1
|
Xu X, Han Y, Zhang B, Ren Q, Ma J, Liu S. Understanding immune microenvironment alterations in the brain to improve the diagnosis and treatment of diverse brain diseases. Cell Commun Signal 2024; 22:132. [PMID: 38368403 PMCID: PMC10874090 DOI: 10.1186/s12964-024-01509-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/01/2024] [Indexed: 02/19/2024] Open
Abstract
Abnormal inflammatory states in the brain are associated with a variety of brain diseases. The dynamic changes in the number and function of immune cells in cerebrospinal fluid (CSF) are advantageous for the early prediction and diagnosis of immune diseases affecting the brain. The aggregated factors and cells in inflamed CSF may represent candidate targets for therapy. The physiological barriers in the brain, such as the blood‒brain barrier (BBB), establish a stable environment for the distribution of resident immune cells. However, the underlying mechanism by which peripheral immune cells migrate into the brain and their role in maintaining immune homeostasis in CSF are still unclear. To advance our understanding of the causal link between brain diseases and immune cell status, we investigated the characteristics of immune cell changes in CSF and the molecular mechanisms involved in common brain diseases. Furthermore, we summarized the diagnostic and treatment methods for brain diseases in which immune cells and related cytokines in CSF are used as targets. Further investigations of the new immune cell subtypes and their contributions to the development of brain diseases are needed to improve diagnostic specificity and therapy.
Collapse
Affiliation(s)
- Xiaotong Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yi Han
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, People's Republic of China.
| | - Binlong Zhang
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, People's Republic of China
| | - Quanzhong Ren
- JST Sarcopenia Research Centre, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, 100035, People's Republic of China
| | - Juan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People's Republic of China
| |
Collapse
|
2
|
Lv J, Han M, Liu G, Zhuang W, Wang C, Xie L, Saimaier K, Han S, Shi C, Hua Q, Zhang R, Du C. Carboplatin ameliorates the pathogenesis of experimental autoimmune encephalomyelitis by inducing T cell apoptosis. Int Immunopharmacol 2023; 121:110458. [PMID: 37302366 DOI: 10.1016/j.intimp.2023.110458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/27/2023] [Accepted: 06/03/2023] [Indexed: 06/13/2023]
Abstract
Apoptosis is a natural physiological process that can maintain the homeostasis of the body and immune system. This process plays an important role in the system's resistance to autoimmune development. Because of the dysfunction of cell apoptosis mechanism, the number of autoreactive cells in the peripheral tissue increases along with their accumulation. This will lead to the development of autoimmune diseases, such as multiple sclerosis (MS). MS is an immune-mediated disease of the central nervous system characterized by severe white matter demyelination. Because of the complexity of its pathogenesis, there is no drug to cure it completely. Experimental autoimmune encephalomyelitis (EAE) is an ideal animal model for the study of MS. Carboplatin (CA) is a second-generation platinum anti-tumor drug. In this study, we attempted to assess whether CA could be used to ameliorate EAE. CA reduced spinal cord inflammation, demyelination, and disease scores in mice with EAE. Moreover, the number and proportion of pathogenic T cells especially Th1 and Th17 in the spleen and draining lymph nodes were reduced in CA-treated EAE mice. Proteomic differential enrichment analysis showed that the proteins related to apoptosis signal changed significantly after CA treatment. CFSE experiment showed that CA significantly inhibited the T cell proliferation. Finally, CA also induced apoptosis in activated T cells and MOG-specific T cells in vitro. Overall, our findings indicated that CA plays a protective role in the initiation and progression of EAE and has the potential to be a novel drug in the treatment of MS.
Collapse
Affiliation(s)
- Jie Lv
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Mengyao Han
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Guangyu Liu
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Wei Zhuang
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chun Wang
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ling Xie
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Kaidireya Saimaier
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Sanxing Han
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Changjie Shi
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Qiuhong Hua
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ru Zhang
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Changsheng Du
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
3
|
Wu GF. The cerebrospinal fluid immune cell landscape in animal models of multiple sclerosis. Front Mol Neurosci 2023; 16:1143498. [PMID: 37122618 PMCID: PMC10130411 DOI: 10.3389/fnmol.2023.1143498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/15/2023] [Indexed: 05/02/2023] Open
Abstract
The fluid compartment surrounding the central nervous system (CNS) is a unique source of immune cells capable of reflecting the pathophysiology of neurologic diseases. While human clinical and experimental studies often employ cerebrospinal fluid (CSF) analysis, assessment of CSF in animal models of disease are wholly uncommon, particularly in examining the cellular component. Barriers to routine assessment of CSF in animal models of multiple sclerosis (MS) include limited sample volume, blood contamination, and lack of feasible longitudinal approaches. The few studies characterizing CSF immune cells in animal models of MS are largely outdated, but recent work employing transcriptomics have been used to explore new concepts in CNS inflammation and MS. Absence of extensive CSF data from rodent and other systems has curbed the overall impact of experimental models of MS. Future approaches, including examination of CSF myeloid subsets, single cell transcriptomics incorporating antigen receptor sequencing, and use of diverse animal models, may serve to overcome current limitations and provide critical insights into the pathogenesis of, and therapeutic developments for, MS.
Collapse
Affiliation(s)
- Gregory F. Wu
- Departments of Neurology and Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, United States
- Neurology Service, VA St. Louis Health Care System, St. Louis, MO, United States
| |
Collapse
|
4
|
Constantinescu V, Akgün K, Ziemssen T. Current status and new developments in sphingosine-1-phosphate receptor antagonism: fingolimod and more. Expert Opin Drug Metab Toxicol 2022; 18:675-693. [PMID: 36260948 DOI: 10.1080/17425255.2022.2138330] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Fingolimod was the first oral disease-modifying treatment approved for relapsing-remitting multiple sclerosis (MS) that serves as a sphingosine-1-phosphate receptor (S1PR) agonist. The efficacy is primarily mediated by S1PR subtype 1 activation, leading to agonist-induced down-modulation of receptor expression and further functional antagonism, blocking the egression of auto-aggressive lymphocytes from the lymph nodes in the peripheral compartment. The role of S1P signaling in the regulation of other pathways in human organisms through different S1PR subtypes has received much attention due to its immune-modulatory function and its significance for the regeneration of the central nervous system (CNS). The more selective second-generation S1PR modulators have improved safety and tolerability profiles. AREAS COVERED This review has been carried out based on current data on S1PR modulators, emphasizing the benefits of recent advances in this emergent class of immunomodulatory treatment for MS. EXPERT OPINION Ongoing clinical research suggests that S1PR modulators represent an alternative to first-line therapies in selected cases of MS. A better understanding of the relevance of selective S1PR pathways and the ambition to optimize selective modulation has improved the safety and tolerability of S1PR modulators in MS therapy and opened new perspectives for the treatment of other diseases.
Collapse
Affiliation(s)
- Victor Constantinescu
- Center of Clinical Neuroscience, University Hospital, Fetscher Str. 74, 01307 Dresden, Germany
| | - Katja Akgün
- Center of Clinical Neuroscience, University Hospital, Fetscher Str. 74, 01307 Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, University Hospital, Fetscher Str. 74, 01307 Dresden, Germany
| |
Collapse
|
5
|
Wang W, Thomas R, Oh J, Su D. Accumulation of pTreg cells is detrimental in late-onset (aged) mouse model of multiple sclerosis. Aging Cell 2022; 21:e13630. [PMID: 35615905 PMCID: PMC9197401 DOI: 10.1111/acel.13630] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/22/2022] [Accepted: 05/03/2022] [Indexed: 11/26/2022] Open
Abstract
Although typically associated with onset in young adults, multiple sclerosis (MS) also attacks the elderly, which is termed late-onset MS. The disease can be recapitulated and studied in a mouse model, experimental autoimmune encephalomyelitis (EAE). The onset of induced EAE is delayed in aged mice, but disease severity is increased relative to young EAE mice. Given that CD4+ FoxP3+ regulatory T (Treg) cells play an ameliorative role in MS/EAE severity, and the aged immune system accumulates peripheral Treg (pTreg) cells, failure of these cells to prevent or ameliorate EAE disease is enigmatic. When analyzing the distribution of Treg cells in EAE mice, the aged mice exhibited a higher proportion of polyclonal (pan-) pTreg cells and a lower proportion of antigen-specific pTreg cells in the periphery but lower proportions of both pan- and antigen-specific Treg cells in the central nervous system (CNS). Furthermore, in the aged inflamed CNS, CNS-Treg cells exhibited a higher plasticity, and T effector (CNS-Teff) cells exhibited greater clonal expansion, disrupting the Treg/Teff balance. Transiently inhibiting FoxP3 or depleting pTreg cells partially corrected Treg distribution and restored the Treg/Teff balance in the aged inflamed CNS, thereby ameliorating the disease in the aged EAE mice. These results provide evidence and mechanism that accumulated aged pTreg cells play a detrimental role in neuronal inflammation of aged MS.
Collapse
Affiliation(s)
- Weikan Wang
- Department of Microbiology, Immunology, and Genetics University of North Texas Health Science Center Fort Worth Texas USA
| | | | - Jiyoung Oh
- Department of Pediatrics University of Texas Southwestern Medical Center Dallas Texas 75390 USA
| | - Dong‐Ming Su
- Department of Microbiology, Immunology, and Genetics University of North Texas Health Science Center Fort Worth Texas USA
| |
Collapse
|
6
|
Benkhoucha M, Tran NL, Breville G, Senoner I, Bradfield PF, Papayannopoulou T, Merkler D, Korn T, Lalive PH. CD4 +c-Met +Itgα4 + T cell subset promotes murine neuroinflammation. J Neuroinflammation 2022; 19:103. [PMID: 35488271 PMCID: PMC9052663 DOI: 10.1186/s12974-022-02461-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/13/2022] [Indexed: 11/21/2022] Open
Abstract
Objective c-Met, a tyrosine kinase receptor, is the unique receptor for hepatocyte growth factor (HGF). The HGF/c-Met axis is reported to modulate cell migration, maturation, cytokine production, and antigen presentation. Here, we report that CD4+c-Met+ T cells are detected at increased levels in experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS). Methods c-Met expression by CD4+ T cells was analyzed mostly by flow cytometry and by immunohistochemistry from mice and human PBMCs. The in vivo role of CD4+c-Met+ T cells was assessed in EAE. Results CD4+c-Met+ T cells found in the CNS during EAE peak disease are characterized by a pro-inflammatory phenotype skewed towards a Th1 and Th17 polarization, with enhanced adhesion and transmigration capacities correlating with increased expression of integrin α4 (Itgα4). The adoptive transfer of Itgα4-expressing CD4+Vα3.2+c-Met+ T cells induces increased disease severity compared to CD4+Vα3.2+c-Met− T cells. Finally, CD4+c-Met+ T cells are detected in the brain of MS patients, as well as in the blood with a higher level of Itgα4. These results highlight c-Met as an immune marker of highly pathogenic pro-inflammatory and pro-migratory CD4+ T lymphocytes associated with neuroinflammation. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02461-7.
