1
|
Michalak KP, Michalak AZ, Brenk-Krakowska A. Acute COVID-19 and LongCOVID syndrome - molecular implications for therapeutic strategies - review. Front Immunol 2025; 16:1582783. [PMID: 40313948 PMCID: PMC12043656 DOI: 10.3389/fimmu.2025.1582783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/28/2025] [Indexed: 05/03/2025] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been recognized not only for its acute effects but also for its ability to cause LongCOVID Syndrome (LCS), a condition characterized by persistent symptoms affecting multiple organ systems. This review examines the molecular and immunological mechanisms underlying LCS, with a particular focus on autophagy inhibition, chronic inflammation, oxidative, nitrosative and calcium stress, viral persistence and autoimmunology. Potential pathophysiological mechanisms involved in LCS include (1) autoimmune activation, (2) latent viral persistence, where SARS-CoV-2 continues to influence host metabolism, (3) reactivation of latent pathogens such as Epstein-Barr virus (EBV) or cytomegalovirus (CMV), exacerbating immune and metabolic dysregulation, and (4) possible persistent metabolic and inflammatory dysregulation, where the body fails to restore post-infection homeostasis. The manipulation of cellular pathways by SARS-CoV-2 proteins is a critical aspect of the virus' ability to evade immune clearance and establish long-term dysfunction. Viral proteins such as NSP13, ORF3a and ORF8 have been shown to disrupt autophagy, thereby impairing viral clearance and promoting immune evasion. In addition, mitochondrial dysfunction, dysregulated calcium signaling, oxidative stress, chronic HIF-1α activation and Nrf2 inhibition create a self-sustaining inflammatory feedback loop that contributes to tissue damage and persistent symptoms. Therefore understanding the molecular basis of LCS is critical for the development of effective therapeutic strategies. Targeting autophagy and Nrf2 activation, glycolysis inhibition, and restoration calcium homeostasis may provide novel strategies to mitigate the long-term consequences of SARS-CoV-2 infection. Future research should focus on personalized therapeutic interventions based on the dominant molecular perturbations in individual patients.
Collapse
Affiliation(s)
- Krzysztof Piotr Michalak
- Laboratory of Vision Science and Optometry, Physics and Astronomy Faculty, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | | - Alicja Brenk-Krakowska
- Laboratory of Vision Science and Optometry, Physics and Astronomy Faculty, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
2
|
Ekhator ES, Fazzari M, Newman RH. Redox Regulation of cAMP-Dependent Protein Kinase and Its Role in Health and Disease. Life (Basel) 2025; 15:655. [PMID: 40283209 PMCID: PMC12029036 DOI: 10.3390/life15040655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
Protein kinase A (PKA) is a key regulator of cellular signaling that regulates key physiological processes such as metabolism, cell proliferation, and neuronal function. While its activation by the second messenger 3',5'-cyclic adenosine triphosphate (cAMP) is well characterized, recent research highlights additional regulatory mechanisms, particularly oxidative post-translational modifications, that influence PKA's structure, activity, and substrate specificity. Both the regulatory and catalytic subunits of PKA are susceptible to redox modifications, which have been shown to play important roles in the regulation of key cellular functions, including cardiac contractility, lipid metabolism, and the immune response. Likewise, redox-dependent modulation of PKA signaling has been implicated in numerous diseases, including cardiovascular disorders, diabetes, and neurodegenerative conditions, making it a potential therapeutic target. However, the mechanisms of crosstalk between redox- and PKA-dependent signaling remain poorly understood. This review examines the structural and functional regulation of PKA, with a focus on redox-dependent modifications and their impact on PKA-dependent signaling. A deeper understanding of these mechanisms may provide new strategies for targeting oxidative stress in disease and restoring balanced PKA signaling in cells.
Collapse
Affiliation(s)
- Ese S. Ekhator
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA;
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Marco Fazzari
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Robert H. Newman
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA;
| |
Collapse
|
3
|
Michalak KP, Michalak AZ. Understanding chronic inflammation: couplings between cytokines, ROS, NO, Ca i 2+, HIF-1α, Nrf2 and autophagy. Front Immunol 2025; 16:1558263. [PMID: 40264757 PMCID: PMC12012389 DOI: 10.3389/fimmu.2025.1558263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/14/2025] [Indexed: 04/24/2025] Open
Abstract
Chronic inflammation is an important component of many diseases, including autoimmune diseases, intracellular infections, dysbiosis and degenerative diseases. An important element of this state is the mainly positive feedback between inflammatory cytokines, reactive oxygen species (ROS), nitric oxide (NO), increased intracellular calcium, hypoxia-inducible factor 1-alpha (HIF-1α) stabilisation and mitochondrial oxidative stress, which, under normal conditions, enhance the response against pathogens. Autophagy and the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant response are mainly negatively coupled with the above-mentioned elements to maintain the defence response at a level appropriate to the severity of the infection. The current review is the first attempt to build a multidimensional model of cellular self-regulation of chronic inflammation. It describes the feedbacks involved in the inflammatory response and explains the possible pathways by which inflammation becomes chronic. The multiplicity of positive feedbacks suggests that symptomatic treatment of chronic inflammation should focus on inhibiting multiple positive feedbacks to effectively suppress all dysregulated elements including inflammation, oxidative stress, calcium stress, mito-stress and other metabolic disturbances.
Collapse
Affiliation(s)
- Krzysztof Piotr Michalak
- Laboratory of Vision Science and Optometry, Physics and Astronomy Faculty, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | |
Collapse
|
4
|
Ježek P. Physiological Fatty Acid-Stimulated Insulin Secretion and Redox Signaling Versus Lipotoxicity. Antioxid Redox Signal 2025; 42:566-622. [PMID: 39834189 DOI: 10.1089/ars.2024.0799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Significance: Type 2 diabetes as a world-wide epidemic is characterized by the insulin resistance concomitant to a gradual impairment of β-cell mass and function (prominently declining insulin secretion) with dysregulated fatty acids (FAs) and lipids, all involved in multiple pathological development. Recent Advances: Recently, redox signaling was recognized to be essential for insulin secretion stimulated with glucose (GSIS), branched-chain keto-acids, and FAs. FA-stimulated insulin secretion (FASIS) is a normal physiological event upon postprandial incoming chylomicrons. This contrasts with the frequent lipotoxicity observed in rodents. Critical Issues: Overfeeding causes FASIS to overlap with GSIS providing repeating hyperinsulinemia, initiates prediabetic states by lipotoxic effects and low-grade inflammation. In contrast the protective effects of lipid droplets in human β-cells counteract excessive lipids. Insulin by FASIS allows FATP1 recruitment into adipocyte plasma membranes when postprandial chylomicrons come late at already low glycemia. Future Directions: Impaired states of pancreatic β-cells and peripheral organs at prediabetes and type 2 diabetes should be revealed, including the inter-organ crosstalk by extracellular vesicles. Details of FA/lipid molecular physiology are yet to be uncovered, such as complex phenomena of FA uptake into cells, postabsorptive inactivity of G-protein-coupled receptor 40, carnitine carrier substrate specificity, the role of carnitine-O-acetyltransferase in β-cells, and lipid droplet interactions with mitochondria. Antioxid. Redox Signal. 42, 566-622.
Collapse
Affiliation(s)
- Petr Ježek
- Department of Mitochondrial Physiology, No.75, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
5
|
Zhang S, Song H, Chang M, Lu Y, Liu S, Wu J, Liu Q, Pan Y, Du J, Yahaya BH, Liu Y, Lin J. MSC-EV-transmitted HSPA8 alleviates cisplatin-induced ovotoxicity by regulating the MGARP/PRDX2 axis. Int J Biol Macromol 2025; 304:140973. [PMID: 39952536 DOI: 10.1016/j.ijbiomac.2025.140973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 02/11/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Cisplatin (Cis) is among the most widely employed antitumour agents, although its clinical application is limited by self-induced multiple-organ toxicity. Previous studies have demonstrated the essential role of mitochondrial injury in the pathogenesis of Cis-induced ovotoxicity. Notably, mesenchymal stem cell-extracellular vesicles (MSC-EVs), potential cell-free therapeutic agents, exhibit pronounced advantages for the treatment of ovarian dysfunction. However, little is known about which core component contained in MSC-EVs plays a major role in repairing Cis-induced ovarian damage, and further, the potential mechanisms underlying the repair of mitochondrial damage remain unclear. Herein, our study first verified that MSC-EVs effectively ameliorate Cis-induced ovarian dysfunction by upregulating the level of mitochondrion-localized glutamic acid-rich protein (MGARP), after which MGARP repairs mitochondrial damage and inhibits cellular ROS production by combining with and suppressing the degradation of peroxiredoxin 2 (PRDX2) in granulosa cells (GCs). More importantly, our study further showed that heat shock protein family A member 8 (HSPA8) is indispensable for MenSC-EV-mediated improvement of Cis-induced ovotoxicity. This investigation provides novel insights into the molecular mechanisms by which MSCs alleviate Cis-induced ovotoxicity through improving mitochondrial dysfunction.
Collapse
Affiliation(s)
- Shenghui Zhang
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China; Henan Joint International Research Laboratory of Stem Cell Medicine, College of Biomedical Engineering, Xinxiang Medical University, Xinxiang 453003, China; Department of reproductive medicine, Zhoukou Central hospital, Zhoukou 46600, China
| | - Haofeng Song
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Mengyuan Chang
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Central Hospital, Xinxiang 453000, China
| | - Yilin Lu
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Shuyao Liu
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| | - Jie Wu
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China; Xinxiang Central Hospital, Xinxiang 453000, China
| | - Qin Liu
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China; Henan Joint International Research Laboratory of Stem Cell Medicine, College of Biomedical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Ying Pan
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| | - Jiang Du
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Badrul Hisham Yahaya
- Department of Biomedical Sciences, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, Penang, Malaysia.
| | - Yanli Liu
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China; Henan Joint International Research Laboratory of Stem Cell Medicine, College of Biomedical Engineering, Xinxiang Medical University, Xinxiang 453003, China.
| | - Juntang Lin
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China; Henan Joint International Research Laboratory of Stem Cell Medicine, College of Biomedical Engineering, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
6
|
Zhang X, Xiao J, Jiang M, Phillips CJC, Shi B. Thermogenesis and Energy Metabolism in Brown Adipose Tissue in Animals Experiencing Cold Stress. Int J Mol Sci 2025; 26:3233. [PMID: 40244078 PMCID: PMC11989373 DOI: 10.3390/ijms26073233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/29/2025] [Accepted: 03/29/2025] [Indexed: 04/18/2025] Open
Abstract
Cold exposure is a regulatory biological functions in animals. The interaction of thermogenesis and energy metabolism in brown adipose tissue (BAT) is important for metabolic regulation in cold stress. Brown adipocytes (BAs) produce uncoupling protein 1 (UCP1) in mitochondria, activating non-shivering thermogenesis (NST) by uncoupling fuel combustion from ATP production in response to cold stimuli. To elucidate the mechanisms underlying thermogenesis and energy metabolism in BAT under cold stress, we explored how cold exposure triggers the activation of BAT thermogenesis and regulates overall energy metabolism. First, we briefly outline the precursor composition and function of BA. Second, we explore the roles of the cAMP- protein kinase A (PKA) and adenosine monophosphate-activated protein kinase (AMPK) signaling pathways in thermogenesis and energy metabolism in BA during cold stress. Then, we analyze the mechanism by which BA regulates mitochondria homeostasis and energy balance during cold stress. This research reveals potential therapeutic targets, such as PKA, AMPK, UCP1 and PGC-1α, which can be used to develop innovative strategies for treating metabolic diseases. Furthermore, it provides theoretical support for optimizing cold stress response strategies, including the pharmacological activation of BAT and the genetic modulation of thermogenic pathways, to improve energy homeostasis in livestock.
Collapse
Affiliation(s)
- Xuekai Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.Z.); (M.J.); (B.S.)
| | - Jin Xiao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.Z.); (M.J.); (B.S.)
| | - Min Jiang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.Z.); (M.J.); (B.S.)
| | - Clive J. C. Phillips
- Curtin University Sustainability Policy (CUSP) Institute, Curtin University, Perth, WA 6845, Australia;
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Binlin Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (X.Z.); (M.J.); (B.S.)
| |
Collapse
|
7
|
Nieto-Panqueva F, Vázquez-Acevedo M, Barrera-Gómez DF, Gavilanes-Ruiz M, Hamel PP, González-Halphen D. A high copy suppressor screen identifies factors enhancing the allotopic production of subunit II of cytochrome c oxidase. G3 (BETHESDA, MD.) 2025; 15:jkae295. [PMID: 39671566 PMCID: PMC11917479 DOI: 10.1093/g3journal/jkae295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
Allotopic expression refers to the artificial relocation of an organellar gene to the nucleus. Subunit 2 (Cox2) of cytochrome c oxidase, a subunit with 2 transmembrane domains (TMS1 and TMS2) residing in the inner mitochondrial membrane with a Nout-Cout topology, is typically encoded in the mitochondrial cox2 gene. In the yeast Saccharomyces cerevisiae, the cox2 gene can be allotopically expressed in the nucleus, yielding a functional protein that restores respiratory growth to a Δcox2 null mutant. In addition to a mitochondrial targeting sequence followed by its natural 15-residue leader peptide, the cytosol synthesized Cox2 precursor must carry one or several amino acid substitutions that decrease the mean hydrophobicity of TMS1 and facilitate its import into the matrix by the TIM23 translocase. Here, using a yeast strain that contains a COX2W56R gene construct inserted in a nuclear chromosome, we searched for genes whose overexpression could facilitate import into mitochondria of the Cox2W56R precursor and increase respiratory growth of the corresponding mutant strain. A COX2W56R expressing strain was transformed with a multicopy plasmid genomic library, and transformants exhibiting enhanced respiratory growth on nonfermentable carbon sources were selected. We identified 3 genes whose overexpression facilitates the internalization of the Cox2W56R subunit into mitochondria, namely: TYE7, RAS2, and COX12. TYE7 encodes a transcriptional factor, RAS2, a GTP-binding protein, and COX12, a non-core subunit of cytochrome c oxidase. We discuss potential mechanisms by which the TYE7, RAS2, and COX12 gene products could facilitate the import and assembly of the Cox2W56R subunit produced allotopically.
