression dataset, complemented with coexpression networks and metabolite profiling, should constitute an excellent resource for the algal and plant communities.
Collapse
|
39
|
Versluis D, de J. Bello González T, Zoetendal EG, van Passel MWJ, Smidt H. High throughput cultivation-based screening on porous aluminum oxide chips allows targeted isolation of antibiotic resistant human gut bacteria. PLoS One 2019; 14:e0210970. [PMID: 30653573 PMCID: PMC6336267 DOI: 10.1371/journal.pone.0210970] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 01/05/2019] [Indexed: 12/16/2022] Open
Abstract
The emergence of bacterial pathogens that are resistant to clinical antibiotics poses an increasing risk to human health. An important reservoir from which bacterial pathogens can acquire resistance is the human gut microbiota. However, thus far, a substantial fraction of the gut microbiota remains uncultivated and has been little-studied with respect to its resistance reservoir-function. Here, we aimed to isolate yet uncultivated resistant gut bacteria by a targeted approach. Therefore, faecal samples from 20 intensive care patients who had received the prophylactic antibiotic treatment selective digestive decontamination (SDD), i.e. tobramycin, polymyxin E, amphotericin B and cefotaxime, were inoculated anaerobically on porous aluminium oxide chips placed on top of poor and rich agar media, including media supplemented with the SDD antibiotics. Biomass growing on the chips was analysed by 16S rRNA gene amplicon sequencing, showing large inter-individual differences in bacterial cultivability, and enrichment of a range of taxonomically diverse operational taxonomic units (OTUs). Furthermore, growth of Ruminococcaceae (2 OTUs), Enterobacteriaceae (6 OTUs) and Lachnospiraceae (4 OTUs) was significantly inhibited by the SDD antibiotics. Strains belonging to 16 OTUs were candidates for cultivation to pure culture as they shared ≤95% sequence identity with the closest type strain and had a relative abundance of ≥2%. Six of these OTUs were detected on media containing SDD antibiotics, and as such were prime candidates to be studied regarding antibiotic resistance. One of these six OTUs was obtained in pure culture using targeted isolation. This novel strain was resistant to the antibiotics metrodinazole and imipenem. It was initially classified as member of the Ruminococcaceae, though later it was found to share 99% nucleotide identity with the recently published Sellimonas intestinalis BR72T. In conclusion, we show that high-throughput cultivation-based screening of microbial communities can guide targeted isolation of bacteria that serve as reservoirs of antibiotic resistance.
Collapse
Affiliation(s)
- Dennis Versluis
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Erwin G. Zoetendal
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Mark W. J. van Passel
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
- Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
40
|
Sasso S, Stibor H, Mittag M, Grossman AR. From molecular manipulation of domesticated Chlamydomonas reinhardtii to survival in nature. eLife 2018; 7:39233. [PMID: 30382941 PMCID: PMC6211829 DOI: 10.7554/elife.39233] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/12/2018] [Indexed: 01/19/2023] Open
Abstract
In the mid-20th century, the unicellular and genetically tractable green alga Chlamydomonas reinhardtii was first developed as a model organism to elucidate fundamental cellular processes such as photosynthesis, light perception and the structure, function and biogenesis of cilia. Various studies of C. reinhardtii have profoundly advanced plant and cell biology, and have also impacted algal biotechnology and our understanding of human disease. However, the 'real' life of C. reinhardtii in the natural environment has largely been neglected. To extend our understanding of the biology of C. reinhardtii, it will be rewarding to explore its behavior in its natural habitats, learning more about its abundance and life cycle, its genetic and physiological diversity, and its biotic and abiotic interactions.