Collapse
Affiliation(s)
- Mahdia Benkhoucha
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ngoc Lan Tran
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gautier Breville
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Neurosciences, Division of Neurology, University Hospital of Geneva, Geneva, Switzerland
| | - Isis Senoner
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Paul F Bradfield
- MesenFlow Technologies SARL, Chemin des Aulx 14, Geneva, Switzerland
| | - Thalia Papayannopoulou
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Doron Merkler
- Division of Clinical Pathology, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Thomas Korn
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Institute for Experimental Neuroimmunology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Munich Cluster for Systems Neurology, SyNergy, Munich, Germany
| | - Patrice H Lalive
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland. .,Department of Neurosciences, Division of Neurology, University Hospital of Geneva, Geneva, Switzerland.
| |
Collapse
|
7
|
Engelhardt B, Comabella M, Chan A. Multiple sclerosis: Immunopathological heterogeneity and its implications. Eur J Immunol 2022; 52:869-881. [PMID: 35476319 PMCID: PMC9324211 DOI: 10.1002/eji.202149757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 01/13/2023]
Abstract
MS is the most common autoimmune demyelinating disease of the CNS. For the past decades, several immunomodulatory disease-modifying treatments with multiple presumed mechanisms of action have been developed, but MS remains an incurable disease. Whereas high efficacy, at least in early disease, corroborates underlying immunopathophysiology, there is profound heterogeneity in clinical presentation as well as immunophenotypes that may also vary over time. In addition, functional plasticity in the immune system as well as in the inflamed CNS further contributes to disease heterogeneity. In this review, we will highlight immune-pathophysiological and associated clinical heterogeneity that may have an implication for more precise immunomodulatory therapeutic strategies in MS.
Collapse
Affiliation(s)
| | - Manuel Comabella
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Andrew Chan
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Scalabrino G. Newly Identified Deficiencies in the Multiple Sclerosis Central Nervous System and Their Impact on the Remyelination Failure. Biomedicines 2022; 10:biomedicines10040815. [PMID: 35453565 PMCID: PMC9026986 DOI: 10.3390/biomedicines10040815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of multiple sclerosis (MS) remains enigmatic and controversial. Myelin sheaths in the central nervous system (CNS) insulate axons and allow saltatory nerve conduction. MS brings about the destruction of myelin sheaths and the myelin-producing oligodendrocytes (ODCs). The conundrum of remyelination failure is, therefore, crucial in MS. In this review, the roles of epidermal growth factor (EGF), normal prions, and cobalamin in CNS myelinogenesis are briefly summarized. Thereafter, some findings of other authors and ourselves on MS and MS-like models are recapitulated, because they have shown that: (a) EGF is significantly decreased in the CNS of living or deceased MS patients; (b) its repeated administration to mice in various MS-models prevents demyelination and inflammatory reaction; (c) as was the case for EGF, normal prion levels are decreased in the MS CNS, with a strong correspondence between liquid and tissue levels; and (d) MS cobalamin levels are increased in the cerebrospinal fluid, but decreased in the spinal cord. In fact, no remyelination can occur in MS if these molecules (essential for any form of CNS myelination) are lacking. Lastly, other non-immunological MS abnormalities are reviewed. Together, these results have led to a critical reassessment of MS pathogenesis, partly because EGF has little or no role in immunology.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| |
Collapse
|
9
|
Mirmosayyeb O, Naderi M, Raeisi S, Ebrahimi N, Ghaffary EM, Afshari-Safavi A, Barzegar M, Shaygannejad V. Hearing loss among patients with multiple sclerosis (PwMS): A systematic review and meta-analysis. Mult Scler Relat Disord 2022; 62:103754. [DOI: 10.1016/j.msard.2022.103754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/18/2022] [Accepted: 03/18/2022] [Indexed: 01/10/2023]
|
10
|
Feizi N, Focaccetti C, Pacella I, Tucci G, Rossi A, Costanza M, Pedotti R, Sidney J, Sette A, La Rocca C, Procaccini C, Matarese G, Barnaba V, Piconese S. CD8 + T cells specific for cryptic apoptosis-associated epitopes exacerbate experimental autoimmune encephalomyelitis. Cell Death Dis 2021; 12:1026. [PMID: 34716313 PMCID: PMC8556378 DOI: 10.1038/s41419-021-04310-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/12/2021] [Accepted: 09/29/2021] [Indexed: 01/20/2023]
Abstract
The autoimmune immunopathology occurring in multiple sclerosis (MS) is sustained by myelin-specific and -nonspecific CD8+ T cells. We have previously shown that, in MS, activated T cells undergoing apoptosis induce a CD8+ T cell response directed against antigens that are unveiled during the apoptotic process, namely caspase-cleaved structural proteins such as non-muscle myosin and vimentin. Here, we have explored in vivo the development and the function of the immune responses to cryptic apoptosis-associated epitopes (AEs) in a well-established mouse model of MS, experimental autoimmune encephalomyelitis (EAE), through a combination of immunization approaches, multiparametric flow cytometry, and functional assays. First, we confirmed that this model recapitulated the main findings observed in MS patients, namely that apoptotic T cells and effector/memory AE-specific CD8+ T cells accumulate in the central nervous system of mice with EAE, positively correlating with disease severity. Interestingly, we found that AE-specific CD8+ T cells were present also in the lymphoid organs of unprimed mice, proliferated under peptide stimulation in vitro, but failed to respond to peptide immunization in vivo, suggesting a physiological control of this response. However, when mice were immunized with AEs along with EAE induction, AE-specific CD8+ T cells with an effector/memory phenotype accumulated in the central nervous system, and the disease severity was exacerbated. In conclusion, we demonstrate that AE-specific autoimmunity may contribute to immunopathology in neuroinflammation.
Collapse
Affiliation(s)
- Neda Feizi
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Chiara Focaccetti
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161, Rome, Italy.,Department of Human Science and Promotion of the Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta 247, 00166, Rome, Italy
| | - Ilenia Pacella
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Gloria Tucci
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Alessandra Rossi
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161, Rome, Italy
| | - Massimo Costanza
- Molecular Neuro-Oncology Unit, Department of Clinical Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Rosetta Pedotti
- Molecular Neuro-Oncology Unit, Department of Clinical Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Claudia La Rocca
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131, Naples, Italy
| | - Claudio Procaccini
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131, Naples, Italy.,Unità di Neuroimmunologia, IRCCS Fondazione Santa Lucia, 00143, Rome, Italy
| | - Giuseppe Matarese
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131, Naples, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131, Naples, Italy
| | - Vincenzo Barnaba
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161, Rome, Italy. .,Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00161, Rome, Italy.
| | - Silvia Piconese
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161, Rome, Italy. .,Unità di Neuroimmunologia, IRCCS Fondazione Santa Lucia, 00143, Rome, Italy. .,Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, 00161, Rome, Italy.
| |
Collapse
|
11
|
Xu L, Ye X, Wang Q, Xu B, Zhong J, Chen Y, Wang L. T-cell infiltration, contribution and regulation in the central nervous system post-traumatic injury. Cell Prolif 2021; 54:e13092. [PMID: 34189783 PMCID: PMC8349661 DOI: 10.1111/cpr.13092] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022] Open
Abstract
T cells participate in the repair process and immune response in the CNS post-traumatic injury and play both a beneficial and harmful role. Together with nerve cells and other immune cells, they form a microenvironment in the CNS post-traumatic injury. The repair of traumatic CNS injury is a long-term process. T cells contribute to the repair of the injury site to influence the recovery. Recently, with the advance of new techniques, such as mass spectrometry-based flow cytometry, modern live-cell imaging, etc, research focusing on T cells is becoming one of the valuable directions for the future therapy of traumatic CNS injury. In this review, we summarized the infiltration, contribution and regulation of T cells in post-traumatic injury, discussed the clinical significance and predicted the future research direction.
Collapse
Affiliation(s)
- Lvwan Xu
- Department of Basic Medicine Sciences, and Department of Orthopaedics of Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Xin Ye
- Department of NeurosurgerySir Run Run Shaw Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Qingyi Wang
- Department of Basic Medicine Sciences, and Department of Orthopaedics of Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Bihan Xu
- Department of Basic Medicine Sciences, and Department of Orthopaedics of Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Jinjie Zhong
- Department of Basic Medicine Sciences, and Department of Obstetrics of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Ying‐ying Chen
- Department of Basic Medicine Sciences, and Department of Obstetrics of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Lin‐lin Wang
- Department of Basic Medicine Sciences, and Department of Orthopaedics of Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
12
|
Ramaglia V, Rojas O, Naouar I, Gommerman JL. The Ins and Outs of Central Nervous System Inflammation-Lessons Learned from Multiple Sclerosis. Annu Rev Immunol 2021; 39:199-226. [PMID: 33524273 DOI: 10.1146/annurev-immunol-093019-124155] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Multiple sclerosis (MS) is a chronic disease that is characterized by the inappropriate invasion of lymphocytes and monocytes into the central nervous system (CNS), where they orchestrate the demyelination of axons, leading to physical and cognitive disability. There are many reasons immunologists should be interested in MS. Aside from the fact that there is still significant unmet need for patients living with the progressive form of the disease, MS is a case study for how immune cells cross CNS barriers and subsequently interact with specialized tissue parenchymal cells. In this review, we describe the types of immune cells that infiltrate the CNS and then describe interactions between immune cells and glial cells in different types of lesions. Lastly, we provide evidence for CNS-compartmentalized immune cells and speculate on how this impacts disease progression for MS patients.
Collapse
Affiliation(s)
- Valeria Ramaglia
- Department of Immunology, University of Toronto, Ontario M5S 1A8, Canada;
| | - Olga Rojas
- Department of Immunology, University of Toronto, Ontario M5S 1A8, Canada;
| | - Ikbel Naouar
- Department of Immunology, University of Toronto, Ontario M5S 1A8, Canada;
| | | |
Collapse
|
13
|
Wagner CA, Roqué PJ, Mileur TR, Liggitt D, Goverman JM. Myelin-specific CD8+ T cells exacerbate brain inflammation in CNS autoimmunity. J Clin Invest 2020; 130:203-213. [PMID: 31573979 DOI: 10.1172/jci132531] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 09/25/2019] [Indexed: 12/20/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the CNS. Although CD4+ T cells are implicated in MS pathogenesis and have been the main focus of MS research using the animal model experimental autoimmune encephalomyelitis (EAE), substantial evidence from patients with MS points to a role for CD8+ T cells in disease pathogenesis. We previously showed that an MHC class I-restricted epitope of myelin basic protein (MBP) is presented in the CNS during CD4+ T cell-initiated EAE. Here, we investigated whether naive MBP-specific CD8+ T cells recruited to the CNS during CD4+ T cell-initiated EAE engaged in determinant spreading and influenced disease. We found that the MBP-specific CD8+ T cells exacerbated brain but not spinal cord inflammation. We show that a higher frequency of monocytes and monocyte-derived cells presented the MHC class I-restricted MBP ligand in the brain compared with the spinal cord. Infiltration of MBP-specific CD8+ T cells enhanced ROS production in the brain only in these cell types and only when the MBP-specific CD8+ T cells expressed Fas ligand (FasL). These results suggest that myelin-specific CD8+ T cells may contribute to disease pathogenesis via a FasL-dependent mechanism that preferentially promotes lesion formation in the brain.
Collapse
Affiliation(s)
| | | | | | - Denny Liggitt
- Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
14
|
Activated CD8+ T Cells Cause Long-Term Neurological Impairment after Traumatic Brain Injury in Mice. Cell Rep 2019; 29:1178-1191.e6. [DOI: 10.1016/j.celrep.2019.09.046] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 08/08/2019] [Accepted: 09/16/2019] [Indexed: 12/28/2022] Open
|
15
|
Kirby L, Jin J, Cardona JG, Smith MD, Martin KA, Wang J, Strasburger H, Herbst L, Alexis M, Karnell J, Davidson T, Dutta R, Goverman J, Bergles D, Calabresi PA. Oligodendrocyte precursor cells present antigen and are cytotoxic targets in inflammatory demyelination. Nat Commun 2019; 10:3887. [PMID: 31467299 PMCID: PMC6715717 DOI: 10.1038/s41467-019-11638-3] [Citation(s) in RCA: 261] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 07/24/2019] [Indexed: 01/09/2023] Open
Abstract
Oligodendrocyte precursor cells (OPCs) are abundant in the adult central nervous system, and have the capacity to regenerate oligodendrocytes and myelin. However, in inflammatory diseases such as multiple sclerosis (MS) remyelination is often incomplete. To investigate how neuroinflammation influences OPCs, we perform in vivo fate-tracing in an inflammatory demyelinating mouse model. Here we report that OPC differentiation is inhibited by both effector T cells and IFNγ overexpression by astrocytes. IFNγ also reduces the absolute number of OPCs and alters remaining OPCs by inducing the immunoproteasome and MHC class I. In vitro, OPCs exposed to IFNγ cross-present antigen to cytotoxic CD8 T cells, resulting in OPC death. In human demyelinated MS brain lesions, but not normal appearing white matter, oligodendroglia exhibit enhanced expression of the immunoproteasome subunit PSMB8. Therefore, OPCs may be co-opted by the immune system in MS to perpetuate the autoimmune response, suggesting that inhibiting immune activation of OPCs may facilitate remyelination.
