1
|
Castro BBA, Reno PF, Pereira BF, Arriel K, Bonato FB, Colugnati FAB, Cenedeze MA, Saraiva-Camara NO, Sanders-Pinheiro H. Fenofibrate attenuates renal lipotoxicity in uninephrectomized mice with high-fat diet-induced obesity. J Bras Nefrol 2024; 46:e20230148. [PMID: 39412511 PMCID: PMC11539900 DOI: 10.1590/2175-8239-jbn-2023-0148en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 06/03/2024] [Indexed: 11/08/2024] Open
Abstract
INTRODUCTION The objective of this study was to investigate the role of fenofibrate, a peroxisome proliferator-activated receptor-α agonist, in obesity-induced kidney damage (lipotoxicity) in mice with uninephrectomy. METHODS C57BL/6 mice underwent uninephrectomy and sham surgeries and were fed normocaloric or high-fat diets. After 10 weeks, obese mice were administered 0.02% fenofibrate for 10 weeks. Kidney function and morphology were evaluated, as well as levels of inflammatory and fibrotic mediators and lipid metabolism markers. RESULTS High-fat diet-fed mice developed characteristic obesity and hyperlipidemia, with subsequent renal lipid accumulation and damage, including mesangial expansion, interstitial fibrosis, inflammation, and proteinuria. These changes were greater in obese uninephrectomy mice than in obese sham mice. Fenofibrate treatment prevented hyperlipidemia and glomerular lesions, lowered lipid accumulation, ameliorated renal dysfunction, and attenuated inflammation and renal fibrosis. Furthermore, fenofibrate treatment downregulated renal tissue expression of plasminogen activator inhibitor-1, monocyte chemoattractant protein-1, and local expression of fibroblast growth factor-21. CONCLUSION Peroxisome proliferator-activated receptor-α activation by fenofibrate, with subsequent lipolysis, attenuated glomerular and tubulointerstitial lesions induced by renal lipotoxicity, thus protecting the kidneys of uninephrectomy mice from obesity-induced lesions. The study findings suggest a pathway in the pharmacological action of fenofibrate, providing insight into the mechanisms involved in kidney damage caused by obesity in kidney donors.
Collapse
Affiliation(s)
- Barbara Bruna Abreu Castro
- Universidade Federal de Juiz de Fora, Centro de Biologia da Reprodução, Núcleo de Experimentação Animal, Laboratório de Nefrologia Experimental, Juiz de Fora, MG, Brazil
- Universidade Federal de Juiz de Fora, Divisão de Nefrologia, Núcleo Interdisciplinar de Estudos e Pesquisas em Nefrologia, Juiz de Fora, MG, Brazil
| | - Petrus Ferreira Reno
- Universidade Federal de Juiz de Fora, Centro de Biologia da Reprodução, Núcleo de Experimentação Animal, Laboratório de Nefrologia Experimental, Juiz de Fora, MG, Brazil
| | - Bianca Fatima Pereira
- Universidade Federal de Juiz de Fora, Centro de Biologia da Reprodução, Núcleo de Experimentação Animal, Laboratório de Nefrologia Experimental, Juiz de Fora, MG, Brazil
| | - Kaique Arriel
- Universidade Federal de Juiz de Fora, Centro de Biologia da Reprodução, Núcleo de Experimentação Animal, Laboratório de Nefrologia Experimental, Juiz de Fora, MG, Brazil
| | - Fabiana Bastos Bonato
- Universidade Federal de Juiz de Fora, Divisão de Nefrologia, Núcleo Interdisciplinar de Estudos e Pesquisas em Nefrologia, Juiz de Fora, MG, Brazil
| | - Fernando Antonio Basile Colugnati
- Universidade Federal de Juiz de Fora, Divisão de Nefrologia, Núcleo Interdisciplinar de Estudos e Pesquisas em Nefrologia, Juiz de Fora, MG, Brazil
| | - Marcos Antonio Cenedeze
- Universidade Federal de São Paulo, Divisão de Nefrologia, Laboratório de Imunologia Clínica e Experimental, São Paulo, SP, Brazil
| | - Niels Olsen Saraiva-Camara
- Universidade Federal de São Paulo, Divisão de Nefrologia, Laboratório de Imunologia Clínica e Experimental, São Paulo, SP, Brazil
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Imunologia, Laboratório de Imunologia de Transplantes, São Paulo, SP, Brazil
| | - Helady Sanders-Pinheiro
- Universidade Federal de Juiz de Fora, Centro de Biologia da Reprodução, Núcleo de Experimentação Animal, Laboratório de Nefrologia Experimental, Juiz de Fora, MG, Brazil
- Universidade Federal de Juiz de Fora, Divisão de Nefrologia, Núcleo Interdisciplinar de Estudos e Pesquisas em Nefrologia, Juiz de Fora, MG, Brazil
| |
Collapse
|
2
|
Yang J, Pontoglio M, Terzi F. Bile Acids and Farnesoid X Receptor in Renal Pathophysiology. Nephron Clin Pract 2024; 148:618-630. [PMID: 38412845 DOI: 10.1159/000538038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/22/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Bile acids (BAs) act not only as lipids and lipid-soluble vitamin detergents but also function as signaling molecules, participating in diverse physiological processes. The identification of BA receptors in organs beyond the enterohepatic system, such as the farnesoid X receptor (FXR), has initiated inquiries into their organ-specific functions. Among these organs, the kidney prominently expresses FXR. SUMMARY This review provides a comprehensive overview of various BA species identified in kidneys and delves into the roles of renal apical and basolateral BA transporters. Furthermore, we explore changes in BAs and their potential implications for various renal diseases, particularly chronic kidney disease. Lastly, we center our discussion on FXR, a key BA receptor in the kidney and a potential therapeutic target for renal diseases, providing current insights into the protective mechanisms associated with FXR agonist treatments. KEY MESSAGES Despite the relatively low concentrations of BAs in the kidney, their presence is noteworthy, with rodents and humans exhibiting distinct renal BA compositions. Renal BA transporters efficiently facilitate either reabsorption into systemic circulation or excretion into the urine. However, adaptive changes in BA transporters are evident during cholestasis. Various renal diseases are accompanied by alterations in BA concentrations and FXR expression. Consequently, the activation of FXR in the kidney could be a promising target for mitigating kidney damage.
Collapse
Affiliation(s)
- Jiufang Yang
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR8253, Université Paris Cité, Paris, France,
| | - Marco Pontoglio
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR8253, Université Paris Cité, Paris, France
| | - Fabiola Terzi
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR8253, Université Paris Cité, Paris, France
| |
Collapse
|
3
|
Basta J, Robbins L, Stout L, Brennan M, Shapiro J, Chen M, Denner D, Baldan A, Messias N, Madhavan S, Parikh SV, Rauchman M. Deletion of NuRD component Mta2 in nephron progenitor cells causes developmentally programmed FSGS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.562984. [PMID: 38948707 PMCID: PMC11213133 DOI: 10.1101/2023.10.18.562984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Low nephron endowment at birth is a risk factor for chronic kidney disease. The prevalence of this condition is increasing due to higher survival rates of preterm infants and children with multi- organ birth defect syndromes that affect the kidney and urinary tract. We created a mouse model of congenital low nephron number due to deletion of Mta2 in nephron progenitor cells. Mta2 is a core component of the Nucleosome Remodeling and Deacetylase (NuRD) chromatin remodeling complex. These mice developed albuminuria at 4 weeks of age followed by focal segmental glomerulosclerosis (FSGS) at 8 weeks, with progressive kidney injury and fibrosis. Our studies reveal that altered mitochondrial metabolism in the post-natal period leads to accumulation of neutral lipids in glomeruli at 4 weeks of age followed by reduced mitochondrial oxygen consumption. We found that NuRD cooperated with Zbtb7a/7b to regulate a large number of metabolic genes required for fatty acid oxidation and oxidative phosphorylation. Analysis of human kidney tissue also supported a role for reduced mitochondrial lipid metabolism and ZBTB7A/7B in FSGS and CKD. We propose that an inability to meet the physiological and metabolic demands of post-natal somatic growth of the kidney promotes the transition to CKD in the setting of glomerular hypertrophy due to low nephron endowment.
Collapse
|
4
|
Romualdo GR, de Souza JLH, Valente LC, Barbisan LF. Assessment of the impact of glyphosate and 2,4-D herbicides on the kidney injury and transcriptome changes in obese mice fed a Western diet. Toxicol Lett 2023; 385:1-11. [PMID: 37567420 DOI: 10.1016/j.toxlet.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/21/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
The development of chronic kidney disease has been associated with comorbidities resulting from the consumption of Westernized dietary (WD) patterns, including obesity and other metabolic dysfunctions. Kidneys also have a crucial role in the metabolism and excretion of xenobiotics, including herbicides. There is limited knowledge regarding the simultaneous exposure to WD and glyphosate (glypho) and 2,4-D, the most used herbicides globally. Thus, this study examined whether exposure to glypho and/or 2,4-D, either individually or in mixed, could impact the early effects of WD intake on kidney histology and gene expression in a rodent model. Male C57BL6J mice were fed a WD containing 20% lard, 0.2% cholesterol, 20% sucrose, and high sugar solution with 23.1 and 18.9 g/L of D-fructose and D-glucose for six months. During this period, the mice also received glypho (0.05 or 5 mg/kg/day), 2,4-D (0.02 or 2 mg/kg/day), or a mixture of both (0.05 +0.02, 5 +2 mg/kg/day) via intragastric administration five times per week. The doses were within or below the established regulatory limits. While single or mixed exposures did not alter WD-induced obesity, tubular lipid vacuolation, or increased serum creatinine levels; the exposure to higher doses of the mixture (5 +2) reduced the mesangial matrix area and tubular cell proliferation, while increasing the density of F4/80 macrophages in the renal interstitium. In terms of transcriptomic analysis, the herbicide mixture altered the expression of 415 genes in the kidney, which were found to be associated with immune response processes, particularly those related to phagocyte activity. While discrete, findings indicate that herbicide mixtures, rather than single exposures, might induce minor deleterious effects on the kidneys of obese mice under WD intake.
