1
|
Sharma S, McKenzie M. The Pathogenesis of Very Long-Chain Acyl-CoA Dehydrogenase Deficiency. Biomolecules 2025; 15:416. [PMID: 40149952 PMCID: PMC11940467 DOI: 10.3390/biom15030416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
Living systems require energy to maintain their existence and perform tasks such as cell division. This energy is stored in several molecular forms in nature, specifically lipids, carbohydrates, and amino acids. At a cellular level, energy is extracted from these complex molecules and transferred to adenosine triphosphate (ATP) in the cytoplasm and mitochondria. Within the mitochondria, fatty acid β-oxidation (FAO) and oxidative phosphorylation (OXPHOS) are crucial metabolic processes involved in generating ATP, with defects in these pathways causing mitochondrial disease. Very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) is a fatty acid β-oxidation disorder (FAOD) affecting 1 to 2 individuals per 100,000. Similar to other mitochondrial disorders, there is no cure for VLCADD, with symptomatic treatment comprising dietary management and supplementation with medium-chain fatty acids to bypass the enzyme deficiency. While this addresses the primary defect in VLCADD, there is growing evidence that other aspects of mitochondrial function are also affected in VLCADD, including secondary defects in OXPHOS function. Here, we review our current understanding of VLCADD with a focus on the associated biochemical and molecular defects that can disrupt multiple aspects of mitochondrial function. We describe the interactions between FAO proteins and the OXPHOS complexes and how these interactions are critical for maintaining the activity of both metabolic pathways. In particular, we describe what is now known about the protein-protein interactions between VLCAD and the OXPHOS supercomplex and how their disruption contributes to overall VLCADD pathogenesis.
Collapse
Affiliation(s)
- Shashwat Sharma
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3216, Australia;
| | - Matthew McKenzie
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3216, Australia;
- Institute for Physical Activity and Nutrition, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
2
|
Cardoso LHD, Cecatto C, Ozola M, Korzh S, Zvejniece L, Gukalova B, Doerrier C, Dambrova M, Makrecka-Kuka M, Gnaiger E, Liepinsh E. Fatty acid β-oxidation in brain mitochondria: Insights from high-resolution respirometry in mouse, rat and Drosophila brain, ischemia and aging models. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167544. [PMID: 39424161 DOI: 10.1016/j.bbadis.2024.167544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Glucose is the main energy source of the brain, yet recent studies demonstrate that fatty acid oxidation (FAO) plays a relevant role in the pathogenesis of central nervous system disorders. We evaluated FAO in brain mitochondria under physiological conditions, in the aging brain, and after stroke. Using high-resolution respirometry we compared medium-chain (MC, octanoylcarnitine) and long-chain (LC, palmitoylcarnitine) acylcarnitines as substrates of β-oxidation in the brain. The protocols developed avoid FAO overestimation by malate-linked anaplerotic activity in brain mitochondria. The capacity of FA oxidative phosphorylation (F-OXPHOS) with palmitoylcarnitine was up to 4 times higher than respiration with octanoylcarnitine. The optimal concentration of palmitoylcarnitine was 10 μM which corresponds to the total concentration of LC acylcarnitines in the brain. Maximal respiration with octanoylcarnitine was reached at 20 μM, however, this concentration exceeds MC acylcarnitine concentrations in the brain 15 times. F-OXPHOS capacity was highest in mouse cerebellum, intermediate in cortex, prefrontal cortex, and hypothalamus, and hardly detectable in hippocampus. F-OXPHOS capacity was 2-fold lower and concentrations of LC acylcarnitines were 2-fold higher in brain of aged rats. A similar trend was observed in the rat model of endothelin-1-induced stroke, but reduction of OXPHOS capacity was not limited to FAO. In conclusion, although FAO is not a dominant pathway in brain bioenergetics, it deserves specific attention in studies of brain metabolism.