Collapse
Affiliation(s)
- Leslie Kirby
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jing Jin
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Matthew D Smith
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kyle A Martin
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Hayley Strasburger
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Leyla Herbst
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Maya Alexis
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | | | - Ranjan Dutta
- Department of Neuroscience, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Joan Goverman
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Dwight Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
16
|
Thimet Oligopeptidase (EC 3.4.24.15) Key Functions Suggested by Knockout Mice Phenotype Characterization. Biomolecules 2019; 9:biom9080382. [PMID: 31431000 PMCID: PMC6722639 DOI: 10.3390/biom9080382] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 12/14/2022] Open
Abstract
Thimet oligopeptidase (THOP1) is thought to be involved in neuropeptide metabolism, antigen presentation, neurodegeneration, and cancer. Herein, the generation of THOP1 C57BL/6 knockout mice (THOP1−/−) is described showing that they are viable, have estrus cycle, fertility, and a number of puppies per litter similar to C57BL/6 wild type mice (WT). In specific brain regions, THOP1-/- exhibit altered mRNA expression of proteasome beta5, serotonin 5HT2a receptor and dopamine D2 receptor, but not of neurolysin (NLN). Peptidomic analysis identifies differences in intracellular peptide ratios between THOP1-/- and WT mice, which may affect normal cellular functioning. In an experimental model of multiple sclerosis THOP1-/- mice present worse clinical behavior scores compared to WT mice, corroborating its possible involvement in neurodegenerative diseases. THOP1-/- mice also exhibit better survival and improved behavior in a sepsis model, but also a greater peripheral pain sensitivity measured in the hot plate test after bradykinin administration in the paw. THOP1-/- mice show depressive-like behavior, as well as attention and memory retention deficits. Altogether, these results reveal a role of THOP1 on specific behaviors, immune-stimulated neurodegeneration, and infection-induced inflammation.
Collapse
|
17
|
Ahmad F, Döbel T, Schmitz M, Schäkel K. Current Concepts on 6-sulfo LacNAc Expressing Monocytes (slanMo). Front Immunol 2019; 10:948. [PMID: 31191513 PMCID: PMC6540605 DOI: 10.3389/fimmu.2019.00948] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/12/2019] [Indexed: 12/25/2022] Open
Abstract
The human mononuclear phagocytes system consists of dendritic cells (DCs), monocytes, and macrophages having different functions in bridging innate and adaptive immunity. Among the heterogeneous population of monocytes the cell surface marker slan (6-sulfo LacNAc) identifies a specific subset of human CD14- CD16+ non-classical monocytes, called slan+ monocytes (slanMo). In this review we discuss the identity and functions of slanMo, their contributions to immune surveillance by pro-inflammatory cytokine production, and cross talk with T cells and NK cells. We also consider the role of slanMo in the regulation of chronic inflammatory diseases and cancer. Finally, we highlight unresolved questions that should be the focus of future research.
Collapse
Affiliation(s)
- Fareed Ahmad
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Döbel
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany.,Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, United States
| | - Marc Schmitz
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universtät Dresden, Dresden, Germany.,Partner Site Dresden, National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Knut Schäkel
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
18
|
Correale J, Marrodan M, Ysrraelit MC. Mechanisms of Neurodegeneration and Axonal Dysfunction in Progressive Multiple Sclerosis. Biomedicines 2019; 7:biomedicines7010014. [PMID: 30791637 PMCID: PMC6466454 DOI: 10.3390/biomedicines7010014] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 12/14/2022] Open
Abstract
Multiple Sclerosis (MS) is a major cause of neurological disability, which increases predominantly during disease progression as a result of cortical and grey matter structures involvement. The gradual accumulation of disability characteristic of the disease seems to also result from a different set of mechanisms, including in particular immune reactions confined to the Central Nervous System such as: (a) B-cell dysregulation, (b) CD8+ T cells causing demyelination or axonal/neuronal damage, and (c) microglial cell activation associated with neuritic transection found in cortical demyelinating lesions. Other potential drivers of neurodegeneration are generation of oxygen and nitrogen reactive species, and mitochondrial damage, inducing impaired energy production, and intra-axonal accumulation of Ca2+, which in turn activates a variety of catabolic enzymes ultimately leading to progressive proteolytic degradation of cytoskeleton proteins. Loss of axon energy provided by oligodendrocytes determines further axonal degeneration and neuronal loss. Clearly, these different mechanisms are not mutually exclusive and could act in combination. Given the multifactorial pathophysiology of progressive MS, many potential therapeutic targets could be investigated in the future. This remains however, an objective that has yet to be undertaken.
Collapse
Affiliation(s)
- Jorge Correale
- Department of Neurology, FLENI, Buenos Aires 1428, Argentina.
| | | | | |
Collapse
|
19
|
Olfactory Dysfunction in CNS Neuroimmunological Disorders: a Review. Mol Neurobiol 2018; 56:3714-3721. [PMID: 30191380 DOI: 10.1007/s12035-018-1341-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/31/2018] [Indexed: 12/21/2022]
Abstract
Olfactory dysfunction is deeply associated with quality of human life in the aging population. Olfactory dysfunction is an occasional presymptomatic sign of neuroimmunological multiple sclerosis, neuromyelitis optica, and systemic lupus erythematosus. Olfaction is initially processed by olfactory receptor cells that capture odor molecules, and the signals are transmitted to the glomeruli in the olfactory bulbs via olfactory nerves and processed in the primary olfactory cortex in the brain. Damage to either the olfactory receptor cells or the olfactory bulb and primary olfactory cortex may influence olfactory functioning. A close link between neuroimmunological disorders and olfactory dysfunction has been reported in patients and animal models. This review summarizes the literature data concerning olfactory dysfunction in autoimmune diseases including multiple sclerosis, neuromyelitis optica, and systemic lupus erythematosus; animal models thereof; and inflammation in the olfactory bulb.
Collapse
|
20
|
Stojić-Vukanić Z, Pilipović I, Djikić J, Vujnović I, Nacka-Aleksić M, Bufan B, Arsenović-Ranin N, Kosec D, Leposavić G. Strain specificities in age-related changes in mechanisms promoting and controlling rat spinal cord damage in experimental autoimmune encephalomyelitis. Exp Gerontol 2017; 101:37-53. [PMID: 29128575 DOI: 10.1016/j.exger.2017.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/02/2017] [Accepted: 11/06/2017] [Indexed: 11/20/2022]
Abstract
The study investigated strain specificities in age-related differences in CD8+ T cell- and microglial cell-mediated mechanisms implicated in induction/perpetuation and/or control of neuroinflammation in experimental autoimmune encephalomyelitis (EAE) in Albino Oxford (AO) and Dark Agouti (DA) rats exhibiting age-related changes in the susceptibility to EAE in the opposite direction (increase in relatively resistant AO rats vs decrease in DA rats). In the inductive phase of EAE, the greater number of fully differentiated effector CD8+ T lymphocytes was found in draining lymph nodes (dLNs) from aged rats of both strains than in strain-matched young rats, but this was particularly prominent in AO rats, which exhibited milder EAE of prolonged duration compared with their DA counterparts. Consistently, dLN IFN-γ+ and IL-17+ CD8+ T cell counts were greater in aged AO than in DA rats. Additionally, the magnitudes of myelin basic protein (MBP)-induced rise in the frequency of IFN-γ+ and IL-17+ CD8+ T cells (providing important help to neuroantigen-specific CD4+ T cells in EAE models characterized by clinically mild disease) were greater in dLN cell cultures from aged AO rats. Consistently, the magnitudes of MBP-induced rise in the frequency of both IFN-γ+ and IL-17+ CD8+ T cells were greater in spinal cord mononuclear cell cultures from aged AO rats compared with their DA counterparts. Besides, with aging CD4+CD25+Foxp3+/CD8+CD25+Foxp3+ regulatory T cell ratio changed in spinal cord in the opposite direction. Consequently, in aged AO rats it was shifted towards CD8+CD25+Foxp3+ regulatory T cells (exhibiting lower suppressive capacity) when compared with DA rats. Moreover, the frequency of CX3CR1+ cells among microglia changed with aging and the disease development. In aged rats, in the effector phase of EAE it was lower in AO than in DA rats. This was accompanied by higher frequency of cells expressing IL-1β (whose down-regulation is central for CX3CR1-mediated neuroprotection), but lower that of phagocyting cells among microglia from aged AO compared their DA counterparts. The study indicates the control points linked with strain differences in age-related changes in EAE pathogenesis.
Collapse
Affiliation(s)
- Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Ivan Pilipović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Jasmina Djikić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Ivana Vujnović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Mirjana Nacka-Aleksić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Duško Kosec
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Gordana Leposavić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia.
| |
Collapse
|
21
|
Ciurkiewicz M, Herder V, Khan MA, Uhde AK, Teich R, Floess S, Baumgärtner W, Huehn J, Beineke A. Cytotoxic CD8 + T cell ablation enhances the capacity of regulatory T cells to delay viral elimination in Theiler's murine encephalomyelitis. Brain Pathol 2017; 28:349-368. [PMID: 28452087 DOI: 10.1111/bpa.12518] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/18/2017] [Indexed: 12/28/2022] Open
Abstract
Theiler's murine encephalomyelitis (TME) of susceptible mouse strains is a commonly used infectious animal model for multiple sclerosis. The study aim was to test the hypothesis whether cytotoxic T cell responses account for the limited impact of regulatory T cells on antiviral immunity in TME virus-induced demyelinating disease (TMEV-IDD) resistant C57BL/6 mice. TME virus-infected C57BL/6 mice were treated with (i) interleukin-2/-anti-interleukin-2-antibody-complexes to expand regulatory T cells ("Treg-expansion"), (ii) anti-CD8-antibodies to deplete cytotoxic T cells ("CD8-depletion") or (iii) with a combination of Treg-expansion and CD8-depletion ("combined treatment") prior to infection. Results showed that "combined treatment", but neither sole "Treg-expansion" nor "CD8-depletion," leads to sustained hippocampal infection and virus spread to the spinal cord in C57BL/6 mice. Prolonged infection reduces myelin basic protein expression in the spinal cord together with increased accumulation of β-amyloid precursor protein in axons, characteristic of myelin loss and axonal damage, respectively. Chronic spinal cord infection upon "combined treatment" was also associated with increased T and B cell recruitment, accumulation of CD107b+ microglia/macrophages and enhanced mRNA expression of interleukin (IL)-1α, IL-10 and tumor necrosis factor α. In conclusion, data revealed that the suppressive capacity of Treg on viral elimination is efficiently boosted by CD8-depletion, which renders C57BL/6 mice susceptible to develop chronic neuroinfection and TMEV-IDD.
