1
|
Sauter ER, Mohammed A. Natural Products for Cancer Prevention and Interception: Preclinical and Clinical Studies and Funding Opportunities. Pharmaceuticals (Basel) 2024; 17:136. [PMID: 38276009 PMCID: PMC10820118 DOI: 10.3390/ph17010136] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/26/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Multiple agents derived from natural products (NPs) have been evaluated for cancer prevention and interception, either alone or in combination. The National Cancer Institute (NCI) is very interested in advancing research to identify additional agents that, alone or in combination, may prove useful in cancer prevention. Below, we provide an overview of NP studies in cancer prevention and interception, both individual agents and combination interventions. Given that findings from many preclinical studies evaluating individual agents have generally not been confirmed in human studies, our focus with individual NPs in this review is on studies involving humans, especially clinical trials. Fewer combination intervention studies have been conducted, so we have broadened our review to include preclinical studies. We conclude with how the Division of Cancer Prevention (DCP) within the NCI is providing funding to encourage the research community to propose natural product studies in cancer prevention and interception to advance the field.
Collapse
Affiliation(s)
- Edward R. Sauter
- Breast and Gynecologic Cancer Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, MD 20850, USA
| | - Altaf Mohammed
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Rockville, MD 20850, USA;
| |
Collapse
|
2
|
Divisato G, Piscitelli S, Elia M, Cascone E, Parisi S. MicroRNAs and Stem-like Properties: The Complex Regulation Underlying Stemness Maintenance and Cancer Development. Biomolecules 2021; 11:biom11081074. [PMID: 34439740 PMCID: PMC8393604 DOI: 10.3390/biom11081074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
Embryonic stem cells (ESCs) have the extraordinary properties to indefinitely proliferate and self-renew in culture to produce different cell progeny through differentiation. This latter process recapitulates embryonic development and requires rounds of the epithelial-mesenchymal transition (EMT). EMT is characterized by the loss of the epithelial features and the acquisition of the typical phenotype of the mesenchymal cells. In pathological conditions, EMT can confer stemness or stem-like phenotypes, playing a role in the tumorigenic process. Cancer stem cells (CSCs) represent a subpopulation, found in the tumor tissues, with stem-like properties such as uncontrolled proliferation, self-renewal, and ability to differentiate into different cell types. ESCs and CSCs share numerous features (pluripotency, self-renewal, expression of stemness genes, and acquisition of epithelial-mesenchymal features), and most of them are under the control of microRNAs (miRNAs). These small molecules have relevant roles during both embryogenesis and cancer development. The aim of this review was to recapitulate molecular mechanisms shared by ESCs and CSCs, with a special focus on the recently identified classes of microRNAs (noncanonical miRNAs, mirtrons, isomiRs, and competitive endogenous miRNAs) and their complex functions during embryogenesis and cancer development.
Collapse
|
3
|
Pidíková P, Herichová I. miRNA Clusters with Up-Regulated Expression in Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13122979. [PMID: 34198662 PMCID: PMC8232258 DOI: 10.3390/cancers13122979] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary As miRNAs show the capacity to be used as CRC biomarkers, we analysed experimentally validated data about frequently up-regulated miRNA clusters in CRC tissue. We identified 15 clusters that showed increased expression in CRC: miR-106a/363, miR-106b/93/25, miR-17/92a-1, miR-181a-1/181b-1, miR-181a-2/181b-2, miR-181c/181d, miR-183/96/182, miR-191/425, miR-200c/141, miR-203a/203b, miR-222/221, mir-23a/27a/24-2, mir-29b-1/29a, mir-301b/130b and mir-452/224. Cluster positions in the genome are intronic or intergenic. Most clusters are regulated by several transcription factors, and by long non-coding RNAs. In some cases, co-expression of miRNA with other cluster members or host gene has been proven. miRNA expression patterns in cancer tissue, blood and faeces were compared. The members of the selected clusters target 181 genes. Their functions and corresponding pathways were revealed with the use of Panther analysis. Clusters miR-17/92a-1, miR-106a/363, miR-106b/93/25 and miR-183/96/182 showed the strongest association with metastasis occurrence and poor patient survival, implicating them as the most promising