Collapse
Affiliation(s)
- Felipe Nieto-Panqueva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Miriam Vázquez-Acevedo
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - David F Barrera-Gómez
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Marina Gavilanes-Ruiz
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Patrice P Hamel
- Department of Molecular Genetics, The Ohio State University, 43210 Columbus, OH, USA
- School of BioScience and Technology, Vellore Institute of Technology, 632014 Vellore, Tamil Nadu, India
| | - Diego González-Halphen
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| |
Collapse
|
8
|
Lavallée É, Roulet-Matton M, Giang V, Cardona Hurtado R, Chaput D, Gravel SP. Mitochondrial signatures shape phenotype switching and apoptosis in response to PLK1 inhibitors. Life Sci Alliance 2025; 8:e202402912. [PMID: 39658088 PMCID: PMC11632064 DOI: 10.26508/lsa.202402912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024] Open
Abstract
PLK1 inhibitors are emerging anticancer agents that are being tested as monotherapy and combination therapies for various cancers. Although PLK1 inhibition in experimental models has shown potent antitumor effects, translation to the clinic has been hampered by low antitumor activity and tumor relapse. Here, we report the identification of mitochondrial protein signatures that determine the sensitivity to approaches targeting PLK1 in human melanoma cell lines. In response to PLK1 inhibition or gene silencing, resistant cells adopt a pro-inflammatory and dedifferentiated phenotype, whereas sensitive cells undergo apoptosis. Mitochondrial DNA depletion and silencing of the ABCD1 transporter sensitize cells to PLK1 inhibition and attenuate the associated pro-inflammatory response. We also found that nonselective inhibitors of the p90 ribosomal S6 kinase (RSK) exert their antiproliferative and pro-inflammatory effects via PLK1 inhibition. Specific inhibition of RSK, on the other hand, is anti-inflammatory and promotes a program of antigen presentation. This study reveals the overlooked effects of PLK1 on phenotype switching and suggests that mitochondrial precision medicine can help improve the response to targeted therapies.
Collapse
Affiliation(s)
- Émilie Lavallée
- Faculté de Pharmacie, Université de Montréal, Montréal, Canada
| | | | - Viviane Giang
- Faculté de Pharmacie, Université de Montréal, Montréal, Canada
| | | | - Dominic Chaput
- Faculté de Pharmacie, Université de Montréal, Montréal, Canada
| | | |
Collapse
|
9
|
Earnhardt-San AL, Baker EC, Cilkiz KZ, Cardoso RC, Ghaffari N, Long CR, Riggs PK, Randel RD, Riley DG, Welsh TH. Evaluation of Prenatal Transportation Stress on DNA Methylation (DNAm) and Gene Expression in the Hypothalamic-Pituitary-Adrenal (HPA) Axis Tissues of Mature Brahman Cows. Genes (Basel) 2025; 16:191. [PMID: 40004522 PMCID: PMC11855312 DOI: 10.3390/genes16020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: The experience of prenatal stress results in various physiological disorders due to an alteration of an offspring's methylome and transcriptome. The objective of this study was to determine whether PNS affects DNA methylation (DNAm) and gene expression in the stress axis tissues of mature Brahman cows. Methods: Samples were collected from the paraventricular nucleus (PVN), anterior pituitary (PIT), and adrenal cortex (AC) of 5-year-old Brahman cows that were prenatally exposed to either transportation stress (PNS, n = 6) or were not transported (Control, n = 8). The isolated DNA and RNA samples were, respectively, used for methylation and RNA-Seq analyses. A gene ontology and KEGG pathway enrichment analysis of each data set within each sample tissue was conducted with the DAVID Functional Annotation Tool. Results: The DNAm analysis revealed 3, 64, and 99 hypomethylated and 2, 93, and 90 hypermethylated CpG sites (FDR < 0.15) within the PVN, PIT, and AC, respectively. The RNA-Seq analysis revealed 6, 25, and 5 differentially expressed genes (FDR < 0.15) in the PVN, PIT, and AC, respectively, that were up-regulated in the PNS group relative to the Control group, as well as 24 genes in the PIT that were down-regulated. Based on the enrichment analysis, several developmental and cellular processes, such as maintenance of the actin cytoskeleton, cell motility, signal transduction, neurodevelopment, and synaptic function, were potentially modulated. Conclusions: The methylome and transcriptome were altered in the stress axis tissues of mature cows that had been exposed to prenatal transportation stress. These findings are relevant to understanding how prenatal experiences may affect postnatal neurological functions.
Collapse
Affiliation(s)
- Audrey L. Earnhardt-San
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
- Texas A&M AgriLife Research Center, Overton, TX 75684, USA
| | - Emilie C. Baker
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| | - Kubra Z. Cilkiz
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| | - Rodolfo C. Cardoso
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| | - Noushin Ghaffari
- Department of Computer Science, Prairie View A&M University, Prairie View, TX 77070, USA;
| | - Charles R. Long
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
- Department of Computer Science, Prairie View A&M University, Prairie View, TX 77070, USA;
| | - Penny K. Riggs
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| | - Ronald D. Randel
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
- Department of Computer Science, Prairie View A&M University, Prairie View, TX 77070, USA;
| | - David G. Riley
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| | - Thomas H. Welsh
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA; (A.L.E.-S.); (E.C.B.); (K.Z.C.); (R.C.C.); (C.R.L.); (P.K.R.); (R.D.R.); (D.G.R.)
| |
Collapse
|
10
|
Zhang X, Li J, Fu M, Geng X, Hu J, Tang KJ, Chen P, Zou J, Liu X, Zeng B. Dysfunction in mitochondrial electron transport chain drives the pathogenesis of pulmonary arterial hypertension: insights from a multi-omics investigation. Respir Res 2025; 26:29. [PMID: 39833797 PMCID: PMC11749457 DOI: 10.1186/s12931-025-03099-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/02/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a progressive disorder that can lead to right ventricular failure and severe consequences. Despite extensive efforts, limited progress has been made in preventing the progression of PAH. Mitochondrial dysfunction is implicated in the development of PAH, but the key mitochondrial functional alterations in the pathogenesis have yet to be elucidated. METHODS We integrated three microarray datasets from the Gene Expression Omnibus (GEO), including 222 lung samples (164 PAH, 58 controls), for differential expression and functional enrichment analyses. Machine learning identified key mitochondria-related signaling pathways. PAH and control lung tissue samples were collected, and transcriptomic and metabolomic profiling were performed. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis investigated shared pathways, and canonical correlation analysis assessed gene-metabolite relationships. RESULTS In the GEO datasets, mitochondria-related signaling pathways were significantly enriched in PAH samples, in particular the electron transport chain (ETC) in mitochondrial oxidative phosphorylation system. Notably, the electron transport from cytochrome c to oxygen in ETC was identified as the most crucial mitochondria-related pathway, which was down-regulated in PAH samples. Transcriptomic profiling of the clinical lung tissue analysis identified 14 differentially expressed genes (DEGs) related to mitochondrial function. Metabolomic analysis revealed three differential metabolites in PAH samples: increased 3-phenyllactic acid and ADP, and decreased citric acid. Mitochondria-related genes highly correlated with these metabolites included KIT, OTC, CAMK2A, and CHRNA1. CONCLUSIONS Down-regulation of electron transport from cytochrome c to oxygen in mitochondrial ETC and disruption of the citric acid cycle homeostasis may contribute to PAH pathogenesis. 3-phenyllactic acid emerges as a potential novel diagnostic biomarker for PAH. These findings offer insights for developing novel PAH therapies and diagnostics.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jieling Li
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Minyi Fu
- Surgical and Anesthesia Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xijie Geng
- Surgical and Anesthesia Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Junjie Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ke-Jing Tang
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Pan Chen
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jianyong Zou
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Xiaoman Liu
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Bo Zeng
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
11
|
Ziegler DV, Parashar K, Leal-Esteban L, López-Alcalá J, Castro W, Zanou N, Martinez-Carreres L, Huber K, Berney XP, Malagón MM, Roger C, Berger MA, Gouriou Y, Paone G, Gallart-Ayala H, Sflomos G, Ronchi C, Ivanisevic J, Brisken C, Rieusset J, Irving M, Fajas L. CDK4 inactivation inhibits apoptosis via mitochondria-ER contact remodeling in triple-negative breast cancer. Nat Commun 2025; 16:541. [PMID: 39788939 PMCID: PMC11718081 DOI: 10.1038/s41467-024-55605-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
The energetic demands of proliferating cells during tumorigenesis require close coordination between the cell cycle and metabolism. While CDK4 is known for its role in cell proliferation, its metabolic function in cancer, particularly in triple-negative breast cancer (TNBC), remains unclear. Our study, using genetic and pharmacological approaches, reveals that CDK4 inactivation only modestly impacts TNBC cell proliferation and tumor formation. Notably, CDK4 depletion or long-term CDK4/6 inhibition confers resistance to apoptosis in TNBC cells. Mechanistically, CDK4 enhances mitochondria-endoplasmic reticulum contact (MERCs) formation, promoting mitochondrial fission and ER-mitochondrial calcium signaling, which are crucial for TNBC metabolic flexibility. Phosphoproteomic analysis identified CDK4's role in regulating PKA activity at MERCs. In this work, we highlight CDK4's role in mitochondrial apoptosis inhibition and suggest that targeting MERCs-associated metabolic shifts could enhance TNBC therapy.
Collapse
Affiliation(s)
- Dorian V Ziegler
- Center for Integrative Genomics, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Kanishka Parashar
- Center for Integrative Genomics, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Lucia Leal-Esteban
- Center for Integrative Genomics, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Jaime López-Alcalá
- Center for Integrative Genomics, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
- Department of Cell Biology, Physiology and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/University of Córdoba/Reina Sofía University Hospital, Córdoba, Spain
| | - Wilson Castro
- Ludwig Institute for Cancer Research, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Nadège Zanou
- Institute of Sport Sciences and Department of Biomedical Sciences, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Laia Martinez-Carreres
- Center for Integrative Genomics, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Katharina Huber
- Center for Integrative Genomics, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Xavier Pascal Berney
- Center for Integrative Genomics, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - María M Malagón
- Department of Cell Biology, Physiology and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/University of Córdoba/Reina Sofía University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Catherine Roger
- Center for Integrative Genomics, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Marie-Agnès Berger
- Laboratoire CarMeN, UMR INSERM U1060/INRA U1397, Université Claude Bernard Lyon1, F-69310, Pierre-Bénite, France
| | - Yves Gouriou
- Laboratoire CarMeN, UMR INSERM U1060/INRA U1397, Université Claude Bernard Lyon1, F-69310, Pierre-Bénite, France
| | - Giulia Paone
- Center for Integrative Genomics, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Hector Gallart-Ayala
- Metabolomics Platform, University of Lausanne, Faculty of Biology and Medicine, Rue du Bugnon 19, 1005, Lausanne, Switzerland
| | - George Sflomos
- ISREC-Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carlos Ronchi
- ISREC-Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Platform, University of Lausanne, Faculty of Biology and Medicine, Rue du Bugnon 19, 1005, Lausanne, Switzerland
| | - Cathrin Brisken
- ISREC-Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Jennifer Rieusset
- Laboratoire CarMeN, UMR INSERM U1060/INRA U1397, Université Claude Bernard Lyon1, F-69310, Pierre-Bénite, France
| | - Melita Irving
- Ludwig Institute for Cancer Research, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Lluis Fajas
- Center for Integrative Genomics, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland.
- Inserm, Occitanie Méditerranée, Montpellier, France.
| |
Collapse
|
12
|
Mao X, Xia D, Xu M, Gao Y, Tong L, Lu C, Li W, Xie R, Liu Q, Jiang D, Yuan S. Single-Cell Simultaneous Metabolome and Transcriptome Profiling Revealing Metabolite-Gene Correlation Network. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411276. [PMID: 39629980 PMCID: PMC11775534 DOI: 10.1002/advs.202411276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/12/2024] [Indexed: 01/30/2025]
Abstract
Metabolic studies at the single cell level can directly define the cellular phenotype closest to physiological or disease states. However, the current single cell metabolome (SCM) study using mass spectroscopy has difficulty giving a complete view of the metabolic activity in the cell, and the prediction of the metabolism-phenotype relationship is limited by the potential inconsistency between transcriptomic and metabolic levels. Here, the single-cell simultaneous metabolome and transcriptome profiling method (scMeT-seq) is developed at one single cell, based on sub-picoliter sampling from the cell for the initial metabolome profiling followed by single cell transcriptome sequencing. This design not only provides sufficient cytoplasm for SCM but also nicely keeps the cellular viability for the accurate transcriptomic analysis in the same cell. Integrative analysis of scMeT-seq reveals both dynamical and cell state-specific associations between metabolome and transcriptome in the macrophages with defined metabolic perturbations. Moreover, metabolite signatures are mapped to the single-cell trajectory and gene correlation network of macrophage transition, which allows the unsupervised functional interpretation of metabolome. Thus, the established scMeT-seq should lead to a new perspective in metabolic research by transforming metabolomics from a metabolite snapshot to a functional approach.