Collapse
Affiliation(s)
- Severin Sasso
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University, Jena, Germany
| | - Herwig Stibor
- Department Biology II, Ludwig Maximilian University, Munich, Germany
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University, Jena, Germany
| | | |
Collapse
|
41
|
Anoxic ecosystems and early eukaryotes. Emerg Top Life Sci 2018; 2:299-309. [DOI: 10.1042/etls20170162] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 01/27/2023]
Abstract
Through much of the Proterozoic Eon (2.5–0.54 billion years ago, Ga), oceans were dominantly anoxic. It is often assumed that this put a brake on early eukaryote diversification because eukaryotes lived only in oxygenated habitats, which were restricted to surface waters and benthic environments near cyanobacterial mats. Studies of extant microbial eukaryotes show, however, that they are diverse and abundant in anoxic (including sulfidic) environments, often through partnerships with endo- and ectosymbiotic bacteria and archaea. Though the last common ancestor of extant eukaryotes was capable of aerobic respiration, we propose that at least some, and perhaps many, early eukaryotes were adapted to anoxic settings, and outline a way to test this with the microfossil and redox-proxy record in Proterozoic shales. This hypothesis might explain the mismatch between the record of eukaryotic body fossils, which extends back to >1.6 Ga, and the record of sterane biomarkers, which become diverse and abundant only after 659 Ma, as modern eukaryotes adapted to anoxic habitats do not make sterols (sterane precursors). In addition, an anoxic habitat might make sense for several long-ranging (>800 million years) and globally widespread eukaryotic taxa, which disappear in the late Neoproterozoic around the time oxic environments are thought to have become more widespread.
Collapse
|
42
|
Polymer accumulation in mixed cyanobacterial cultures selected under the feast and famine strategy. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.04.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Sun Y, Cai X, Cao J, Wu Z, Pan D. Effects of 1,8-cineole on Carbohydrate Metabolism Related Cell Structure Changes of Salmonella. Front Microbiol 2018; 9:1078. [PMID: 29910778 PMCID: PMC5992416 DOI: 10.3389/fmicb.2018.01078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/07/2018] [Indexed: 11/13/2022] Open
Abstract
Salmonella is gram-negative foodborne zoonotic bacteria which triggers disease in humans. Our previous studies showed 1,8-cineole possessed remarkable antimicrobial effects on foodborne zoonotic bacteria indicating it could serve as a new source of antibiotic for Salmonella. Present study elucidated the antibacterial mechanism of 1,8-cineole by analyzing serum protein expressed by Salmonella following treatment with 1,8-cineole (0.25 mg/mL, 3 h) using isobaric tags for relative and absolute quantification (iTRAQ) with two-dimensional liquid chromatography/tandem mass spectrometry (2D-LC-MS/MS). 1,8-cineole was found to significantly damage the structure of Salmonella cell walls and membranes. A total of 3011 proteins were extracted from the experimental group, of which 435 were differentially expressed (1.5-fold) with 123 upregulated and 312 downregulated. The expressed proteins were involved in 935 intracellular biological processes, 98 cellular components, 477 molecular functions and 86 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Among them, proteins associated with carbohydrate, nucleotide, amino acid, lipid, and energy metabolism were significantly changed following treatment with 1,8-cineole. Carbohydrate metabolism and membrane protein-related genes was down-regulated at the mRNA level when Salmonella was treated with 1,8-cineole. 1,8-cineole may be a potential antibiotic for Salmonella infections.