targets of translational research. Abstract Colorectal cancer (CRC) is one of the most common malignancies in Europe and North America. Early diagnosis is a key feature of efficient CRC treatment. As miRNAs can be used as CRC biomarkers, the aim of the present study was to analyse experimentally validated data on frequently up-regulated miRNA clusters in CRC tissue and investigate their members with respect to clinicopathological characteristics of patients. Based on available data, 15 up-regulated clusters, miR-106a/363, miR-106b/93/25, miR-17/92a-1, miR-181a-1/181b-1, miR-181a-2/181b-2, miR-181c/181d, miR-183/96/182, miR-191/425, miR-200c/141, miR-203a/203b, miR-222/221, mir-23a/27a/24-2, mir-29b-1/29a, mir-301b/130b and mir-452/224, were selected. The positions of such clusters in the genome can be intronic or intergenic. Most clusters are regulated by several transcription factors, and miRNAs are also sponged by specific long non-coding RNAs. In some cases, co-expression of miRNA with other cluster members or host gene has been proven. miRNA expression patterns in cancer tissue, blood and faeces were compared. Based on experimental evidence, 181 target genes of selected clusters were identified. Panther analysis was used to reveal the functions of the target genes and their corresponding pathways. Clusters miR-17/92a-1, miR-106a/363, miR-106b/93/25 and miR-183/96/182 showed the strongest association with metastasis occurrence and poor patient survival, implicating them as the most promising targets of translational research.
Collapse
|
4
|
Colquhoun C, Duncan M, Grant G. Inflammatory Bowel Diseases: Host-Microbial-Environmental Interactions in Dysbiosis. Diseases 2020; 8:E13. [PMID: 32397606 PMCID: PMC7348996 DOI: 10.3390/diseases8020013] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022] Open
Abstract
Crohn's Disease (CD) and Ulcerative Colitis (UC) are world-wide health problems in which intestinal dysbiosis or adverse functional changes in the microbiome are causative or exacerbating factors. The reduced abundance and diversity of the microbiome may be a result of a lack of exposure to vital commensal microbes or overexposure to competitive pathobionts during early life. Alternatively, many commensal bacteria may not find a suitable intestinal niche or fail to proliferate or function in a protective/competitive manner if they do colonize. Bacteria express a range of factors, such as fimbriae, flagella, and secretory compounds that enable them to attach to the gut, modulate metabolism, and outcompete other species. However, the host also releases factors, such as secretory IgA, antimicrobial factors, hormones, and mucins, which can prevent or regulate bacterial interactions with the gut or disable the bacterium. The delicate balance between these competing host and bacteria factors dictates whether a bacterium can colonize, proliferate or function in the intestine. Impaired functioning of NOD2 in Paneth cells and disrupted colonic mucus production are exacerbating features of CD and UC, respectively, that contribute to dysbiosis. This review evaluates the roles of these and other the host, bacterial and environmental factors in inflammatory bowel diseases.
Collapse
Affiliation(s)
| | | | - George Grant
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK; (C.C.); (M.D.)
| |
Collapse
|
5
|
Abstract
Diet is an important risk factor for colorectal cancer (CRC), and several dietary constituents implicated in CRC are modified by gut microbial metabolism. Microbial fermentation of dietary fiber produces short-chain fatty acids, e.g., acetate, propionate, and butyrate. Dietary fiber has been shown to reduce colon tumors in animal models, and, in vitro, butyrate influences cellular pathways important to cancer risk. Furthermore, work from our group suggests that the combined effects of butyrate and omega-3 polyunsaturated fatty acids (n-3 PUFA) may enhance the chemopreventive potential of these dietary constituents. We postulate that the relatively low intakes of n-3 PUFA and fiber in Western populations and the failure to address interactions between these dietary components may explain why chemoprotective effects of n-3 PUFA and fermentable fibers have not been detected consistently in prospective cohort studies. In this review, we summarize the evidence outlining the effects of n-3 long-chain PUFA and highly fermentable fiber with respect to alterations in critical pathways important to CRC prevention, particularly intrinsic mitochondrial-mediated programmed cell death resulting from the accumulation of lipid reactive oxygen species (ferroptosis), and epigenetic programming related to lipid catabolism and beta-oxidation-associated genes.