Collapse
Affiliation(s)
- Xiying Mao
- Department of OphthalmologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029P. R. China
| | - Dandan Xia
- The State Key Lab of Analytical Chemistry for Life ScienceChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing UniversityNanjing210093P. R. China
| | - Miao Xu
- Department of OphthalmologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029P. R. China
| | - Yan Gao
- Department of OphthalmologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029P. R. China
| | - Le Tong
- The State Key Lab of Analytical Chemistry for Life ScienceChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing UniversityNanjing210093P. R. China
| | - Chen Lu
- Department of OphthalmologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029P. R. China
| | - Weiqi Li
- Department of OphthalmologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029P. R. China
| | - Runmin Xie
- Department of OphthalmologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029P. R. China
| | - Qinghuai Liu
- Department of OphthalmologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029P. R. China
| | - Dechen Jiang
- The State Key Lab of Analytical Chemistry for Life ScienceChemistry and Biomedicine Innovation Center (ChemBIC)School of Chemistry and Chemical EngineeringNanjing UniversityNanjing210093P. R. China
| | - Songtao Yuan
- Department of OphthalmologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029P. R. China
| |
Collapse
|
13
|
Rezaei H, Wang HW, Tian W, Zhao J, Najibi A, Retana-Márquez S, Rafiei E, Rowhanirad A, Sabouri S, Kiafar M, Fazlinezhad R, Niknahad AM, Evazzadeh F, Anousheh ST, Ommati MM, Niknahad H, Heidari R. Long-term taurine supplementation regulates brain mitochondrial dynamics in mice. Basic Clin Pharmacol Toxicol 2025; 136:e14101. [PMID: 39558449 DOI: 10.1111/bcpt.14101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND Taurine (TAU) is the most abundant non-protein amino acid in the central nervous system (CNS). However, the molecular mechanism of TAU in the CNS is still poorly understood. Meanwhile, disruption in mitochondrial dynamics is evident in CNS disorders. This study aimed to investigate the effect of TAU on mitochondrial dynamics. METHODS TAU (0.25, 0.5 and 1% in drinking water) was administered to young mice for six months. Several memory/cognition parameters and indices of anxiety/depression were assessed. Meanwhile, various mitochondrial indices and the expression/activity of genes involved in mitochondrial biogenesis and dynamics (Akt, CREB, NRF1, TFAM, PGC-1α, Mfn1, Mfn2, UCP2, PINK1, OPA1, Drp1 and Fis1) were examined. RESULTS TAU significantly enhanced memory performance, suppressed anxiety and depression-like behaviour, increased mitochondrial biogenesis/dynamics and improved mitochondrial indices. It should be mentioned that there was no significant difference between different concentrations of TAU in changing most brain mitochondrial dynamic biomarkers in the current study. CONCLUSIONS These findings offer more insights into the molecular mechanism for TAU's action in the CNS. However, there is a need for further research to confirm these effects in humans. Overall, this study suggests the potential application of TAU in various neurological disorders and the need for clinical studies on the effects of this amino acid in the brain.
Collapse
Affiliation(s)
- Heresh Rezaei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hong-Wei Wang
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Weishun Tian
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Jing Zhao
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Asma Najibi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA
| | - Socorro Retana-Márquez
- Department of Reproductive Biology, Universidad Autonoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Elahe Rafiei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ayeh Rowhanirad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sabouri
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Mohammadreza Kiafar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rahil Fazlinezhad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Mohammad Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Evazzadeh
- Department of Psychology, Science & Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Mohammad Mehdi Ommati
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Henan Key Laboratory of Environmental and Animal Product Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, China
| | - Hossein Niknahad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
14
|
Pham L, Arroum T, Wan J, Pavelich L, Bell J, Morse PT, Lee I, Grossman LI, Sanderson TH, Malek MH, Hüttemann M. Regulation of mitochondrial oxidative phosphorylation through tight control of cytochrome c oxidase in health and disease - Implications for ischemia/reperfusion injury, inflammatory diseases, diabetes, and cancer. Redox Biol 2024; 78:103426. [PMID: 39566165 PMCID: PMC11617887 DOI: 10.1016/j.redox.2024.103426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/04/2024] [Accepted: 11/09/2024] [Indexed: 11/22/2024] Open
Abstract
Mitochondria are essential to cellular function as they generate the majority of cellular ATP, mediated through oxidative phosphorylation, which couples proton pumping of the electron transport chain (ETC) to ATP production. The ETC generates an electrochemical gradient, known as the proton motive force, consisting of the mitochondrial membrane potential (ΔΨm, the major component in mammals) and ΔpH across the inner mitochondrial membrane. Both ATP production and reactive oxygen species (ROS) are linked to ΔΨm, and it has been shown that an imbalance in ΔΨm beyond the physiological optimal intermediate range results in excessive ROS production. The reaction of cytochrome c oxidase (COX) of the ETC with its small electron donor cytochrome c (Cytc) is the proposed rate-limiting step in mammals under physiological conditions. The rate at which this redox reaction occurs controls ΔΨm and thus ATP and ROS production. Multiple mechanisms are in place that regulate this reaction to meet the cell's energy demand and respond to acute stress. COX and Cytc have been shown to be regulated by all three main mechanisms, which we discuss in detail: allosteric regulation, tissue-specific isoforms, and post-translational modifications for which we provide a comprehensive catalog and discussion of their functional role with 55 and 50 identified phosphorylation and acetylation sites on COX, respectively. Disruption of these regulatory mechanisms has been found in several common human diseases, including stroke and myocardial infarction, inflammation including sepsis, and diabetes, where changes in COX or Cytc phosphorylation lead to mitochondrial dysfunction contributing to disease pathophysiology. Identification and subsequent targeting of the underlying signaling pathways holds clear promise for future interventions to improve human health. An example intervention is the recently discovered noninvasive COX-inhibitory infrared light therapy that holds promise to transform the current standard of clinical care in disease conditions where COX regulation has gone awry.
Collapse
Affiliation(s)
- Lucynda Pham
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
| | - Tasnim Arroum
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
| | - Junmei Wan
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
| | - Lauren Pavelich
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA; Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, 48201, USA.
| | - Jamie Bell
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA; Division of Pediatric Critical Care, Children's Hospital of Michigan, Central Michigan University, Detroit, MI, 48201, USA.
| | - Paul T Morse
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
| | - Icksoo Lee
- College of Medicine, Dankook University, Cheonan-si, 31116, Republic of Korea.
| | - Lawrence I Grossman
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA.
| | - Thomas H Sanderson
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| | - Moh H Malek
- Department of Health Care Sciences, Eugene Applebaum College of Pharmacy & Health Sciences, Wayne State University, Detroit, MI, 48201, USA.
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, 48201, USA; Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
15
|
Klimenko ES, Sukhareva KS, Vlasova Y, Smolina NA, Fomicheva Y, Knyazeva A, Muravyev AS, Sorokina MY, Gavrilova LS, Boldyreva LV, Medvedeva SS, Sejersen T, Kostareva AA. Flnc expression impacts mitochondrial function, autophagy, and calcium handling in C2C12 cells. Exp Cell Res 2024; 442:114174. [PMID: 39089502 DOI: 10.1016/j.yexcr.2024.114174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Affiliation(s)
- E S Klimenko
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - K S Sukhareva
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - YuA Vlasova
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - N A Smolina
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - YuV Fomicheva
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - A Knyazeva
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - A S Muravyev
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - M Yu Sorokina
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - L S Gavrilova
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - L V Boldyreva
- Scientific-Research Institute of Neurosciences and Medicine, Novosibirsk, Russia; Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - S S Medvedeva
- Scientific-Research Institute of Neurosciences and Medicine, Novosibirsk, Russia; Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - T Sejersen
- Department of Women's and Children's Health, Karolinska Institutet, Department of Child Neurology, Karolinska University Hospital, Astrid Lindgren Children's Hospital, Stockholm, Sweden; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| | - A A Kostareva
- Almazov National Medical Research Centre, Saint-Petersburg, Russia; Department of Women's and Children's Health, Karolinska Institutet, Department of Child Neurology, Karolinska University Hospital, Astrid Lindgren Children's Hospital, Stockholm, Sweden; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, New Territories, Hong Kong.
| |
Collapse
|
16
|
Li C, Lv C, Larbi A, Liang J, Yang Q, Wu G, Quan G. Revisiting the Injury Mechanism of Goat Sperm Caused by the Cryopreservation Process from a Perspective of Sperm Metabolite Profiles. Int J Mol Sci 2024; 25:9112. [PMID: 39201798 PMCID: PMC11354876 DOI: 10.3390/ijms25169112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Semen cryopreservation results in the differential remodeling of the molecules presented in sperm, and these alterations related to reductions in sperm quality and its physiological function have not been fully understood. Given this, this study aimed to investigate the cryoinjury mechanism of goat sperm by analyzing changes of the metabolic characteristics in sperm during the cryopreservation process. The ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) technique was performed to explore metabolite profiles of fresh sperm (C group), equilibrated sperm (E group), and frozen-thawed sperm (F group). In total, 2570 metabolites in positive mode and 2306 metabolites in negative mode were identified, respectively. After comparative analyses among these three groups, 374 differentially abundant metabolites (DAMs) in C vs. E, 291 DAMs in C vs. F, and 189 DAMs in E vs. F were obtained in the positive mode; concurrently, 530 DAMs in C vs. E, 405 DAMs in C vs. F, and 193 DAMs in E vs. F were obtained in the negative mode, respectively. The DAMs were significantly enriched in various metabolic pathways, including 31 pathways in C vs. E, 25 pathways in C vs. F, and 28 pathways in E vs. F, respectively. Among them, 65 DAMs and 25 significantly enriched pathways across the three comparisons were discovered, which may be tightly associated with sperm characteristics and function. Particularly, the functional terms such as TCA cycle, biosynthesis of unsaturated fatty acids, sphingolipid metabolism, glycine, serine and threonine metabolism, alpha-linolenic acid metabolism, and pyruvate metabolism, as well as associated pivotal metabolites like ceramide, betaine, choline, fumaric acid, L-malic acid and L-lactic acid, were focused on. In conclusion, our research characterizes the composition of metabolites in goat sperm and their alterations induced by the cryopreservation process, offering a critical foundation for further exploring the molecular mechanisms of metabolism influencing the quality and freezing tolerance of goat sperm. Additionally, the impacts of equilibration at low temperature on sperm quality may need more attentions as compared to the freezing and thawing process.
Collapse
Affiliation(s)
- Chunyan Li
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650224, China; (C.L.); (C.L.); (J.L.); (G.W.)
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming 650224, China
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Jindian, Panlong District, Kunming 650224, China
| | - Chunrong Lv
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650224, China; (C.L.); (C.L.); (J.L.); (G.W.)
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming 650224, China
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Jindian, Panlong District, Kunming 650224, China
| | - Allai Larbi
- Laboratory of Sustainable Agriculture Management, Higher School of Technology Sidi Bennour, Chouaib Doukkali University El Jadida, El Jadida 24000, Morocco;
| | - Jiachong Liang
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650224, China; (C.L.); (C.L.); (J.L.); (G.W.)
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming 650224, China
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Jindian, Panlong District, Kunming 650224, China
| | - Qige Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Fengyuan Road, Panlong District, Kunming 650500, China;
| | - Guoquan Wu
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650224, China; (C.L.); (C.L.); (J.L.); (G.W.)
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming 650224, China
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Jindian, Panlong District, Kunming 650224, China
| | - Guobo Quan
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming 650224, China; (C.L.); (C.L.); (J.L.); (G.W.)
- Yunnan Provincial Engineering Research Center of Livestock Genetic Resource Conservation and Germplasm Enhancement, Jindian, Panlong District, Kunming 650224, China
- National Regional Genebank (Yunnan) of Livestock and Poultry Genetic Resources, Jindian, Panlong District, Kunming 650224, China
| |
Collapse
|
17
|
Peart LA, Draper M, Tarasov AI. The impact of GLP-1 signalling on the energy metabolism of pancreatic islet β-cells and extrapancreatic tissues. Peptides 2024; 178:171243. [PMID: 38788902 DOI: 10.1016/j.peptides.2024.171243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Glucagon-like peptide-1 signalling impacts glucose homeostasis and appetite thereby indirectly affecting substrate availability at the whole-body level. The incretin canonically produces an insulinotropic effect, thereby lowering blood glucose levels by promoting the uptake and inhibiting the production of the sugar by peripheral tissues. Likewise, GLP-1 signalling within the central nervous system reduces the appetite and food intake, whereas its gastric effect delays the absorption of nutrients, thus improving glycaemic control and reducing the risk of postprandial hyperglycaemia. We review the molecular aspects of the GLP-1 signalling, focusing on its impact on intracellular energy metabolism. Whilst the incretin exerts its effects predominantly via a Gs receptor, which decodes the incretin signal into the elevation of intracellular cAMP levels, the downstream signalling cascades within the cell, acting on fast and slow timescales, resulting in an enhancement or an attenuation of glucose catabolism, respectively.
Collapse
Affiliation(s)
- Leah A Peart
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - Matthew Draper
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - Andrei I Tarasov
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK.
| |
Collapse
|
18
|
Reisman EG, Hawley JA, Hoffman NJ. Exercise-Regulated Mitochondrial and Nuclear Signalling Networks in Skeletal Muscle. Sports Med 2024; 54:1097-1119. [PMID: 38528308 PMCID: PMC11127882 DOI: 10.1007/s40279-024-02007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2024] [Indexed: 03/27/2024]
Abstract
Exercise perturbs energy homeostasis in skeletal muscle and engages integrated cellular signalling networks to help meet the contraction-induced increases in skeletal muscle energy and oxygen demand. Investigating exercise-associated perturbations in skeletal muscle signalling networks has uncovered novel mechanisms by which exercise stimulates skeletal muscle mitochondrial biogenesis and promotes whole-body health and fitness. While acute exercise regulates a complex network of protein post-translational modifications (e.g. phosphorylation) in skeletal muscle, previous investigations of exercise signalling in human and rodent skeletal muscle have primarily focused on a select group of exercise-regulated protein kinases [i.e. 5' adenosine monophosphate-activated protein kinase (AMPK), protein kinase A (PKA), Ca2+/calmodulin-dependent protein kinase (CaMK) and mitogen-activated protein kinase (MAPK)] and only a small subset of their respective protein substrates. Recently, global mass spectrometry-based phosphoproteomic approaches have helped unravel the extensive complexity and interconnection of exercise signalling pathways and kinases beyond this select group and phosphorylation and/or translocation of exercise-regulated mitochondrial and nuclear protein substrates. This review provides an overview of recent advances in our understanding of the molecular events associated with acute endurance exercise-regulated signalling pathways and kinases in skeletal muscle with a focus on phosphorylation. We critically appraise recent evidence highlighting the involvement of mitochondrial and nuclear protein phosphorylation and/or translocation in skeletal muscle adaptive responses to an acute bout of endurance exercise that ultimately stimulate mitochondrial biogenesis and contribute to exercise's wider health and fitness benefits.