Collapse
Affiliation(s)
- Malgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Vanessa Herder
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Muhammad Akram Khan
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany.,Department of Pathobiology, Faculty of Veterinary & Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Ann-Kathrin Uhde
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - René Teich
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stephan Floess
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Jochen Huehn
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
22
|
Thomas K, Sehr T, Proschmann U, Rodriguez-Leal FA, Haase R, Ziemssen T. Fingolimod additionally acts as immunomodulator focused on the innate immune system beyond its prominent effects on lymphocyte recirculation. J Neuroinflammation 2017; 14:41. [PMID: 28231856 PMCID: PMC5322645 DOI: 10.1186/s12974-017-0817-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/16/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Growing evidence emphasizes the relevance of sphingolipids for metabolism and immunity of antigen-presenting cells (APC). APCs are key players in balancing tolerogenic and encephalitogenic responses in immunology. In contrast to the well-known prominent effects of sphingosine-1-phosphate (S1P) on lymphocyte trafficking, modulatory effects on APCs have not been fully characterized. METHODS Frequencies and activation profiles of dendritic cell (DC) subtypes, monocytes, and T cell subsets in 35 multiple sclerosis (MS) patients were evaluated prior and after undergoing fingolimod treatment for up to 24 months. Impact of fingolimod and S1P on maturation and activation profile, pro-inflammatory cytokine release, and phagocytotic capacity was assessed in vitro and ex vivo. Modulation of DC-dependent programming of naïve CD4+ T cells, as well as CD4+ and CD8+ T cell proliferation, was also investigated in vitro and ex vivo. RESULTS Fingolimod increased peripheral slanDC count-CD1+ DC, and monocyte frequencies remained stable. While CD4+ T cell count decreased, ratio of Treg/Th17 significantly increased in fingolimod-treated patients over time. CD83, CD150, and HLADR were all inhibited, but CD86 was upregulated in DCs after incubation in the presence of fingolimod. Fingolimod but not S1P was associated with reduced release of pro-inflammatory cytokines from DCs and monocytes in vitro and ex vivo. Fingolimod also inhibited phagocytic capacity of slanDCs and monocytes. After fingolimod, slanDCs demonstrated reduced potential to induce interferon-gamma-expressing Th1 or IL-17-expressing Th17 cells and DC-dependent T cell proliferation in vitro and in fingolimod-treated patients. CONCLUSIONS We present the first evidence that S1P-directed therapies can act additionally as immunomodulators that decrease the pro-inflammatory capabilities of APCs, which is a crucial element in DC-dependent T cell activation and programming.
Collapse
Affiliation(s)
- Katja Thomas
- Center of Clinical Neuroscience, Department of Neurology, Carl Gustav Carus University Hospital, University of Technology Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Tony Sehr
- Center of Clinical Neuroscience, Department of Neurology, Carl Gustav Carus University Hospital, University of Technology Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Undine Proschmann
- Center of Clinical Neuroscience, Department of Neurology, Carl Gustav Carus University Hospital, University of Technology Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Francisco Alejandro Rodriguez-Leal
- Center of Clinical Neuroscience, Department of Neurology, Carl Gustav Carus University Hospital, University of Technology Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Rocco Haase
- Center of Clinical Neuroscience, Department of Neurology, Carl Gustav Carus University Hospital, University of Technology Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, Carl Gustav Carus University Hospital, University of Technology Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
| |
Collapse
|
23
|
Rudolph H, Klopstein A, Gruber I, Blatti C, Lyck R, Engelhardt B. Postarrest stalling rather than crawling favors CD8(+) over CD4(+) T-cell migration across the blood-brain barrier under flow in vitro. Eur J Immunol 2016; 46:2187-203. [PMID: 27338806 PMCID: PMC5113696 DOI: 10.1002/eji.201546251] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 05/12/2016] [Accepted: 06/20/2016] [Indexed: 01/16/2023]
Abstract
Although CD8+ T cells have been implied in the pathogenesis of multiple sclerosis (MS), the molecular mechanisms mediating CD8+ T‐cell migration across the blood–brain barrier (BBB) into the central nervous system (CNS) are ill defined. Using in vitro live cell imaging, we directly compared the multistep extravasation of activated CD4+ and CD8+ T cells across primary mouse brain microvascular endothelial cells (pMBMECs) as a model for the BBB under physiological flow. Significantly higher numbers of CD8+ than CD4+ T cells arrested on pMBMECs under noninflammatory and inflammatory conditions. While CD4+ T cells polarized and crawled prior to their diapedesis, the majority of CD8+ T cells stalled and readily crossed the pMBMEC monolayer preferentially via a transcellular route. T‐cell arrest and crawling were independent of G‐protein‐coupled receptor signaling. Rather, absence of endothelial ICAM‐1 and ICAM‐2 abolished increased arrest of CD8+ over CD4+ T cells and abrogated T‐cell crawling, leading to the efficient reduction of CD4+, but to a lesser degree of CD8+, T‐cell diapedesis across ICAM‐1null/ICAM‐2−/− pMBMECs. Thus, cellular and molecular mechanisms mediating the multistep extravasation of activated CD8+ T cells across the BBB are distinguishable from those involved for CD4+ T cells.
Collapse
Affiliation(s)
| | | | - Isabelle Gruber
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Claudia Blatti
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Ruth Lyck
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | |
Collapse
|
24
|
Naderi S, Hejazi Z, Shajarian M, Alsahebfosoul F, Etemadifar M, Sedaghat N. IL-27 plasma level in relapsing remitting multiple sclerosis subjects: The double-faced cytokine. J Immunoassay Immunochem 2016; 37:659-70. [DOI: 10.1080/15321819.2016.1195746] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
25
|
Teniente-Serra A, Grau-López L, Mansilla MJ, Fernández-Sanmartín M, Ester Condins A, Ramo-Tello C, Martínez-Cáceres E. Multiparametric flow cytometric analysis of whole blood reveals changes in minor lymphocyte subpopulations of multiple sclerosis patients. Autoimmunity 2016; 49:219-28. [PMID: 26829210 DOI: 10.3109/08916934.2016.1138271] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The objective of this study is to characterise the functionally relevant minor lymphocyte subpopulations in whole blood of multiple sclerosis (MS) patients and their potential utility as biomarkers for treatment follow up. MATERIAL AND METHODS Peripheral blood from 40 healthy donors (HD) and 66 MS patients [23 relapsing-remitting (RRMS) without treatment, 27 RRMS undergoing treatment (16 IFN-β, 11 natalizumab), and 16 progressive forms (eight secondary progressive and eight primary progressive)] was analysed by multiparametric flow cytometry. RESULTS Untreated MS patients showed a decrease in early effector memory (CD45RA(-)CCR7(-)CD27(+)) CD4(+) and CD8(+) T cells and an increase in Th17 lymphocytes in peripheral blood compared with HD. Regarding the effect of treatment, whereas no differences in relative percentages of cellular subpopulations were observed in patients under IFN-β treatment, those under treatment with natalizumab had an increased percentage of early effector memory CD4(+) (CD45RA(-)CCR7(-)CD27(+)), central memory CD8(+) (CD45RA(-)CCR7(+)CD27(+)) T cells, recent thymic emigrants (CD4(+) CD45RA(+)CCR7(+)CD27(+)CD31(+)PTK7(+)) and transitional B cells (CD19(+)CD27(-)CD24(hi)CD38(hi)). CONCLUSIONS Multiparametric flow cytometry analysis of whole blood is a robust, reproducible, and sensitive technology to monitor the effect of MS treatments even in minor lymphocyte subpopulations that might represent useful biomarkers of treatment response.
Collapse
Affiliation(s)
- Aina Teniente-Serra
- a Immunology Division, Germans Trias i Pujol University Hospital and Research Institute (IGTP) , Campus Can Ruti , Badalona , Barcelona .,b Department of Cell Biology , Physiology and Immunology, Universitat Autònoma de Barcelona , Bellaterra , Barcelona
| | - Laia Grau-López
- c Multiple Sclerosis Unit, Department of Neurosciences. Germans Trias i Pujol University Hospital , Badalona , Barcelona , and
| | - M José Mansilla
- a Immunology Division, Germans Trias i Pujol University Hospital and Research Institute (IGTP) , Campus Can Ruti , Badalona , Barcelona .,b Department of Cell Biology , Physiology and Immunology, Universitat Autònoma de Barcelona , Bellaterra , Barcelona
| | - Marco Fernández-Sanmartín
- d Flow Cytometry Facility, Germans Trias i Pujol Research Institute (IGTP) , Campus Can Ruti , Badalona , Barcelona , and
| | | | - Cristina Ramo-Tello
- c Multiple Sclerosis Unit, Department of Neurosciences. Germans Trias i Pujol University Hospital , Badalona , Barcelona , and
| | - Eva Martínez-Cáceres
- a Immunology Division, Germans Trias i Pujol University Hospital and Research Institute (IGTP) , Campus Can Ruti , Badalona , Barcelona .,b Department of Cell Biology , Physiology and Immunology, Universitat Autònoma de Barcelona , Bellaterra , Barcelona
| |
Collapse
|
26
|
Dwyer MG, Zivadinov R, Tao Y, Zhang X, Kennedy C, Bergsland N, Ramasamy DP, Durfee J, Hojnacki D, Weinstock-Guttman B, Hayward B, Dangond F, Markovic-Plese S. Immunological and short-term brain volume changes in relapsing forms of multiple sclerosis treated with interferon beta-1a subcutaneously three times weekly: an open-label two-arm trial. BMC Neurol 2015; 15:232. [PMID: 26559139 PMCID: PMC4642690 DOI: 10.1186/s12883-015-0488-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/31/2015] [Indexed: 12/23/2022] Open
Abstract
Background Brain volume atrophy is observed in relapsing–remitting multiple sclerosis (RRMS). Methods Brain volume changes were evaluated in 23 patients with RRMS treated with interferon β-1a 44 μg given subcutaneously (SC) three times a week (tiw) and 15 healthy controls. Percentages of whole brain and tissue-specific volume change were measured from baseline (0 months) to 3 months, from 3 to 6 months, and from baseline to 6 months using SIENAX Multi Time Point (SX-MTP) algorithms. Immunological status of patients was also determined and correlations between subsets of T cells and changes in brain volume were assessed. Results Interferon β-1a 44 μg SC tiw in 23 patients with RRMS resulted in significant reductions in whole brain and gray matter tissue volume early in the treatment course (baseline to 3 months; mean change; –0.95 %; P = 0.030, –1.52 %; P = 0.004, respectively), suggesting a short-term treatment-induced pseudoatrophy effect. From baseline to 6 months, there were significant correlations observed between decreased T- cell expression of IL-17 F and decreased whole brain and brain tissue-specific volume. Conclusions These findings are consistent with the interpretation of the pseudoatrophy effect as resolution of inflammation following treatment initiation with interferon β-1a 44 μg SC tiw, rather than disease-related tissue loss. Trial registration ClinicalTrials.gov; NCT01085318
Collapse
Affiliation(s)
- Michael G Dwyer
- Department of Neurology, Buffalo Neuroimaging Analysis Center, State University of New York at Buffalo, 100 High St, Buffalo, NY, 14203, USA. .,Department of Biomedical Informatics, State University of New York at Buffalo, 100 High St, Buffalo, NY, 14203, USA.
| | - Robert Zivadinov
- Department of Neurology, Buffalo Neuroimaging Analysis Center, State University of New York at Buffalo, 100 High St, Buffalo, NY, 14203, USA. .,Department of Neurology, State University of New York at Buffalo, 100 High St, Buffalo, NY, 14203, USA.
| | - Yazhong Tao
- Department of Neurology, Microbiology and Immunology, University of North Carolina at Chapel Hill, 125 Mason Farm Rd., 6109D Neuroscience Research Bldg, CB #7125, Chapel Hill, NC, 27599, USA.
| | - Xin Zhang
- Department of Neurology, Microbiology and Immunology, University of North Carolina at Chapel Hill, 125 Mason Farm Rd., 6109D Neuroscience Research Bldg, CB #7125, Chapel Hill, NC, 27599, USA.
| | - Cheryl Kennedy
- Department of Neurology, Buffalo Neuroimaging Analysis Center, State University of New York at Buffalo, 100 High St, Buffalo, NY, 14203, USA.