Collapse
|
6
|
Montgomery M, Srinivasan A. Epigenetic Gene Regulation by Dietary Compounds in Cancer Prevention. Adv Nutr 2019; 10:1012-1028. [PMID: 31100104 PMCID: PMC6855955 DOI: 10.1093/advances/nmz046] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/07/2019] [Accepted: 04/03/2019] [Indexed: 02/06/2023] Open
Abstract
Traditionally, cancer has been viewed as a set of diseases that are driven by the accumulation of genetic mutations, but we now understand that disruptions in epigenetic regulatory mechanisms are prevalent in cancer as well. Unlike genetic mutations, however, epigenetic alterations are reversible, making them desirable therapeutic targets. The potential for diet, and bioactive dietary components, to target epigenetic pathways in cancer is now widely appreciated, but our understanding of how to utilize these compounds for effective chemopreventive strategies in humans is in its infancy. This review provides a brief overview of epigenetic regulation and the clinical applications of epigenetics in cancer. It then describes the capacity for dietary components to contribute to epigenetic regulation, with a focus on the efficacy of dietary epigenetic regulators as secondary cancer prevention strategies in humans. Lastly, it discusses the necessary precautions and challenges that will need to be overcome before the chemopreventive power of dietary-based intervention strategies can be fully harnessed.
Collapse
Affiliation(s)
- McKale Montgomery
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK,Address correspondence to MM (E-mail: )
| | | |
Collapse
|
7
|
Fuentes NR, Kim E, Fan YY, Chapkin RS. Omega-3 fatty acids, membrane remodeling and cancer prevention. Mol Aspects Med 2018; 64:79-91. [PMID: 29627343 DOI: 10.1016/j.mam.2018.04.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 03/27/2018] [Accepted: 04/04/2018] [Indexed: 12/20/2022]
Abstract
Proteins are often credited as the macromolecule responsible for performing critical cellular functions, however lipids have recently garnered more attention as our understanding of their role in cell function and human health becomes more apparent. Although cellular membranes are the lipid environment in which many proteins function, it is now apparent that protein and lipid assemblies can be organized to form distinct micro- or nanodomains that facilitate signaling events. Indeed, it is now appreciated that cellular function is partly regulated by the specific spatiotemporal lipid composition of the membrane, down to the nanosecond and nanometer scale. Furthermore, membrane composition is altered during human disease processes such as cancer and obesity. For example, an increased rate of lipid/cholesterol synthesis in cancerous tissues has long been recognized as an important aspect of the rewired metabolism of transformed cells. However, the contribution of lipids/cholesterol to cellular function in disease models is not yet fully understood. Furthermore, an important consideration in regard to human health is that diet is a major modulator of cell membrane composition. This can occur directly through incorporation of membrane substrates, such as fatty acids, e.g., n-3 polyunsaturated fatty acids (n-3 PUFA) and cholesterol. In this review, we describe scenarios in which changes in membrane composition impact human health. Particular focus is placed on the importance of intrinsic lipid/cholesterol biosynthesis and metabolism and extrinsic dietary modification in cancer and its effect on plasma membrane properties.
Collapse
Affiliation(s)
- Natividad R Fuentes
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Faculty of Toxicology, Texas A&M University, USA
| | - Eunjoo Kim
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Department of Molecular and Cellular Medicine, Texas A&M University, USA
| | - Yang-Yi Fan
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Department of Nutrition & Food Science, Texas A&M University, USA
| | - Robert S Chapkin
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Faculty of Toxicology, Texas A&M University, USA; Department of Nutrition & Food Science, Texas A&M University, USA; Center for Translational Environmental Health Research, Texas A&M University, USA.