Collapse
Affiliation(s)
- Elizabeth G Reisman
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Level 5, 215 Spring Street, Melbourne, VIC, 3000, Australia
| | - John A Hawley
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Level 5, 215 Spring Street, Melbourne, VIC, 3000, Australia
| | - Nolan J Hoffman
- Exercise and Nutrition Research Program, Mary MacKillop Institute for Health Research, Australian Catholic University, Level 5, 215 Spring Street, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
19
|
Boengler K, Eickelmann C, Kleinbongard P. Mitochondrial Kinase Signaling for Cardioprotection. Int J Mol Sci 2024; 25:4491. [PMID: 38674076 PMCID: PMC11049936 DOI: 10.3390/ijms25084491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Myocardial ischemia/reperfusion injury is reduced by cardioprotective adaptations such as local or remote ischemic conditioning. The cardioprotective stimuli activate signaling cascades, which converge on mitochondria and maintain the function of the organelles, which is critical for cell survival. The signaling cascades include not only extracellular molecules that activate sarcolemmal receptor-dependent or -independent protein kinases that signal at the plasma membrane or in the cytosol, but also involve kinases, which are located to or within mitochondria, phosphorylate mitochondrial target proteins, and thereby modify, e.g., respiration, the generation of reactive oxygen species, calcium handling, mitochondrial dynamics, mitophagy, or apoptosis. In the present review, we give a personal and opinionated overview of selected protein kinases, localized to/within myocardial mitochondria, and summarize the available data on their role in myocardial ischemia/reperfusion injury and protection from it. We highlight the regulation of mitochondrial function by these mitochondrial protein kinases.
Collapse
Affiliation(s)
- Kerstin Boengler
- Institute of Physiology, Justus-Liebig University, 35392 Giessen, Germany
| | - Chantal Eickelmann
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, 45147 Essen, Germany; (C.E.); (P.K.)
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, 45147 Essen, Germany; (C.E.); (P.K.)
| |
Collapse
|
20
|
Chen X, Xiao J, Tao D, Liang Y, Chen S, Shen L, Li S, Zheng Z, Zeng Y, Luo C, Peng F, Long H. Metadherin orchestrates PKA and PKM2 to activate β-catenin signaling in podocytes during proteinuric chronic kidney disease. Transl Res 2024; 266:68-83. [PMID: 37995969 DOI: 10.1016/j.trsl.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/23/2023] [Accepted: 11/21/2023] [Indexed: 11/25/2023]
Abstract
Podocyte damage is the major cause of glomerular injury and proteinuria in multiple chronic kidney diseases. Metadherin (MTDH) is involved in podocyte apoptosis and promotes renal tubular injury in mouse models of diabetic nephropathy and renal fibrosis; however, its role in podocyte injury and proteinuria needs further exploration. Here, we show that MTDH was induced in the glomerular podocytes of patients with proteinuric chronic kidney disease and correlated with proteinuria. Podocyte-specific knockout of MTDH in mice reversed proteinuria, attenuated podocyte injury, and prevented glomerulosclerosis after advanced oxidation protein products challenge or adriamycin injury. Furthermore, specific knockout of MTDH in podocytes repressed β-catenin phosphorylation at the Ser675 site and inhibited its downstream target gene transcription. Mechanistically, on the one hand, MTDH increased cAMP and then activated protein kinase A (PKA) to induce β-catenin phosphorylation at the Ser675 site, facilitating the nuclear translocation of MTDH and β-catenin; on the other hand, MTDH induced the deaggregation of pyruvate kinase M2 (PKM2) tetramers and promoted PKM2 monomers to enter the nucleus. This cascade of events leads to the formation of the MTDH/PKM2/β-catenin/CBP/TCF4 transcription complex, thus triggering TCF4-dependent gene transcription. Inhibition of PKA activity by H-89 or blockade of PKM2 deaggregation by TEPP-46 abolished this cascade of events and disrupted transcription complex formation. These results suggest that MTDH induces podocyte injury and proteinuria by assembling the β-catenin-mediated transcription complex by regulating PKA and PKM2 function.
Collapse
Affiliation(s)
- Xiaowen Chen
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Jing Xiao
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Danping Tao
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China; Department of Gerontology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yunyi Liang
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Sijia Chen
- Department of Nephrology and Rheumatology, The First Hospital of Changsha, Changsha, China
| | - Lingyu Shen
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shuting Li
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zerong Zheng
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yao Zeng
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Congwei Luo
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Fenfen Peng
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Haibo Long
- Department of Nephrology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
21
|
Zimmermann A, Madeo F, Diwan A, Sadoshima J, Sedej S, Kroemer G, Abdellatif M. Metabolic control of mitophagy. Eur J Clin Invest 2024; 54:e14138. [PMID: 38041247 DOI: 10.1111/eci.14138] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
Mitochondrial dysfunction is a major hallmark of ageing and related chronic disorders. Controlled removal of damaged mitochondria by the autophagic machinery, a process known as mitophagy, is vital for mitochondrial homeostasis and cell survival. The central role of mitochondria in cellular metabolism places mitochondrial removal at the interface of key metabolic pathways affecting the biosynthesis or catabolism of acetyl-coenzyme A, nicotinamide adenine dinucleotide, polyamines, as well as fatty acids and amino acids. Molecular switches that integrate the metabolic status of the cell, like AMP-dependent protein kinase, protein kinase A, mechanistic target of rapamycin and sirtuins, have also emerged as important regulators of mitophagy. In this review, we discuss how metabolic regulation intersects with mitophagy. We place special emphasis on the metabolic regulatory circuits that may be therapeutically targeted to delay ageing and mitochondria-associated chronic diseases. Moreover, we identify outstanding knowledge gaps, such as the ill-defined distinction between basal and damage-induced mitophagy, which must be resolved to boost progress in this area.
Collapse
Affiliation(s)
- Andreas Zimmermann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Field of Excellence BioHealth-University of Graz, Graz, Austria
| | - Frank Madeo
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Field of Excellence BioHealth-University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Abhinav Diwan
- Division of Cardiology and Center for Cardiovascular Research, Washington University School of Medicine, and John Cochran Veterans Affairs Medical Center, St. Louis, Missouri, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Simon Sedej
- BioTechMed Graz, Graz, Austria
- Department of Cardiology, Medical University of Graz, Graz, Austria
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
- Department of Biology, Hôpital Européen Georges Pompidou, Institut du Cancer Paris CARPEM, Paris, France
| | - Mahmoud Abdellatif
- BioTechMed Graz, Graz, Austria
- Department of Cardiology, Medical University of Graz, Graz, Austria
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
| |
Collapse
|
22
|
Zhang Q, Zhang X, Yang B, Li Y, Sun X, Li X, Sui P, Wang Y, Tian S, Wang C. Ligustilide-loaded liposome ameliorates mitochondrial impairments and improves cognitive function via the PKA/AKAP1 signaling pathway in a mouse model of Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14460. [PMID: 37718506 PMCID: PMC10916432 DOI: 10.1111/cns.14460] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/15/2023] [Accepted: 08/25/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND Oxidative stress is an early event in the development of Alzheimer's disease (AD) and maybe a pivotal point of interaction governing AD pathogenesis; oxidative stress contributes to metabolism imbalance, protein misfolding, neuroinflammation and apoptosis. Excess reactive oxygen species (ROS) are a major contributor to oxidative stress. As vital sources of ROS, mitochondria are also the primary targets of ROS attack. Seeking effective avenues to reduce oxidative stress has attracted increasing attention for AD intervention. METHODS We developed liposome-packaged Ligustilide (LIG) and investigated its effects on mitochondrial function and AD-like pathology in the APPswe/PS1dE9 (APP/PS1) mouse model of AD, and analyzed possible mechanisms. RESULTS We observed that LIG-loaded liposome (LIG-LPs) treatment reduced oxidative stress and β-amyloid (Aβ) deposition and mitigated cognitive impairment in APP/PS1 mice. LIG management alleviated the destruction of the inner structure in the hippocampal mitochondria and ameliorated the imbalance between mitochondrial fission and fusion in the APP/PS1 mouse brain. We showed that the decline in cAMP-dependent protein kinase A (PKA) and A-kinase anchor protein 1 for PKA (AKAP1) was associated with oxidative stress and AD-like pathology. We confirmed that LIG-mediated antioxidant properties and neuroprotection were involved in upregulating the PKA/AKAP1 signaling in APPswe cells in vitro. CONCLUSION Liposome packaging for LIG is relatively biosafe and can overcome the instability of LIG. LIG alleviates mitochondrial dysfunctions and cognitive impairment via the PKA/AKAP1 signaling pathway. Our results provide experimental evidence that LIG-LPs may be a promising agent for AD therapy.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology of Ministry of EducationHealth Sciences Institute of China Medical UniversityShenyangChina
| | - Xiangxiang Zhang
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology of Ministry of EducationHealth Sciences Institute of China Medical UniversityShenyangChina
| | - Bing Yang
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology of Ministry of EducationHealth Sciences Institute of China Medical UniversityShenyangChina
| | - Yan Li
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology of Ministry of EducationHealth Sciences Institute of China Medical UniversityShenyangChina
| | - Xue‐Heng Sun
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology of Ministry of EducationHealth Sciences Institute of China Medical UniversityShenyangChina
| | - Xiang Li
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology of Ministry of EducationHealth Sciences Institute of China Medical UniversityShenyangChina
| | - Ping Sui
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology of Ministry of EducationHealth Sciences Institute of China Medical UniversityShenyangChina
| | - Yi‐Bin Wang
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology of Ministry of EducationHealth Sciences Institute of China Medical UniversityShenyangChina
| | - Shu‐Yu Tian
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology of Ministry of EducationHealth Sciences Institute of China Medical UniversityShenyangChina
| | - Chun‐Yan Wang
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning ProvinceHealth Sciences Institute of China Medical UniversityShenyangChina
- Key Laboratory of Medical Cell Biology of Ministry of EducationHealth Sciences Institute of China Medical UniversityShenyangChina
- Translational Medicine Laboratory, Basic College of MedicineJilin Medical UniversityJilinChina
| |
Collapse
|
23
|
Sun JY, Li C, Du FY. Adenylate cyclase activates the cAMP signalling pathway to enhance platelet-rich plasma-treated Achilles tendon disease, a theoretical bioinformatics-based study. World J Orthop 2024; 15:192-200. [PMID: 38464349 PMCID: PMC10921184 DOI: 10.5312/wjo.v15.i2.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/29/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
The effectiveness of platelet-rich plasma (PRP) for the treatment of Achilles tendon disorders still needs to be evaluated through a series of prospective studies, but genomic analysis can reveal the existence of complementary PRP treatment options. Based on the 96 platelet activation-related genes in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, we performed Gene Ontology functional enrichment analysis and KEGG enrichment analysis, pathway correlation analysis, and enrichment mapping to determine the enrichment results of the gene set enrichment analysis and found that the cAMP signalling pathway may be the key to enhancing the effectiveness of PRP treatment. The cAMP signalling pathway interacts with the Rap1 signalling pathway and cGMP-PKG signalling pathway to mediate the entire pathophysiological process of Achilles tendon disease. Moreover, ADCY1-9 may be the key to the activation of the cAMP signalling network. Further based on the data in the Gene Expression Omnibus database, it was found that ADCY4 and ADCY7 may be the players that play a major role, associated with the STAT4-ADCY4-LAMA5 axis and the GRbeta-ADCY7-SEMA3C axis, which is expected to be a complementary target for enhancing the efficacy of PRP in the treatment of Achilles tendon disease.
Collapse
Affiliation(s)
- Jing-Yi Sun
- College of Basic Medical Science, Qilu Medical University, Zibo 255300, Shandong Province, China
| | - Cai Li
- College of Basic Medical Science, Qilu Medical University, Zibo 255300, Shandong Province, China
| | - Feng-Ying Du
- Department of Gastroenterological Surgery, Shandong Provincial Hospital of Shandong First Medical University, Jinan 250021, Shandong Province, China
| |
Collapse
|
24
|
Lun W, Yan Q, Guo X, Zhou M, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. Mechanism of action of the bile acid receptor TGR5 in obesity. Acta Pharm Sin B 2024; 14:468-491. [PMID: 38322325 PMCID: PMC10840437 DOI: 10.1016/j.apsb.2023.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/17/2023] [Accepted: 10/24/2023] [Indexed: 02/08/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family of membrane protein receptors, and Takeda G protein-coupled receptor 5 (TGR5) is a member of this family. As a membrane receptor, TGR5 is widely distributed in different parts of the human body and plays a vital role in regulating metabolism, including the processes of energy consumption, weight loss and blood glucose homeostasis. Recent studies have shown that TGR5 plays an important role in glucose and lipid metabolism disorders such as fatty liver, obesity and diabetes. With the global obesity situation becoming more and more serious, a comprehensive explanation of the mechanism of TGR5 and filling the gaps in knowledge concerning clinical ligand drugs are urgently needed. In this review, we mainly explain the anti-obesity mechanism of TGR5 to promote the further study of this target, and show the electron microscope structure of TGR5 and review recent studies on TGR5 ligands to illustrate the specific binding between TGR5 receptor binding sites and ligands, which can effectively provide new ideas for ligand research and promote drug research.