Collapse
Affiliation(s)
- Guilherme Ribeiro Romualdo
- São Paulo State University (UNESP), Botucatu Medical School, Experimental Research Unit (UNIPEX), Multimodel Drug Screening Platform - Laboratory of Chemically Induced and Experimental Carcinogenesis (MDSP-LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Laboratory of Chemically Induced and Experimental Carcinogenesis (LCQE), Botucatu, SP, Brazil
| | - Jéssica Luri Hisano de Souza
- São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Laboratory of Chemically Induced and Experimental Carcinogenesis (LCQE), Botucatu, SP, Brazil
| | - Letícia Cardoso Valente
- São Paulo State University (UNESP), Botucatu Medical School, Experimental Research Unit (UNIPEX), Multimodel Drug Screening Platform - Laboratory of Chemically Induced and Experimental Carcinogenesis (MDSP-LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Laboratory of Chemically Induced and Experimental Carcinogenesis (LCQE), Botucatu, SP, Brazil; São Paulo State University (UNESP), Botucatu Medical School, Botucatu, SP, Brazil
| | - Luís Fernando Barbisan
- São Paulo State University (UNESP), Biosciences Institute, Department of Structural and Functional Biology, Laboratory of Chemically Induced and Experimental Carcinogenesis (LCQE), Botucatu, SP, Brazil.
| |
Collapse
|
5
|
Basta M, Yassin HA, Aly RG, El Sayed NS. Possible protective effect of zinc administration on renal and cognitive changes occurring in uninephrectomized adult male Wistar rats. Exp Physiol 2023; 108:253-267. [PMID: 36420617 PMCID: PMC10103884 DOI: 10.1113/ep090735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022]
Abstract
NEW FINDINGS What is the central question of this study? Are renal changes occurring post-nephrectomy accompanied by cognitive changes, and does early administration of zinc supplements such as ZnSO4 to uninephrectomized rats ameliorate the renal and cognitive changes if present? What is the main finding and its importance? Uninephrectomy-induced renal changes were accompanied by species-atypical behaviour in rats in both Morris water maze and T maze tests, together with hypozincaemia and hippocampal inflammatory and oxidative changes. Early zinc administration to uninephrectomized rats ameliorated the renal, behavioural, hippocampal and serum zinc changes. ABSTRACT Cognitive impairment is increasingly recognized as an important consequence of kidney disease in humans. Kidney donation is a safe procedure but is known to increase the long-term risk of cardiovascular and kidney disease. Whether kidney donation impairs cognitive function is not known. In the present study, we examined whether the renal changes occurring post-nephrectomy were accompanied by cognitive changes as well, and whether early administration of zinc supplements such as ZnSO4 to uninephrectomized (UNX) rats could ameliorate the renal and cognitive changes if present. The present study included 30 adult male Wistar rats that were randomly assigned to three groups (n = 10 per group): sham-operated rats, UNX and UNX treated with ZnSO4 for 20 weeks. Before termination, rats were subjected to 24-h urine collection and behavioural testing with the Morris water maze and T maze tests. UNX induced significant proteinuria, renal functional, fibrotic and oxidative changes, as well as increased renal desmin expression. UNX rats also showed significant behavioural changes indicating spatial learning and memory affection, together with decreased hippocampal brain derived neurotrophic factor (BDNF) and antioxidant capacity, and increased glial fibrillary acidic protein (GFAP), nitric oxide and malondialdehyde. In addition, UNX induced significant hyperglycaemia and dyslipidaemia, as well as significant reduction in serum zinc, copper and selenium. Early administration of ZnSO4 starting 1 week post-nephrectomy significantly ameliorated renal and behavioural changes, as well as hippocampal oxidative, BDNF and GFAP changes. Additionally, Zn recovered serum changes of triglycerides, cholesterol, zinc and copper. Therefore, early administration of zinc to humans undergoing nephrectomy may be of benefit and should be considered in human trials.
Collapse
Affiliation(s)
- Marianne Basta
- Department of Medical PhysiologyFaculty of MedicineUniversity of AlexandriaAlexandriaEgypt
| | - Hend A. Yassin
- Department of Medical BiochemistryFaculty of MedicineUniversity of AlexandriaAlexandriaEgypt
| | - Rania G. Aly
- Department of Medical PathologyFaculty of MedicineUniversity of AlexandriaAlexandriaEgypt
| | - Norhan S. El Sayed
- Department of Medical PhysiologyFaculty of MedicineUniversity of AlexandriaAlexandriaEgypt
| |
Collapse
|
6
|
Lazarenko V, Churilin M, Azarova I, Klyosova E, Bykanova M, Ob’edkova N, Churnosov M, Bushueva O, Mal G, Povetkin S, Kononov S, Luneva Y, Zhabin S, Polonikova A, Gavrilenko A, Saraev I, Solodilova M, Polonikov A. Comprehensive Statistical and Bioinformatics Analysis in the Deciphering of Putative Mechanisms by Which Lipid-Associated GWAS Loci Contribute to Coronary Artery Disease. Biomedicines 2022; 10:259. [PMID: 35203469 PMCID: PMC8868589 DOI: 10.3390/biomedicines10020259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 11/17/2022] Open
Abstract
The study was designed to evaluate putative mechanisms by which lipid-associated loci identified by genome-wide association studies (GWAS) are involved in the molecular pathogenesis of coronary artery disease (CAD) using a comprehensive statistical and bioinformatics analysis. A total of 1700 unrelated individuals of Slavic origin from the Central Russia, including 991 CAD patients and 709 healthy controls were examined. Sixteen lipid-associated GWAS loci were selected from European studies and genotyped using the MassArray-4 system. The polymorphisms were associated with plasma lipids such as total cholesterol (rs12328675, rs4846914, rs55730499, and rs838880), LDL-cholesterol (rs3764261, rs55730499, rs1689800, and rs838880), HDL-cholesterol (rs3764261) as well as carotid intima-media thickness/CIMT (rs12328675, rs11220463, and rs1689800). Polymorphisms such as rs4420638 of APOC1 (p = 0.009), rs55730499 of LPA (p = 0.0007), rs3136441 of F2 (p < 0.0001), and rs6065906 of PLTP (p = 0.002) showed significant associations with the risk of CAD, regardless of sex, age, and body mass index. A majority of the observed associations were successfully replicated in large independent cohorts. Bioinformatics analysis allowed establishing (1) phenotype-specific and shared epistatic gene-gene and gene-smoking interactions contributing to all studied cardiovascular phenotypes; (2) lipid-associated GWAS loci might be allele-specific binding sites for transcription factors from gene regulatory networks controlling multifaceted molecular mechanisms of atherosclerosis.
Collapse
Affiliation(s)
- Victor Lazarenko
- Department of Surgical Diseases, Institute of Continuing Education, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia;
| | - Mikhail Churilin
- Department of Infectious Diseases and Epidemiology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia;
| | - Iuliia Azarova
- Department of Biological Chemistry, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia;
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia;
| | - Elena Klyosova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia;
| | - Marina Bykanova
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia; (M.B.); (O.B.)
| | - Natalia Ob’edkova
- Department of Polyclinical Therapy and General Medical Practice, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia;
| | - Mikhail Churnosov
- Department of Medical Biological Disciplines, Belgorod State University, 85 Pobedy Street, 308015 Belgorod, Russia;
| | - Olga Bushueva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia; (M.B.); (O.B.)
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia; (A.P.); (M.S.); (A.P.)
| | - Galina Mal
- Department of Pharmacology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia;
| | - Sergey Povetkin
- Department of Clinical Pharmacology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia; (S.P.); (Y.L.)
| | - Stanislav Kononov
- Department of Internal Medicine No 2, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia; (S.K.); (I.S.)
| | - Yulia Luneva
- Department of Clinical Pharmacology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia; (S.P.); (Y.L.)
| | - Sergey Zhabin
- Department of Surgical Diseases No 1, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia;
| | - Anna Polonikova
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia; (A.P.); (M.S.); (A.P.)
| | - Alina Gavrilenko
- Department of Infectious Diseases and Epidemiology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia;
| | - Igor Saraev
- Department of Internal Medicine No 2, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia; (S.K.); (I.S.)
| | - Maria Solodilova
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia; (A.P.); (M.S.); (A.P.)
| | - Alexey Polonikov
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia; (A.P.); (M.S.); (A.P.)
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
| |
Collapse
|
7
|
Castro BBA, Foresto-Neto O, Saraiva-Camara NO, Sanders-Pinheiro H. Renal lipotoxicity: Insights from experimental models. Clin Exp Pharmacol Physiol 2021; 48:1579-1588. [PMID: 34314523 DOI: 10.1111/1440-1681.13556] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 07/13/2021] [Accepted: 07/23/2021] [Indexed: 11/29/2022]
Abstract
In recent decades, there has been a progressive increase in the prevalence of obesity and chronic kidney disease. Renal lipotoxicity has been associated with obesity. Although lipids play fundamental physiological roles, the accumulation of lipids in kidney cells may cause dysfunction and/or renal fibrosis. Adipose tissue that exceeds their lipid storage capacity begins to release triglycerides into the bloodstream that can get stored in several organs, including the kidneys. The mechanisms underlying renal lipotoxicity involve intracellular lipid accumulation and organelle dysfunction, which trigger oxidative stress and inflammation that consequently result in insulin resistance and albuminuria. However, the specific pathways involved in renal lipotoxicity have not yet been fully understood. We aimed to summarize the current knowledge on the mechanisms by which lipotoxicity affects the renal morphology and function in experimental models of obesity. The accumulation of fatty acids in tubular cells has been described as the main mechanism of lipotoxicity; however, lipids and their metabolism also affect the function and the survival of podocytes. In this review, we presented indication of mitochondrial, lysosomal and endoplasmic reticulum alterations involved in kidney damage caused by obesity. The kidney is vulnerable to lipotoxicity, and studies of the mechanisms underlying renal injury caused by obesity can help identify therapeutic targets to control renal dysfunction.