| |
Collapse
|
8
|
Koriem KMM. Protective effect of natural products and hormones in colon cancer using metabolome: A physiological overview. Asian Pac J Trop Biomed 2017. [DOI: 10.1016/j.apjtb.2017.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
9
|
Hou TY, Davidson LA, Kim E, Fan YY, Fuentes NR, Triff K, Chapkin RS. Nutrient-Gene Interaction in Colon Cancer, from the Membrane to Cellular Physiology. Annu Rev Nutr 2017; 36:543-70. [PMID: 27431370 DOI: 10.1146/annurev-nutr-071715-051039] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The International Agency for Research on Cancer recently released an assessment classifying red and processed meat as "carcinogenic to humans" on the basis of the positive association between increased consumption and risk for colorectal cancer. Diet, however, can also decrease the risk for colorectal cancer and be used as a chemopreventive strategy. Bioactive dietary molecules, such as n-3 polyunsaturated fatty acids, curcumin, and fermentable fiber, have been proposed to exert chemoprotective effects, and their molecular mechanisms have been the focus of research in the dietary/chemoprevention field. Using these bioactives as examples, this review surveys the proposed mechanisms by which they exert their effects, from the nucleus to the cellular membrane. In addition, we discuss emerging technologies involving the culturing of colonic organoids to study the physiological effects of dietary bioactives. Finally, we address future challenges to the field regarding the identification of additional molecular mechanisms and other bioactive dietary molecules that can be utilized in our fight to reduce the incidence of colorectal cancer.
Collapse
Affiliation(s)
- Tim Y Hou
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843; .,Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Laurie A Davidson
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843; .,Department of Nutrition and Food Science, Texas A&M University, College Station, Texas 77843.,Center for Translational Environmental Health Research, Texas A&M University, College Station, Texas 77843
| | - Eunjoo Kim
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843; .,Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas 77843
| | - Yang-Yi Fan
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843; .,Department of Nutrition and Food Science, Texas A&M University, College Station, Texas 77843
| | - Natividad R Fuentes
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843; .,Faculty of Toxicology, Texas A&M University, College Station, Texas 77843
| | - Karen Triff
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843;
| | - Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas 77843; .,Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843.,Department of Nutrition and Food Science, Texas A&M University, College Station, Texas 77843.,Faculty of Toxicology, Texas A&M University, College Station, Texas 77843.,Center for Translational Environmental Health Research, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
10
|
Expression profiling indicating low selenium-sensitive microRNA levels linked to cell cycle and cell stress response pathways in the CaCo-2 cell line. Br J Nutr 2017; 117:1212-1221. [PMID: 28571588 DOI: 10.1017/s0007114517001143] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Se is an essential micronutrient for human health, and fluctuations in Se levels and the potential cellular dysfunction associated with it may increase the risk for disease. Although Se has been shown to influence several biological pathways important in health, little is known about the effect of Se on the expression of microRNA (miRNA) molecules regulating these pathways. To explore the potential role of Se-sensitive miRNA in regulating pathways linked with colon cancer, we profiled the expression of 800 miRNA in the CaCo-2 human adenocarcinoma cell line in response to a low-Se (72 h at <40 nm) environment using nCounter direct quantification. These data were then examined using a range of in silico databases to identify experimentally validated miRNA-mRNA interactions and the biological pathways involved. We identified ten Se-sensitive miRNA (hsa-miR-93-5p, hsa-miR-106a-5p, hsa-miR-205-5p, hsa-miR-200c-3p, hsa-miR-99b-5p, hsa-miR-302d-3p, hsa-miR-373-3p, hsa-miR-483-3p, hsa-miR-512-5p and hsa-miR-4454), which regulate 3588 mRNA in key pathways such as the cell cycle, the cellular response to stress, and the canonical Wnt/β-catenin, p53 and ERK/MAPK signalling pathways. Our data show that the effects of low Se on biological pathways may, in part, be due to these ten Se-sensitive miRNA. Dysregulation of the cell cycle and of the stress response pathways due to low Se may influence key genes involved in carcinogenesis.