| | - Niels Bergsland
- Department of Neurology, Buffalo Neuroimaging Analysis Center, State University of New York at Buffalo, 100 High St, Buffalo, NY, 14203, USA.
| | - Deepa P Ramasamy
- Department of Neurology, Buffalo Neuroimaging Analysis Center, State University of New York at Buffalo, 100 High St, Buffalo, NY, 14203, USA.
| | - Jackie Durfee
- Department of Neurology, Buffalo Neuroimaging Analysis Center, State University of New York at Buffalo, 100 High St, Buffalo, NY, 14203, USA.
| | - David Hojnacki
- Department of Neurology, State University of New York at Buffalo, 100 High St, Buffalo, NY, 14203, USA.
| | - Bianca Weinstock-Guttman
- Department of Neurology, State University of New York at Buffalo, 100 High St, Buffalo, NY, 14203, USA.
| | - Brooke Hayward
- EMD Serono, Inc., One Technology Pl, Rockland, MA, 02370, USA.
| | | | - Silva Markovic-Plese
- Department of Neurology, Microbiology and Immunology, University of North Carolina at Chapel Hill, 125 Mason Farm Rd., 6109D Neuroscience Research Bldg, CB #7125, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
27
|
Ignatius Arokia Doss PM, Roy AP, Wang A, Anderson AC, Rangachari M. The Non-Obese Diabetic Mouse Strain as a Model to Study CD8(+) T Cell Function in Relapsing and Progressive Multiple Sclerosis. Front Immunol 2015; 6:541. [PMID: 26557120 PMCID: PMC4617102 DOI: 10.3389/fimmu.2015.00541] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/08/2015] [Indexed: 12/24/2022] Open
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease resulting from an autoimmune attack on central nervous system (CNS) myelin. Although CD4+ T cell function in MS pathology has been extensively studied, there is also strong evidence that CD8+ T lymphocytes play a key role. Intriguingly, CD8+ T cells accumulate in great numbers in the CNS in progressive MS, a form of the disease that is refractory to current disease-modifying therapies that target the CD4+ T cell response. Here, we discuss the function of CD8+ T cells in experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. In particular, we describe EAE in non-obese diabetic (NOD) background mice, which develop a pattern of disease characterized by multiple attacks and remissions followed by a progressively worsening phase. This is highly reminiscent of the pattern of disease observed in nearly half of MS patients. Particular attention is paid to a newly described transgenic mouse strain (1C6) on the NOD background whose CD4+ and CD8+ T cells are directed against the encephalitogenic peptide MOG[35–55]. Use of this model will give us a more complete picture of the role(s) played by distinct T cell subsets in CNS autoimmunity.
Collapse
Affiliation(s)
| | - Andrée-Pascale Roy
- Department of Neurosciences, Centre de recherche du CHU de Québec - Université Laval (Pavillon CHUL) , Québec, QC , Canada
| | - AiLi Wang
- Department of Neurosciences, Centre de recherche du CHU de Québec - Université Laval (Pavillon CHUL) , Québec, QC , Canada
| | - Ana Carrizosa Anderson
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School , Boston, MA , USA ; Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital and Harvard Medical School , Boston, MA , USA
| | - Manu Rangachari
- Department of Neurosciences, Centre de recherche du CHU de Québec - Université Laval (Pavillon CHUL) , Québec, QC , Canada ; Department of Molecular Medicine, Faculty of Medicine, Université Laval , Québec, QC , Canada
| |
Collapse
|
28
|
Abstract
The last twelve years have witnessed the development of new therapies for relapsing-remitting multiple sclerosis that demonstrate increased efficacy relative to previous therapies. Many of these new drugs target the inflammatory phase of disease by manipulating different aspects of the immune system. While these new treatments are promising, the development of therapies for patients with progressive multiple sclerosis remains a significant challenge. We discuss the distinct mechanisms that may contribute to these two types of multiple sclerosis and the implications of these differences in the development of new therapeutic targets for this debilitating disease.
Collapse
Affiliation(s)
- Catriona A Wagner
- Department of Immunology, University of Washigton, Seattle, WA, 98109-8509, USA
| | - Joan M Goverman
- Department of Immunology, University of Washigton, Seattle, WA, 98109-8509, USA
| |
Collapse
|
29
|
Procaccini C, De Rosa V, Pucino V, Formisano L, Matarese G. Animal models of Multiple Sclerosis. Eur J Pharmacol 2015; 759:182-91. [PMID: 25823807 PMCID: PMC7094661 DOI: 10.1016/j.ejphar.2015.03.042] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 01/30/2015] [Accepted: 03/12/2015] [Indexed: 12/26/2022]
Abstract
Multiple Sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) which involves a complex interaction between immune system and neural cells. Animal modeling has been critical for addressing MS pathogenesis. The three most characterized animal models of MS are (1) the experimental autoimmune/allergic encephalomyelitis (EAE); (2) the virally-induced chronic demyelinating disease, known as Theiler׳s murine encephalomyelitis virus (TMEV) infection and (3) the toxin-induced demyelination. All these models, in a complementary way, have allowed to reach a good knowledge of the pathogenesis of MS. Specifically, EAE is the model which better reflects the autoimmune pathogenesis of MS and is extremely useful to study potential experimental treatments. Furthermore, both TMEV and toxin-induced demyelination models are suitable for characterizing the role of the axonal injury/repair and the remyelination process in MS. In conclusion, animal models, despite their limitations, remain the most useful instrument for implementing the study of MS.
Collapse
MESH Headings
- Animals
- Cardiovirus Infections/pathology
- Cardiovirus Infections/virology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/etiology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Humans
- Mice
- Mice, Transgenic
- Multiple Sclerosis/etiology
- Multiple Sclerosis/genetics
- Multiple Sclerosis/immunology
- Multiple Sclerosis/pathology
- Theilovirus/pathogenicity
Collapse
Affiliation(s)
- Claudio Procaccini
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR) c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy
| | - Veronica De Rosa
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR) c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Napoli, Italy; Unità di NeuroImmunologia, IRCCS Fondazione Santa Lucia, 00143 Roma, Italy
| | - Valentina Pucino
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli Federico II, 80131 Napoli, Italy
| | - Luigi Formisano
- Divisione di Farmacologia, Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, 82100 Benevento, Italy
| | - Giuseppe Matarese
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Salerno, Baronissi Campus, 84081 Baronissi, Salerno, Italy; IRCCS Multimedica, 20138 Milano, Italy.
| |
Collapse
|
30
|
Multiple Sclerosis and T Lymphocytes: An Entangled Story. J Neuroimmune Pharmacol 2015; 10:528-46. [PMID: 25946987 DOI: 10.1007/s11481-015-9614-0] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 04/29/2015] [Indexed: 12/17/2022]
Abstract
Multiple sclerosis (MS) is the prototypic inflammatory disease of the central nervous system (CNS) characterized by multifocal areas of demyelination, axonal damage, activation of glial cells, and immune cell infiltration. Despite intensive years of research, the etiology of this neurological disorder remains elusive. Nevertheless, the abundance of immune cells such as T lymphocytes and their products in CNS lesions of MS patients supports the notion that MS is an immune-mediated disorder. An important body of evidence gathered from MS animal models such as experimental autoimmune encephalomyelitis (EAE), points to the central contribution of CD4 T lymphocytes in disease pathogenesis. Both Th1 (producing interferon-γ) and Th17 (producing interleukin 17) CD4 T lymphocytes targeting CNS self-antigens have been implicated in MS and EAE pathobiology. Moreover, several publications suggest that CD8 T lymphocytes also participate in the development of MS lesions. The migration of activated T lymphocytes from the periphery into the CNS has been identified as a crucial step in the formation of MS lesions. Several factors promote such T cell extravasation including: molecules (e.g., cell adhesion molecules) implicated in the T cell-blood brain barrier interaction, and chemokines produced by neural cells. Finally, once in the CNS, T lymphocytes need to be reactivated by local antigen presenting cells prior to enter the parenchyma where they can initiate damage. Further investigations will be necessary to elucidate the impact of environmental factors (e.g., gut microbiota) and CNS intrinsic properties (e.g., microglial activation) on this inflammatory neurological disease.
Collapse
|
31
|
Scalabrino G, Veber D, De Giuseppe R, Roncaroli F. Low levels of cobalamin, epidermal growth factor, and normal prions in multiple sclerosis spinal cord. Neuroscience 2015; 298:293-301. [PMID: 25888933 DOI: 10.1016/j.neuroscience.2015.04.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 04/08/2015] [Accepted: 04/10/2015] [Indexed: 11/16/2022]
Abstract
We have previously demonstrated that multiple sclerosis (MS) patients have abnormal cerebrospinal fluid (CSF) levels of the key myelin-related molecules cobalamin (Cbl), epidermal growth factor (EGF), and normal cellular prions (PrP(C)s), thus confirming that some CSF abnormalities may be co-responsible for remyelination failure. We determined the levels of these three molecules in post-mortem spinal cord (SC) samples taken from MS patients and control patients. The control SC samples, almost all of which came from non-neurological patients, did not show any microscopic lesions of any type. All of the samples were supplied by the U.K. MS Tissue Bank. The Cbl, EGF, and PrP(C) levels were determined using enzyme-linked immunosorbent assays. The SC total homocysteine level was determined using a competitive immunoenzymatic assay. CSF samples, taken from a further group of MS patients, were used for the assay of holo-transcobalamin (holo-TC) levels. The Cbl, EGF, and PrP(C) levels were significantly decreased in MS SCs in comparison with controls and, paradoxically, the decreased Cbl levels were associated with decreased SC levels of homocysteine, a biochemical marker of Cbl deficiency. The trends of EGF and PrP(C) levels paralleled those previously found in CSF, whereas that of Cbl was the opposite. There was no significant difference in CSF holo-TC levels between the MS patients and the controls. Given that we have previously demonstrated that Cbl positively regulates central nervous system EGF levels, it is conceivable that the low EGF levels in the MS SC may be causally related to a local decrease in Cbl levels. Only PrP(C) levels were invariably decreased in both the SC and CSF regardless of the clinical course of the disease. These findings suggest that the simultaneous lack of Cbl, EGF, and PrP(C)s may greatly hamper the remyelination process in MS patients, because they are key molecules of the machinery for remyelination.
Collapse
Affiliation(s)
- G Scalabrino
- Department of Biomedical Sciences, Laboratory of Neuropathology, University of Milan, 20133 Milan, Italy.
| | - D Veber
- Department of Biomedical Sciences, Laboratory of Neuropathology, University of Milan, 20133 Milan, Italy
| | - R De Giuseppe
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy
| | - F Roncaroli
- Division of Brain Sciences, Imperial College, London W12 0NN, UK
| |
Collapse
|
32
|
CD20+ T cells in multiple sclerosis. Mult Scler Relat Disord 2015; 4:58-9. [DOI: 10.1016/j.msard.2014.09.213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 09/16/2014] [Accepted: 09/26/2014] [Indexed: 01/02/2023]
|
33
|
Abstract
The ultraviolet (UV) radiation contained in sunlight is a powerful immune suppressant. While exposure to UV is best known for its ability to cause skin cancer, it is also associated with protection against a range of autoimmune diseases, particularly multiple sclerosis (MS). Although the precise mechanism by which sunlight affords protection from MS remains to be determined, some have hypothesised that UV immunosuppression explains the "latitude-gradient effect" associated with MS. By stimulating the release of soluble factors in exposed skin, UV activates immune suppressive pathways that culminate in the induction of regulatory cells in distant tissues. Each and every one of the immune suppressive cells and molecules activated by UV exposure are potential targets for treating and preventing MS. A thorough understanding of the mechanisms involved is therefore required if we are to realise the therapeutic potential of photoimmunology.