Collapse
Affiliation(s)
- Barbara Bruna Abreu Castro
- Laboratory of Experimental Nephrology, Nucleus of Animal Experimentation (NIDEAL), Centre of Reproductive Biology (CBR), Federal University of Juiz de Fora (UFJF, Juiz de Fora, Minas Gerais, Brazil
- Nephrology Division and Interdisciplinary Nucleus of Studies and Research in Nephrology (NIEPEN), Federal University of Juiz de Fora (UFJF, Juiz de Fora, Minas Gerais, Brazil
| | - Orestes Foresto-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP, São Paulo, São Paulo, Brazil
| | - Niels Olsen Saraiva-Camara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP, São Paulo, São Paulo, Brazil
| | - Helady Sanders-Pinheiro
- Laboratory of Experimental Nephrology, Nucleus of Animal Experimentation (NIDEAL), Centre of Reproductive Biology (CBR), Federal University of Juiz de Fora (UFJF, Juiz de Fora, Minas Gerais, Brazil
- Nephrology Division and Interdisciplinary Nucleus of Studies and Research in Nephrology (NIEPEN), Federal University of Juiz de Fora (UFJF, Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
8
|
Jones BA, Wang XX, Myakala K, Levi M. Nuclear Receptors and Transcription Factors in Obesity-Related Kidney Disease. Semin Nephrol 2021; 41:318-330. [PMID: 34715962 PMCID: PMC10187996 DOI: 10.1016/j.semnephrol.2021.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Both obesity and chronic kidney disease are increasingly common causes of morbidity and mortality worldwide. Although obesity often co-exists with diabetes and hypertension, it has become clear over the past several decades that obesity is an independent cause of chronic kidney disease, termed obesity-related glomerulopathy. This review defines the attributes of obesity-related glomerulopathy and describes potential pharmacologic interventions. Interventions discussed include peroxisome proliferator-activated receptors, the farnesoid X receptor, the Takeda G-protein-coupled receptor 5, and the vitamin D receptor.
Collapse
Affiliation(s)
- Bryce A Jones
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC
| | - Xiaoxin X Wang
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC
| | - Komuraiah Myakala
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC
| | - Moshe Levi
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC.
| |
Collapse
|
9
|
Withaar C, Lam CSP, Schiattarella GG, de Boer RA, Meems LMG. Heart failure with preserved ejection fraction in humans and mice: embracing clinical complexity in mouse models. Eur Heart J 2021; 42:4420-4430. [PMID: 34414416 PMCID: PMC8599003 DOI: 10.1093/eurheartj/ehab389] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/15/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) is a multifactorial disease accounting for a large and increasing proportion of all clinical HF presentations. As a clinical syndrome, HFpEF is characterized by typical signs and symptoms of HF, a distinct cardiac phenotype and raised natriuretic peptides. Non-cardiac comorbidities frequently co-exist and contribute to the pathophysiology of HFpEF. To date, no therapy has proven to improve outcomes in HFpEF, with drug development hampered, at least partly, by lack of consensus on appropriate standards for pre-clinical HFpEF models. Recently, two clinical algorithms (HFA-PEFF and H2FPEF scores) have been developed to improve and standardize the diagnosis of HFpEF. In this review, we evaluate the translational utility of HFpEF mouse models in the context of these HFpEF scores. We systematically recorded evidence of symptoms and signs of HF or clinical HFpEF features and included several cardiac and extra-cardiac parameters as well as age and sex for each HFpEF mouse model. We found that most of the pre-clinical HFpEF models do not meet the HFpEF clinical criteria, although some multifactorial models resemble human HFpEF to a reasonable extent. We therefore conclude that to optimize the translational value of mouse models to human HFpEF, a novel approach for the development of pre-clinical HFpEF models is needed, taking into account the complex HFpEF pathophysiology in humans.
Collapse
Affiliation(s)
- Coenraad Withaar
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Carolyn S P Lam
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands.,National University Heart Centre, Singapore and Duke-National University of Singapore
| | - Gabriele G Schiattarella
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Department of Cardiology, Center for Cardiovascular Research (CCR), Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy.,Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rudolf A de Boer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Laura M G Meems
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| |
Collapse
|
10
|
Engineered nanoplex mediated targeted miRNA delivery to rescue dying podocytes in diabetic nephropathy. Int J Pharm 2021; 605:120842. [PMID: 34216766 DOI: 10.1016/j.ijpharm.2021.120842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 01/08/2023]
Abstract
MicroRNAs (miRNA) is vital for gene expression regulation and normal kidney function. Mainly, miRNA-30a is responsible for the homeostasis of podocytes. In the diabetic nephropathic condition, miRNA-30a is directly and primarily suppressed by hyperglycemic kidney induced Notch signaling pathway leads to podocyte damage and apoptosis. Thus, transferring the exogenous miRNA-30a to podocytes might improve albuminuria as well as podocytes injury. The deprived stability, poor targetability, and low specificity in vivo are critical limitations to attain this objective. This investigation reports the specific and efficient delivery of miRNA-30a mimic via cyclo(RGDfC)-gated polymeric-nanoplexes with dendrimer templates to alleviate podocyte conditions. The nanoplexes able to protect RNase enzyme and to exhibit greater cellular uptake viaαvβ3 receptor selective binding in HG treated podocytes. The nanoplexes up-regulated the expression level of miRNA-30a and repress the elevated Notch-1 signaling in HG exposed podocytes. The critical results of in vivo experimentation attribute marked suppression of Notch-1 in streptozotocin (STZ) induced diabetic C57BL/6 mice and reduced glomerular expansion and fibrosis in the glomerular area. Developed nanoplexes represents an efficient platform for the targeted delivery of exogenous miRNA to podocytes. The approach developed herein could be extrapolated to other gene therapeutics and other kidney-related diseases.
Collapse
|
11
|
Srivastava T, Heruth DP, Duncan RS, Rezaiekhaligh MH, Garola RE, Priya L, Zhou J, Boinpelly VC, Novak J, Ali MF, Joshi T, Alon US, Jiang Y, McCarthy ET, Savin VJ, Sharma R, Johnson ML, Sharma M. Transcription Factor β-Catenin Plays a Key Role in Fluid Flow Shear Stress-Mediated Glomerular Injury in Solitary Kidney. Cells 2021; 10:cells10051253. [PMID: 34069476 PMCID: PMC8159099 DOI: 10.3390/cells10051253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/06/2021] [Accepted: 05/14/2021] [Indexed: 01/21/2023] Open
Abstract
Increased fluid flow shear stress (FFSS) in solitary kidney alters podocyte function in vivo. FFSS-treated cultured podocytes show upregulated AKT-GSK3β-β-catenin signaling. The present study was undertaken to confirm (i) the activation of β-catenin signaling in podocytes in vivo using unilaterally nephrectomized (UNX) TOPGAL mice with the β-galactosidase reporter gene for β-catenin activation, (ii) β-catenin translocation in FFSS-treated mouse podocytes, and (iii) β-catenin signaling using publicly available data from UNX mice. The UNX of TOPGAL mice resulted in glomerular hypertrophy and increased the mesangial matrix consistent with hemodynamic adaptation. Uninephrectomized TOPGAL mice showed an increased β-galactosidase expression at 4 weeks but not at 12 weeks, as assessed using immunofluorescence microscopy (p < 0.001 at 4 weeks; p = 0.16 at 12 weeks) and X-gal staining (p = 0.008 at 4 weeks; p = 0.65 at 12 weeks). Immunofluorescence microscopy showed a significant increase in phospho-β-catenin (Ser552, p = 0.005) at 4 weeks but not at 12 weeks (p = 0.935) following UNX, and the levels of phospho-β-catenin (Ser675) did not change. In vitro FFSS caused a sustained increase in the nuclear translocation of phospho-β-catenin (Ser552) but not phospho-β-catenin (Ser675) in podocytes. The bioinformatic analysis of the GEO dataset, #GSE53996, also identified β-catenin as a key upstream regulator. We conclude that transcription factor β-catenin mediates FFSS-induced podocyte (glomerular) injury in solitary kidney.
Collapse
Affiliation(s)
- Tarak Srivastava
- Section of Nephrology, Children’s Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO 64108, USA; (M.H.R.); (L.P.); (M.F.A.); (U.S.A.)
- Midwest Veterans’ Biomedical Research Foundation (MVBRF), Kansas City, MO 64128, USA; (J.Z.); (V.C.B.); (M.S.)
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri at Kansas City, Kansas City, MO 64108, USA;
- Correspondence: ; Tel.: +1-816-234-3010; Fax: +1-816-302-9919
| | - Daniel P. Heruth
- Children’s Mercy Research Institute, Children’s Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO 64108, USA;
| | - R. Scott Duncan
- School of Biological Sciences, University of Missouri at Kansas City, Kansas City, MO 64108, USA;
| | - Mohammad H. Rezaiekhaligh
- Section of Nephrology, Children’s Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO 64108, USA; (M.H.R.); (L.P.); (M.F.A.); (U.S.A.)
| | - Robert E. Garola
- Department of Pathology and Laboratory Medicine, Children’s Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO 64108, USA;
| | - Lakshmi Priya
- Section of Nephrology, Children’s Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO 64108, USA; (M.H.R.); (L.P.); (M.F.A.); (U.S.A.)
| | - Jianping Zhou
- Midwest Veterans’ Biomedical Research Foundation (MVBRF), Kansas City, MO 64128, USA; (J.Z.); (V.C.B.); (M.S.)