Collapse
Affiliation(s)
- Weijun Lun
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qihao Yan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xinghua Guo
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Minchuan Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Science City, Guangzhou 510663, China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
25
|
Sun X, Wu C, Tian X, Wang P, Guo J, Shao Z, Wei Q. Activation of Dopamine Receptor D1 and Downstream Cellular Functions by Polydopamine. ACS Biomater Sci Eng 2024; 10:420-428. [PMID: 38142403 DOI: 10.1021/acsbiomaterials.3c01615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Polydopamine is a remarkable molecule that has gained considerable attention for its role in material surface modification, leading to an abundance of research in the biomaterial domain. While its widespread use is well documented, the molecule's potential cellular interactions have been less explored. In particular, dopamine serves as a neurotransmitter and a hormone that interacts with dopamine receptors in cells. Our study sheds light on the previously unexamined interaction between polydopamine and dopamine receptor D1 (DRD1). We discovered that polydopamine, along with its derivatives, such as levodopa and catechol, can activate DRD1─a function previously attributed solely to dopamine. Moreover, we found that polydopamine has the ability to influence cell behavior through the cAMP/PKA pathway, thereby affecting RhoA activity and stress fiber formation. These observations invite further consideration regarding the biological safety of polydopamine in biomedical contexts and also open avenues for new research directions in designing bioactive functional materials.
Collapse
Affiliation(s)
- Xin Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
| | - Chao Wu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Xiaowen Tian
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Peng Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
| | - Junling Guo
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- Department of Chemical and Biological Engineering, University of British, Columbia Vancouver, BC V6T 1Z4, Canada
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Qiang Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
26
|
Cao YY, Wu LL, Li XN, Yuan YL, Zhao WW, Qi JX, Zhao XY, Ward N, Wang J. Molecular Mechanisms of AMPA Receptor Trafficking in the Nervous System. Int J Mol Sci 2023; 25:111. [PMID: 38203282 PMCID: PMC10779435 DOI: 10.3390/ijms25010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Synaptic plasticity enhances or reduces connections between neurons, affecting learning and memory. Postsynaptic AMPARs mediate greater than 90% of the rapid excitatory synaptic transmission in glutamatergic neurons. The number and subunit composition of AMPARs are fundamental to synaptic plasticity and the formation of entire neural networks. Accordingly, the insertion and functionalization of AMPARs at the postsynaptic membrane have become a core issue related to neural circuit formation and information processing in the central nervous system. In this review, we summarize current knowledge regarding the related mechanisms of AMPAR expression and trafficking. The proteins related to AMPAR trafficking are discussed in detail, including vesicle-related proteins, cytoskeletal proteins, synaptic proteins, and protein kinases. Furthermore, significant emphasis was placed on the pivotal role of the actin cytoskeleton, which spans throughout the entire transport process in AMPAR transport, indicating that the actin cytoskeleton may serve as a fundamental basis for AMPAR trafficking. Additionally, we summarize the proteases involved in AMPAR post-translational modifications. Moreover, we provide an overview of AMPAR transport and localization to the postsynaptic membrane. Understanding the assembly, trafficking, and dynamic synaptic expression mechanisms of AMPAR may provide valuable insights into the cognitive decline associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Yi-Yang Cao
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (Y.-Y.C.); (X.-N.L.); (Y.-L.Y.); (W.-W.Z.); (J.-X.Q.); (X.-Y.Z.)
| | - Ling-Ling Wu
- School of Medicine, Shanghai University, Shanghai 200444, China;
| | - Xiao-Nan Li
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (Y.-Y.C.); (X.-N.L.); (Y.-L.Y.); (W.-W.Z.); (J.-X.Q.); (X.-Y.Z.)
| | - Yu-Lian Yuan
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (Y.-Y.C.); (X.-N.L.); (Y.-L.Y.); (W.-W.Z.); (J.-X.Q.); (X.-Y.Z.)
| | - Wan-Wei Zhao
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (Y.-Y.C.); (X.-N.L.); (Y.-L.Y.); (W.-W.Z.); (J.-X.Q.); (X.-Y.Z.)
| | - Jing-Xuan Qi
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (Y.-Y.C.); (X.-N.L.); (Y.-L.Y.); (W.-W.Z.); (J.-X.Q.); (X.-Y.Z.)
| | - Xu-Yu Zhao
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (Y.-Y.C.); (X.-N.L.); (Y.-L.Y.); (W.-W.Z.); (J.-X.Q.); (X.-Y.Z.)
| | - Natalie Ward
- Medical Laboratory, Exceptional Community Hospital, 19060 N John Wayne Pkwy, Maricopa, AZ 85139, USA;
| | - Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai 200444, China; (Y.-Y.C.); (X.-N.L.); (Y.-L.Y.); (W.-W.Z.); (J.-X.Q.); (X.-Y.Z.)
| |
Collapse
|
27
|
Akabane S, Oka T. Insights into the regulation of mitochondrial functions by protein kinase A-mediated phosphorylation. J Biochem 2023; 175:1-7. [PMID: 37775269 DOI: 10.1093/jb/mvad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023] Open
Abstract
Cyclic AMP (cAMP)-protein kinase A (PKA) signaling is a highly conserved pathway in eukaryotes and plays a central role in cell signaling cascades in response to environmental changes. Elevated cAMP levels promote the activation of PKA, which phosphorylates various downstream proteins. Many cytosolic and nuclear proteins, such as metabolic enzymes and transcriptional factors, have been identified as substrates for PKA, suggesting that PKA-mediated regulation occurs predominantly in the cytosol. Mitochondrial proteins are also phosphorylated by PKA, and PKA-mediated phosphorylation of mitochondrial proteins is considered to control a variety of mitochondrial functions, including oxidative phosphorylation, protein import, morphology and quality control. In this review, we outline PKA mitochondrial substrates and summarize the regulation of mitochondrial functions through PKA-mediated phosphorylation.
Collapse
Affiliation(s)
- Shiori Akabane
- Department of Life Science, Rikkyo University, Nishi-Ikebukuro 3-34-1, Toshima-ku, Tokyo 171-8501, Japan
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Toshihiko Oka
- Department of Life Science, Rikkyo University, Nishi-Ikebukuro 3-34-1, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
28
|
Boya P, Kaarniranta K, Handa JT, Sinha D. Lysosomes in retinal health and disease. Trends Neurosci 2023; 46:1067-1082. [PMID: 37848361 PMCID: PMC10842632 DOI: 10.1016/j.tins.2023.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/06/2023] [Accepted: 09/24/2023] [Indexed: 10/19/2023]
Abstract
Lysosomes play crucial roles in various cellular processes - including endocytosis, phagocytosis, and autophagy - which are vital for maintaining retinal health. Moreover, these organelles serve as environmental sensors and act as central hubs for multiple signaling pathways. Through communication with other cellular components, such as mitochondria, lysosomes orchestrate the cytoprotective response essential for preserving cellular homeostasis. This coordination is particularly critical in the retina, given its high metabolic rate and susceptibility to photo-oxidative stress. Consequently, impaired lysosomal function and dysregulated communication between lysosomes and other organelles contribute significantly to the pathobiology of major retinal degenerative diseases. This review explores the pivotal role of lysosomes in retinal cells and their involvement in retinal degenerative diseases.
Collapse
Affiliation(s)
- Patricia Boya
- Department of Neuroscience, University of Fribourg, Fribourg, Switzerland
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland; Department of Molecular Genetics, University of Lodz, Lodz, Poland
| | - James T Handa
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Debasish Sinha
- The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
29
|
Saatci O, Cetin M, Uner M, Tokat UM, Chatzistamou I, Ersan PG, Montaudon E, Akyol A, Aksoy S, Uner A, Marangoni E, Sajish M, Sahin O. Toxic PARP trapping upon cAMP-induced DNA damage reinstates the efficacy of endocrine therapy and CDK4/6 inhibitors in treatment-refractory ER+ breast cancer. Nat Commun 2023; 14:6997. [PMID: 37914699 PMCID: PMC10620179 DOI: 10.1038/s41467-023-42736-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
Resistance to endocrine therapy and CDK4/6 inhibitors, the standard of care (SOC) in estrogen receptor-positive (ER+) breast cancer, greatly reduces patient survival. Therefore, elucidating the mechanisms of sensitivity and resistance to SOC therapy and identifying actionable targets are urgently needed. Here, we show that SOC therapy causes DNA damage and toxic PARP1 trapping upon generation of a functional BRCAness (i.e., BRCA1/2 deficiency) phenotype, leading to increased histone parylation and reduced H3K9 acetylation, resulting in transcriptional blockage and cell death. Mechanistically, SOC therapy downregulates phosphodiesterase 4D (PDE4D), a novel ER target gene in a feedforward loop with ER, resulting in increased cAMP, PKA-dependent phosphorylation of mitochondrial COXIV-I, ROS generation and DNA damage. However, during SOC resistance, an ER-to-EGFR switch induces PDE4D overexpression via c-Jun. Notably, combining SOC with inhibitors of PDE4D, EGFR or PARP1 overcomes SOC resistance irrespective of the BRCA1/2 status, providing actionable targets for restoring SOC efficacy.
Collapse
Affiliation(s)
- Ozge Saatci
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Metin Cetin
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Meral Uner
- Department of Pathology, Faculty of Medicine, Hacettepe University, 06100, Ankara, Turkey
| | - Unal Metin Tokat
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, 06800, Turkey
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology & Immunology, University of South Carolina, Columbia, SC, 29208, USA
| | - Pelin Gulizar Ersan
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Elodie Montaudon
- Translational Research Department, Institut Curie, PSL Research University, Paris, 75005, France
| | - Aytekin Akyol
- Department of Pathology, Faculty of Medicine, Hacettepe University, 06100, Ankara, Turkey
| | - Sercan Aksoy
- Department of Medical Oncology, Hacettepe University Cancer Institute, 06100, Ankara, Turkey
| | - Aysegul Uner
- Department of Pathology, Faculty of Medicine, Hacettepe University, 06100, Ankara, Turkey
| | - Elisabetta Marangoni
- Translational Research Department, Institut Curie, PSL Research University, Paris, 75005, France
| | - Mathew Sajish
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Ozgur Sahin
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA.
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
30
|
Welsh CL, Conklin AE, Madan LK. Crystal Structures Reveal Hidden Domain Mechanics in Protein Kinase A (PKA). BIOLOGY 2023; 12:1370. [PMID: 37997969 PMCID: PMC10669547 DOI: 10.3390/biology12111370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023]
Abstract
Cyclic-AMP-dependent protein kinase A (PKA) is a critical enzyme involved in various signaling pathways that plays a crucial role in regulating cellular processes including metabolism, gene transcription, cell proliferation, and differentiation. In this study, the mechanisms of allostery in PKA were investigated by analyzing the vast repertoire of crystal structures available in the RCSB database. From existing structures of murine and human PKA, we elucidated the conformational ensembles and protein dynamics that are altered in a ligand-dependent manner. Distance metrics to analyze conformations of the G-loop were proposed to delineate different states of PKA and were compared to existing structural metrics. Furthermore, ligand-dependent flexibility was investigated through normalized B'-factors to better understand the inherent dynamics in PKA. The presented study provides a contemporary approach to traditional methods in engaging the use of crystal structures for understanding protein dynamics. Importantly, our studies provide a deeper understanding into the conformational ensemble of PKA as the enzyme progresses through its catalytic cycle. These studies provide insights into kinase regulation that can be applied to both PKA individually and protein kinases as a class.
Collapse
Affiliation(s)
- Colin L. Welsh
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Abigail E. Conklin
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Lalima K. Madan
- Department of Cellular and Molecular Pharmacology and Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
31
|
Zhang H, Li C, Liu Q, Li J, Wu H, Xu R, Sun Y, Cheng M, Zhao X, Pan M, Wei Q, Ma B. C-type natriuretic peptide improves maternally aged oocytes quality by inhibiting excessive PINK1/Parkin-mediated mitophagy. eLife 2023; 12:RP88523. [PMID: 37860954 PMCID: PMC10588981 DOI: 10.7554/elife.88523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
The overall oocyte quality declines with aging, and this effect is strongly associated with a higher reactive oxygen species (ROS) level and the resultant oxidative damage. C-type natriuretic peptide (CNP) is a well-characterized physiological meiotic inhibitor that has been successfully used to improve immature oocyte quality during in vitro maturation. However, the underlying roles of CNP in maternally aged oocytes have not been reported. Here, we found that the age-related reduction in the serum CNP concentration was highly correlated with decreased oocyte quality. Treatment with exogenous CNP promoted follicle growth and ovulation in aged mice and enhanced meiotic competency and fertilization ability. Interestingly, the cytoplasmic maturation of aged oocytes was thoroughly improved by CNP treatment, as assessed by spindle/chromosome morphology and redistribution of organelles (mitochondria, the endoplasmic reticulum, cortical granules, and the Golgi apparatus). CNP treatment also ameliorated DNA damage and apoptosis caused by ROS accumulation in aged oocytes. Importantly, oocyte RNA-seq revealed that the beneficial effect of CNP on aged oocytes was mediated by restoration of mitochondrial oxidative phosphorylation, eliminating excessive mitophagy. CNP reversed the defective phenotypes in aged oocytes by alleviating oxidative damage and suppressing excessive PINK1/Parkin-mediated mitophagy. Mechanistically, CNP functioned as a cAMP/PKA pathway modulator to decrease PINK1 stability and inhibit Parkin recruitment. In summary, our results demonstrated that CNP supplementation constitutes an alternative therapeutic approach for advanced maternal age-related oocyte deterioration and may improve the overall success rates of clinically assisted reproduction in older women.