Collapse
Affiliation(s)
| | | | - Melita Ozola
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia; Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| | - Stanislava Korzh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Liga Zvejniece
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Baiba Gukalova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia; Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| | | | - Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia; Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| | - Marina Makrecka-Kuka
- Oroboros Instruments, Innsbruck, Austria; Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | | | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia; Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| |
Collapse
|
3
|
Guerra IMS, Ferreira HB, Maurício T, Pinho M, Diogo L, Moreira S, Goracci L, Bonciarelli S, Melo T, Domingues P, Domingues MR, Moreira ASP. Plasma lipidomics analysis reveals altered profile of triglycerides and phospholipids in children with Medium-Chain Acyl-CoA dehydrogenase deficiency. J Inherit Metab Dis 2024; 47:731-745. [PMID: 38356271 DOI: 10.1002/jimd.12718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/16/2024]
Abstract
Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most prevalent mitochondrial fatty acid β-oxidation disorder. In this study, we assessed the variability of the lipid profile in MCADD by analysing plasma samples obtained from 25 children with metabolically controlled MCADD (following a normal diet with frequent feeding and under l-carnitine supplementation) and 21 paediatric control subjects (CT). Gas chromatography-mass spectrometry was employed for the analysis of esterified fatty acids, while high-resolution C18-liquid chromatography-mass spectrometry was used to analyse lipid species. We identified a total of 251 lipid species belonging to 15 distinct lipid classes. Principal component analysis revealed a clear distinction between the MCADD and CT groups. Univariate analysis demonstrated that 126 lipid species exhibited significant differences between the two groups. The lipid species that displayed the most pronounced variations included triacylglycerols and phosphatidylcholines containing saturated and monounsaturated fatty acids, specifically C14:0 and C16:0, which were found to be more abundant in MCADD. The observed changes in the plasma lipidome of children with non-decompensated MCADD suggest an underlying alteration in lipid metabolism. Therefore, longitudinal monitoring and further in-depth investigations are warranted to better understand whether such alterations are specific to MCADD children and their potential long-term impacts.
Collapse
Affiliation(s)
- Inês M S Guerra
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
- CESAM- Centre for Environmental and Marine Studies-, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Helena B Ferreira
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
- CESAM- Centre for Environmental and Marine Studies-, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Tatiana Maurício
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
- CESAM- Centre for Environmental and Marine Studies-, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Marisa Pinho
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
- CESAM- Centre for Environmental and Marine Studies-, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Luísa Diogo
- Reference Center for Hereditary Metabolic Diseases, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- European Reference Network for Hereditary Metabolic Diseases - MetabERN, Portugal
| | - Sónia Moreira
- Reference Center for Hereditary Metabolic Diseases, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- European Reference Network for Hereditary Metabolic Diseases - MetabERN, Portugal
| | - Laura Goracci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Stefano Bonciarelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Tânia Melo
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
- CESAM- Centre for Environmental and Marine Studies-, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
- CESAM- Centre for Environmental and Marine Studies-, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Ana S P Moreira
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
- CESAM- Centre for Environmental and Marine Studies-, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| |
Collapse
|
4
|
Szrok-Jurga S, Czumaj A, Turyn J, Hebanowska A, Swierczynski J, Sledzinski T, Stelmanska E. The Physiological and Pathological Role of Acyl-CoA Oxidation. Int J Mol Sci 2023; 24:14857. [PMID: 37834305 PMCID: PMC10573383 DOI: 10.3390/ijms241914857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
Fatty acid metabolism, including β-oxidation (βOX), plays an important role in human physiology and pathology. βOX is an essential process in the energy metabolism of most human cells. Moreover, βOX is also the source of acetyl-CoA, the substrate for (a) ketone bodies synthesis, (b) cholesterol synthesis, (c) phase II detoxication, (d) protein acetylation, and (d) the synthesis of many other compounds, including N-acetylglutamate-an important regulator of urea synthesis. This review describes the current knowledge on the importance of the mitochondrial and peroxisomal βOX in various organs, including the liver, heart, kidney, lung, gastrointestinal tract, peripheral white blood cells, and other cells. In addition, the diseases associated with a disturbance of fatty acid oxidation (FAO) in the liver, heart, kidney, lung, alimentary tract, and other organs or cells are presented. Special attention was paid to abnormalities of FAO in cancer cells and the diseases caused by mutations in gene-encoding enzymes involved in FAO. Finally, issues related to α- and ω- fatty acid oxidation are discussed.