Collapse
|
11
|
Del Cornò M, Donninelli G, Conti L, Gessani S. Linking Diet to Colorectal Cancer: The Emerging Role of MicroRNA in the Communication between Plant and Animal Kingdoms. Front Microbiol 2017; 8:597. [PMID: 28424679 PMCID: PMC5380760 DOI: 10.3389/fmicb.2017.00597] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/23/2017] [Indexed: 12/14/2022] Open
Abstract
Environmental and lifestyle factors, including diet and nutritional habits have been strongly linked to colorectal cancer (CRC). Of note, unhealthy dietary habits leading to adiposity represent a main risk factor for CRC and are associated with a chronic low-grade inflammatory status. Inflammation is a hallmark of almost every type of cancer and can be modulated by several food compounds exhibiting either protective or promoting effects. However, in spite of an extensive research, the underlying mechanisms by which dietary patterns or bioactive food components may influence tumor onset and outcome have not been fully clarified yet. Growing evidence indicates that diet, combining beneficial substances and potentially harmful ingredients, has an impact on the expression of key regulators of gene expression such as the non-coding RNA (ncRNA). Since the expression of these molecules is deranged in chronic inflammation and cancer, modulating their expression may strongly influence the cancer phenotype and outcomes. In addition, the recently acquired knowledge on the existence of intricate inter-kingdom communication networks, is opening new avenues for a deeper understanding of the intimate relationships linking diet to CRC. In this novel scenario, diet-modulated ncRNA may represent key actors in the interaction between plant and animal kingdoms, capable of influencing disease onset and outcome. In this review, we will summarize the studies demonstrating a link between bioactive food components, including food-derived, microbiota-processed, secondary metabolites, and host ncRNA. We will focus on microRNA, highlighting how this plant/animal inter-kingdom cross-talk may have an impact on CRC establishment and progression.
Collapse
Affiliation(s)
- Manuela Del Cornò
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di SanitáRome, Italy.,Center for Gender-Specific Medicine, Istituto Superiore di SanitáRome, Italy
| | - Gloria Donninelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di SanitáRome, Italy.,Center for Gender-Specific Medicine, Istituto Superiore di SanitáRome, Italy
| | - Lucia Conti
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di SanitáRome, Italy.,Center for Gender-Specific Medicine, Istituto Superiore di SanitáRome, Italy
| | - Sandra Gessani
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di SanitáRome, Italy.,Center for Gender-Specific Medicine, Istituto Superiore di SanitáRome, Italy
| |
Collapse
|
12
|
Abstract
MicroRNAs (miRs) hybridize with complementary sequences in mRNA and silence genes by destabilizing mRNA or preventing translation of mRNA. Over 60% of human protein-coding genes are regulated by miRs, and 1881 high-confidence miRs are encoded in the human genome. Evidence suggests that miRs not only are synthesized endogenously, but also might be obtained from dietary sources, and that food compounds alter the expression of endogenous miR genes. The main food matrices for studies of biological activity of dietary miRs include plant foods and cow milk. Encapsulation of miRs in exosomes and exosome-like particles confers protection against RNA degradation and creates a pathway for intestinal and vascular endothelial transport by endocytosis, as well as delivery to peripheral tissues. Evidence suggests that the amount of miRs absorbed from nutritionally relevant quantities of foods is sufficient to elicit biological effects, and that endogenous synthesis of miRs is insufficient to compensate for dietary miR depletion and rescue wild-type phenotypes. In addition, nutrition alters the expression of endogenous miR genes, thereby compounding the effects of nutrition-miR interactions in gene regulation and disease diagnosis in liquid biopsies. For example, food components and dietary preferences may modulate serum miR profiles that may influence biological processes. The complex crosstalk between nutrition, miRs, and gene targets poses a challenge to gene network analysis and studies of human disease. Novel pipelines and databases have been developed recently, including a dietary miR database for archiving reported miRs in 15 dietary resources. miRs derived from diet and endogenous synthesis have been implicated in physiologic and pathologic conditions, including those linked with nutrition and metabolism. In fact, several miRs are actively regulated in response to overnutrition and tissue inflammation, and are involved in facilitating the development of chronic inflammation by modulating tissue-infiltrated immune cell function.