Collapse
Affiliation(s)
- Hui Zhang
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Chan Li
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Qingyang Liu
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Jingmei Li
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Hao Wu
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Rui Xu
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Yidan Sun
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Ming Cheng
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Xiaoe Zhao
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Menghao Pan
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Qiang Wei
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| | - Baohua Ma
- College of Veterinary Medicine, Northwest A&F UniversityYanglingChina
- Key Laboratory of Animal Biotechnology, Ministry of AgricultureYanglingChina
| |
Collapse
|
32
|
Salcedo MV, Gravel N, Keshavarzi A, Huang LC, Kochut KJ, Kannan N. Predicting protein and pathway associations for understudied dark kinases using pattern-constrained knowledge graph embedding. PeerJ 2023; 11:e15815. [PMID: 37868056 PMCID: PMC10590106 DOI: 10.7717/peerj.15815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/10/2023] [Indexed: 10/24/2023] Open
Abstract
The 534 protein kinases encoded in the human genome constitute a large druggable class of proteins that include both well-studied and understudied "dark" members. Accurate prediction of dark kinase functions is a major bioinformatics challenge. Here, we employ a graph mining approach that uses the evolutionary and functional context encoded in knowledge graphs (KGs) to predict protein and pathway associations for understudied kinases. We propose a new scalable graph embedding approach, RegPattern2Vec, which employs regular pattern constrained random walks to sample diverse aspects of node context within a KG flexibly. RegPattern2Vec learns functional representations of kinases, interacting partners, post-translational modifications, pathways, cellular localization, and chemical interactions from a kinase-centric KG that integrates and conceptualizes data from curated heterogeneous data resources. By contextualizing information relevant to prediction, RegPattern2Vec improves accuracy and efficiency in comparison to other random walk-based graph embedding approaches. We show that the predictions produced by our model overlap with pathway enrichment data produced using experimentally validated Protein-Protein Interaction (PPI) data from both publicly available databases and experimental datasets not used in training. Our model also has the advantage of using the collected random walks as biological context to interpret the predicted protein-pathway associations. We provide high-confidence pathway predictions for 34 dark kinases and present three case studies in which analysis of meta-paths associated with the prediction enables biological interpretation. Overall, RegPattern2Vec efficiently samples multiple node types for link prediction on biological knowledge graphs and the predicted associations between understudied kinases, pseudokinases, and known pathways serve as a conceptual starting point for hypothesis generation and testing.
Collapse
Affiliation(s)
- Mariah V. Salcedo
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States of America
| | - Nathan Gravel
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States of America
| | - Abbas Keshavarzi
- School of Computing, University of Georgia, Athens, GA, United States of America
| | - Liang-Chin Huang
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States of America
| | - Krzysztof J. Kochut
- School of Computing, University of Georgia, Athens, GA, United States of America
| | - Natarajan Kannan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States of America
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States of America
| |
Collapse
|
33
|
Scrima R, Cela O, Rosiello M, Nabi AQ, Piccoli C, Capitanio G, Tucci FA, Leone A, Quarato G, Capitanio N. Mitochondrial sAC-cAMP-PKA Axis Modulates the ΔΨ m-Dependent Control Coefficients of the Respiratory Chain Complexes: Evidence of Respirasome Plasticity. Int J Mol Sci 2023; 24:15144. [PMID: 37894823 PMCID: PMC10607245 DOI: 10.3390/ijms242015144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The current view of the mitochondrial respiratory chain complexes I, III and IV foresees the occurrence of their assembly in supercomplexes, providing additional functional properties when compared with randomly colliding isolated complexes. According to the plasticity model, the two structural states of the respiratory chain may interconvert, influenced by the intracellular prevailing conditions. In previous studies, we suggested the mitochondrial membrane potential as a factor for controlling their dynamic balance. Here, we investigated if and how the cAMP/PKA-mediated signalling influences the aggregation state of the respiratory complexes. An analysis of the inhibitory titration profiles of the endogenous oxygen consumption rates in intact HepG2 cells with specific inhibitors of the respiratory complexes was performed to quantify, in the framework of the metabolic flux theory, the corresponding control coefficients. The attained results, pharmacologically inhibiting either PKA or sAC, indicated that the reversible phosphorylation of the respiratory chain complexes/supercomplexes influenced their assembly state in response to the membrane potential. This conclusion was supported by the scrutiny of the available structure of the CI/CIII2/CIV respirasome, enabling us to map several PKA-targeted serine residues exposed to the matrix side of the complexes I, III and IV at the contact interfaces of the three complexes.
Collapse
Affiliation(s)
- Rosella Scrima
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (O.C.); (M.R.); (A.Q.N.); (C.P.); (A.L.)
| | - Olga Cela
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (O.C.); (M.R.); (A.Q.N.); (C.P.); (A.L.)
| | - Michela Rosiello
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (O.C.); (M.R.); (A.Q.N.); (C.P.); (A.L.)
| | - Ari Qadir Nabi
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (O.C.); (M.R.); (A.Q.N.); (C.P.); (A.L.)
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil 44001, Kurdistan, Iraq
| | - Claudia Piccoli
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (O.C.); (M.R.); (A.Q.N.); (C.P.); (A.L.)
| | - Giuseppe Capitanio
- Department of Translational Biomedicine and Neuroscience, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Francesco Antonio Tucci
- European Institute of Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20141 Milan, Italy;
| | - Aldo Leone
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (O.C.); (M.R.); (A.Q.N.); (C.P.); (A.L.)
| | | | - Nazzareno Capitanio
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (O.C.); (M.R.); (A.Q.N.); (C.P.); (A.L.)
| |
Collapse
|
34
|
Swain M, Soman SK, Tapia K, Dagda RY, Dagda RK. Brain-derived neurotrophic factor protects neurons by stimulating mitochondrial function through protein kinase A. J Neurochem 2023; 167:104-125. [PMID: 37688457 PMCID: PMC10543477 DOI: 10.1111/jnc.15945] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 09/10/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) stimulates dendrite outgrowth and synaptic plasticity by activating downstream protein kinase A (PKA) signaling. Recently, BDNF has been shown to modulate mitochondrial respiration in isolated brain mitochondria, suggesting that BDNF can modulate mitochondrial physiology. However, the molecular mechanisms by which BDNF stimulates mitochondrial function in neurons remain to be elucidated. In this study, we surmised that BDNF binds to the TrkB receptor and translocates to mitochondria to govern mitochondrial physiology in a PKA-dependent manner. Confocal microscopy and biochemical subcellular fractionation assays confirm the localization of the TrkB receptor in mitochondria. The translocation of the TrkB receptor to mitochondria was significantly enhanced upon treating primary cortical neurons with exogenous BDNF, leading to rapid PKA activation. Showing a direct role of BDNF in regulating mitochondrial structure/function, time-lapse confocal microscopy in primary cortical neurons showed that exogenous BDNF enhances mitochondrial fusion, anterograde mitochondrial trafficking, and mitochondrial content within dendrites, which led to increased basal and ATP-linked mitochondrial respiration and glycolysis as assessed by an XF24e metabolic analyzer. BDNF-mediated regulation of mitochondrial structure/function requires PKA activity as treating primary cortical neurons with a pharmacological inhibitor of PKA or transiently expressing constructs that target an inhibitor peptide of PKA (PKI) to the mitochondrion abrogated BDNF-mediated mitochondrial fusion and trafficking. Mechanistically, western/Phos-tag blots show that BDNF stimulates PKA-mediated phosphorylation of Drp1 and Miro-2 to promote mitochondrial fusion and elevate mitochondrial content in dendrites, respectively. Effects of BDNF on mitochondrial function were associated with increased resistance of neurons to oxidative stress and dendrite retraction induced by rotenone. Overall, this study revealed new mechanisms of BDNF-mediated neuroprotection, which entails enhancing mitochondrial health and function of neurons.
Collapse
Affiliation(s)
- Maryann Swain
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, 1664 North Virginia Street, Nevada, 89557, USA
| | - Smijin K. Soman
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, 1664 North Virginia Street, Nevada, 89557, USA
| | - Kylea Tapia
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, 1664 North Virginia Street, Nevada, 89557, USA
| | - Raul Y. Dagda
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, 1664 North Virginia Street, Nevada, 89557, USA
| | - Ruben K. Dagda
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, 1664 North Virginia Street, Nevada, 89557, USA
| |
Collapse
|
35
|
Grilo LF, Martins JD, Diniz MS, Tocantins C, Cavallaro CH, Baldeiras I, Cunha-Oliveira T, Ford S, Nathanielsz PW, Oliveira PJ, Pereira SP. Maternal hepatic adaptations during obese pregnancy encompass lobe-specific mitochondrial alterations and oxidative stress. Clin Sci (Lond) 2023; 137:1347-1372. [PMID: 37565250 DOI: 10.1042/cs20230048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/12/2023]
Abstract
Maternal obesity (MO) is rising worldwide, affecting half of all gestations, constituting a possible risk-factor for some pregnancy-associated liver diseases (PALD) and hepatic diseases. PALD occur in approximately 3% of pregnancies and are characterized by maternal hepatic oxidative stress (OS) and mitochondrial dysfunction. Maternal hepatic disease increases maternal and fetal morbidity and mortality. Understanding the role of MO on liver function and pathophysiology could be crucial for better understanding the altered pathways leading to PALD and liver disease, possibly paving the way to prevention and adequate management of disease. We investigated specific hepatic metabolic alterations in mitochondria and oxidative stress during MO at late-gestation. Maternal hepatic tissue was collected at 90% gestation in Control and MO ewes (fed 150% of recommended nutrition starting 60 days before conception). Maternal hepatic redox state, mitochondrial respiratory chain (MRC), and OS markers were investigated. MO decreased MRC complex-II activity and its subunits SDHA and SDHB protein expression, increased complex-I and complex-IV activities despite reduced complex-IV subunit mtCO1 protein expression, and increased ATP synthase ATP5A subunit. Hepatic MO-metabolic remodeling was characterized by decreased adenine nucleotide translocator 1 and 2 (ANT-1/2) and voltage-dependent anion channel (VDAC) protein expression and protein kinase A (PKA) activity (P<0.01), and augmented NAD+/NADH ratio due to reduced NADH levels (P<0.01). MO showed an altered redox state with increased OS, increased lipid peroxidation (P<0.01), decreased GSH/GSSG ratio (P=0.005), increased superoxide dismutase (P=0.03) and decreased catalase (P=0.03) antioxidant enzymatic activities, lower catalase, glutathione peroxidase (GPX)-4 and glutathione reductase protein expression (P<0.05), and increased GPX-1 abundance (P=0.03). MO-related hepatic changes were more evident in the right lobe, corroborated by the integrative data analysis. Hepatic tissue from obese pregnant ewes showed alterations in the redox state, consistent with OS and MRC and metabolism remodeling. These are hallmarks of PALD and hepatic disease, supporting MO as a risk-factor and highlighting OS and mitochondrial dysfunction as mechanisms responsible for liver disease predisposition.
Collapse
Affiliation(s)
- Luís F Grilo
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
- Ph.D. Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - João D Martins
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
| | - Mariana S Diniz
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
| | - Carolina Tocantins
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
| | - Chiara H Cavallaro
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
| | - Inês Baldeiras
- Neurological Clinic, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Teresa Cunha-Oliveira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
| | - Stephen Ford
- Department of Animal Science, University of Wyoming, Laramie, WY, U.S.A
| | | | - Paulo J Oliveira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
| | - Susana P Pereira
- CNC - Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC-Biotech, Biocant Park, Cantanhede, Portugal
- Laboratory of Metabolism and Exercise (LametEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sport, University of Porto, Porto, Portugal
| |
Collapse
|
36
|
Jin F, Liu W, Cheng G, Cai S, Yin T, Diao L. The function of decidua natural killer cells in physiology and pathology of pregnancy. Am J Reprod Immunol 2023; 90:e13755. [PMID: 37641369 DOI: 10.1111/aji.13755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 08/31/2023] Open
Abstract
The role of decidual natural killer (dNK) cells in maintaining immune tolerance at the maternal-fetal interface during pregnancy is a significant topic in reproductive health. Immune tolerance is essential for a successful pregnancy and involves a complex immune response involving various immune cells and molecules. DNK cells comprise the largest population of lymphocyte subsets found in the decidua and play important roles in maintaining immune tolerance. These cells exert multiple functions to maintain homeostasis of the decidual microenvironment, including modulation of trophoblast invasion, promotion of fetal development, regulation of endometrial decidualization and spiral artery remodeling. DNK cells can also be divided into different subsets based on their functions as NKtolerant , NKcytotoxic , and NKregulatory cells. However, the relationship between dNK cells function and pregnancy outcomes is complex and poorly understood. In this review, we will focus on the physiological role of dNK cells during pregnancy and highlight the potential role in pathological pregnancies and therapeutic approaches.
Collapse
Affiliation(s)
- Fangfang Jin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Liu
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| | - Guan Cheng
- Department of Clinical Laboratory, Institute of translational medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Songchen Cai
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lianghui Diao
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| |
Collapse
|
37
|
Popov LD. Mitochondria as intracellular signalling organelles. An update. Cell Signal 2023:110794. [PMID: 37422005 DOI: 10.1016/j.cellsig.2023.110794] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/23/2023] [Accepted: 07/02/2023] [Indexed: 07/10/2023]
Abstract
Traditionally, mitochondria are known as "the powerhouse of the cell," responsible for energy (ATP) generation (by the electron transport chain, oxidative phosphorylation, the tricarboxylic acid cycle, and fatty acid ß-oxidation), and for the regulation of several metabolic processes, including redox homeostasis, calcium signalling, and cellular apoptosis. The extensive studies conducted in the last decades portray mitochondria as multifaceted signalling organelles that ultimately command cells' survival or death. Based on current knowledge, we'll outline the mitochondrial signalling to other intracellular compartments in homeostasis and pathology-related mitochondrial stress conditions here. The following topics are discussed: (i) oxidative stress and mtROS signalling in mitohormesis, (ii) mitochondrial Ca2+ signalling; (iii) the anterograde (nucleus-to-mitochondria) and retrograde (mitochondria-to-nucleus) signal transduction, (iv) the mtDNA role in immunity and inflammation, (v) the induction of mitophagy- and apoptosis - signalling cascades, (vi) the mitochondrial dysfunctions (mitochondriopathies) in cardiovascular, neurodegenerative, and malignant diseases. The novel insights into molecular mechanisms of mitochondria-mediated signalling can explain mitochondria adaptation to metabolic and environmental stresses to achieve cell survival.