- Kansas City VA Medical Center, Kansas City, MO 64128, USA; (V.J.S.); (R.S.)
| | - Varun C. Boinpelly
- Midwest Veterans’ Biomedical Research Foundation (MVBRF), Kansas City, MO 64128, USA; (J.Z.); (V.C.B.); (M.S.)
- Kansas City VA Medical Center, Kansas City, MO 64128, USA; (V.J.S.); (R.S.)
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35487, USA;
| | - Mohammed Farhan Ali
- Section of Nephrology, Children’s Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO 64108, USA; (M.H.R.); (L.P.); (M.F.A.); (U.S.A.)
| | - Trupti Joshi
- Department of Health Management and Informatics, University of Missouri, Columbia, MO 65211, USA;
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA;
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- MU Data Science and Informatics Institute, University of Missouri, Columbia, MO 65211, USA
| | - Uri S. Alon
- Section of Nephrology, Children’s Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO 64108, USA; (M.H.R.); (L.P.); (M.F.A.); (U.S.A.)
| | - Yuexu Jiang
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA;
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Ellen T. McCarthy
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Virginia J. Savin
- Kansas City VA Medical Center, Kansas City, MO 64128, USA; (V.J.S.); (R.S.)
| | - Ram Sharma
- Kansas City VA Medical Center, Kansas City, MO 64128, USA; (V.J.S.); (R.S.)
| | - Mark L. Johnson
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri at Kansas City, Kansas City, MO 64108, USA;
| | - Mukut Sharma
- Midwest Veterans’ Biomedical Research Foundation (MVBRF), Kansas City, MO 64128, USA; (J.Z.); (V.C.B.); (M.S.)
- Kansas City VA Medical Center, Kansas City, MO 64128, USA; (V.J.S.); (R.S.)
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| |
Collapse
|
12
|
Caloric Intake in Renal Patients: Repercussions on Mineral Metabolism. Nutrients 2020; 13:nu13010018. [PMID: 33374582 PMCID: PMC7822489 DOI: 10.3390/nu13010018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/15/2020] [Accepted: 12/19/2020] [Indexed: 12/22/2022] Open
Abstract
The aim of this paper is to review current knowledge about how calorie intake influences mineral metabolism focussing on four aspects of major interest for the renal patient: (a) phosphate (P) handling, (b) fibroblast growth factor 23 (FGF23) and calcitriol synthesis and secretion, (c) metabolic bone disease, and (d) vascular calcification (VC). Caloric intake has been shown to modulate P balance in experimental models: high caloric intake promotes P retention, while caloric restriction decreases plasma P concentrations. Synthesis and secretion of the phosphaturic hormone FGF23 is directly influenced by energy intake; a direct correlation between caloric intake and FGF23 plasma concentrations has been shown in animals and humans. Moreover, in vitro, energy availability has been demonstrated to regulate FGF23 synthesis through mechanisms in which the molecular target of rapamycin (mTOR) signalling pathway is involved. Plasma calcitriol concentrations are inversely proportional to caloric intake due to modulation by FGF23 of the enzymes implicated in vitamin D metabolism. The effect of caloric intake on bone is controversial. High caloric intake has been reported to increase bone mass, but the associated changes in adipokines and cytokines may as well be deleterious for bone. Low caloric intake tends to reduce bone mass but also may provide indirect (through modulation of inflammation and insulin regulation) beneficial effects on bone. Finally, while VC has been shown to be exacerbated by diets with high caloric content, the opposite has not been demonstrated with low calorie intake. In conclusion, although prospective studies in humans are needed, when planning caloric intake for a renal patient, it is important to take into consideration the associated changes in mineral metabolism.
Collapse
|
13
|
Kim YJ, Oh SH, Ahn JS, Yook JM, Kim CD, Park SH, Cho JH, Kim YL. The Crucial Role of Xanthine Oxidase in CKD Progression Associated with Hypercholesterolemia. Int J Mol Sci 2020; 21:ijms21207444. [PMID: 33050202 PMCID: PMC7589966 DOI: 10.3390/ijms21207444] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/28/2020] [Accepted: 10/07/2020] [Indexed: 02/08/2023] Open
Abstract
In the present study, we investigated the effects of xanthine oxidase (XO) inhibition on cholesterol-induced renal dysfunction in chronic kidney disease (CKD) mice, and in low-density lipoprotein (LDL)-treated human kidney proximal tubule epithelial (HK-2) cells. ApoE knockout (KO) mice underwent uninephrectomy to induce CKD, and were fed a normal diet or high-cholesterol (HC) diet along with the XO inhibitor topiroxostat (1 mg/kg/day). HK-2 cells were treated with LDL (200 µg/mL) and topiroxostat (5 µM) or small interfering RNA against xanthine dehydrogenase (siXDH; 20 nM). In uninephrectomized ApoE KO mice, the HC diet increased cholesterol accumulation, oxidative stress, XO activity, and kidney damage, while topiroxostat attenuated the hypercholesterolemia-associated renal dysfunction. The HC diet induced cholesterol accumulation by regulating the expressions of genes involved in cholesterol efflux (Nr1h3 and Abca1) and synthesis (Srebf2 and Hmgcr), which was reversed by topiroxostat. Topiroxostat suppressed the expressions of genes related to hypercholesterolemia-associated inflammation and fibrosis in the unilateral kidney. LDL stimulation evoked changes in the cholesterol metabolism, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and NF-κB pathways in HK-2 cells, which were mitigated by XO inhibition with topiroxostat or siXDH. These findings suggest that XO inhibition exerts renoprotective effects against hypercholesterolemia-associated kidney injury. XO could be a novel therapeutic target for hypercholesterolemia-associated kidney injury in uninephrectomized patients.
Collapse
Affiliation(s)
- You-Jin Kim
- Division of Nephrology, Kyungpook National University Hospital, Daegu 41944, Korea; (Y.-J.K.); (S.-H.O.); (J.-S.A.); (J.-M.Y.); (C.-D.K.); (S.-H.P.)
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
| | - Se-Hyun Oh
- Division of Nephrology, Kyungpook National University Hospital, Daegu 41944, Korea; (Y.-J.K.); (S.-H.O.); (J.-S.A.); (J.-M.Y.); (C.-D.K.); (S.-H.P.)
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
| | - Ji-Sun Ahn
- Division of Nephrology, Kyungpook National University Hospital, Daegu 41944, Korea; (Y.-J.K.); (S.-H.O.); (J.-S.A.); (J.-M.Y.); (C.-D.K.); (S.-H.P.)
| | - Ju-Min Yook
- Division of Nephrology, Kyungpook National University Hospital, Daegu 41944, Korea; (Y.-J.K.); (S.-H.O.); (J.-S.A.); (J.-M.Y.); (C.-D.K.); (S.-H.P.)
| | - Chan-Duck Kim
- Division of Nephrology, Kyungpook National University Hospital, Daegu 41944, Korea; (Y.-J.K.); (S.-H.O.); (J.-S.A.); (J.-M.Y.); (C.-D.K.); (S.-H.P.)
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Sun-Hee Park
- Division of Nephrology, Kyungpook National University Hospital, Daegu 41944, Korea; (Y.-J.K.); (S.-H.O.); (J.-S.A.); (J.-M.Y.); (C.-D.K.); (S.-H.P.)
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Jang-Hee Cho
- Division of Nephrology, Kyungpook National University Hospital, Daegu 41944, Korea; (Y.-J.K.); (S.-H.O.); (J.-S.A.); (J.-M.Y.); (C.-D.K.); (S.-H.P.)
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Correspondence: (J.-H.C.); (Y.-L.K.); Tel.: +82-10-6566-7551(J.-H.C.); +82-53-420-5553 (Y.-L.K.); Fax: +82-53-426-2046 (J.-H.C.); +82-53-423-7583 (Y.-L.K.)
| | - Yong-Lim Kim
- Division of Nephrology, Kyungpook National University Hospital, Daegu 41944, Korea; (Y.-J.K.); (S.-H.O.); (J.-S.A.); (J.-M.Y.); (C.-D.K.); (S.-H.P.)
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Correspondence: (J.-H.C.); (Y.-L.K.); Tel.: +82-10-6566-7551(J.-H.C.); +82-53-420-5553 (Y.-L.K.); Fax: +82-53-426-2046 (J.-H.C.); +82-53-423-7583 (Y.-L.K.)
| |
Collapse
|
14
|
Dedual MA, Wueest S, Challa TD, Lucchini FC, Aeppli TRJ, Borsigova M, Mauracher AA, Vavassori S, Pachlopnik Schmid J, Blüher M, Konrad D. Obesity-Induced Increase in Cystatin C Alleviates Tissue Inflammation. Diabetes 2020; 69:1927-1935. [PMID: 32616516 DOI: 10.2337/db19-1206] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 06/20/2020] [Indexed: 11/13/2022]
Abstract
We recently demonstrated that removal of one kidney (uninephrectomy [UniNx]) in mice reduced high-fat diet (HFD)-induced adipose tissue inflammation, thereby improving adipose tissue and hepatic insulin sensitivity. Of note, circulating cystatin C (CysC) levels were increased in UniNx compared with sham-operated mice. Importantly, CysC may have anti-inflammatory properties, and circulating CysC levels were reported to positively correlate with obesity in humans and as shown here in HFD-fed mice. However, the causal relationship of such observation remains unclear. HFD feeding of CysC-deficient (CysC knockout [KO]) mice worsened obesity-associated adipose tissue inflammation and dysfunction, as assessed by proinflammatory macrophage accumulation. In addition, mRNA expression of proinflammatory mediators was increased, whereas markers of adipocyte differentiation were decreased. Similar to findings in adipose tissue, expression of proinflammatory cytokines was increased in liver and skeletal muscle of CysC KO mice. In line, HFD-induced hepatic insulin resistance and impairment of glucose tolerance were further aggravated in KO mice. Consistently, chow-fed CysC KO mice were more susceptible to lipopolysaccharide-induced adipose tissue inflammation. In people with obesity, circulating CysC levels correlated negatively with adipose tissue Hif1α as well as IL6 mRNA expression. Moreover, healthy (i.e., insulin-sensitive) subjects with obesity had significantly higher mRNA expression of CysC in white adipose tissue. In conclusion, CysC is upregulated under obesity conditions and thereby counteracts inflammation of peripheral insulin-sensitive tissues and, thus, obesity-associated deterioration of glucose metabolism.