Collapse
Affiliation(s)
- Yangying Sun
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, Ningbo University, Zhejiang, China
| | - Xiaojun Cai
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, Ningbo University, Zhejiang, China
| | - Jinxuan Cao
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, Ningbo University, Zhejiang, China
| | - Zhen Wu
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, Ningbo University, Zhejiang, China
| | - Daodong Pan
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, Ningbo University, Zhejiang, China.,Department of Food Science and Nutrition, Jinling College, Nanjing Normal University, Nanjing, China
| |
Collapse
|
44
|
Olivares-Rubio HF, Salazar-Coria L, Nájera-Martínez M, Godínez-Ortega JL, Vega-López A. Lipid metabolism and pro-oxidant/antioxidant balance of Halamphora oceanica from the Gulf of Mexico exposed to water accommodated fraction of Maya crude oil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:840-851. [PMID: 28968937 DOI: 10.1016/j.ecoenv.2017.09.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
Diatoms play key roles in primary production and carbon fixation at a global scale and in some cases these species live on marine ecosystems impacted by crude oil (CO) spills. Halamphora oceanica, a new diatom species from the Southwest of the Gulf of Mexico was isolated and cultured in the laboratory and was exposed to water accommodated fraction (WAF) of different Maya CO loads at 0.01, 0.1, 1 and 10g/L by 96h. A battery of biomarkers involved in oxidative stress (O2•, H2O2, TBARS, ROOH, RC=O, SOD, CAT, GPx), biotransformation and conjugation (total CYP450 activity and GST) moreover fatty acid (FA) metabolism (FA levels, fatty-acid synthase and acyl-CoA oxidase) were measured. Obtained results suggest that increases of PAHs in the medium (below to EC50) acts as external forces able to turn-on regulatory mechanisms on H. oceanica involved in both, on the PAHs uptake and changing its aerobic metabolism to anaerobic metabolism. However, the growth of this microalgae species evaluated as chlorophyll "a" and pheophytin levels increased as the WAF concentration indicating that PAHs and other hydrosoluble hydrocarbons were used as carbon and energy sources by unidentified enzymes not evaluated in the current study. Our hypothesis was also corroborated by IBRv2. In the current study, we suppose the change from aerobic to anaerobic metabolism as a strategy for Halamphora oceanica survival exposed to petroleum hydrocarbons.
Collapse
Affiliation(s)
- Hugo F Olivares-Rubio
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental. Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, México D.F. CP 07738, Mexico
| | - Lucía Salazar-Coria
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental. Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, México D.F. CP 07738, Mexico
| | - Minerva Nájera-Martínez
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental. Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, México D.F. CP 07738, Mexico
| | - José Luis Godínez-Ortega
- Universidad Nacional Autónoma de México, Instituto de Biología, Apdo. postal 70-233, 04510 México D.F., Mexico
| | - Armando Vega-López
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental. Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, México D.F. CP 07738, Mexico.
| |
Collapse
|
45
|
Düner M, Lambertz J, Mügge C, Hemschemeier A. The soluble guanylate cyclase CYG12 is required for the acclimation to hypoxia and trophic regimes in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:311-337. [PMID: 29161457 DOI: 10.1111/tpj.13779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/03/2017] [Accepted: 11/09/2017] [Indexed: 05/27/2023]
Abstract
Oxygenic phototrophs frequently encounter environmental conditions that result in intracellular energy crises. Growth of the unicellular green alga Chlamydomonas reinhardtii in hypoxia in the light depends on acclimatory responses of which the induction of photosynthetic cyclic electron flow is essential. The microalga cannot grow in the absence of molecular oxygen (O2 ) in the dark, although it possesses an elaborate fermentation metabolism. Not much is known about how the microalga senses and signals the lack of O2 or about its survival strategies during energy crises. Recently, nitric oxide (NO) has emerged to be required for the acclimation of C. reinhardtii to hypoxia. In this study, we show that the soluble guanylate cyclase (sGC) CYG12, a homologue of animal NO sensors, is also involved in this response. CYG12 is an active sGC, and post-transcriptional down-regulation of the CYG12 gene impairs hypoxic growth and gene expression in C. reinhardtii. However, it also results in a disturbed photosynthetic apparatus under standard growth conditions and the inability to grow heterotrophically. Transcriptome profiles indicate that the mis-expression of CYG12 results in a perturbation of responses that, in the wild-type, maintain the cellular energy budget. We suggest that CYG12 is required for the proper operation of the photosynthetic apparatus which, in turn, is essential for survival in hypoxia and darkness.
Collapse
Affiliation(s)
- Melis Düner
- Department of Plant Biochemistry, Workgroup Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Jan Lambertz
- Department of Plant Biochemistry, Workgroup Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Carolin Mügge
- Junior Research Group for Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Anja Hemschemeier
- Department of Plant Biochemistry, Workgroup Photobiotechnology, Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| |
Collapse
|
46
|
Zimorski V, Rauch C, van Hellemond JJ, Tielens AGM, Martin WF. The Mitochondrion of Euglena gracilis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 979:19-37. [PMID: 28429315 DOI: 10.1007/978-3-319-54910-1_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In the presence of oxygen, Euglena gracilis mitochondria function much like mammalian mitochondria. Under anaerobiosis, E. gracilis mitochondria perform a malonyl-CoA independent synthesis of fatty acids leading to accumulation of wax esters, which serve as the sink for electrons stemming from glycolytic ATP synthesis and pyruvate oxidation. Some components (enzymes and cofactors) of Euglena's anaerobic energy metabolism are found among the anaerobic mitochondria of invertebrates, others are found among hydrogenosomes, the H2-producing anaerobic mitochondria of protists.