Collapse
Affiliation(s)
- Felix Marsh-Wakefield
- Cellular Photoimmunology Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School, University of Sydney, Camperdown, Australia.,Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.,Discipline of Dermatology, Bosch Institute, Sydney Medical School, University of Sydney, Camperdown, Australia
| | - Scott N Byrne
- Cellular Photoimmunology Group, Discipline of Infectious Diseases and Immunology, Sydney Medical School, University of Sydney, Camperdown, Australia. .,Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia. .,Discipline of Dermatology, Bosch Institute, Sydney Medical School, University of Sydney, Camperdown, Australia. .,Infectious Diseases and Immunology, Level 5 (East), The Charles Perkins Centre Hub (D17), University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
34
|
Luo Q, Sun Y, Gong FY, Liu W, Zheng W, Shen Y, Hua ZC, Xu Q. Blocking initial infiltration of pioneer CD8(+) T-cells into the CNS via inhibition of SHP-2 ameliorates experimental autoimmune encephalomyelitis in mice. Br J Pharmacol 2014; 171:1706-21. [PMID: 24372081 DOI: 10.1111/bph.12565] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 11/10/2013] [Accepted: 12/17/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND PURPOSE In contrast to T-cell priming in the periphery, therapeutic strategies targeting the initiation step of T-cell trafficking into the CNS have not been extensively investigated. In this study, we examined the effect of NSC-87877, a potent Src homology 2-containing protein tyrosine phosphatase 2 (SHP-2) inhibitor, on experimental autoimmune encephalomyelitis (EAE) and elucidated its unique mechanism of action. EXPERIMENTAL APPROACH C57BL/6 mice were immunized with myelin oligodendrocyte glycoprotein35-55 and monitored for clinical severity of disease and histopathological features in the CNS. Levels of cytokines in serum were measured by elisa. Effects of NSC-87877 on expressions of chemokines and cytokines in the CNS were determined by quantitative PCR. KEY RESULTS NSC-87877-treated mice developed conventional TH 1 and TH 17 responses, but were highly resistant to the induction of EAE. NSC-87877 decreased the accumulation of lymphocytes in the CNS and increased the functional expression of chemokine receptor CXCR7 on CD8(+) T-cells. Adoptive transfer of T-cells from 2D2-transgenic mice restored EAE susceptibility in NSC-87877-treated mice, indicating that NSC-87877 only targets the initial migration of pioneer T-cells. Furthermore, T-cell-conditioned SHP-2-deficient mice treated with NSC-87877 were no longer resistant to EAE, suggesting that inhibition of SHP-2 contributes to the amelioration of EAE by NSC-87877. CONCLUSIONS AND IMPLICATIONS NSC-87877 almost completely abolished the development of EAE by blocking the initial infiltration of pioneer CD8(+) T-cells into the uninflamed CNS. These results reveal a critical role for SHP-2 in regulating EAE pathogenesis and indicate that NSC-87877 is a potential candidate for the treatment of relapsing-remitting multiple sclerosis.
Collapse
Affiliation(s)
- Qiong Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Thomas K, Dietze K, Wehner R, Metz I, Tumani H, Schultheiß T, Günther C, Schäkel K, Reichmann H, Brück W, Schmitz M, Ziemssen T. Accumulation and therapeutic modulation of 6-sulfo LacNAc(+) dendritic cells in multiple sclerosis. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2014; 1:e33. [PMID: 25340085 PMCID: PMC4204231 DOI: 10.1212/nxi.0000000000000033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/18/2014] [Indexed: 12/25/2022]
Abstract
Objective: To examine the potential role of 6-sulfo LacNAc+ (slan) dendritic cells (DCs) displaying pronounced proinflammatory properties in the pathogenesis of multiple sclerosis (MS). Methods: We determined the presence of slanDCs in demyelinated brain lesions and CSF samples of patients with MS. In addition, we explored the impact of methylprednisolone, interferon-β, glatiramer acetate, or natalizumab on the frequency of blood-circulating slanDCs in patients with MS. We also evaluated whether interferon-β modulates important proinflammatory capabilities of slanDCs. Results: SlanDCs accumulate in highly inflammatory brain lesions and are present in the majority of CSF samples of patients with MS. Short-term methylprednisolone administration reduces the percentage of slanDCs in blood of patients with MS and the proportion of tumor necrosis factor-α– or CD150-expressing slanDCs. Long-term interferon-β treatment decreases the percentage of blood-circulating slanDCs in contrast to glatiramer acetate or natalizumab. Furthermore, interferon-β inhibits the secretion of proinflammatory cytokines by slanDCs and their capacity to promote proliferation and differentiation of T cells. Conclusion: Accumulation of slanDCs in highly inflammatory brain lesions and their presence in CSF indicate that slanDCs may play an important role in the immunopathogenesis of MS. The reduction of blood-circulating slanDCs and the inhibition of their proinflammatory properties by methylprednisolone and interferon-β may contribute to the therapeutic efficiency of these drugs in patients with MS.
Collapse
Affiliation(s)
- Katja Thomas
- Departments of Neurology (K.T., T.S., H.R., T.Z.) and Dermatology (C.G.), University Hospital, Dresden; Institute of Immunology (K.D., R.W., M.S.), Medical Faculty, TU Dresden; Department of Neuropathology (I.M., W.B.), University Medical Centre, Göttingen; Department of Neurology (H.T.), University Hospital, Ulm; Department of Dermatology (K.S.), University Hospital, Heidelberg; and Center for Regenerative Therapies Dresden (M.S.), Dresden, Germany
| | - Kristin Dietze
- Departments of Neurology (K.T., T.S., H.R., T.Z.) and Dermatology (C.G.), University Hospital, Dresden; Institute of Immunology (K.D., R.W., M.S.), Medical Faculty, TU Dresden; Department of Neuropathology (I.M., W.B.), University Medical Centre, Göttingen; Department of Neurology (H.T.), University Hospital, Ulm; Department of Dermatology (K.S.), University Hospital, Heidelberg; and Center for Regenerative Therapies Dresden (M.S.), Dresden, Germany
| | - Rebekka Wehner
- Departments of Neurology (K.T., T.S., H.R., T.Z.) and Dermatology (C.G.), University Hospital, Dresden; Institute of Immunology (K.D., R.W., M.S.), Medical Faculty, TU Dresden; Department of Neuropathology (I.M., W.B.), University Medical Centre, Göttingen; Department of Neurology (H.T.), University Hospital, Ulm; Department of Dermatology (K.S.), University Hospital, Heidelberg; and Center for Regenerative Therapies Dresden (M.S.), Dresden, Germany
| | - Imke Metz
- Departments of Neurology (K.T., T.S., H.R., T.Z.) and Dermatology (C.G.), University Hospital, Dresden; Institute of Immunology (K.D., R.W., M.S.), Medical Faculty, TU Dresden; Department of Neuropathology (I.M., W.B.), University Medical Centre, Göttingen; Department of Neurology (H.T.), University Hospital, Ulm; Department of Dermatology (K.S.), University Hospital, Heidelberg; and Center for Regenerative Therapies Dresden (M.S.), Dresden, Germany
| | - Hayrettin Tumani
- Departments of Neurology (K.T., T.S., H.R., T.Z.) and Dermatology (C.G.), University Hospital, Dresden; Institute of Immunology (K.D., R.W., M.S.), Medical Faculty, TU Dresden; Department of Neuropathology (I.M., W.B.), University Medical Centre, Göttingen; Department of Neurology (H.T.), University Hospital, Ulm; Department of Dermatology (K.S.), University Hospital, Heidelberg; and Center for Regenerative Therapies Dresden (M.S.), Dresden, Germany
| | - Thorsten Schultheiß
- Departments of Neurology (K.T., T.S., H.R., T.Z.) and Dermatology (C.G.), University Hospital, Dresden; Institute of Immunology (K.D., R.W., M.S.), Medical Faculty, TU Dresden; Department of Neuropathology (I.M., W.B.), University Medical Centre, Göttingen; Department of Neurology (H.T.), University Hospital, Ulm; Department of Dermatology (K.S.), University Hospital, Heidelberg; and Center for Regenerative Therapies Dresden (M.S.), Dresden, Germany
| | - Claudia Günther
- Departments of Neurology (K.T., T.S., H.R., T.Z.) and Dermatology (C.G.), University Hospital, Dresden; Institute of Immunology (K.D., R.W., M.S.), Medical Faculty, TU Dresden; Department of Neuropathology (I.M., W.B.), University Medical Centre, Göttingen; Department of Neurology (H.T.), University Hospital, Ulm; Department of Dermatology (K.S.), University Hospital, Heidelberg; and Center for Regenerative Therapies Dresden (M.S.), Dresden, Germany
| | - Knut Schäkel
- Departments of Neurology (K.T., T.S., H.R., T.Z.) and Dermatology (C.G.), University Hospital, Dresden; Institute of Immunology (K.D., R.W., M.S.), Medical Faculty, TU Dresden; Department of Neuropathology (I.M., W.B.), University Medical Centre, Göttingen; Department of Neurology (H.T.), University Hospital, Ulm; Department of Dermatology (K.S.), University Hospital, Heidelberg; and Center for Regenerative Therapies Dresden (M.S.), Dresden, Germany
| | - Heinz Reichmann
- Departments of Neurology (K.T., T.S., H.R., T.Z.) and Dermatology (C.G.), University Hospital, Dresden; Institute of Immunology (K.D., R.W., M.S.), Medical Faculty, TU Dresden; Department of Neuropathology (I.M., W.B.), University Medical Centre, Göttingen; Department of Neurology (H.T.), University Hospital, Ulm; Department of Dermatology (K.S.), University Hospital, Heidelberg; and Center for Regenerative Therapies Dresden (M.S.), Dresden, Germany
| | - Wolfgang Brück
- Departments of Neurology (K.T., T.S., H.R., T.Z.) and Dermatology (C.G.), University Hospital, Dresden; Institute of Immunology (K.D., R.W., M.S.), Medical Faculty, TU Dresden; Department of Neuropathology (I.M., W.B.), University Medical Centre, Göttingen; Department of Neurology (H.T.), University Hospital, Ulm; Department of Dermatology (K.S.), University Hospital, Heidelberg; and Center for Regenerative Therapies Dresden (M.S.), Dresden, Germany
| | - Marc Schmitz
- Departments of Neurology (K.T., T.S., H.R., T.Z.) and Dermatology (C.G.), University Hospital, Dresden; Institute of Immunology (K.D., R.W., M.S.), Medical Faculty, TU Dresden; Department of Neuropathology (I.M., W.B.), University Medical Centre, Göttingen; Department of Neurology (H.T.), University Hospital, Ulm; Department of Dermatology (K.S.), University Hospital, Heidelberg; and Center for Regenerative Therapies Dresden (M.S.), Dresden, Germany
| | - Tjalf Ziemssen
- Departments of Neurology (K.T., T.S., H.R., T.Z.) and Dermatology (C.G.), University Hospital, Dresden; Institute of Immunology (K.D., R.W., M.S.), Medical Faculty, TU Dresden; Department of Neuropathology (I.M., W.B.), University Medical Centre, Göttingen; Department of Neurology (H.T.), University Hospital, Ulm; Department of Dermatology (K.S.), University Hospital, Heidelberg; and Center for Regenerative Therapies Dresden (M.S.), Dresden, Germany
| |
Collapse
|
36
|
Ben-Nun A, Kaushansky N, Kawakami N, Krishnamoorthy G, Berer K, Liblau R, Hohlfeld R, Wekerle H. From classic to spontaneous and humanized models of multiple sclerosis: impact on understanding pathogenesis and drug development. J Autoimmun 2014; 54:33-50. [PMID: 25175979 DOI: 10.1016/j.jaut.2014.06.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 06/04/2014] [Indexed: 12/25/2022]
Abstract
Multiple sclerosis (MS), a demyelinating disease of the central nervous system (CNS), presents as a complex disease with variable clinical and pathological manifestations, involving different pathogenic pathways. Animal models, particularly experimental autoimmune encephalomyelitis (EAE), have been key to deciphering the pathophysiology of MS, although no single model can recapitulate the complexity and diversity of MS, or can, to date, integrate the diverse pathogenic pathways. Since the first EAE model was introduced decades ago, multiple classic (induced), spontaneous, and humanized EAE models have been developed, each recapitulating particular aspects of MS pathogenesis. The advances in technologies of genetic ablation and transgenesis in mice of C57BL/6J background and the development of myelin-oligodendrocyte glycoprotein (MOG)-induced EAE in C57BL/6J mice yielded several spontaneous and humanized EAE models, and resulted in a plethora of EAE models in which the role of specific genes or cell populations could be precisely interrogated, towards modeling specific pathways of MS pathogenesis/regulation in MS. Collectively, the numerous studies on the different EAE models contributed immensely to our basic understanding of cellular and molecular pathways in MS pathogenesis as well as to the development of therapeutic agents: several drugs available today as disease modifying treatments were developed from direct studies on EAE models, and many others were tested or validated in EAE. In this review, we discuss the contribution of major classic, spontaneous, and humanized EAE models to our understanding of MS pathophysiology and to insights leading to devising current and future therapies for this disease.