Collapse
Affiliation(s)
- Mara A Dedual
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland
- Children's Research Center, University Children's Hospital, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Stephan Wueest
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland
- Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Tenagne D Challa
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland
- Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Fabrizio C Lucchini
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland
- Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Tim R J Aeppli
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland
- Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Marcela Borsigova
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland
- Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Andrea A Mauracher
- Children's Research Center, University Children's Hospital, Zurich, Switzerland
- Division of Pediatric Immunology, University Children's Hospital, Zurich, Switzerland
| | - Stefano Vavassori
- Children's Research Center, University Children's Hospital, Zurich, Switzerland
- Division of Pediatric Immunology, University Children's Hospital, Zurich, Switzerland
| | - Jana Pachlopnik Schmid
- Children's Research Center, University Children's Hospital, Zurich, Switzerland
- Division of Pediatric Immunology, University Children's Hospital, Zurich, Switzerland
| | - Matthias Blüher
- Department of Medicine, Endocrinology and Diabetes, University of Leipzig, Leipzig, Germany
| | - Daniel Konrad
- Division of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland
- Children's Research Center, University Children's Hospital, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Raval N, Jogi H, Gondaliya P, Kalia K, Tekade RK. Cyclo-RGD Truncated Polymeric Nanoconstruct with Dendrimeric Templates for Targeted HDAC4 Gene Silencing in a Diabetic Nephropathy Mouse Model. Mol Pharm 2020; 18:641-666. [PMID: 32453574 DOI: 10.1021/acs.molpharmaceut.0c00094] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diabetic nephropathy (DN), a chronic progressive kidney disease, is a significant complication of diabetes mellitus. Dysregulation of the histone deacetylases (HDACs) gene has been implicated in the pathogenesis of DN. Hence, the HDAC-inhibitors have emerged as a critical class of therapeutic agents in DN; however, the currently available HDAC4-inhibitors are mostly nonselective in nature as well as inhibit multiple HDACs. RNA interference of HDAC4 (HDAC4 siRNA) has shown immense promise, but the clinical translation has been impeded due to lack of a targeted, specific, and in vivo applicable delivery modality. In the present investigation, we examined Cyclo(RGDfC) (cRGD) truncated polymeric nanoplex with dendrimeric templates for targeted HDAC4 Gene Silencing. The developed nanoplex exhibited enhanced encapsulation of siRNA and offered superior protection against serum RNase nucleases degradation. The nanoplex was tested on podocytes (in vitro), wherein it showed selective binding to the αvβ3 integrin receptor, active cellular uptake, and significant in vitro gene silencing. The in vivo experiments showed remarkable suppression of the HDAC4 and inhibition in the progression of renal fibrosis in the Streptozotocin (STZ) induced DN C57BL/6 mice model. Histopathological and toxicological studies revealed nonsignificant abnormality/toxicity with the nanoplex. Conclusively, nanoplex was found as a promising tactic for targeted therapy of podocytes and could be extended for other kidney-related ailments.
Collapse
Affiliation(s)
- Nidhi Raval
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj (An Institute of National Importance), Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Hardi Jogi
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj (An Institute of National Importance), Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Piyush Gondaliya
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj (An Institute of National Importance), Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Kiran Kalia
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj (An Institute of National Importance), Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Rakesh K Tekade
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Palaj (An Institute of National Importance), Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
16
|
Esquinas P, Rios R, Raya AI, Pineda C, Rodriguez M, Aguilera-Tejero E, Lopez I. Structural and ultrastructural renal lesions in rats fed high-fat and high-phosphorus diets. Clin Kidney J 2020; 14:847-854. [PMID: 33777367 PMCID: PMC7986333 DOI: 10.1093/ckj/sfaa009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
Background Foods prone to deteriorate renal function are rich in fat and in phosphorus (P), but the interaction between these two factors is not well studied. Method Detailed structural and ultrastructural histopathological studies were performed on the kidneys of rats fed different amounts of fat and P: low (4%) fat (LF) and normal (0.6%) P (NP), LF and high (1.2%) P (HP), high (35%) fat (HF) and NP, HF and HP, and HF with low (0.2%) P (LP) for 28 weeks. Results Glomeruli of the HF groups showed segmental areas of retraction, sclerosis and thickening of the Bowman’s capsule and basal membranes, which were more accentuated in the HF–HP group. Ultrastructural lesions in the glomeruli also were prominent in rats fed HF, particularly in the HF–HP group, and included thickening of the capillary membrane, endothelial damage, mesangial matrix hypercellularity and podocyte effacement. P restriction reduced the severity of endothelial damage, mesangial matrix hypercellularity, thickening of capillary basement membrane and podocyte effacement. The kidneys of rats fed HP showed significant tubular atrophy and dilatation, focal tubular hyperplasia, thickening of the tubular basal membrane, interstitial edema, inflammation and calcification. All groups fed HF also showed tubular lesions that were more prominent in the HF–HP group. P restriction had a beneficial effect on inflammation and calcification. Conclusions Intake of both HF and HP damages the kidneys and their noxious effects are additive. HF intake was preferentially associated with glomerular lesions, while lesions related to HP intake were located mainly in the tubuli and in the interstitium.
Collapse
Affiliation(s)
- Paula Esquinas
- Laboratory of Cytogenetics and Genotyping of Domestic Animal, National University of Colombia, Bogota, Colombia
| | - Rafael Rios
- Department of Medicina y Cirugia Animal, University of Cordoba, Cordoba, Spain.,Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Ana I Raya
- Department of Medicina y Cirugia Animal, University of Cordoba, Cordoba, Spain.,Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Carmen Pineda
- Department of Medicina y Cirugia Animal, University of Cordoba, Cordoba, Spain.,Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Mariano Rodriguez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Escolastico Aguilera-Tejero
- Department of Medicina y Cirugia Animal, University of Cordoba, Cordoba, Spain.,Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Ignacio Lopez
- Department of Medicina y Cirugia Animal, University of Cordoba, Cordoba, Spain.,Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| |
Collapse
|
17
|
Method and its Composition for encapsulation, stabilization, and delivery of siRNA in Anionic polymeric nanoplex: An In vitro- In vivo Assessment. Sci Rep 2019; 9:16047. [PMID: 31690769 PMCID: PMC6831632 DOI: 10.1038/s41598-019-52390-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/12/2019] [Indexed: 12/13/2022] Open
Abstract
Small interfering RNA (siRNA) are synthetic RNA duplex designed to specifically knockdown the abnormal gene to treat a disease at cellular and molecular levels. In spite of their high potency, specificity, and therapeutic potential, the full-fledged utility of siRNA is predominantly limited to in vitro set-up. Till date, Onpattro is the only USFDA approved siRNA therapeutics available in the clinic. The lack of a reliable in vivo siRNA delivery carrier remains a foremost obstacle towards the clinical translation of siRNA therapeutics. To address the obstacles associated with siRNA delivery, we tested a dendrimer-templated polymeric approach involving a USFDA approved carrier (albumin) for in vitro as well as in vivo delivery of siRNA. The developed approach is simple in application, enhances the serum stability, avoids in vivo RNase-degradation and mediates cytosolic delivery of siRNA following the endosomal escape process. The successful in vitro and in vivo delivery of siRNA, as well as targeted gene knockdown potential, was demonstrated by HDAC4 inhibition in vitro diabetic nephropathy (DN) podocyte model as well as in vivo DN C57BL/6 mice model. The developed approach has been tested using HDAC4 siRNA as a model therapeutics, while the application can also be extended to other gene therapeutics including micro RNA (miRNA), plasmids oligonucleotides, etc.
Collapse
|
18
|
Farhangi M, Mesgari-Abbasi M, Shahabi P. CARDIO-RENAL METABOLIC SYNDROME AND PRO-INFLAMMATORY FACTORS: THE DIFFERENTIAL EFFECTS OF DIETARY CARBOHYDRATE AND FAT. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2019; 15:436-441. [PMID: 32377239 PMCID: PMC7200118 DOI: 10.4183/aeb.2019.436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND We aimed to evaluate whether a high carbohydrate or a high fat diet differs in alteration of the inflammatory and metabolic risk factors in cardio-renal metabolic syndrome in rats. METHODS Twelve male Wister rats were randomly divided into two groups: one received diet 1 standard pellet rat diet (D1) containing 10% fat, 50% carbohydrate, 25% protein and another group received diet 2 (D2) containing 59% fat, 30% carbohydrate and 11% protein for 16 weeks. Weight was recorded weekly. FSG and insulin levels were measured using an enzymatic spectrophotometric and a standard ELISA kit respectively. Inflammatory parameters including TGF-β, MCP-1, TNF-α, IL-1β, IL-6 in the renal and cardiac tissues of rats were evaluated by ELISA technique. RESULT Food intake in D1 and D2 groups increased in the study period, however food intake in D2 group was significantly higher compared with D1 group. FSG, HOMA and TG concentrations in D2 group were significantly higher compared to D1 group. Moreover, TGF-β and MCP-1 concentrations in the renal tissues of D2 group and TNF-α in the cardiac tissues of D1 group were significantly higher compared with D1 group (P<0.05). Positive associations between IL-1β and TG and between HOMA, FSG with TGF-β and MCP-1 in the renal tissue of animals were also identified.