Collapse
Affiliation(s)
- Juan Cui
- Department of Computer Science and Engineering and
| | - Beiyan Zhou
- Department of Immunology, University of Connecticut Health Center, Farmington, CT; and
| | - Sharon A Ross
- Nutritional Science Research Group, Division of Cancer Prevention, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, MD
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE;
| |
Collapse
|
13
|
Knight JM, Kim E, Ivanov I, Davidson LA, Goldsby JS, Hullar MAJ, Randolph TW, Kaz AM, Levy L, Lampe JW, Chapkin RS. Comprehensive site-specific whole genome profiling of stromal and epithelial colonic gene signatures in human sigmoid colon and rectal tissue. Physiol Genomics 2016; 48:651-9. [PMID: 27401218 PMCID: PMC5111881 DOI: 10.1152/physiolgenomics.00023.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 07/04/2016] [Indexed: 01/28/2023] Open
Abstract
The strength of associations between various exposures (e.g., diet, tobacco, chemopreventive agents) and colorectal cancer risk may partially depend on the complex interaction between epithelium and stroma across anatomic subsites. Currently, baseline data describing genome-wide coding and long noncoding gene expression profiles in the healthy colon specific to tissue type and location are lacking. Therefore, colonic mucosal biopsies from 10 healthy participants who were enrolled in a clinical study to evaluate effects of lignan supplementation on gut resiliency were used to characterize the site-specific global gene expression signatures associated with stromal vs. epithelial cells in the sigmoid colon and rectum. Using RNA-seq, we demonstrate that tissue type and location patterns of gene expression and upstream regulatory pathways are distinct. For example, consistent with a key role of stroma in the crypt niche, mRNAs associated with immunoregulatory and inflammatory processes (i.e., CXCL14, ANTXR1), smooth muscle contraction (CALD1), proliferation and apoptosis (GLP2R, IGFBP3), and modulation of extracellular matrix (MMP2, COL3A1, MFAP4) were all highly expressed in the stroma. In comparison, HOX genes (HOXA3, HOXD9, HOXD10, HOXD11, and HOXD-AS2, a HOXD cluster antisense RNA 2), and WNT5B expression were also significantly higher in sigmoid colon compared with the rectum. These findings provide strong impetus for considering colorectal tissue subtypes and location in future observational studies and clinical trials designed to evaluate the effects of exposures on colonic health.
Collapse
Affiliation(s)
- Jason M Knight
- Department of Electrical Engineering, Texas A&M University, College Station, Texas; Center for Translational Environmental Health Research, Texas A&M University, College Station, Texas
| | - Eunji Kim
- Department of Electrical Engineering, Texas A&M University, College Station, Texas; Center for Translational Environmental Health Research, Texas A&M University, College Station, Texas
| | - Ivan Ivanov
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, Texas; Center for Translational Environmental Health Research, Texas A&M University, College Station, Texas
| | - Laurie A Davidson
- Department of Nutrition & Food Science, Texas A&M University, College Station, Texas; Center for Translational Environmental Health Research, Texas A&M University, College Station, Texas
| | - Jennifer S Goldsby
- Department of Nutrition & Food Science, Texas A&M University, College Station, Texas; Center for Translational Environmental Health Research, Texas A&M University, College Station, Texas
| | - Meredith A J Hullar
- Fred Hutchinson Cancer Research Center, Texas A&M University, College Station, Texas; and
| | - Timothy W Randolph
- Fred Hutchinson Cancer Research Center, Texas A&M University, College Station, Texas; and
| | - Andrew M Kaz
- Fred Hutchinson Cancer Research Center, Texas A&M University, College Station, Texas; and Gastroenterology Section, VA Puget Sound Medical Center, Seattle, Washington
| | - Lisa Levy
- Fred Hutchinson Cancer Research Center, Texas A&M University, College Station, Texas; and
| | - Johanna W Lampe
- Fred Hutchinson Cancer Research Center, Texas A&M University, College Station, Texas; and
| | - Robert S Chapkin
- Department of Nutrition & Food Science, Texas A&M University, College Station, Texas; Center for Translational Environmental Health Research, Texas A&M University, College Station, Texas;
| |
Collapse
|
14
|
Abstract
MicroRNAs (miRs, miRNAs) are small molecules of 18-22 nucleotides that serve as important regulators of gene expression at the post-transcriptional level. One of the mechanisms through which miRNAs regulate gene expression involves the interaction of their "seed" sequences primarily with 3'-end and more rarely with 5'-end, of mRNA transcribed from target genes. Numerous studies over the past decade have been devoted to quantitative and qualitative assessment of miRNAs expression and have shown remarkable changes in miRNA expression profiles in various diseases. Thus, profiling of miRNA expression can be an important tool for diagnostics and treatment of disease. However, less attention has been paid towards understanding the underlying reasons for changes in miRNA expression, especially in cancer cells. The purpose of this review is to analyze and systematize current data that explains reasons for changes in the expression of miRNAs. The review will cover both transcriptional (changes in gene expression and promoter hypermethylation) and post-transcriptional (changes in miRNA processing) mechanisms of regulation of miRNA expression, as well as effects of endogenous (hormones, cytokines) and exogenous (xenobiotics) compounds on the miRNA expression. The review will summarize the complex multilevel regulation of miRNA expression, in relation to cell type, physiological state of the body and various external factors.