Collapse
Affiliation(s)
- Avraham Ben-Nun
- Department of Immunology, The Weizmann Institute of Science, 234 Herzl St. Rehovot, 7610001, Israel.
| | - Nathali Kaushansky
- Department of Immunology, The Weizmann Institute of Science, 234 Herzl St. Rehovot, 7610001, Israel.
| | - Naoto Kawakami
- Department of Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried 82152, Germany; Institute of Clinical Neuroimmunology, Ludwig-Maximilians-University, 81377 Munich, Germany.
| | | | - Kerstin Berer
- Department of Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried 82152, Germany.
| | | | - Reinhard Hohlfeld
- Institute of Clinical Neuroimmunology, Ludwig-Maximilians-University, 81377 Munich, Germany.
| | - Hartmut Wekerle
- Department of Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried 82152, Germany.
| |
Collapse
|
37
|
Sheridan GK, Dev KK. Targeting S1P receptors in experimental autoimmune encephalomyelitis in mice improves early deficits in locomotor activity and increases ultrasonic vocalisations. Sci Rep 2014; 4:5051. [PMID: 24851861 PMCID: PMC4031479 DOI: 10.1038/srep05051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/06/2014] [Indexed: 12/31/2022] Open
Abstract
Fingolimod (FTY720) is an oral therapy for relapsing remitting multiple sclerosis (MS) and targets sphingosine 1-phosphate receptors (S1PRs). FTY720 also rescues animals from experimental autoimmune encephalomyelitis (EAE), an animal model of MS. The protective effects of FTY720 in EAE are primarily scored manually by examining weight loss and limb paralysis that begins around 10-12 days after immunisation. To our knowledge, pre-clinical effects of FTY720 on animal behaviour early in EAE have not been explored. Here, we developed an automated behaviour monitoring system to examine the early effects of FTY720 on subtle pre-symptomatic behaviour of mice induced with EAE. Our automated home-cage monitoring system (AHC-MS) enabled non-contact detection of movement and ultrasonic vocalisations (USVs) of mice induced with EAE, thus allowing detection of subtle changes in mouse behaviour before paralysis occurs. Mice receiving FTY720 emit longer USVs and display higher levels of motor activity than vehicle-treated EAE mice before clinical symptoms become apparent. Importantly, this study promotes the 3Rs ethics (replacement, reduction and refinement) in the EAE animal model and may also improve pre-screening of potentially novel MS therapies. In addition, this is the first report showing the early effects of FTY720 in EAE which underscores its protective effects.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Female
- Fingolimod Hydrochloride
- Immunosuppressive Agents/pharmacology
- Lysophospholipids/metabolism
- Mice
- Mice, Inbred C57BL
- Motor Activity/drug effects
- Motor Activity/physiology
- Propylene Glycols/pharmacology
- Receptors, Lysosphingolipid/antagonists & inhibitors
- Receptors, Lysosphingolipid/genetics
- Receptors, Lysosphingolipid/metabolism
- Sphingosine/analogs & derivatives
- Sphingosine/metabolism
- Sphingosine/pharmacology
- Vocalization, Animal/drug effects
- Vocalization, Animal/physiology
Collapse
Affiliation(s)
- Graham K. Sheridan
- Drug Development, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Current address: Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Kumlesh K. Dev
- Drug Development, School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW This review will explore two new aspects of the involvement of viruses in multiple sclerosis pathogenesis. The first aspect is the complex interactions between viruses. The second aspect is the proposal of a mechanism by which autoreactive T cells are able to escape thymic selection and potentially recognize self and a pathogen. RECENT FINDINGS With regard to viruses, recent work has demonstrated that one virus may enhance the replication of another virus, potentially leading to an increase in inflammation and disease progression. Also, interactions between human endogenous retroviruses, which likely do not replicate, and certain herpes viruses, may also play a role in disease pathogenesis. Mechanistically, T cells expressing dual T-cell receptors would be able to recognize self and a foreign antigen specifically. Therefore, human endogenous retroviruses potentially play a role in multiple sclerosis pathogenesis, and both interactions between multiple viruses and autoreactive CD8(+) T cells with dual T-cell receptors may play a role in the pathogenesis of the disease. SUMMARY The complex interactions between multiple viral infections, either within the central nervous system or in the periphery, and the host immune response to viral infection may be such that a variety of viral specificities result in the activation of T cells that recognize self and induce multiple sclerosis. Therefore, it is unlikely that any one microbe will be determined to be the causative agent of multiple sclerosis as reflected by the number of potential triggering mechanisms of the disease.
Collapse
|
39
|
Benkhoucha M, Molnarfi N, Schneiter G, Walker PR, Lalive PH. The neurotrophic hepatocyte growth factor attenuates CD8+ cytotoxic T-lymphocyte activity. J Neuroinflammation 2013; 10:154. [PMID: 24344806 PMCID: PMC3881506 DOI: 10.1186/1742-2094-10-154] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/04/2013] [Indexed: 01/27/2023] Open
Abstract
Background Accumulating evidence suggests a deleterious role for CD8+ T cells in multiple sclerosis (MS) pathogenesis. We have recently reported that hepatocyte growth factor (HGF), a potent neuroprotective factor, limits CD4+ T cell-mediated autoimmune neuroinflammation by promoting tolerogenic dendritic cells (DCs) and subsequently regulatory T cells. Whether HGF modulates cell-mediated immunity driven by MHC class I-restricted CD8+ T cells remains to be determined. Methods Here we examined whether HGF regulates antigen-specific CD8+ T cell responses using an established model of murine cytotoxic T lymphocyte (CTL)-mediated killing. Results We found that HGF treatment of gp100-pulsed DCs reduced the activation of gp100-specific T cell receptor (Pmel-1) CD8+ T cells and subsequent MHC class I-restricted CTL-mediated cytolysis of gp100-pulsed target cells. The levels of perforin, granzyme B, IFN-γ, and the degranulation marker CD107a as well as Fas ligand were decreased among CD8+ T cells, suggestive of a dual inhibitory effect of HGF on the perforin/granzyme B- and Fas-based lytic pathways in cell-mediated cytotoxicity. Treatment of CD8+ T cells with concanamycin A, a potent inhibitor of the perforin-mediated cytotoxic pathway, abrogated CTL cytotoxicity indicating that blockade of the perforin-dependent killing is a major mechanism by which HGF diminished cytolysis of gp100-pulsed target cells. Moreover, HGF suppressed the generation of effector memory CTLs. Conclusions Our findings indicate that HGF treatment limits both the generation and activity of effector CTL from naïve CD8+ T cells. Complementary to its impact on CD4+ T-cell CNS autoimmunity and myelin repair, our findings further suggest that HGF treatment could be exploited to control CD8+ T-cell-mediated, MHC I-restricted autoimmune dysfunctions such as MS.
Collapse
Affiliation(s)
| | | | | | | | - Patrice H Lalive
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
40
|
Li M, Jiang J, Fu B, Chen J, Xue Q, Dong W, Gu Y, Tang L, Xue L, Fang Q, Wang M, Zhang X. PD-L1 is increased in the spinal cord and infiltrating lymphocytes in experimental allergic encephalomyelitis. Neural Regen Res 2013; 8:3296-305. [PMID: 25206651 PMCID: PMC4145942 DOI: 10.3969/j.issn.1673-5374.2013.35.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/06/2013] [Indexed: 11/18/2022] Open
Abstract
Experimental allergic encephalomyelitis is a mouse model of human multiple sclerosis with similar pathology and pathogenesis. Th1 cells play an important role in the pathogenesis of experimental allergic encephalomyelitis. This study determined the potential effect of programmed cell death 1 ligand 1 in the pathogenesis of experimental allergic encephalomyelitis induced by injecting myelin oligodendrocyte glycoprotein, complete Freund's adjuvant and Bordetella pertussis toxin into C57BL/6J mice. Experimental allergic encephalomyelitis mice developed disease and showed inflammatory changes in the central nervous system by hematoxylin-eosin staining of spinal cord pathological sections, demyelination by Luxol fast-blue staining and clinical manifestations. The expression of programmed cell death 1 ligand 1 in mice was detected by immunohistochemistry, flow cytometry and western blot analysis. The expression of programmed cell death 1 ligand 1 in the spinal cord and splenocytes of mice was significantly increased compared with normal mice. Our findings suggest the involvement of programmed cell death 1 ligand 1 in the pathogenesis of experimental allergic encephalomyelitis and suggest this should be studied in multiple sclerosis.
Collapse
Affiliation(s)
- Min Li
- Department of Neurology, Second People's Hospital of Lianyungang City, Lianyungang 222006, Jiangsu Province, China
| | - Jiandong Jiang
- Department of Neurology, Second People's Hospital of Lianyungang City, Lianyungang 222006, Jiangsu Province, China
| | - Bing Fu
- Department of Neurology, Second People's Hospital of Lianyungang City, Lianyungang 222006, Jiangsu Province, China
| | - Jiechun Chen
- Department of Neurology, Second People's Hospital of Lianyungang City, Lianyungang 222006, Jiangsu Province, China
| | - Qun Xue
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China ; Institute of Clinical Immunology, Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Wanli Dong
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China ; Institute of Clinical Immunology, Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Yanzheng Gu
- Institute of Clinical Immunology, Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Lingtao Tang
- Department of Neurology, Third Hospital of Xingtai City, Xingtai 054000, Hebei Province, China
| | - Limin Xue
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Qi Fang
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Mingyuan Wang
- Red-Cross Blood Center of Suzhou City, Suzhou 215006, Jiangsu Province, China
| | - Xueguang Zhang
- Institute of Clinical Immunology, Soochow University, Suzhou 215006, Jiangsu Province, China
| |
Collapse
|
41
|
Fischer HJ, Schweingruber N, Lühder F, Reichardt HM. The potential role of T cell migration and chemotaxis as targets of glucocorticoids in multiple sclerosis and experimental autoimmune encephalomyelitis. Mol Cell Endocrinol 2013; 380:99-107. [PMID: 23578583 DOI: 10.1016/j.mce.2013.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 03/31/2013] [Accepted: 04/01/2013] [Indexed: 12/14/2022]
Abstract
Glucocorticoids (GCs) are the most commonly prescribed drugs for the treatment of acute disease bouts in multiple sclerosis (MS) patients. While T lymphocytes were shown to be essential targets of GC therapy, at least in animal models of MS, the mechanisms by which GCs modulate T cell function are less clear. Until now, apoptosis induction and repression of pro-inflammatory cytokines in T cells have been considered the most critical mechanisms in ameliorating disease symptoms. However, this notion is being challenged by increasing evidence that the control of T cell migration and chemotaxis by GCs might be even more important for the treatment of neuroinflammatory diseases. In this review we aim to provide an overview of how GCs impact the morphological alterations that T cells undergo during activation and migration as well as the influences that GCs have on the directed movement of T cells under the influence of chemokines. A deeper understanding of these processes should not only help to advance our understanding of how GCs exert their beneficial effects in MS therapy but may reveal future strategies to intervene in the pathogenesis of neuroinflammatory diseases.