Collapse
Affiliation(s)
- M.A. Farhangi
- Tabriz University of Medical Sciences, Drug Applied Research Center, Tabriz, Iran
| | - M. Mesgari-Abbasi
- Tabriz University of Medical Sciences, Drug Applied Research Center, Tabriz, Iran
| | - P. Shahabi
- Tabriz University of Medical Sciences, Neuroscience Research Center, Tabriz, Iran
| |
Collapse
|
19
|
Masaoutis C, Theocharis S. The farnesoid X receptor: a potential target for expanding the therapeutic arsenal against kidney disease. Expert Opin Ther Targets 2018; 23:107-116. [PMID: 30577722 DOI: 10.1080/14728222.2019.1559825] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Farnesoid X receptor (FXR) is a nuclear bile acid (BA) receptor widely distributed among tissues, a major sensor of BA levels, primary suppressor of hepatic BA synthesis and secondary regulator of lipid metabolism and inflammation. Chronic kidney disease is a common, multifactorial condition with metabolic and inflammatory causes and implications. An array of natural and synthetic FXR agonists has been developed, but not yet studied clinically in kidney disease. Areas covered: Following a summary of FXR's physiological functions in the kidney, we discuss its effects in renal disease with emphasis on chronic and acute kidney disease, chemotherapy-induced nephrotoxicity, and renal neoplasia. Most information is derived from animal models; no relevant clinical study has been conducted to date. Expert opinion: Most available preclinical data indicates a promising outlook for clinical research in this direction. We believe FXR agonism to be an auspicious approach to treating renal disease, considering that multifactorial diseases call for ideally wide-reaching therapies.
Collapse
Affiliation(s)
- Christos Masaoutis
- a First Department of Pathology, Medical School , National and Kapodistrian University of Athens , Athens , Greece
| | - Stamatios Theocharis
- a First Department of Pathology, Medical School , National and Kapodistrian University of Athens , Athens , Greece
| |
Collapse
|
20
|
Supplementation of Abelmoschus manihot Ameliorates Diabetic Nephropathy and Hepatic Steatosis by Activating Autophagy in Mice. Nutrients 2018; 10:nu10111703. [PMID: 30405076 PMCID: PMC6266484 DOI: 10.3390/nu10111703] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/28/2018] [Accepted: 11/06/2018] [Indexed: 12/13/2022] Open
Abstract
Diabetic nephropathy (DN) is a diabetic complication marked by albuminuria and a decline of the glomerular filtration rate. Diabetic kidneys are defective in the autophagy process and mitochondrial function and their enhancement of activity alleviates the pathology. In this paper, we developed a mouse model of DN by a combined treatment of a high-fat diet and streptozotocin after unilateral nephrectomy and supplementation with flower or leaf extracts of Abelmoschus manihot (AM) were tested. The preventive effects of the extracts on DN pathology and changes on autophagy and mitochondrial proteins were investigated. DN mice showed a significant increase in fasting blood glucose, plasma creatinine, blood urea nitrogen, and urinary albumin levels. Periodic acid–Schiff and Sirius red staining of the diabetic kidney presented a significant change in glomerular and tubular structures that was associated with podocyte loss and fibrotic protein accumulation. These changes were attenuated by AM extract treatment in DN mice. In addition, hepatic injury, proinflammatory cytokines, and lipid accumulation were decreased by AM extracts in DN mice. As a protective mechanism, AM extracts significantly increased the expression of proteins by regulating autophagy and mitochondrial dynamics, which potentially prevented the kidney and liver from accumulating pathogenic proteins and dysfunctional mitochondria, which alleviated the progression of DN.
Collapse
|
21
|
Nakamura Y, Nakanishi T, Tamai I. Membrane Transporters Contributing to PGE 2 Distribution in Central Nervous System. Biol Pharm Bull 2018; 41:1337-1347. [DOI: 10.1248/bpb.b18-00169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yoshinobu Nakamura
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Takeo Nakanishi
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Bile acids act as activating signals of endogenous renal receptors: the nuclear receptor farnesoid X receptor (FXR) and the membrane-bound G protein-coupled bile acid receptor 1 (GPBAR1, also known as TGR5). In recent years, bile acids have emerged as important for renal pathophysiology by activating FXR and TGR5 and transcription factors relevant for lipid, cholesterol and carbohydrate metabolism, as well as genes involved in inflammation and renal fibrosis. RECENT FINDINGS Activation of bile acid receptors has a promising therapeutic potential in prevention of diabetic nephropathy and obesity-induced renal damage, as well as in nephrosclerosis. During the past decade, progress has been made in understanding the biology and mechanisms of bile acid receptors in the kidney and in the development of specific bile acid receptor agonists. SUMMARY In this review, we discuss current knowledge on the roles of FXR and TGR5 in the physiology of the kidney and the latest advances made in development and characterization of bile acid analogues that activate bile acid receptors for treatment of renal disease.
Collapse
|
23
|
Uil M, Scantlebery AML, Butter LM, Larsen PWB, de Boer OJ, Leemans JC, Florquin S, Roelofs JJTH. Combining streptozotocin and unilateral nephrectomy is an effective method for inducing experimental diabetic nephropathy in the 'resistant' C57Bl/6J mouse strain. Sci Rep 2018; 8:5542. [PMID: 29615804 PMCID: PMC5882654 DOI: 10.1038/s41598-018-23839-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 03/19/2018] [Indexed: 01/22/2023] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of chronic kidney disease. Animal models are essential tools for designing new strategies to prevent DN. C57Bl/6 (B6) mice are widely used for transgenic mouse models, but are relatively resistant to DN. This study aims to identify the most effective method to induce DN in a type 1 (T1D) and a type 2 diabetes (T2D) model in B6 mice. For T1D-induced DN, mice were fed a control diet, and randomised to streptozotocin (STZ) alone, STZ+unilateral nephrectomy (UNx), or vehicle/sham. For T2D-induced DN, mice were fed a western (high fat) diet, and randomised to either STZ alone, STZ+UNx, UNx alone, or vehicle/sham. Mice subjected to a control diet with STZ +UNx developed albuminuria, glomerular lesions, thickening of the glomerular basement membrane, and tubular injury. Mice on control diet and STZ developed only mild renal lesions. Furthermore, kidneys from mice on a western diet were hardly affected by diabetes, UNx or the combination. We conclude that STZ combined with UNx is the most effective model to induce T1D-induced DN in B6 mice. In our hands, combining western diet and STZ treatment with or without UNx did not result in a T2D-induced DN model in B6 mice.
Collapse
Affiliation(s)
- Melissa Uil
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Angelique M L Scantlebery
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Loes M Butter
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Per W B Larsen
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Onno J de Boer
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaklien C Leemans
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sandrine Florquin
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
24
|
Gupta SK, Bodakhe SH. Development of pharmacological screening method for evaluation of effect of drug on elevated pulse pressure and arterial stiffness. J Pharmacol Toxicol Methods 2018; 91:59-65. [PMID: 29382548 DOI: 10.1016/j.vascn.2018.01.560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Elevated pulse pressure (PP) and amplification of arterial stiffness (AS) are responsible for various cardiovascular disease and deaths. Numerous investigations have identified that different antihypertensive agents influence PP and AS differently. None of the previous studies described any reliable animal model particularly to screen drugs having effects on PP and AS. In present study, we developed an animal model to screen such drugs particularly affecting PP and AS. METHODS Elevation of PP and amplification of AS were induced in rats by uninephrectomy along with high salt intake (NaCl 4% w/v) for a period of six weeks, and weekly changes in body weight, PP, systolic, diastolic, mean pressure and pulse wave velocity (PWV) were estimated. After six weeks, collagen elastin ratio of aortic segment was estimated. Histomorphometry of abdominal aortic section of rats was done using trinocular microscope. RESULTS After six weeks, uninephrectomized rats that were kept on high salt drinking water shown significant increase (P < 0.001) in MAP, PP and PWV indicates that hypertension along with elevated PP developed in rats, and increase in collagen/elastin ratio (P < 0.001) as well as PWV as compared to normal rats indicates the increase in AS. CONCLUSION The development of condition of hypertension in conjunction with increase in PP and AS in rats can be used as in-vivo screening model to determine the potency of drugs for the treatment of hypertension or other cardiovascular diseases associated with high PP and AS.