Collapse
Affiliation(s)
- Sylwia Szrok-Jurga
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| | - Aleksandra Czumaj
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Jacek Turyn
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| | - Areta Hebanowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| | - Julian Swierczynski
- Institue of Nursing and Medical Rescue, State University of Applied Sciences in Koszalin, 75-582 Koszalin, Poland;
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Ewa Stelmanska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| |
Collapse
|
5
|
Zemniaçak ÂB, Roginski AC, Ribeiro RT, Bender JG, Marschner RA, Wajner SM, Wajner M, Amaral AU. Disruption of mitochondrial bioenergetics and calcium homeostasis by phytanic acid in the heart: Potential relevance for the cardiomyopathy in Refsum disease. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148961. [PMID: 36812958 DOI: 10.1016/j.bbabio.2023.148961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/23/2022] [Accepted: 02/13/2023] [Indexed: 02/22/2023]
Abstract
Refsum disease is an inherited peroxisomal disorder caused by severe deficiency of phytanoyl-CoA hydroxylase activity. Affected patients develop severe cardiomyopathy of poorly known pathogenesis that may lead to a fatal outcome. Since phytanic acid (Phyt) concentrations are highly increased in tissues of individuals with this disease, it is conceivable that this branched-chain fatty acid is cardiotoxic. The present study investigated whether Phyt (10-30 μM) could disturb important mitochondrial functions in rat heart mitochondria. We also determined the influence of Phyt (50-100 μM) on cell viability (MTT reduction) in cardiac cells (H9C2). Phyt markedly increased mitochondrial state 4 (resting) and decreased state 3 (ADP-stimulated) and uncoupled (CCCP-stimulated) respirations, besides reducing the respiratory control ratio, ATP synthesis and the activities of the respiratory chain complexes I-III, II, and II-III. This fatty acid also reduced mitochondrial membrane potential and induced swelling in mitochondria supplemented by exogenous Ca2+, which were prevented by cyclosporin A alone or combined with ADP, suggesting the involvement of the mitochondrial permeability transition (MPT) pore opening. Mitochondrial NAD(P)H content and Ca2+ retention capacity were also decreased by Phyt in the presence of Ca2+. Finally, Phyt significantly reduced cellular viability (MTT reduction) in cultured cardiomyocytes. The present data indicate that Phyt, at concentrations found in the plasma of patients with Refsum disease, disrupts by multiple mechanisms mitochondrial bioenergetics and Ca2+ homeostasis, which could presumably be involved in the cardiomyopathy of this disease.
Collapse
Affiliation(s)
- Ângela Beatriz Zemniaçak
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ana Cristina Roginski
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, USA
| | - Rafael Teixeira Ribeiro
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Julia Gabrieli Bender
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rafael Aguiar Marschner
- Departamento de Medicina Interna, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Simone Magagnin Wajner
- Departamento de Medicina Interna, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Alexandre Umpierrez Amaral
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Biológicas, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, RS, Brazil.
| |
Collapse
|
6
|
Guerra IMS, Ferreira HB, Melo T, Rocha H, Moreira S, Diogo L, Domingues MR, Moreira ASP. Mitochondrial Fatty Acid β-Oxidation Disorders: From Disease to Lipidomic Studies-A Critical Review. Int J Mol Sci 2022; 23:13933. [PMID: 36430419 PMCID: PMC9696092 DOI: 10.3390/ijms232213933] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/29/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Fatty acid oxidation disorders (FAODs) are inborn errors of metabolism (IEMs) caused by defects in the fatty acid (FA) mitochondrial β-oxidation. The most common FAODs are characterized by the accumulation of medium-chain FAs and long-chain (3-hydroxy) FAs (and their carnitine derivatives), respectively. These deregulations are associated with lipotoxicity which affects several organs and potentially leads to life-threatening complications and comorbidities. Changes in the lipidome have been associated with several diseases, including some IEMs. In FAODs, the alteration of acylcarnitines (CARs) and FA profiles have been reported in patients and animal models, but changes in polar and neutral lipid profile are still scarcely studied. In this review, we present the main findings on FA and CAR profile changes associated with FAOD pathogenesis, their correlation with oxidative damage, and the consequent disturbance of mitochondrial homeostasis. Moreover, alterations in polar and neutral lipid classes and lipid species identified so far and their possible role in FAODs are discussed. We highlight the need of mass-spectrometry-based lipidomic studies to understand (epi)lipidome remodelling in FAODs, thus allowing to elucidate the pathophysiology and the identification of possible biomarkers for disease prognosis and an evaluation of therapeutic efficacy.