Collapse
Affiliation(s)
- Verena Zimorski
- Institute of Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Cessa Rauch
- Institute of Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Jaap J van Hellemond
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Aloysius G M Tielens
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - William F Martin
- Institute of Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
47
|
Martin WF, Tielens AGM, Mentel M, Garg SG, Gould SB. The Physiology of Phagocytosis in the Context of Mitochondrial Origin. Microbiol Mol Biol Rev 2017; 81:e00008-17. [PMID: 28615286 PMCID: PMC5584316 DOI: 10.1128/mmbr.00008-17] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
How mitochondria came to reside within the cytosol of their host has been debated for 50 years. Though current data indicate that the last eukaryote common ancestor possessed mitochondria and was a complex cell, whether mitochondria or complexity came first in eukaryotic evolution is still discussed. In autogenous models (complexity first), the origin of phagocytosis poses the limiting step at eukaryote origin, with mitochondria coming late as an undigested growth substrate. In symbiosis-based models (mitochondria first), the host was an archaeon, and the origin of mitochondria was the limiting step at eukaryote origin, with mitochondria providing bacterial genes, ATP synthesis on internalized bioenergetic membranes, and mitochondrion-derived vesicles as the seed of the eukaryote endomembrane system. Metagenomic studies are uncovering new host-related archaeal lineages that are reported as complex or phagocytosing, although images of such cells are lacking. Here we review the physiology and components of phagocytosis in eukaryotes, critically inspecting the concept of a phagotrophic host. From ATP supply and demand, a mitochondrion-lacking phagotrophic archaeal fermenter would have to ingest about 34 times its body weight in prokaryotic prey to obtain enough ATP to support one cell division. It would lack chemiosmotic ATP synthesis at the plasma membrane, because phagocytosis and chemiosmosis in the same membrane are incompatible. It would have lived from amino acid fermentations, because prokaryotes are mainly protein. Its ATP yield would have been impaired relative to typical archaeal amino acid fermentations, which involve chemiosmosis. In contrast, phagocytosis would have had great physiological benefit for a mitochondrion-bearing cell.
Collapse
Affiliation(s)
- William F Martin
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Aloysius G M Tielens
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marek Mentel
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Sriram G Garg
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
48
|
Affiliation(s)
- William F Martin
- Institute for Molecular Evolution, University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
49
|
Eme L, Gentekaki E, Curtis B, Archibald JM, Roger AJ. Lateral Gene Transfer in the Adaptation of the Anaerobic Parasite Blastocystis to the Gut. Curr Biol 2017; 27:807-820. [PMID: 28262486 DOI: 10.1016/j.cub.2017.02.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/26/2017] [Accepted: 02/01/2017] [Indexed: 12/22/2022]
Abstract
Blastocystis spp. are the most prevalent eukaryotic microbes found in the intestinal tract of humans. Here we present an in-depth investigation of lateral gene transfer (LGT) in the genome of Blastocystis sp. subtype 1. Using rigorous phylogeny-based methods and strict validation criteria, we show that ∼2.5% of the genes of this organism were recently acquired by LGT. We identify LGTs both from prokaryote and eukaryote donors. Several transfers occurred specifically in ancestors of a subset of Blastocystis subtypes, demonstrating that LGT is an ongoing process. Functional predictions reveal that these genes are involved in diverse metabolic pathways, many of which appear related to adaptation of Blastocystis to the gut environment. Specifically, we identify genes involved in carbohydrate scavenging and metabolism, anaerobic amino acid and nitrogen metabolism, oxygen-stress resistance, and pH homeostasis. A number of the transferred genes encoded secreted proteins that are potentially involved in infection, escaping host defense, or most likely affect the prokaryotic microbiome and the inflammation state of the gut. We also show that Blastocystis subtypes differ in the nature and copy number of LGTs that could relate to variation in their prevalence and virulence. Finally, we identified bacterial-derived genes encoding NH3-dependent nicotinamide adenine dinucleotide (NAD) synthase in Blastocystis and other protozoan parasites, which are promising targets for drug development. Collectively, our results suggest new avenues for research into the role of Blastocystis in intestinal disease and unequivocally demonstrate that LGT is an important mechanism by which eukaryotic microbes adapt to new environments.