Collapse
Affiliation(s)
- Sanjay K Gupta
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, C.G. 495009, India
| | - Surendra H Bodakhe
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, C.G. 495009, India.
| |
Collapse
|
25
|
Sun G, Yin Z, Liu N, Bian X, Yu R, Su X, Zhang B, Wang Y. Gut microbial metabolite TMAO contributes to renal dysfunction in a mouse model of diet-induced obesity. Biochem Biophys Res Commun 2017; 493:964-970. [DOI: 10.1016/j.bbrc.2017.09.108] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022]
|
26
|
Amara VR, Surapaneni SK, Tikoo K. Dysregulation of microRNAs and renin-angiotensin system in high salt diet-induced cardiac dysfunction in uninephrectomized rats. PLoS One 2017; 12:e0180490. [PMID: 28727756 PMCID: PMC5519030 DOI: 10.1371/journal.pone.0180490] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 06/15/2017] [Indexed: 12/22/2022] Open
Abstract
Uninephrectomy is not associated with major adverse events in cardiovascular and renal functions of live kidney donors. The effect of high salt diet on the quality of life of live kidney donors is largely unknown. Hence in this study, we aimed to determine the effect of high salt diet on the alterations of renin-angiotensin system and microRNAs leading to CV and renal dysfunction in uninephrectomized rats. In order to mimic clinical scenario, uninephrectomized male Sprague Dawley rats were fed initially with normal pellet diet for 12 weeks and then for 20 weeks with high salt (10% w/w NaCl) diet. At the end of the study, biochemical, functional, histological and molecular parameters were measured. High salt diet feeding resulted in renal dysfunction & fibrosis, decreased baroreflex sensitivity, increased in vivo cardiovascular reactivity to angiotensin II owing to upregulation of angiotensin II type 1 receptors and L-type calcium channels leading to cardiovascular dysfunction in uninephrectomized rats (UNX+HSD) worse than that of normal (binephric) rats fed with high salt diet (HSD). Protein expression of functional and hypertrophic protein markers revealed decreased SERCA, p-AMPK and increased p-AKT. Interestingly, levels of miR-25, miR-451 and miR-155 increased and miR-99 decreased in heart of uninephrectomized rats fed with high salt. However, circulating miR-25 and miR-451 levels decreased and miR-99b increased in these animals. Our study points out that since tissue and circulating levels of miRNAs are not similar, caution must be exercised during the usage of miRs as diagnostic or prognostic biomarkers. To our knowledge, we are the first to show that epigenetic alterations result in cardiac dysfunction in uninephrectomized rats fed with high salt diet.
Collapse
Affiliation(s)
- Venkateswara Rao Amara
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | - Sunil Kumar Surapaneni
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | - Kulbhushan Tikoo
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
- * E-mail:
| |
Collapse
|
27
|
Wang H, Li J, Gai Z, Kullak-Ublick GA, Liu Z. TNF-α Deficiency Prevents Renal Inflammation and Oxidative Stress in Obese Mice. Kidney Blood Press Res 2017; 42:416-427. [PMID: 28683439 DOI: 10.1159/000478869] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/08/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Obese patients and experimental animals exhibit high levels of inflammatory cytokines, such as tumor necrosis factor (TNF)-α. However, the role of TNF-α in the pathophysiologic process in obesity induced kidney damage is still unknown. METHODS We used TNF-α deficient mice and wild-type (WT) C57/BJ6 mice controls to study the effect of TNF-α on inflammation and oxidative stress in kidney by the model of high-fat diet (HFD) and primary isolated mouse renal proximal tubule cells treated with a mixture of free fatty acids (FFA). RESULTS Compared with the chow diet group, HFD-fed WT mice had higher urinary albumin and increased levels of renal fibrosis, glomerulosclerosis, inflammation, oxidative stress and apoptosis in the kidney. These changes were co-related with increased expression of TNF-α in the kidney and were attenuated by TNF-α deficiency. In vitro, accumulation of intracellular lipids induced TNF-α expression and oxidative stress in FFA treated primary proximal tubule cells. However, TNF-α inhibition with siRNA or TNF-α deficiency decreased the lipid induced oxidative stress in these cells. CONCLUSION These findings suggest that TNF-α plays an important role in the HFD induced kidney damage, and targeting TNF-α and/or its receptors could be a promising therapeutic regimen for progressive nephropathy.
Collapse
Affiliation(s)
| | - Jian Li
- Department of Endocrinology, Liaocheng People's Hospital, Liaocheng, China
| | - Zhibo Gai
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zurich, Switzerland
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zurich, Switzerland
| | - Zewei Liu
- Department of Nephrology, Liaocheng, China
| |
Collapse
|
28
|
Hyperfiltration-associated biomechanical forces in glomerular injury and response: Potential role for eicosanoids. Prostaglandins Other Lipid Mediat 2017; 132:59-68. [PMID: 28108282 DOI: 10.1016/j.prostaglandins.2017.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/22/2016] [Accepted: 01/10/2017] [Indexed: 12/29/2022]
Abstract
Hyperfiltration is a well-known risk factor in progressive loss of renal function in chronic kidney disease (CKD) secondary to various diseases. A reduced number of functional nephrons due to congenital or acquired cause(s) results in hyperfiltration in the remnant kidney. Hyperfiltration-associated increase in biomechanical forces, namely pressure-induced tensile stress and fluid flow-induced shear stress (FFSS) determine cellular injury and response. We believe the current treatment of CKD yields limited success because it largely attenuates pressure-induced tensile stress changes but not the effect of FFSS on podocytes. Studies on glomerular podocytes, tubular epithelial cells and bone osteocytes provide evidence for a significant role of COX-2 generated PGE2 and its receptors in response to tensile stress and FFSS. Preliminary observations show increased urinary PGE2 in children born with a solitary kidney. FFSS-induced COX2-PGE2-EP2 signaling provides an opportunity to identify targets and, for developing novel agents to complement currently available treatment.
Collapse
|
29
|
Organic Cation Transporter 2 Overexpression May Confer an Increased Risk of Gentamicin-Induced Nephrotoxicity. Antimicrob Agents Chemother 2016; 60:5573-80. [PMID: 27401566 DOI: 10.1128/aac.00907-16] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/03/2016] [Indexed: 01/11/2023] Open
Abstract
Nephrotoxicity is a relevant limitation of gentamicin, and obese patients have an increased risk for gentamicin-induced kidney injury. This damage is thought to depend on the accumulation of the drug in the renal cortex. Obese rats showed substantially higher levels of gentamicin in the kidney than did lean animals. This study characterized the role of organic cation transporters (OCTs) in gentamicin transport and elucidated their possible contribution in the increased renal accumulation of gentamicin in obesity. The mRNA and protein expression levels of the organic cation transporters Oct2 (Slc22a2) and Oct3 (Slc22a3) were increased in kidney samples from obese mice fed a high-fat diet. Similarly, OCT2 (∼2-fold) and OCT3 (∼3-fold) showed increased protein expression in the kidneys of obese patients compared with those of nonobese individuals. Using HEK293 cells overexpressing the different OCTs, human OCT2 was found to transport [(3)H]gentamicin with unique sigmoidal kinetics typical of homotropic positive cooperativity (autoactivation). In mouse primary proximal tubular cells, [(3)H]gentamicin uptake was reduced by approximately 40% when the cells were coincubated with the OCT2 substrate metformin. The basolateral localization of OCT2 suggests that gentamicin can enter proximal tubular cells from the blood side, probably as part of a slow tubular secretion process that may influence intracellular drug concentrations and exposure time. Increased expression of OCT2 may explain the higher accumulation of gentamicin, thereby conferring an increased risk of renal toxicity in obese patients.
Collapse
|
30
|
Pandey G, Shankar K, Makhija E, Gaikwad A, Ecelbarger C, Mandhani A, Srivastava A, Tiwari S. Reduced Insulin Receptor Expression Enhances Proximal Tubule Gluconeogenesis. J Cell Biochem 2016; 118:276-285. [PMID: 27322100 DOI: 10.1002/jcb.25632] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 06/16/2016] [Indexed: 12/18/2022]
Abstract
Reduced insulin receptor protein levels have been reported in the kidney cortex from diabetic humans and animals. We recently reported that, targeted deletion of insulin receptor (IR) from proximal tubules (PT) resulted in hyperglycemia in non-obese mice. To elucidate the mechanism, we examined human proximal tubule cells (hPTC) and C57BL/6 mice fed with high-fat diet (HFD, 60% fat for 20 weeks). Immunoblotting revealed a significantly lower protein level of IR in HFD compare to normal chow diet (NCD). Furthermore, a blunted rise in p-AKT308 levels in the kidney cortex of HFD mice was observed in response to acute insulin (0.75 IU/kg body weight, i.p) relative to NCD n = 8/group, P < 0.05). Moreover, we found significantly higher transcript levels of phosphoenolpyruvate carboxykinase (PEPCK, a key gluconeogenic enzyme) in the kidney cortex from HFD, relative to mice on NCD. The higher level of PEPCK in HFD was confirmed by immunoblotting. However, no significant differences were observed in cortical glucose-6-phosphatase (G6Pase) or fructose-1,6, bisphosphosphatase (FBPase) enzyme transcript levels. Furthermore, we demonstrated insulin inhibited glucose production in hPTC treated with cyclic AMP and dexamethasone (cAMP/DEXA) to stimulate gluconeogenesis. Transcript levels of the gluconeogenic enzyme PEPCK were significantly increased in cAMP/DEXA-stimulated hPTC cells (n = 3, P < 0.05), and insulin attenuated this upregulation Furthermore, the effect of insulin on cAMP/DEXA-induced gluconeogenesis and PEPCK induction was significantly attenuated in IR (siRNA) silenced hPTC (n = 3, P < 0.05). Overall the above data indicate a direct role for IR expression as a determinant of PT-gluconeogenesis. Thus reduced insulin signaling of the proximal tubule may contribute to hyperglycemia in the metabolic syndrome via elevated gluconeogenesis. J. Cell. Biochem. 118: 276-285, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gaurav Pandey
- Department of Molecular Medicine and Biotechnology, SGPGIMS, Lucknow, 226014, India
| | | | - Ekta Makhija
- Department of Molecular Medicine and Biotechnology, SGPGIMS, Lucknow, 226014, India
| | | | - Carolyn Ecelbarger
- Department of Medicine, Georgetown University, Washington, District of Columbia
| | | | | | - Swasti Tiwari
- Department of Molecular Medicine and Biotechnology, SGPGIMS, Lucknow, 226014, India.,Department of Medicine, Georgetown University, Washington, District of Columbia
| |
Collapse
|
31
|
Chichger H, Cleasby ME, Srai SK, Unwin RJ, Debnam ES, Marks J. Experimental type II diabetes and related models of impaired glucose metabolism differentially regulate glucose transporters at the proximal tubule brush border membrane. Exp Physiol 2016; 101:731-42. [DOI: 10.1113/ep085670] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/23/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Havovi Chichger
- Biomedical Research Group, Department of Biomedical and Forensic Sciences; Anglia Ruskin University; Cambridge UK
| | - Mark E. Cleasby
- Department of Veterinary Basic Sciences; Royal Veterinary College; London UK
| | - Surjit K. Srai
- Institute of Structural and Molecular Biology; University College London; London UK
| | - Robert J. Unwin
- London Epithelial Group, Department of Neuroscience, Physiology & Pharmacology; University College London; London UK
- Centre for Nephrology; University College London; London UK
| | - Edward S. Debnam
- London Epithelial Group, Department of Neuroscience, Physiology & Pharmacology; University College London; London UK
| | - Joanne Marks
- London Epithelial Group, Department of Neuroscience, Physiology & Pharmacology; University College London; London UK
| |
Collapse
|
32
|
Levi M. Role of Bile Acid-Regulated Nuclear Receptor FXR and G Protein-Coupled Receptor TGR5 in Regulation of Cardiorenal Syndrome (Cardiovascular Disease and Chronic Kidney Disease). Hypertension 2016; 67:1080-4. [PMID: 27045028 DOI: 10.1161/hypertensionaha.115.06417] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Moshe Levi
- From the Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado AMC, Aurora.