Collapse
Affiliation(s)
- Henrike J Fischer
- Institute for Cellular and Molecular Immunology, University of Göttingen Medical School, Humboldtallee 34, 37073 Göttingen, Germany
| | | | | | | |
Collapse
|
42
|
Li L, Liu J, Delohery T, Zhang D, Arendt C, Jones C. The effects of teriflunomide on lymphocyte subpopulations in human peripheral blood mononuclear cells in vitro. J Neuroimmunol 2013; 265:82-90. [PMID: 24182769 DOI: 10.1016/j.jneuroim.2013.10.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 09/22/2013] [Accepted: 10/07/2013] [Indexed: 12/17/2022]
Abstract
Teriflunomide is an inhibitor of dihydro-orotate dehydrogenase (DHODH), and is hypothesized to ameliorate multiple sclerosis by reducing proliferation of stimulated lymphocytes. We investigated teriflunomide's effects on proliferation, activation, survival, and function of stimulated human peripheral blood mononuclear cell subsets in vitro. Teriflunomide had little/no impact on lymphocyte activation but exerted significant dose-dependent inhibition of T- and B-cell proliferation, which was uridine-reversible (DHODH-dependent). Viability analyses showed no teriflunomide-associated cytotoxicity. Teriflunomide significantly decreased release of several pro-inflammatory cytokines from activated monocytes in a DHODH-independent fashion. In conclusion, teriflunomide acts on multiple immune cell types and processes via DHODH-dependent and independent mechanisms.
Collapse
Affiliation(s)
- Li Li
- BioInnovation Group, Sanofi, Cambridge, MA, USA
| | | | | | | | | | | |
Collapse
|
43
|
Simmons SB, Pierson ER, Lee SY, Goverman JM. Modeling the heterogeneity of multiple sclerosis in animals. Trends Immunol 2013; 34:410-22. [PMID: 23707039 DOI: 10.1016/j.it.2013.04.006] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/09/2013] [Accepted: 04/18/2013] [Indexed: 12/18/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the central nervous system (CNS) manifested with varying clinical course, pathology, and inflammatory patterns. There are multiple animal models that reflect different aspects of this heterogeneity. Collectively, these models reveal a balance between pathogenic and regulatory CD4(+) T cells, CD8(+) T cells, and B cells that influences the incidence, timing, and severity of CNS autoimmunity. In this review we discuss experimental autoimmune encephalomyelitis (EAE) models that have been used to study the pathogenic and regulatory roles of these immune cells; models that recapitulate different aspects of the disease seen in patients with MS, and questions remaining for future studies.
Collapse
Affiliation(s)
- Sarah B Simmons
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
44
|
Lee SY, Goverman JM. The influence of T cell Ig mucin-3 signaling on central nervous system autoimmune disease is determined by the effector function of the pathogenic T cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:4991-9. [PMID: 23562810 DOI: 10.4049/jimmunol.1300083] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the CNS mediated by self-reactive, myelin-specific T cells. Both CD4(+) and CD8(+) T cells play important roles in the pathogenesis of MS. MS is studied using experimental autoimmune encephalomyelitis (EAE), an animal model mediated by myelin-specific T cells. T cell Ig mucin-3 (Tim-3) is a cell surface receptor expressed on CD4(+) IFN-γ-secreting Th1 cells, and triggering Tim-3 signaling ameliorated EAE by inducing death in pathogenic Th1 cells in vivo. This suggested that enhancing Tim-3 signaling might be beneficial in patients with MS. However, Tim-3 is also expressed on activated CD8(+) T cells, microglia, and dendritic cells, and the combined effect of manipulating Tim-3 signaling on these cell types during CNS autoimmunity is unknown. Furthermore, CD4(+) IL-17-secreting Th17 cells also play a role in MS, but do not express high levels of Tim-3. We investigated Tim-3 signaling in EAE models that include myelin-specific Th17, Th1, and CD8(+) T cells. We found that preventing Tim-3 signaling in CD4(+) T cells altered the inflammatory pattern in the CNS due to differential effects on Th1 versus Th17 cells. In contrast, preventing Tim-3 signaling during CD8(+) T cell-mediated EAE exacerbated disease. We also analyzed the importance of Tim-3 signaling in EAE in innate immune cells. Tim-3 signaling in dendritic cells and microglia did not affect the manifestation of EAE in these models. These results indicate that the therapeutic efficacy of targeting Tim-3 in EAE is dependent on the nature of the effector T cells contributing to the disease.
Collapse
Affiliation(s)
- Sarah Y Lee
- Department of Immunology, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
45
|
Ross AP, Ben-Zacharia A, Harris C, Smrtka J. Multiple sclerosis, relapses, and the mechanism of action of adrenocorticotropic hormone. Front Neurol 2013; 4:21. [PMID: 23482896 PMCID: PMC3591751 DOI: 10.3389/fneur.2013.00021] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 02/13/2013] [Indexed: 12/27/2022] Open
Abstract
Relapses in multiple sclerosis (MS) are disruptive and frequently disabling for patients, and their treatment is often a challenge to clinicians. Despite progress in the understanding of the pathophysiology of MS and development of new treatments for long-term management of MS, options for treating relapses have not changed substantially over the past few decades. Corticosteroids, a component of the hypothalamic-pituitary-adrenal axis that modulate immune responses and reduce inflammation, are currently the mainstay of relapse treatment. Adrenocorticotropic hormone (ACTH) gel is another treatment option. Although it has long been assumed that the efficacy of ACTH in treating relapses depends on the peptide’s ability to increase endogenous corticosteroid production, evidence from research on the melanocortin system suggests that steroidogenesis may only partly account for ACTH influences. Indeed, the melanocortin peptides [ACTH and α-, β-, γ-melanocyte-stimulating hormones (MSH)] and their receptors (Melanocortin receptors, MCRs) exert multiple actions, including modulation of inflammatory and immune mediator production. MCRs are widely distributed within the central nervous system and in peripheral tissues including immune cells (e.g., macrophages). This suggests that the mechanism of action of ACTH includes not only steroid-mediated indirect effects, but also direct anti-inflammatory and immune-modulating actions via the melanocortin system. An increased understanding of the role of the melanocortin system, particularly ACTH, in the immune and inflammatory processes underlying relapses may help to improve relapse management.
Collapse
Affiliation(s)
- Amy Perrin Ross
- Department of Neurosciences, Loyola University Chicago Chicago, IL, USA
| | | | | | | |
Collapse
|
46
|
Ji Q, Castelli L, Goverman JM. MHC class I-restricted myelin epitopes are cross-presented by Tip-DCs that promote determinant spreading to CD8⁺ T cells. Nat Immunol 2013; 14:254-61. [PMID: 23291597 PMCID: PMC3581685 DOI: 10.1038/ni.2513] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 12/03/2012] [Indexed: 12/12/2022]
Abstract
Myelin presentation to T cells within the central nervous system (CNS) sustains inflammation in multiple sclerosis (MS). CD4+ and CD8+ T cells contribute to MS; however, only cells that present myelin to CD4+ T cells have been identified. We show that MHC class I-restricted myelin basic protein (MBP) was presented by oligodendrocytes and cross-presented by Tip-dendritic cells (DCs) during experimental autoimmune encephalomyelitis (EAE), an animal model of MS initiated by CD4+ T cells. Tip-DCs activated naïve and effector CD8+ T cells ex vivo, and naïve MBP-specific CD8+ T cells were activated within the CNS during CD4+ T cell-induced EAE. These results demonstrate that CD4+ T cell-mediated CNS autoimmunity leads to determinant spreading to myelin-specific CD8+ T cells that are capable of direct recognition of oligodendrocytes.
Collapse
Affiliation(s)
- Qingyong Ji
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | | | | |
Collapse
|
47
|
Lv J, Du C, Wei W, Wu Z, Zhao G, Li Z, Xie X. The antiepileptic drug valproic acid restores T cell homeostasis and ameliorates pathogenesis of experimental autoimmune encephalomyelitis. J Biol Chem 2012; 287:28656-65. [PMID: 22733814 PMCID: PMC3436564 DOI: 10.1074/jbc.m112.356584] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Maintaining a constant number and ratio of immune cells is one critical aspect of the tight regulation of immune homeostasis. Breakdown of this balance will lead to autoimmune diseases such as multiple sclerosis (MS). The antiepileptic drug valproic acid (VPA) was reported to regulate the growth, survival, and differentiation of many cells. However, its function in T cell homeostasis and MS treatment remains unknown. In this study, VPA was found to reduce spinal cord inflammation, demyelination, and disease scores in experimental autoimmune encephalomyelitis, a mouse model of MS. Further study indicated that VPA induces apoptosis in activated T cells and maintains the immune homeostasis. This effect was found to be mainly mediated by the caspase-8/caspase-3 pathway. Interestingly, this phenomenon was also confirmed in T cells from normal human subjects and MS patients. Considering the long history of clinical use and our new findings, we believe VPA might be a safe and effective therapy for autoimmune diseases, such as multiple sclerosis.
Collapse
Affiliation(s)
- Jie Lv
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | | | | | | | | | | | | |
Collapse
|
48
|
Current world literature. Curr Opin Rheumatol 2012; 24:435-40. [PMID: 22653148 DOI: 10.1097/bor.0b013e3283556515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Scheikl T, Pignolet B, Dalard C, Desbois S, Raison D, Yamazaki M, Saoudi A, Bauer J, Lassmann H, Hardin-Pouzet H, Liblau RS. Cutting edge: neuronal recognition by CD8 T cells elicits central diabetes insipidus. THE JOURNAL OF IMMUNOLOGY 2012; 188:4731-5. [PMID: 22504649 DOI: 10.4049/jimmunol.1102998] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
An increasing number of neurologic diseases is associated with autoimmunity. The immune effectors contributing to the pathogenesis of such diseases are often unclear. To explore whether self-reactive CD8 T cells could attack CNS neurons in vivo, we generated a mouse model in which the influenza virus hemagglutinin (HA) is expressed specifically in CNS neurons. Transfer of cytotoxic anti-HA CD8 T cells induced an acute but reversible encephalomyelitis in HA-expressing recipient mice. Unexpectedly, diabetes insipidus developed in surviving animals. This robust phenotype was associated with preferential accumulation of cytotoxic CD8 T cells in the hypothalamus, upregulation of MHC class I molecules, and destruction of vasopressin-expressing neurons. IFN-γ production by the pathogenic CD8 T cells was necessary for MHC class I upregulation by hypothalamic neurons and their destruction. This novel mouse model, in combination with related human data, supports the concept that autoreactive CD8 T cells can trigger central diabetes insipidus.
Collapse
|
50
|
Brooks-Worrell B, Palmer JP. Immunology in the Clinic Review Series; focus on metabolic diseases: development of islet autoimmune disease in type 2 diabetes patients: potential sequelae of chronic inflammation. Clin Exp Immunol 2012; 167:40-6. [PMID: 22132883 DOI: 10.1111/j.1365-2249.2011.04501.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Historically, the development of type 2 diabetes has been considered not to have an autoimmune component, in contrast to the autoimmune pathogenesis of type 1 diabetes. In this review we will discuss the accumulating data supporting the concept that islet autoreactivity and inflammation is present in type 2 diabetes pathogenesis, and the islet autoimmunity appears to be one of the factors associated with the progressive nature of the type 2 diabetes disease process.
Collapse
Affiliation(s)
- B Brooks-Worrell
- Department of Medicine, University of Washington, Seattle, WA, USA.
| | | |
Collapse
|