Collapse
Affiliation(s)
- Lucia-Doina Popov
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania.
| |
Collapse
|
38
|
Bastola T, Perkins GA, Kim KY, Choi S, Kwon JW, Shen Z, Strack S, Ju WK. Role of A-Kinase Anchoring Protein 1 in Retinal Ganglion Cells: Neurodegeneration and Neuroprotection. Cells 2023; 12:1539. [PMID: 37296658 PMCID: PMC10252895 DOI: 10.3390/cells12111539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/21/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
A-Kinase anchoring protein 1 (AKAP1) is a multifunctional mitochondrial scaffold protein that regulates mitochondrial dynamics, bioenergetics, and calcium homeostasis by anchoring several proteins, including protein kinase A, to the outer mitochondrial membrane. Glaucoma is a complex, multifactorial disease characterized by a slow and progressive degeneration of the optic nerve and retinal ganglion cells (RGCs), ultimately resulting in vision loss. Impairment of the mitochondrial network and function is linked to glaucomatous neurodegeneration. Loss of AKAP1 induces dynamin-related protein 1 dephosphorylation-mediated mitochondrial fragmentation and loss of RGCs. Elevated intraocular pressure triggers a significant reduction in AKAP1 protein expression in the glaucomatous retina. Amplification of AKAP1 expression protects RGCs from oxidative stress. Hence, modulation of AKAP1 could be considered a potential therapeutic target for neuroprotective intervention in glaucoma and other mitochondria-associated optic neuropathies. This review covers the current research on the role of AKAP1 in the maintenance of mitochondrial dynamics, bioenergetics, and mitophagy in RGCs and provides a scientific basis to identify and develop new therapeutic strategies that could protect RGCs and their axons in glaucoma.
Collapse
Affiliation(s)
- Tonking Bastola
- Hamilton Glaucoma Center and Shiley Eye Institute, The Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92093, USA; (T.B.); (S.C.); (J.-W.K.); (Z.S.)
| | - Guy A. Perkins
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA; (G.A.P.); (K.-Y.K.)
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA; (G.A.P.); (K.-Y.K.)
| | - Seunghwan Choi
- Hamilton Glaucoma Center and Shiley Eye Institute, The Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92093, USA; (T.B.); (S.C.); (J.-W.K.); (Z.S.)
| | - Jin-Woo Kwon
- Hamilton Glaucoma Center and Shiley Eye Institute, The Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92093, USA; (T.B.); (S.C.); (J.-W.K.); (Z.S.)
- Department of Ophthalmology and Visual Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Ophthalmology and Visual Science, St. Vincent’s Hospital, Jungbu-daero 93, Paldal-gu, Suwon 16247, Republic of Korea
| | - Ziyao Shen
- Hamilton Glaucoma Center and Shiley Eye Institute, The Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92093, USA; (T.B.); (S.C.); (J.-W.K.); (Z.S.)
| | - Stefan Strack
- Department of Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA;
| | - Won-Kyu Ju
- Hamilton Glaucoma Center and Shiley Eye Institute, The Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92093, USA; (T.B.); (S.C.); (J.-W.K.); (Z.S.)
| |
Collapse
|
39
|
Garige M, Poncet S, Norris A, Chou CK, Wu WW, Shen RF, Greenberg JW, Krane LS, Sourbier C. Extended Opioid Exposure Modulates the Molecular Metabolism of Clear Cell Renal Cell Carcinoma. Life (Basel) 2023; 13:life13051196. [PMID: 37240841 DOI: 10.3390/life13051196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Opioids are commonly prescribed for extended periods of time to patients with advanced clear cell renal cell carcinoma to assist with pain management. Because extended opioid exposure has been shown to affect the vasculature and to be immunosuppressive, we investigated how it may affect the metabolism and physiology of clear cell renal cell carcinoma. RNA sequencing of a limited number of archived patients' specimens with extended opioid exposure or non-opioid exposure was performed. Immune infiltration and changes in the microenvironment were evaluated using CIBERSORT. A significant decrease in M1 macrophages and T cells CD4 memory resting immune subsets was observed in opioid-exposed tumors, whereas the changes observed in other immune cells were not statistically significant. Further RNA sequencing data analysis showed that differential expression of KEGG signaling pathways was significant between non-opioid-exposed specimens and opioid-exposed specimens, with a shift from a gene signature consistent with aerobic glycolysis to a gene signature consistent with the TCA cycle, nicotinate metabolism, and the cAMP signaling pathway. Together, these data suggest that extended opioid exposure changes the cellular metabolism and immune homeostasis of ccRCC, which might impact the response to therapy of these patients, especially if the therapy is targeting the microenvironment or metabolism of ccRCC tumors.
Collapse
Affiliation(s)
- Mamatha Garige
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Sarah Poncet
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Alexis Norris
- Division of Animal Bioengineering and Cellular Therapies, Office of New Animal Drug Evaluation, Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, MD 20852, USA
| | - Chao-Kai Chou
- Facility for Biotechnology Resources, Center for Biologicals Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Wells W Wu
- Facility for Biotechnology Resources, Center for Biologicals Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Rong-Fong Shen
- Facility for Biotechnology Resources, Center for Biologicals Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Jacob W Greenberg
- Department of Urology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Louis Spencer Krane
- Department of Urology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Carole Sourbier
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
40
|
Gao SY, Liu YP, Wen R, Huang XM, Li P, Yang YH, Yang N, Zhang TN. Kcnma1 is involved in mitochondrial homeostasis in diabetes-related skeletal muscle atrophy. FASEB J 2023; 37:e22866. [PMID: 36929614 DOI: 10.1096/fj.202201397rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/10/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023]
Abstract
Uncontrolled diabetes causes a catabolic state with multi-organic complications, of which impairment on skeletal muscle contributes to the damaged mobility. Kcnma1 gene encodes the pore-forming α-subunit of Ca2+ - and voltage-gated K+ channels of large conductance (BK channels), and loss-of-function mutations in Kcnma1 are in regards to impaired myogenesis. Herein, we observed a time-course reduction of Kcnma1 expression in the tibialis anterior muscles of leptin receptor-deficient (db/db) diabetic mice. To investigate the role of Kcnma1 in diabetic muscle atrophy, muscle-specific knockdown of Kcnma1 was achieved by mice receiving intravenous injection of adeno-associated virus-9 (AAV9)-encoding shRNA against Kcnma1 under the muscle creatine kinase (MCK) promoter. Impairment on muscle mass and myogenesis were observed in m/m mice with AAV9-shKcnma1 intervention, while this impairment was more obvious in diabetic db/db mice. Simultaneously, damaged mitochondrial dynamics and biogenesis showed much severer in db/db mice with AAV9-shKcnma1 intervention. RNA sequencing revealed the large transcriptomic changes resulted by Kcnma1 knockdown, and changes in mitochondrial homeostasis-related genes were validated. Besides, the artificial alteration of Kcnma1 in mouse C2C12 myoblasts was achieved with an adenovirus vector. Consistent results were demonstrated by Kcnma1 knockdown in palmitate-treated cells, whereas opposite results were exhibited by Kcnma1 overexpression. Collectively, we document Kcnma1 as a potential keeper of mitochondrial homeostasis, and the loss of Kcnma1 is a critical event in priming skeletal muscle loss in diabetes.
Collapse
Affiliation(s)
- Shan-Yan Gao
- Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yong-Ping Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ri Wen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin-Mei Huang
- Department of Endocrinology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Ping Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu-Hang Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ni Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tie-Ning Zhang
- Key Laboratory of Precision Medical Research on Major Chronic Disease, Shengjing Hospital of China Medical University, Shenyang, China
- Clinical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
41
|
Xu X, Yang Q, Liu Z, Zhang R, Yu H, Wang M, Chen S, Xu G, Shao Y, Le W. Integrative analysis of metabolomics and proteomics unravels purine metabolism disorder in the SOD1G93A mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 2023; 181:106110. [PMID: 37001614 DOI: 10.1016/j.nbd.2023.106110] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with progressive paralysis of limbs and bulb in patients, the cause of which remains unclear. Accumulating studies suggest that motor neuron degeneration is associated with systemic metabolic impairment in ALS. However, the metabolic reprogramming and underlying mechanism in the longitudinal progression of the disease remain poorly understood. In this study, we aimed to investigate the molecular changes at both metabolic and proteomic levels during disease progression to identify the most critical metabolic pathways and underlying mechanisms involved in ALS pathophysiological changes. Utilizing liquid chromatography-mass spectrometry-based metabolomics, we analyzed the metabolites' levels of plasma, lumbar spinal cord, and motor cortex from SOD1G93A mice and wildtype (WT) littermates at different stages. To elucidate the regulatory network underlying metabolic changes, we further analyzed the proteomics profile in the spinal cords of SOD1G93A and WT mice. A group of metabolites implicated in purine metabolism, methionine cycle, and glycolysis were found differentially expressed in ALS mice, and abnormal expressions of enzymes involved in these metabolic pathways were also confirmed. Notably, we first demonstrated that dysregulation of purine metabolism might contribute to the pathogenesis and disease progression of ALS. Furthermore, we discovered that fatty acid metabolism, TCA cycle, arginine and proline metabolism, and folate-mediated one‑carbon metabolism were also significantly altered in this disease. The identified differential metabolites and proteins in our study could complement existing data on metabolic reprogramming in ALS, which might provide new insight into the pathological mechanisms and novel therapeutic targets of ALS.
Collapse
|
42
|
De Rasmo D, Cormio A, Cormio G, Signorile A. Ovarian Cancer: A Landscape of Mitochondria with Emphasis on Mitochondrial Dynamics. Int J Mol Sci 2023; 24:ijms24021224. [PMID: 36674740 PMCID: PMC9865899 DOI: 10.3390/ijms24021224] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Ovarian cancer (OC) represents the main cause of death from gynecological malignancies in western countries. Altered cellular and mitochondrial metabolism are considered hallmarks in cancer disease. Several mitochondrial aspects have been found altered in OC, such as the oxidative phosphorylation system, oxidative stress and mitochondrial dynamics. Mitochondrial dynamics includes cristae remodeling, fusion, and fission processes forming a dynamic mitochondrial network. Alteration of mitochondrial dynamics is associated with metabolic change in tumour development and, in particular, the mitochondrial shaping proteins appear also to be responsible for the chemosensitivity and/or chemoresistance in OC. In this review a focus on the mitochondrial dynamics in OC cells is presented.
Collapse
Affiliation(s)
- Domenico De Rasmo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), National Research Council (CNR), 70124 Bari, Italy
| | - Antonella Cormio
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Gennaro Cormio
- IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Anna Signorile
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, 70124 Bari, Italy
- Correspondence:
| |
Collapse
|
43
|
Zhang X, Wang W, Cao Z, Yang H, Wang Y, Li S. Effects of altitude on the gut microbiome and metabolomics of Sanhe heifers. Front Microbiol 2023; 14:1076011. [PMID: 36910192 PMCID: PMC10002979 DOI: 10.3389/fmicb.2023.1076011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/31/2023] [Indexed: 03/14/2023] Open
Abstract
Introduction Extreme environments at high altitudes pose a significant physiological challenge to animals. We evaluated the gut microbiome and fecal metabolism in Sanhe heifers from different altitudes. Methods Twenty Sanhe heifers (body weight: 334.82 ± 13.22 kg, 15-month-old) selected from two regions of China: the Xiertala Cattle Breeding Farm in Hulunbeier, Inner Mongolia [119°57' E, 47°17' N; approximately 700 m altitude, low altitude (LA)] and Zhizhao Dairy Cow Farm in Lhasa, Tibet [91°06' E, 29°36' N; approximately 3,650 m altitude, high altitude (HA)], were used in this study. Fecal samples were collected and differences in the gut microbiota and metabolomics of Sanhe heifers were determined using 16S rRNA gene sequencing and metabolome analysis. Results and discussion The results showed that altitude did not significantly affect the concentrations of fecal volatile fatty acids, including acetate, propionate, butyrate, and total volatile fatty acids (p > 0.05). However, 16S rRNA gene sequencing showed that altitude significantly affected gut microbial composition. Principal coordinate analysis based on Bray-Curtis dissimilarity analysis revealed a significant difference between the two groups (p = 0.001). At the family level, the relative abundances of Peptostreptococcaceae, Christensenellaceae, Erysipelotrichaceae, and Family_XIII were significantly lower (p < 0.05) in LA heifers than in HA heifers. In addition, the relative abundances of Lachnospiraceae, Domibacillus, Bacteroidales_S24-7_group, Bacteroidales_RF16_group, Porphyromonadaceae, and Spirochaetaceae were significantly higher in HA heifers than in LA heifers (p < 0.05). Metabolomic analysis revealed the enrichment of 10 metabolic pathways, including organismal systems, metabolism, environmental information processing, genetic information processing, and disease induction. The genera Romboutsia, Paeniclostridium, and g_unclassified_f_Lachnospiraceae were strongly associated with the 28 differential metabolites. This study is the first to analyze the differences in the gut microbiome and metabolome of Sanhe heifers reared at different altitudes and provides insights into the adaptation mechanism of Sanhe heifers to high-altitude areas.
Collapse
Affiliation(s)
- Xinyu Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hongjian Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yajing Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
44
|
Chong ZS, Khong ZJ, Tay SH, Ng SY. Metabolic contributions to neuronal deficits caused by genomic disruption of schizophrenia risk gene SETD1A. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:115. [PMID: 36581615 PMCID: PMC9800576 DOI: 10.1038/s41537-022-00326-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022]
Abstract
Regulation of neuronal metabolism during early brain development is crucial for directing synaptic plasticity and proper circuit formation. Alterations in neuronal glycolysis or mitochondrial function are associated with several neuropsychiatric disorders, including schizophrenia. Recently, loss-of-function mutations in SETD1A, a histone methyltransferase, have been linked to increased schizophrenia risk and global developmental delay. Here, we show that heterozygous disruption of SETD1A in human induced pluripotent stem cell (hiPSC)-derived neurons results in reduced neurite outgrowth and spontaneous activity, two phenotypes commonly associated with schizophrenia, as well as alterations in metabolic capacity. Furthermore, supplementing culture media with metabolic intermediates ameliorated changes in neurite outgrowth and spontaneous activity, suggesting that metabolic dysfunction contributes to neuronal phenotypes caused by SETD1A haploinsufficiency. These findings highlight a previously unknown connection between SETD1A function, metabolic regulation, and neuron development, and identifies alternative avenues for therapeutic development.