Collapse
Affiliation(s)
- Inês M. S. Guerra
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- Centre for Environmental and Marine Studies—CESAM, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Helena B. Ferreira
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- Centre for Environmental and Marine Studies—CESAM, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- Centre for Environmental and Marine Studies—CESAM, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Hugo Rocha
- Newborn Screening, Metabolism and Genetics Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, 4000-053 Porto, Portugal
- Department of Pathological, Cytological and Thanatological Anatomy, School of Health, Polytechnic Institute of Porto, 4200-072 Porto, Portugal
| | - Sónia Moreira
- Internal Medicine, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
- Reference Center of Inherited Metabolic Diseases, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | - Luísa Diogo
- Reference Center of Inherited Metabolic Diseases, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | - Maria Rosário Domingues
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- Centre for Environmental and Marine Studies—CESAM, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana S. P. Moreira
- Mass Spectrometry Center, LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
7
|
Ribas GS, Vargas CR. Evidence that Oxidative Disbalance and Mitochondrial Dysfunction are Involved in the Pathophysiology of Fatty Acid Oxidation Disorders. Cell Mol Neurobiol 2022; 42:521-532. [PMID: 32876899 PMCID: PMC11441193 DOI: 10.1007/s10571-020-00955-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/22/2020] [Indexed: 12/15/2022]
Abstract
Mitochondrial fatty acid β-oxidation disorders (FAODs) are a group of about 20 diseases which are caused by specific mutations in genes that codify proteins or enzymes involved in the fatty acid transport and mitochondrial β-oxidation. As a consequence of these inherited metabolic defects, fatty acids can not be used as an appropriate energetic source during special conditions, such as prolonged fasting, exercise or other catabolic states. Therefore, patients usually present hepatopathy, cardiomyopathy, severe skeletal myopathy and neuropathy, besides biochemical features like hypoketotic hypoglycemia, metabolic acidosis, hypotony and hyperammonemia. This set of symptoms seems to be related not only with the energy deficiency, but also with toxic effects provoked by fatty acids and carnitine derivatives accumulated in the tissues of the patients. The understanding of the mechanisms by which these metabolites provoke tissue injury in FAODs is crucial for the developmental of novel therapeutic strategies that promote increased life expectancy, as well as improved life quality for patients. In this sense, the objective of this review is to present evidence from the scientific literature on the role of oxidative damage and mitochondrial dysfunction in the pathogenesis of the most prevalent FAODs: medium-chain acyl-CoA dehydrogenase (MCAD), long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) and very long-chain acyl-CoA dehydrogenase (VLCAD) deficiencies. It is expected that the findings presented in this review, obtained from both animal model and patients studies, may contribute to a better comprehension of the pathophysiology of these diseases.
Collapse
Affiliation(s)
- Graziela Schmitt Ribas
- Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carmen Regla Vargas
- Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Serviço de Genética Médica, Hospital de Clíınicas de Porto Alegre, Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
8
|
Amaral AU, Wajner M. Recent Advances in the Pathophysiology of Fatty Acid Oxidation Defects: Secondary Alterations of Bioenergetics and Mitochondrial Calcium Homeostasis Caused by the Accumulating Fatty Acids. Front Genet 2020; 11:598976. [PMID: 33329744 PMCID: PMC7729159 DOI: 10.3389/fgene.2020.598976] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022] Open
Abstract
Deficiencies of medium-chain acyl-CoA dehydrogenase, mitochondrial trifunctional protein, isolated long-chain 3-hydroxyacyl-CoA dehydrogenase, and very long-chain acyl-CoA dehydrogenase activities are considered the most frequent fatty acid oxidation defects (FAOD). They are biochemically characterized by the accumulation of medium-chain, long-chain hydroxyl, and long-chain fatty acids and derivatives, respectively, in tissues and biological fluids of the affected patients. Clinical manifestations commonly include hypoglycemia, cardiomyopathy, and recurrent rhabdomyolysis. Although the pathogenesis of these diseases is still poorly understood, energy deprivation secondary to blockage of fatty acid degradation seems to play an important role. However, recent evidence indicates that the predominant fatty acids accumulating in these disorders disrupt mitochondrial functions and are involved in their pathophysiology, possibly explaining the lactic acidosis, mitochondrial morphological alterations, and altered mitochondrial biochemical parameters found in tissues and cultured fibroblasts from some affected patients and also in animal models of these diseases. In this review, we will update the present knowledge on disturbances of mitochondrial bioenergetics, calcium homeostasis, uncoupling of oxidative phosphorylation, and mitochondrial permeability transition induction provoked by the major fatty acids accumulating in prevalent FAOD. It is emphasized that further in vivo studies carried out in tissues from affected patients and from animal genetic models of these disorders are necessary to confirm the present evidence mostly achieved from in vitro experiments.