Collapse
Affiliation(s)
- Lyudmila F. Gulyaeva
- />Research Institute of Molecular Biology and Biophysics, Timakov St., 2/12, Novosibirsk, 630117 Russia
- />Novosibirsk State University, Pirogova 2, Novosibirsk, 630090 Russia
| | - Nicolay E. Kushlinskiy
- />The Russian Oncological Scientific Center of N. N. Blochin of Ministry of Health of the Russian Federation, Kashirskoye Highway 24, Moscow, 115478 Russia
| |
Collapse
|
15
|
Yang Q, Diamond MP, Al-Hendy A. Early Life Adverse Environmental Exposures Increase the Risk of Uterine Fibroid Development: Role of Epigenetic Regulation. Front Pharmacol 2016; 7:40. [PMID: 26973527 PMCID: PMC4772696 DOI: 10.3389/fphar.2016.00040] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/12/2016] [Indexed: 12/21/2022] Open
Abstract
Uterine Fibroids [UF(s), AKA: leiomyoma] are the most important benign neoplastic threat to women's health. They are the most common cause of hysterectomy imposing untold personal consequences and 100s of billions of healthcare dollars, worldwide. Currently, there is no long term effective FDA-approved medical treatment available, and surgery is the mainstay. The etiology of UFs is not fully understood. In this regard, we and others have recently reported that somatic mutations in the gene encoding the transcriptional mediator subunit Med12 are found to occur at a high frequency (∼85%) in UFs. UFs likely originate when a Med12 mutation occurs in a myometrial stem cell converting it into a tumor-forming stem cell leading to a clonal fibroid lesion. Although the molecular attributes underlying the mechanistic formation of UFs is largely unknown, a growing body of literature implicates unfavorable early life environmental exposures as potentially important contributors. Early life exposure to EDCs during sensitive windows of development can reprogram normal physiological responses and alter disease susceptibility later in life. Neonatal exposure to the EDCs such as diethylstilbestrol (DES) and genistein during reproductive tract development has been shown to increase the incidence, multiplicity and overall size of UFs in the Eker rat model, concomitantly reprogramming estrogen-responsive gene expression. Importantly, EDC exposure represses enhancer of zeste 2 (EZH2) and reduces levels of histone 3 lysine 27 trimethylation (H3K27me3) repressive mark through Estrogen receptor/Phosphatidylinositide 3-kinases/Protein kinase B non-genomic signaling in the developing uterus. Considering the fact that distinct Mediator Complex Subunit 12 (Med12) mutations are detected in different fibroid lesions in the same uterus, the emergence of each Med12 mutation is likely an independent event in an altered myometrial stem cell. It is therefore possible that a chronic reduction in DNA repair capacity eventually causes the emergence of mutations such as Med12 in myometrial stem cells converting them into fibroid tumor-forming stem cells, and thereby leads to the development of UFs. Advancing our understanding of the mechanistic role epigenetic regulation of stem cells plays in mediating risk and tumorigenesis will help in pointing the way toward the development of novel therapeutic options.
Collapse
Affiliation(s)
- Qiwei Yang
- Division of Translation Research, Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta GA, USA
| | - Michael P Diamond
- Division of Translation Research, Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta GA, USA
| | - Ayman Al-Hendy
- Division of Translation Research, Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta GA, USA
| |
Collapse
|
16
|
Shah MS, Kim E, Davidson LA, Knight JM, Zoh RS, Goldsby JS, Callaway ES, Zhou B, Ivanov I, Chapkin RS. Data describing the effects of dietary bioactive agents on colonic stem cell microRNA and mRNA expression. Data Brief 2016; 6:398-404. [PMID: 26862588 PMCID: PMC4707287 DOI: 10.1016/j.dib.2015.12.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/16/2015] [Accepted: 12/16/2015] [Indexed: 10/27/2022] Open
Abstract
With the identification of Lgr5 as a definitive marker for intestinal stem cells, we used the highly novel, recently described, Lgr5-EGFP-IRES-cre ER (T2) knock in mouse model. Mice were injected with azoxymethane (AOM, a colon carcinogen) or saline (control) and fed a chemo-protective diet containing n-3 fatty acids and fermentable fiber (n-3 PUFA+pectin) or a control diet (n-6 PUFA + cellulose). Single cells were isolated from colonic mucosa crypts and three discrete populations of cells were collected via fluorescence activated cell sorting (FACS): Lgr5(high) (stem cells), Lgr5(low) (daughter cells) and Lgr5(negative) (differentiated cells). microRNA profiling and RNA sequencing were performed from the same sample and analyzed. These data refer to 'Comparative effects of diet and carcinogen on microRNA expression in the stem cell niche of the mouse colonic crypt' (Shah et al., 2016) [5].
