1
|
Bruce BD, Allakhverdiev SI. Applied photosynthesis: An idea whose time has come. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149525. [PMID: 39571881 DOI: 10.1016/j.bbabio.2024.149525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Advancements in materials science, synthetic biology, and nanomaterial engineering are revolutionizing renewable energy technologies, creating new pathways for sustainable energy production. Biohybrid devices-systems combining biological components with engineered synthetic materials-are emerging as powerful platforms for harnessing solar energy to drive hydrogen production, photovoltaics, catalysis, and biosensing. This collection of articles presents leading-edge research in biohybrid energy systems, where photosynthetic mechanisms are redeployed to develop eco-friendly, high-efficiency alternatives to conventional solar technologies. Central to these biohybrid designs are diverse organisms, from cyanobacteria and algae to purple bacteria and archaea, enabling researchers to employ a broad range of bioengineered proteins and photosynthetic complexes. By integrating advances in synthetic biology with precision nanomaterial fabrication, scientists can improve protein functionality and device stability at the nanoscale, optimizing these systems for light absorption, energy conversion, and resilience. This convergence allows exploring unique photoactive pigments, including type I and type II reaction centers, specialized light-harvesting and retinal-binding proteins. Through protein engineering and careful selection of photoactive components, biohybrid devices offer promising solutions for sustainable energy applications, positioning photosynthetic organisms as critical contributors to innovative energy technology.
Collapse
Affiliation(s)
- Barry D Bruce
- Department of Biochemistry & Cellular and Molecular Biology, Department of Chemical and Biomolecular Engineering, Department of Microbiology, University of Tennessee, Knoxville, USA.
| | - Suleyman I Allakhverdiev
- Controlled Photobiosynthesis Laboratory, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey.
| |
Collapse
|
2
|
Yang YM, Naseer M, Zhu Y, Wang BZ, Zhu SG, Chen YL, Ma Y, Ma BL, Guo JC, Wang S, Tao HY, Xiong YC. Iron Nanostructure Primes Arbuscular Mycorrhizal Fungi Symbiosis Tightly Connecting Maize Leaf Photosynthesis via a Nanofilm Effect. ACS NANO 2024. [PMID: 39072481 DOI: 10.1021/acsnano.4c04145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
It is crucial to clarify how the iron nanostructure activates plant growth, particularly in combination with arbuscular mycorrhizal fungi (AMF). We first identified 1.0 g·kg-1 of nanoscale zerovalent iron (nZVI) as appropriate dosage to maximize maize growth by 12.7-19.7% in non-AMF and 18.9-26.4% in AMF, respectively. Yet, excessive nZVI at 2.0 g·kg-1 exerted inhibitory effects while FeSO4 showed slight effects (p > 0.05). Under an appropriate dose, a nano core-shell structure was formed and the transfer and diffusion of electrons between PS II and PS I were facilitated, significantly promoting the reduction of ferricyanide and NADP (p < 0.05). SEM images showed that excessive nZVI particles can form stacked layers on the surface of roots and hyphae, inhibiting water and nutrient uptake. TEM observations showed that excessive nanoparticles can penetrate into root cortical cells, disrupt cellular homeostasis, and substantially elevate Fe content in roots (p < 0.05). This exacerbated membrane lipid peroxidation and osmotic regulation, accordingly restricting photosynthetic capacity and AMF colonization. Yet, appropriate nZVI can be adhered to a mycelium surface, forming a uniform nanofilm structure. The strength of the mycelium network was evidently enhanced, under an increased root colonization rate and an extramatrical hyphal length (p < 0.05). Enhanced mycorrhizal infection was tightly associated with higher gas exchange and Rubisco and Rubisco enzyme activities. This enabled more photosynthetic carbon to input into AMF symbiont. There existed a positive feedback loop connecting downward transfer of photosynthate and upward transport of water/nutrients. FeSO4 only slightly affected mycorrhizal development. Thus, it was the Fe nanostructure but not its inorganic salt state that primed AMF symbionts for better growth.
Collapse
Affiliation(s)
- Yu-Miao Yang
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, Gansu 730000, China
| | - Minha Naseer
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Ying Zhu
- Key Laboratory of Microbial Resources Exploitation and Application of Gansu Province, Institute of Biology, Gansu Academy of Sciences, Lanzhou, Gansu 730000, China
| | - Bao-Zhong Wang
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Shuang-Guo Zhu
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Ying-Long Chen
- The UWA Institute of Agriculture, and School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| | - Yue Ma
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Bao-Luo Ma
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa K1A 0C6, Canada
| | - Jia-Cheng Guo
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Song Wang
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Hong-Yan Tao
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - You-Cai Xiong
- State Key Laboratory of Herbage Improvement and Grassland Agroecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
3
|
Shlosberg Y, Huang A, Tóth TN, Kaner RB. Roots Fuel Cell Produces and Stores Clean Energy. ACS Biomater Sci Eng 2023; 9:5700-5708. [PMID: 37756260 DOI: 10.1021/acsbiomaterials.3c01174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
In recent years, extensive scientific efforts have been conducted to develop clean bioenergy technologies. A promising approach that has been under development for more than a hundred years is the microbial fuel cell (MFC) which utilizes exoelectrogenic bacteria as an electron source in a bioelectrochemical cell. The viability of bacteria in soil MFCs can be maintained by integrating plant roots, which release organic materials that feed the bacteria. In this work, we show that rather than organic compounds, roots also release redox species that can produce electricity in a biofuel cell. We first studied the reduction of the electron acceptor Cytochrome C by green onion roots. We integrate green onion roots into a biofuel cell to produce a continuous bias-free electric current for more than 24 h in the dark. This current is enhanced upon irradiation of the onion's leaves with light. We apply cyclic voltammetry and 2D-fluorescence measurements to show that NADH and NADPH act as major electron mediators between the roots and the anode, while their concentrations in the external root matrix are increased upon irradiation of the leaves. Finally, we show that roots can contribute to energy storage by charging a supercapacitor.