Collapse
Affiliation(s)
- Alexandre Umpierrez Amaral
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Departamento de Ciências Biológicas, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
9
|
Dubinin MV, Talanov EY, Tenkov KS, Starinets VS, Mikheeva IB, Belosludtsev KN. Transport of Ca 2+ and Ca 2+-dependent permeability transition in heart mitochondria in the early stages of Duchenne muscular dystrophy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148250. [PMID: 32569663 DOI: 10.1016/j.bbabio.2020.148250] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 01/01/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive skeletal muscle disease that is associated with severe cardiac complications in the late stages. Significant mitochondrial dysfunction is reportedly responsible for the development of cardiomyopathy with age. At the same time, adaptive changes in mitochondrial metabolism in cardiomyocytes were identified in the early stages of DMD. In this work, we evaluate the functioning of calcium transport systems (MCU and NCLX), and MPT pore in the heart mitochondria of young dystrophin-deficient mice. As compared to wild-type animals, heart mitochondria of mdx mice have been found to be more efficient both in respect to Ca2+ uniport and Na+-dependent Ca2+ efflux. The data obtained indicate that the increased rate of Ca2+ uptake by heart mitochondria of mdx mice may be due to an increase in the ratio of MCU and MCUb subunits. In turn, an increase in the rate of Ca2+ efflux from organelles in DMD may be the result of a significant increase in the level of NCLX. Moreover, the heart mitochondria of mdx mice were more resistant to MPT pore opening, which may be due to an increase in the microviscosity of mitochondrial membranes of DMD mice. At the same time, the level of putative MPT pore proteins did not change. The paper discusses the effect of rearrangements of the mitochondrial proteome involved in the transport and accumulation of calcium on the adaptation of this organ to DMD.
Collapse
Affiliation(s)
- Mikhail V Dubinin
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El 424001, Russia.
| | - Eugeny Yu Talanov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, Moscow Region 142290, Russia
| | - Kirill S Tenkov
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El 424001, Russia
| | - Vlada S Starinets
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El 424001, Russia; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, Moscow Region 142290, Russia
| | - Irina B Mikheeva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, Moscow Region 142290, Russia
| | - Konstantin N Belosludtsev
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El 424001, Russia; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, Moscow Region 142290, Russia
| |
Collapse
|
10
|
Impairment of mitochondrial bioenergetics and permeability transition induction caused by major long-chain fatty acids accumulating in VLCAD deficiency in skeletal muscle as potential pathomechanisms of myopathy. Toxicol In Vitro 2020; 62:104665. [DOI: 10.1016/j.tiv.2019.104665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/07/2019] [Accepted: 09/24/2019] [Indexed: 12/24/2022]
|
11
|
Ure DR, Trepanier DJ, Mayo PR, Foster RT. Cyclophilin inhibition as a potential treatment for nonalcoholic steatohepatitis (NASH). Expert Opin Investig Drugs 2019; 29:163-178. [PMID: 31868526 DOI: 10.1080/13543784.2020.1703948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Daren R. Ure
- Hepion Pharmaceuticals Inc, Edmonton, AB, Canada
| | | | | | | |
Collapse
|
12
|
Belosludtsev KN, Talanov EY, Starinets VS, Agafonov AV, Dubinin MV, Belosludtseva NV. Transport of Ca 2+ and Ca 2+-Dependent Permeability Transition in Rat Liver Mitochondria under the Streptozotocin-Induced Type I Diabetes. Cells 2019; 8:1014. [PMID: 31480399 PMCID: PMC6769770 DOI: 10.3390/cells8091014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 08/26/2019] [Accepted: 08/29/2019] [Indexed: 12/23/2022] Open