Collapse
Affiliation(s)
- Manasvi S. Shah
- Program in Integrative Nutrition & Complex Diseases, United States
- Intercollegiate Faculty of Genetics, United States
- Divison of Endocrinology, Boston Children’s Hospital, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Eunjoo Kim
- Program in Integrative Nutrition & Complex Diseases, United States
- Department of Molecular and Cellular Medicine, United States
| | | | - Jason M. Knight
- Program in Integrative Nutrition & Complex Diseases, United States
- Department of Electrical Engineering, United States
- Center for Translational Environmental Health Research, Texas A&M University, College Station, TX, United States
| | - Roger S. Zoh
- Program in Integrative Nutrition & Complex Diseases, United States
- Department of Statistics, United States
| | - Jennifer S. Goldsby
- Program in Integrative Nutrition & Complex Diseases, United States
- Center for Translational Environmental Health Research, Texas A&M University, College Station, TX, United States
| | | | - Beyian Zhou
- Department of Veterinary Physiology & Pharmacology, United States
- Center for Translational Environmental Health Research, Texas A&M University, College Station, TX, United States
| | - Ivan Ivanov
- Program in Integrative Nutrition & Complex Diseases, United States
- Department of Veterinary Physiology & Pharmacology, United States
- Center for Translational Environmental Health Research, Texas A&M University, College Station, TX, United States
| | - Robert S. Chapkin
- Program in Integrative Nutrition & Complex Diseases, United States
- Intercollegiate Faculty of Genetics, United States
- Center for Translational Environmental Health Research, Texas A&M University, College Station, TX, United States
| |
Collapse
|
17
|
Yang Q, Diamond MP, Al-Hendy A. The emerging role of extracellular vesicle-derived miRNAs: implication in cancer progression and stem cell related diseases. JOURNAL OF CLINICAL EPIGENETICS 2016; 2:13. [PMID: 27099870 PMCID: PMC4834835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Cells release into the extracellular environment, diverse types of membrane vesicles of endosomal and plasma membrane origin called exosomes and microvesicles. A number of studies indicate that these extracellular vehicles (EVs) mediate the interaction between cancer cells and their microenvironment; and thereby, play a critical role in the development of cancers. EVs contain cargo which consist of proteins, lipids, mRNAs, and miRNAs that can be delivered to different types of cells in nascent as well as distal locations. Discovery of this latter cargo has drawn an increasing amount of attention, due to their altering effects on the transcriptome, proteins, and subsequent cellular characteristics in recipient cells. Cancer cell derived exosomes (CCEs) have been identified in body fluids of cancer patients including urine, plasma and saliva. Because CCE content largely depends on tumor type and stage, they invariably lend great potential in serving as prognostic and diagnostic markers. Notably, accumulating evidence demonstrates that EV-derived miRNAs have key roles in regulating various aspects of cellular homeostasis, including proliferation, survival, migration, metastasis, and the immune system etc. More recently, diagnostic and therapeutic exploitation of stem cells derived EVs are under investigation. This review aims to summarize recent advances in EV-derived miRNAs in a variety of tumor types, and suggests that these cancer-derived exosomal miRNAs play a critical role in regulating cellular functions in surrounding and distant locations. It also discusses the role of adverse environmental exposure in altering stem cell exosomal miRNA profiling, which we believe leads to changes in the extracellular environment as well as a diverse range of biological processes.
Collapse
|