Collapse
Affiliation(s)
- Yaniv Shlosberg
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Ailun Huang
- Department of Chemistry and Biochemistry, Department of Materials Science and Engineering, and California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Tünde N Tóth
- Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Richard B Kaner
- Department of Chemistry and Biochemistry, Department of Materials Science and Engineering, and California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
4
|
Photocurrent Production from Cherries in a Bio-Electrochemical Cell. ELECTROCHEM 2023. [DOI: 10.3390/electrochem4010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
In recent years, clean energy technologies that meet ever-increasing energy demands without the risk of environmental contamination has been a major interest. One approach is the utilization of plant leaves, which release redox-active NADPH as a result of photosynthesis, to generate photocurrent. In this work, we show for the first time that photocurrent can be harvested directly from the fruit of a cherry tree when associated with a bio-electrochemical cell. Furthermore, we apply electrochemical and spectroscopic methods to show that NADH in the fruit plays a major role in electric current production.
Collapse
|
5
|
Shlosberg Y, Schuster G, Adir N. Self-Enclosed Bio-Photoelectrochemical Cell in Succulent Plants. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53761-53766. [PMID: 36416535 DOI: 10.1021/acsami.2c15123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Harvesting an electrical current from biological photosynthetic systems (live cells or isolated complexes) is typically achieved by immersion of the system into an electrolyte solution. In this study, we show that the aqueous solution found in the tissues of succulent plants can be used directly as a natural bio-photo electrochemical cell. Here, the thick water-preserving outer cuticle of the succulent Corpuscularia lehmannii serves as the electrochemical container, the inner water content as the electrolyte into which an iron anode and platinum cathode are introduced. We produce up to 20 μA/cm2 bias-free photocurrent. When 0.5 V bias is added to the iron anode, the current density increases ∼10-fold, and evolved hydrogen gas can be collected with a Faradaic efficiency of 2.1 and 3.5% in dark or light, respectively. The addition of the photosystem II inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea inhibits the photocurrent, indicating that water oxidation is the primary source of electrons in the light. Two-dimensional fluorescence measurements show that NADH and NADPH serve as the major mediating electron transfer molecules, functionally connecting photosynthesis to metal electrodes. This work presents a method to simultaneously absorb CO2 while producing an electrical current with minimal engineering requirements.
Collapse
Affiliation(s)
- Yaniv Shlosberg
- Grand Technion Energy Program, Technion, Haifa 32000, Israel
- Schulich Faculty of Chemistry, Technion, Haifa 320000, Israel
| | - Gadi Schuster
- Grand Technion Energy Program, Technion, Haifa 32000, Israel
- Faculty of Biology, Technion, Haifa 32000 Israel
| | - Noam Adir
- Grand Technion Energy Program, Technion, Haifa 32000, Israel
- Schulich Faculty of Chemistry, Technion, Haifa 320000, Israel
| |
Collapse
|
6
|
Shlosberg Y, Brekhman V, Lotan T, Sepunaru L. Direct Electricity Production from Nematostella and Arthemia's Eggs in a Bio-Electrochemical Cell. Int J Mol Sci 2022; 23:15001. [PMID: 36499326 PMCID: PMC9738779 DOI: 10.3390/ijms232315001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
In recent years, extensive efforts have been made to develop clean energy technologies to replace fossil fuels to assist the struggle against climate change. One approach is to exploit the ability of bacteria and photosynthetic organisms to conduct external electron transport for electricity production in bio-electrochemical cells. In this work, we first show that the sea anemones Nematostella vectensis and eggs of Artemia (brine shrimp) secrete redox-active molecules that can reduce the electron acceptor Cytochrome C. We applied 2D fluorescence spectroscopy and identified NADH or NADPH as secreted species. Finally, we broaden the scope of living organisms that can be integrated with a bio-electrochemical cell to the sea anemones group, showing for the first time that Nematostella and eggs of Artemia can produce electrical current when integrated into a bio-electrochemical cell.
Collapse
Affiliation(s)
- Yaniv Shlosberg
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - Vera Brekhman
- Marine Biology Department, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel
| | - Tamar Lotan
- Marine Biology Department, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel
| | - Lior Sepunaru
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|