Abstract
Although diabetes mellitus is known to be a disease associated with mitochondrial dysfunction, not everything is clear about mitochondrial Ca2+ transport and Ca2+-induced permeability transition in diabetic cells. The objective of this work was to study the operation of MCU and Ca2+-dependent mitochondrial permeabilization in the liver cells of Sprague-Dawley rats under the streptozotocin-induced type I diabetes. It was shown that two weeks after the induction of diabetes, the rate of Ca2+ uptake by the mitochondria of diabetic animals increased ~1.4-fold. The expression of MCU and MICU1 subunits did not change, yet the quantity of dominant-negative MCUb channel subunits was almost twice as lower. The organelles also became more resistant to the induction of CsA-sensitive MPT pore and less resistant to the induction of CsA-insensitive palmitate/Ca2+-induced pore. The mitochondria of diabetic liver cells also showed changes in the lipid matrix of their membranes. The content of fatty acids in the membranes grew, and microviscosity of the lipid bilayer (assessed with laurdan) increased. At the same time, lipid peroxidation (assessed by the production of malonic dialdehyde) was stimulated. The paper discusses the consequences of the diabetes-related changes in mitochondria in the context of cell physiology.
Collapse
Affiliation(s)
- Konstantin N Belosludtsev
- Laboratory of mitochondrial transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Moscow region, Russia.
- Department of biochemistry, cell biology and microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola, 424001 Mari El, Russia.
| | - Eugeny Yu Talanov
- Laboratory of mitochondrial transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Moscow region, Russia
| | - Vlada S Starinets
- Department of biochemistry, cell biology and microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola, 424001 Mari El, Russia
| | - Alexey V Agafonov
- Laboratory of mitochondrial transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Moscow region, Russia
| | - Mikhail V Dubinin
- Department of biochemistry, cell biology and microbiology, Mari State University, pl. Lenina 1, Yoshkar-Ola, 424001 Mari El, Russia
| | - Natalia V Belosludtseva
- Laboratory of mitochondrial transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Moscow region, Russia
| |
Collapse
|
13
|
Li Y, Zhu R, Liu Y, Song J, Xu J, Yang Y. Medium-chain acyl-coenzyme A dehydrogenase deficiency: Six cases in the Chinese population. Pediatr Int 2019; 61:551-557. [PMID: 31033143 DOI: 10.1111/ped.13872] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/18/2019] [Accepted: 04/05/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Medium-chain acyl-coenzyme A dehydrogenase deficiency (MCADD) is a rare autosomal recessive disorder that affects the degradation of medium-chain fatty acids. Few cases of MCADD have been documented to date in mainland China. METHODS Medium-chain acyl-coenzyme A dehydrogenase deficiency was diagnosed in six patients (three girls and three boys) from six unrelated Chinese families at ages ranging from 10 days to 3 years old. The diagnosis was confirmed by the identification of a primary biomarker of serum octanoyl-carnitine (C8) and genetic pathogenic mutations. RESULTS Only two patients were admitted because of vomiting, diarrhea, myasthenia, and coma; the other four patients were diagnosed via the newborn screening process. Six mutations were found in acyl-CoA dehydrogenase medium chain (ACADM). One mutation (c.727C>T) was novel and the others (c.158G>A, c.387+1delG, c.449_452del, c.1045C>T, and c.1085G>A) have been previously reported. CONCLUSIONS Six Chinese cases of MCADD were identified. One novel mutation was found. c.449_452del and c.1085G>A were common mutations in this study.