| |
Collapse
|
33
|
Gai Z, Gui T, Hiller C, Kullak-Ublick GA. Farnesoid X Receptor Protects against Kidney Injury in Uninephrectomized Obese Mice. J Biol Chem 2015; 291:2397-411. [PMID: 26655953 DOI: 10.1074/jbc.m115.694323] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Indexed: 01/07/2023] Open
Abstract
Activation of the farnesoid X receptor (FXR) has indicated a therapeutic potential for this nuclear bile acid receptor in the prevention of diabetic nephropathy and obesity-induced renal damage. Here, we investigated the protective role of FXR against kidney damage induced by obesity in mice that had undergone uninephrectomy, a model resembling the clinical situation of kidney donation by obese individuals. Mice fed a high-fat diet developed the core features of metabolic syndrome, with subsequent renal lipid accumulation and renal injury, including glomerulosclerosis, interstitial fibrosis, and albuminuria. The effects were accentuated by uninephrectomy. In human renal biopsies, staining of 4-hydroxynonenal (4-HNE), glucose-regulated protein 78 (Grp78), and C/EBP-homologous protein, markers of endoplasmic reticulum stress, was more prominent in the proximal tubules of 15 obese patients compared with 16 non-obese patients. In mice treated with the FXR agonist obeticholic acid, renal injury, renal lipid accumulation, apoptosis, and changes in lipid peroxidation were attenuated. Moreover, disturbed mitochondrial function was ameliorated and the mitochondrial respiratory chain recovered following obeticholic acid treatment. Culturing renal proximal tubular cells with free fatty acid and FXR agonists showed that FXR activation protected cells from free fatty acid-induced oxidative stress and endoplasmic reticulum stress, as denoted by a reduction in the level of reactive oxygen species staining and Grp78 immunostaining, respectively. Several genes involved in glutathione metabolism were induced by FXR activation in the remnant kidney, which was consistent with a decreased glutathione disulfide/glutathione ratio. In summary, FXR activation maintains endogenous glutathione homeostasis and protects the kidney in uninephrectomized mice from obesity-induced injury.
Collapse
Affiliation(s)
- Zhibo Gai
- From the Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland and
| | - Ting Gui
- the Department of Nephrology, Hypertension, and Clinical Pharmacology, Inselspital, CH-3010 Bern, Switzerland
| | - Christian Hiller
- From the Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland and
| | - Gerd A Kullak-Ublick
- From the Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland and
| |
Collapse
|
34
|
Glastras SJ, Wong MG, Chen H, Zhang J, Zaky A, Pollock CA, Saad S. FXR expression is associated with dysregulated glucose and lipid levels in the offspring kidney induced by maternal obesity. Nutr Metab (Lond) 2015; 12:40. [PMID: 26583035 PMCID: PMC4650952 DOI: 10.1186/s12986-015-0032-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 10/14/2015] [Indexed: 01/07/2023] Open
Abstract
Background Maternal obesity is associated with dysregulation of glucose and lipid metabolism with consequent exposure of the fetus to an abnormal metabolic milieu. It is recognized that maternal obesity predisposes offspring to chronic kidney disease (CKD). We aimed to determine whether the nuclear Farnesoid X receptor (FXR), known to play a role in maintaining homeostasis of glucose and lipid metabolism, is involved in renal injury in offspring of obese mothers. Methods Maternal obesity was established in a rat model by feeding dams with high-fat diet prior to and during pregnancy and lactation. The offspring’s kidneys were examined at postnatal Day 1and Day 20. Human kidney 2 (HK2) cells were exposed to high glucose with or without the FXR agonist GW4064 or when FXR mRNA was silenced. Results Glucose intolerance in the offspring of obese mothers was evident at weaning, with associated downregulation of renal FXR expression and upregulation of monocyte chemoattractant protein-1 (MCP-1) and transforming growth factor-β1 (TGF-β1). HK2 cells exposed to high glucose had reduced FXR expression and increased MCP-1, TGF-β1, fibronectin and collagen IV expression, which was reversed in the presence of GW4064. FXR-silenced HK2 cells had amplified pro-inflammatory and pro-fibrotic markers under high glucose conditions. Conclusions Maternal obesity influences renal expression of pro-inflammatory and fibrotic factors that predispose the offspring to CKD. This was associated with the downregulation of the renal FXR expression suggesting a potential protective role for FXR. Electronic supplementary material The online version of this article (doi:10.1186/s12986-015-0032-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah J Glastras
- Kolling Institute, Department of Medicine, University of Sydney, Sydney, Australia ; Department of Endocrinology, Diabetes and Metabolism, Royal North Shore Hospital, St Leonards, Australia
| | - Muh Geot Wong
- Kolling Institute, Department of Medicine, University of Sydney, Sydney, Australia
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Jie Zhang
- Kolling Institute, Department of Medicine, University of Sydney, Sydney, Australia
| | - Amgad Zaky
- Kolling Institute, Department of Medicine, University of Sydney, Sydney, Australia
| | - Carol A Pollock
- Kolling Institute, Department of Medicine, University of Sydney, Sydney, Australia
| | - Sonia Saad
- Kolling Institute, Department of Medicine, University of Sydney, Sydney, Australia
| |
Collapse
|
35
|
Toll-like receptor 4 antagonist and obesity associated kidney disease: Where should we go from here? Kidney Res Clin Pract 2015; 34:64-5. [PMID: 26484023 PMCID: PMC4570596 DOI: 10.1016/j.krcp.2014.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
36
|
Arsenijevic D, Cajot JF, Dulloo AG, Montani JP. Uninephrectomy in rats on a fixed food intake results in adipose tissue lipolysis implicating spleen cytokines. Front Physiol 2015. [PMID: 26217234 PMCID: PMC4498128 DOI: 10.3389/fphys.2015.00195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The role of mild kidney dysfunction in altering lipid metabolism and promoting inflammation was investigated in uninephrectomized rats (UniNX) compared to Sham-operated controls rats. The impact of UniNX was studied 1, 2, and 4 weeks after UniNX under mild food restriction at 90% of ad libitum intake to ensure the same caloric intake in both groups. UniNX resulted in the reduction of fat pad weight. UniNX was associated with increased circulating levels of beta-hydroxybutyrate and glycerol, as well as increased fat pad mRNA of hormone sensitive lipase and adipose triglyceride lipase, suggesting enhanced lipolysis. No decrease in fat pad lipogenesis as assessed by fatty acid synthase activity was observed. Circulating hormones known to regulate lipolysis such as leptin, T3, ghrelin, insulin, corticosterone, angiotensin 1, and angiotensin 2 were not different between the two groups. In contrast, a select group of circulating lipolytic cytokines, including interferon-gamma and granulocyte macrophage–colony stimulating factor, were increased after UniNX. These cytokine levels were elevated in the spleen, but decreased in the kidney, liver, and fat pads. This could be explained by anti-inflammatory factors SIRT1, a member of the sirtuins, and the farnesoid x receptor (FXR), which were decreased in the spleen but elevated in the kidney, liver, and fat pads (inguinal and epididymal). Our study suggests that UniNX induces adipose tissue lipolysis in response to increased levels of a subset of lipolytic cytokines of splenic origin.
Collapse
Affiliation(s)
- Denis Arsenijevic
- Division of Physiology, Department of Medicine, University of Fribourg Fribourg, Switzerland ; National Center of Competence in Research Kidney.CH Zurich, Switzerland
| | - Jean-François Cajot
- Division of Physiology, Department of Medicine, University of Fribourg Fribourg, Switzerland
| | - Abdul G Dulloo
- Division of Physiology, Department of Medicine, University of Fribourg Fribourg, Switzerland
| | - Jean-Pierre Montani
- Division of Physiology, Department of Medicine, University of Fribourg Fribourg, Switzerland ; National Center of Competence in Research Kidney.CH Zurich, Switzerland
| |
Collapse
|
37
|
Anti-inflammatory and Antioxidative Activities of Safranal in the Reduction of Renal Dysfunction and Damage that Occur in Diabetic Nephropathy. Inflammation 2015; 38:1537-45. [DOI: 10.1007/s10753-015-0128-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
38
|
Min HS, Kang YS. WITHDRAWN: Response to “Toll-like receptor 4 antagonist and obesity-associated kidney disease: Where should we go from here?”. Kidney Res Clin Pract 2015. [DOI: 10.1016/j.krcp.2015.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|