Collapse
Affiliation(s)
- Laura Eme
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada
| | - Eleni Gentekaki
- School of Science and Human Gut Microbiome for Health Research Unit, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Bruce Curtis
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada
| | - John M Archibald
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada; Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, 180 Dundas Street W., Toronto, ON M5G 1Z8, Canada
| | - Andrew J Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada; Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity, 180 Dundas Street W., Toronto, ON M5G 1Z8, Canada.
| |
Collapse
|
50
|
Inui H, Ishikawa T, Tamoi M. Wax Ester Fermentation and Its Application for Biofuel Production. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 979:269-283. [PMID: 28429326 DOI: 10.1007/978-3-319-54910-1_13] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In Euglena cells under anaerobic conditions, paramylon, the storage polysaccharide, is promptly degraded and converted to wax esters. The wax esters synthesized are composed of saturated fatty acids and alcohols with chain lengths of 10-18, and the major constituents are myristic acid and myristyl alcohol. Since the anaerobic cells gain ATP through the conversion of paramylon to wax esters, the phenomenon is named "wax ester fermentation". The wax ester fermentation is quite unique in that the end products, i.e. wax esters, have relatively high molecular weights, are insoluble in water, and accumulate in the cells, in contrast to the common fermentation end products such as lactic acid and ethanol.A unique metabolic pathway involved in the wax ester fermentation is the mitochondrial fatty acid synthetic system. In this system, fatty acid are synthesized by the reversal of β-oxidation with an exception that trans-2-enoyl-CoA reductase functions instead of acyl-CoA dehydrogenase. Therefore, acetyl-CoA is directly used as a C2 donor in this fatty acid synthesis, and the conversion of acetyl-CoA to malonyl-CoA, which requires ATP, is not necessary. Consequently, the mitochondrial fatty acid synthetic system makes possible the net gain of ATP through the synthesis of wax esters from paramylon. In addition, acetyl-CoA is provided in the anaerobic cells from pyruvate by the action of a unique enzyme, oxygen sensitive pyruvate:NADP+ oxidoreductase, instead of the common pyruvate dehydrogenase multienzyme complex.Wax esters produced by anaerobic Euglena are promising biofuels because myristic acid (C14:0) in contrast to other algal produced fatty acids, such as palmitic acid (C16:0) and stearic acid (C18:0), has a low freezing point making it suitable as a drop-in jet fuel. To improve wax ester production, the molecular mechanisms by which wax ester fermentation is regulated in response to aerobic and anaerobic conditions have been gradually elucidated by identifying individual genes related to the wax ester fermentation metabolic pathway and by comprehensive gene/protein expression analysis. In addition, expression of the cyanobacterial Calvin cycle fructose-1,6-bisphosphatase/sedohepturose-1,7-bisphosphatase, in Euglena provided photosynthesis resulting in increased paramylon accumulation enhancing wax ester production. This chapter will discuss the biochemistry of the wax ester fermentation, recent advances in our understanding of the regulation of the wax ester fermentation and genetic engineering approaches to increase production of wax esters for biofuels.
Collapse
Affiliation(s)
- Hiroshi Inui
- Department of Nutrition, Osaka Prefecture University, 30-7-3 Habikino, Habikino, Osaka, 583-8555, Japan.
| | - Takahiro Ishikawa
- Faculty of Life and Environmental Science, Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
| | - Masahiro Tamoi
- Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara, 631-8505, Japan
| |
Collapse
|