Collapse
Affiliation(s)
- Yanhan Li
- Department of Laboratory Animal Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Ruoxin Zhu
- Department of Reproductive center, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu, China
| | - Yi Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jinqing Song
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jing Xu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yanling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
14
|
Zhou X, Yong L, Huang Y, Zhu S, Song X, Li B, Zhu J, Wang H. The protective effects of distal ischemic treatment on apoptosis and mitochondrial permeability in the hippocampus after cardiopulmonary resuscitation. J Cell Physiol 2018; 233:6902-6910. [PMID: 29323705 DOI: 10.1002/jcp.26459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 01/05/2018] [Indexed: 02/05/2023]
Abstract
Apoptosis and mitochondrial dysfunction are the main cause of neurological injury after cardiopulmonary resuscitation (CPR). However, the effects of distal ischemic treatments on ischemia induced apoptosis are rarely studied, and the mechanism by which mitochondrial dysfunction contributes to CPR still unclear. A rat model of distal ischemia was established by clipping the right femoral artery. Rats were divided into blank, model, pre distal ischemic treatment, per-treatment, and post-treatment groups. Neurological deficit score was scored to evaluate neurologic function after cardiopulmonary resuscitation for 72 hr. We employed TUNEL and flow cytometry to measure the rate of apoptosis of hippocampal neurons, the integrity of mitochondrial membrane and the degree of mitochondrial permeability transition pore (mPTP) opening. The rate of apoptosis rate of hippocampal CA1 neurons in the pre-treatment and post-treatment groups were significantly lower than that of the model group. Moreover, the integrity of the mitochondrial membrane in the pre-treatment and post-treatment groups was higher than that in the model and per- treatment groups. Furthermore, the degree of mPTP opening was lower in the pre-treatment and post-treatment groups than the untreated and per-treatment groups. Taken together, our results show that ischemic preconditioning and post processing can maintain the integrity of mitochondria, perhaps by inhibiting the opening of mPTP, and reducing apoptosis of hippocampal neurons by regulating expression of apoptosis related proteins after CPR, to improve neurological function. This study highlights a novel target pathway for treatment of CPR.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Anesthesiology, Wuhan General Hospital of People's Liberation Army of China, Wuhan, China
- Southern Medical University, Guangzhou, China
| | - Liu Yong
- Department of Thoracic Cardiovascular Surgery, ZhongNan Hospital of WuHan University, Wuhan, China
| | - Yang Huang
- Southern Medical University, Guangzhou, China
| | - ShuiBo Zhu
- Southern Medical University, Guangzhou, China
- Department of Thoracic Cardiovascular Surgery, Wuhan General Hospital of People's Liberation Army of China, Wuhan, China
| | - XiaoYang Song
- Department of Anesthesiology, Wuhan General Hospital of People's Liberation Army of China, Wuhan, China
| | - BiXi Li
- Department of Anesthesiology, Wuhan General Hospital of People's Liberation Army of China, Wuhan, China
| | - Jian Zhu
- Department of Thoracic Cardiovascular Surgery, Wuhan General Hospital of People's Liberation Army of China, Wuhan, China
| | - HaiBo Wang
- Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Advances in the Understanding and Treatment of Mitochondrial Fatty Acid Oxidation Disorders. CURRENT GENETIC MEDICINE REPORTS 2017; 5:132-142. [PMID: 29177110 DOI: 10.1007/s40142-017-0125-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Purpose of review This review focuses on advances made in the past three years with regards to understanding the mitochondrial fatty acid oxidation (FAO) pathway, the pathophysiological ramifications of genetic lesions in FAO enzymes, and emerging therapies for FAO disorders. Recent findings FAO has now been recognized to play a key energetic role in pulmonary surfactant synthesis, T-cell differentiation and memory, and the response of the proximal tubule to kidney injury. Patients with FAO disorders may face defects in these cellular systems as they age. Aspirin, statins, and nutritional supplements modulate the rate of FAO under normal conditions and could be risk factors for triggering symptoms in patients with FAO disorders. Patients have been identified with mutations in the ACAD9 and ECHS1 genes, which may represent new FAO disorders. New interventions for long-chain FAODs are in clinical trials. Finally, post-translational modifications that regulate fatty acid oxidation protein activities have been characterized that represent important new therapeutic targets. Summary Recent research has led to a deeper understanding of FAO. New therapeutic avenues are being pursued that may ultimately cause a paradigm shift for patient care.
Collapse
|
16
|
Amaral AU, Cecatto C, da Silva JC, Wajner A, Wajner M. Mechanistic Bases of Neurotoxicity Provoked by Fatty Acids Accumulating in MCAD and LCHAD Deficiencies. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2017. [DOI: 10.1177/2326409817701472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Alexandre U. Amaral
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Ciências Biológicas, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, Rio Grande do Sul, Brazil
| | - Cristiane Cecatto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Janaína C. da Silva
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Alessandro Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|