Collapse
Affiliation(s)
- Zheng-Shan Chong
- grid.418812.60000 0004 0620 9243Cellular Basis of Neural Diseases Laboratory, Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, Singapore
| | - Zi Jian Khong
- grid.418812.60000 0004 0620 9243Cellular Basis of Neural Diseases Laboratory, Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, Singapore
| | - Shermaine Huiping Tay
- grid.418812.60000 0004 0620 9243Cellular Basis of Neural Diseases Laboratory, Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, Singapore
| | - Shi-Yan Ng
- grid.418812.60000 0004 0620 9243Cellular Basis of Neural Diseases Laboratory, Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431National University of Singapore, Yong Loo Lin School of Medicine (Department of Physiology, Singapore, Singapore ,grid.276809.20000 0004 0636 696XNational Neuroscience Institute, Singapore, Singapore
| |
Collapse
|
45
|
Li C, Chen Q, Liu Y, Sun Z, Shen Z, Li S, Cha D, Sun C. Methionine enkephalin promotes white fat browning through cAMP/PKA pathway. Life Sci 2022; 312:121189. [PMID: 36396109 DOI: 10.1016/j.lfs.2022.121189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
AIMS Obesity and its related metabolic disorders, including insulin resistance and fatty liver, have become a serious global public health problem. Previous studies have shown Methionine Enkephalin (MetEnk) has the potential on adipocyte browning, however, its effects on the potential mechanisms of its regulation in browning as well as its improvement in energy metabolic homeostasis remain to be deciphered. MAIN METHODS C57BL/6J male mice were fed with high-fat diet (HFD) to induce obesity model, and MetEnk was injected subcutaneously to detect changes in the metabolic status of mice, adipocytes and HepG2 cells were also treated with MetEnk, and transcriptomic, metabolomic were used to detect the changes of lipid metabolism, mitochondrial function, inflammation and other related factors. KEY FINDINGS We found that MetEnk effectively protected against obesity weight gain in HFD-induced C57BL/6J mice, significantly improved glucose tolerance and insulin sensitivity, reduced the expression levels of interleukin 6 (IL-6), promoted white fat browning, moreover, using a combination of transcriptomic, metabolomic and inhibitors, it was found that MetEnk improved mitochondrial function, promoted thermogenesis and lipolysis by activating cAMP/PKA pathway in adipocytes, further analysis found that MetEnk also promoted lipolysis and alleviated inflammation through AMP-activated protein kinase (AMPK) pathway in mice liver and HepG2 cells. SIGNIFICANCE Our study provides profound evidence for the role of MetEnk in improving lipid metabolism disorders. This study provides a mechanical foundation for investigating the potential of MetEnk to improve obesity and its associated metabolic disorders.
Collapse
Affiliation(s)
- Chaowei Li
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China
| | - Qi Chen
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China
| | - Yanrong Liu
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China
| | - Zhuwen Sun
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China
| | - Zhentong Shen
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China
| | - Shuhan Li
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China
| | - Dingrui Cha
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China
| | - Chao Sun
- Northwest Agriculture and Forestry University College of Animal Science and Technology, Yangling, Shaanxi 712100, China.
| |
Collapse
|
46
|
Ding J, Ding Y, Wu J, Deng J, Yu Q, Wang J. "Jing-Ning Granules" Can Alleviate Attention Deficit Hyperactivity Disorder in Rats by Modulating Dopaminergic D2/D1-Like Receptor-Mediated Signaling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:9139841. [PMID: 36337583 PMCID: PMC9635972 DOI: 10.1155/2022/9139841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022]
Abstract
Background Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by attention deficit, hyperactivity, and impulsivity. Jing-Ning Granules (JNG) is a traditional Chinese medicine (TCM) that can alleviate ADHD. Although JNG is commonly used for the effective treatment of ADHD and has obtained the national invention patent, the exact mechanism of action remains unclear. Objective In this study, we examined the effect and mechanism of JNG in spontaneously hypertensive rats (SHRs). We hypothesized that JNG affects dopaminergic D2/D1-like receptors and related pathways. Materials and Methods Six rat groups were used in the experiment: Wistar-Kyoto rats (WKY, control group) and five SHR groups, including a model group; atomoxetine (ATX, positive control) group; and low, medium, and high-dose JNG groups. The corresponding treatments were daily administered to each group for 6 weeks. A behavioral test, including a step-down test and open field test (OFT), was carried out at the end of treatment. After the behavioral test, all animals were sacrificed, and the brain tissue was collected and analyzed ex vivo; histopathological analysis was performed to assess the pathological changes of the hippocampus; expression of D1-like and D2-like receptors, sensor protein calmodulin (CaM), protein kinase A (PKA), and calcium/calmodulin-dependent serine/threonine protein kinase (CaMKII) in the striatum and hippocampus was measured by western blot and real-time quantitative PCR (RT-PCR); cyclic adenosine monophosphate (cAMP) levels in the striatum were analyzed using an enzyme-linked immunosorbent assay (ELISA), while the level of Ca2+ in the striatum was analyzed by a calcium kit. Results Our results showed that ATX or JNG could ameliorate the hyperactive/impulsive behavior and cognitive function of ADHD by promoting neuroprotection. Mechanistically, ATX or JNG could prompt the expressions of Dl-like and D2-like receptors and improve the mRNA and protein levels of cAMP/PKA and Ca2+/CAM/CAMKII signaling pathways. Conclusion These results indicate that JNG can produce therapeutic effects by regulating the balance of D2/D1-like receptor-mediated cAMP/PKA and Ca2+/CaM/CaMKII signaling pathways.
Collapse
Affiliation(s)
- Jie Ding
- Department of Pediatrics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yiyun Ding
- Department of Pediatrics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
- School of Psychology, Capital Normal University, Beijing 100048, China
| | - Jingjing Wu
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Jialin Deng
- Department of Pediatrics, Beijing Huaxin Hospital, The First Affiliated Hospital of Tsinghua University, Beijing 100016, China
| | - Qingyang Yu
- Department of TCM, Children's Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Junhong Wang
- Department of Pediatrics, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| |
Collapse
|
47
|
Zhao X, Xu H, Li Y, Liu Y, Li X, Zhou W, Wang J, Guo C, Sun Z, Li Y. Silica nanoparticles perturbed mitochondrial dynamics and induced myocardial apoptosis via PKA-DRP1-mitochondrial fission signaling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156854. [PMID: 35750168 DOI: 10.1016/j.scitotenv.2022.156854] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 05/20/2023]
Abstract
Silica nanoparticles (SiNPs) are among the most abundantly produced nanosized particles in the global market, and their potential toxicity has aroused a great concern. Increasing epidemiological investigations and experimental evidence revealed the threaten of SiNPs exposure to cardiovascular system. The myocardial toxicity caused by SiNPs was gradually demonstrated, nevertheless, the underlying mechanisms remain unclear. In view of mitochondria serving as the centrality in the prominent of cardiovascular disease, we investigated the role of mitochondria and related mechanisms in SiNPs-induced adverse effects on cardiomyocytes. As a result, SiNPs were found in cytoplasm, accompanied with morphological alterations in mitochondria, such as cristae fracture or disappearance, vacuolation. The induction of mitochondrial dysfunction by SiNPs was confirmed, as indicated by the excessive reactive oxygen species (ROS) formation, and blockage of cellular respiratory and ATP production. Concomitantly, SiNPs activated mitochondria-mediated apoptotic signaling in view of the up-regulated BAX, increased Caspase-9 cleavage and declined Bcl-2, ultimately resulting in myocardial apoptosis. It was noteworthy that SiNPs disturbed mitochondrial dynamics toward fission phenotype, which was supported by the dysregulated fission/fusion regulators. Especially, DRP1 and its phosphorylated level at s616 (p-DRP1s616) were up-regulated, whilst its phosphorylated level at s637 (p-DRP1s637) and PKA phosphorylation were down-regulated in SiNPs-treated cardiomyocytes in a dose-dependent manner. More importantly, the mechanistic investigations revealed PKA-DRP1-mediated mitochondrial fission was responsible for SiNPs-induced cardiomyocyte apoptosis through the mitochondria-mediated apoptotic way. This study firstly demonstrated the disturbance of mitochondrial dynamics played a crucial role in cardiomyocyte apoptosis caused by SiNPs, attributing to PKA-DRP1-mitochondrial fission signaling.
Collapse
Affiliation(s)
- Xinying Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Hailin Xu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yan Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yufan Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xueyan Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Wei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ji Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
48
|
Pagano Zottola AC, Severi I, Cannich A, Ciofi P, Cota D, Marsicano G, Giordano A, Bellocchio L. Expression of Functional Cannabinoid Type-1 (CB 1) Receptor in Mitochondria of White Adipocytes. Cells 2022; 11:cells11162582. [PMID: 36010658 PMCID: PMC9406404 DOI: 10.3390/cells11162582] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Via activation of the cannabinoid type-1 (CB1) receptor, endogenous and exogenous cannabinoids modulate important biochemical and cellular processes in adipocytes. Several pieces of evidence suggest that alterations of mitochondrial physiology might be a possible mechanism underlying cannabinoids' effects on adipocyte biology. Many reports suggest the presence of CB1 receptor mRNA in both white and brown adipose tissue, but the detailed subcellular localization of CB1 protein in adipose cells has so far been scarcely addressed. In this study, we show the presence of the functional CB1 receptor at different subcellular locations of adipocytes from epididymal white adipose tissue (eWAT) depots. We observed that CB1 is located at different subcellular levels, including the plasma membrane and in close association with mitochondria (mtCB1). Functional analysis in tissue homogenates and isolated mitochondria allowed us to reveal that cannabinoids negatively regulate complex-I-dependent oxygen consumption in eWAT. This effect requires mtCB1 activation and consequent regulation of the intramitochondrial cAMP-PKA pathway. Thus, CB1 receptors are functionally present at the mitochondrial level in eWAT adipocytes, adding another possible mechanism for peripheral regulation of energy metabolism.
Collapse
Affiliation(s)
| | - Ilenia Severi
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Astrid Cannich
- INSERM U1215 Neurocentre Magendie, Université de Bordeaux, 33077 Bordeaux, France
| | - Philippe Ciofi
- INSERM U1215 Neurocentre Magendie, Université de Bordeaux, 33077 Bordeaux, France
| | - Daniela Cota
- INSERM U1215 Neurocentre Magendie, Université de Bordeaux, 33077 Bordeaux, France
| | - Giovanni Marsicano
- INSERM U1215 Neurocentre Magendie, Université de Bordeaux, 33077 Bordeaux, France
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Luigi Bellocchio
- INSERM U1215 Neurocentre Magendie, Université de Bordeaux, 33077 Bordeaux, France
- Correspondence: ; Tel.: +33-557-573-754
| |
Collapse
|
49
|
Danylovych Y, Danylovych H, Kosterin S. POSSIBLE IMPORTANCE OF ADENYLATE CYCLASE SIGNALING PATHWAY IN THE SYNTHESIS OF NITRIC OXIDE BY MYOMETRIUM MITOCHONDRIA. FIZIOLOHICHNYĬ ZHURNAL 2022; 68:33-39. [DOI: 10.15407/fz68.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
NO synthase activity (mtNOS) in uterine smooth muscle mitochondria under the action of the cAMP/protein kinase A signaling system modulators was studied. The experiments were performed on isolated mitochondria from rat myometrium using the NO-sensitive fluorescent probe DAF-FM-DA. NO synthesis in mitochondria was increased by adenylate cyclase activators NaHCO3 (30 mM) and forskolin (10 μM), as well as phosphodiesterase inhibitor caffeine (1 mM). The addition of ATP (0.5-5 mM) caused a slight increase in nitric oxide synthesis. The effect of ATP was enhanced in the presence of NaHCO3 and caffeine. The intensity of NO formation in mitochondria decreased by approximately 50 % in the case of inhibition of adenylate cyclase activity by the compound KH7 (25 μM). In the presence of the protein kinase A inhibitor PKI (10 nM) NO synthesis in mitochondria was also significantly reduced. When the constitutive NO-synthase inhibitor L-NAME (100 μM) was introduced into the incubation medium, the stimulating effect of the studied compounds on NO synthesis in mitochondria was not observed. These data suggests a possible dependence of mtNOS function on the activity of the cAMP/protein kinase A signaling system in smooth muscle mitochondria.
Collapse
|
50
|
Mitochondrial a Kinase Anchor Proteins in Cardiovascular Health and Disease: A Review Article on Behalf of the Working Group on Cellular and Molecular Biology of the Heart of the Italian Society of Cardiology. Int J Mol Sci 2022; 23:ijms23147691. [PMID: 35887048 PMCID: PMC9322728 DOI: 10.3390/ijms23147691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022] Open
Abstract
Second messenger cyclic adenosine monophosphate (cAMP) has been found to regulate multiple mitochondrial functions, including respiration, dynamics, reactive oxygen species production, cell survival and death through the activation of cAMP-dependent protein kinase A (PKA) and other effectors. Several members of the large family of A kinase anchor proteins (AKAPs) have been previously shown to locally amplify cAMP/PKA signaling to mitochondria, promoting the assembly of signalosomes, regulating multiple cardiac functions under both physiological and pathological conditions. In this review, we will discuss roles and regulation of major mitochondria-targeted AKAPs, along with opportunities and challenges to modulate their functions for translational purposes in the cardiovascular system.
Collapse
|