1
|
Liu N, Jiang Y, Xiu Y, Tortelote GG, Xia W, Wang Y, Li Y, Shi S, Han J, Vidoudez C, Niamnud A, Kilgore MD, Zhou D, Shi M, Graziose SA, Fan J, Katakam PVG, Dumont AS, Wang X. Itaconate restrains acute proinflammatory activation of microglia after traumatic brain injury in mice. Sci Transl Med 2025; 17:eadn2635. [PMID: 40073156 DOI: 10.1126/scitranslmed.adn2635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 08/18/2024] [Accepted: 02/13/2025] [Indexed: 03/14/2025]
Abstract
Traumatic brain injury (TBI) rapidly triggers proinflammatory activation of microglia, contributing to secondary brain damage post-TBI. Although the governing role of energy metabolism in shaping the inflammatory phenotype and function of immune cells has been increasingly recognized, the specific alterations in microglial bioenergetics post-TBI remain poorly understood. Itaconate, a metabolite produced by the enzyme aconitate decarboxylase 1 [IRG1; encoded by immune responsive gene 1 (Irg1)], is a pivotal metabolic regulator in immune cells, particularly in macrophages. Because microglia are macrophages of the brain parenchyma, the IRG1/itaconate pathway likely modulates microglial inflammatory responses. In this study, we explored the role of the IRG1/itaconate pathway in regulating microglial bioenergetics and inflammatory activation post-TBI using a mouse controlled cortical impact (CCI) model. We isolated microglia before and 4 and 12 hours after TBI and observed a swift but transient increase in glycolysis coupled with a prolonged disruption of mitochondrial metabolism after injury. Despite an up-regulation of Irg1 expression, itaconate in microglia declined after TBI. Microglia-specific Irg1 gene knockout (Irg1-Mi-KO) exacerbated metabolic changes, intensified proinflammatory activation and neurodegeneration, and worsened certain long-term neurological deficits. Supplementation with 4-octyl itaconate (OI) reinstated the use and oxidative metabolism of glucose, glutamine, and fatty acid, thereby enhancing microglial bioenergetics post-TBI. OI supplementation also attenuated proinflammatory activation and neurodegeneration and improved long-term neurological outcomes. These results suggest that therapeutically targeting the itaconate pathway could improve microglial energy metabolism and neurological outcomes after TBI.
Collapse
Affiliation(s)
- Ning Liu
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Tulane University Translational Sciences Institute, New Orleans, LA 70112, USA
- Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA
| | - Yinghua Jiang
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Yuwen Xiu
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Giovane G Tortelote
- Department of Pediatrics and Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Winna Xia
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Yingjie Wang
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Yadan Li
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Samuel Shi
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jinrui Han
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Charles Vidoudez
- Harvard Center for Mass Spectrometry, Harvard University, Cambridge, MA 02138, USA
| | - Aim Niamnud
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Mitchell D Kilgore
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Di Zhou
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Mengxuan Shi
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Stephen A Graziose
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jia Fan
- Center for Cellular and Molecular Diagnostics, Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Prasad V G Katakam
- Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Aaron S Dumont
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Xiaoying Wang
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Neuroscience Program, Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
2
|
Cui C, Xu B, Liu H, Wang C, Zhang T, Jiang P, Feng L. Exploring the Role of SMPD3 in the lncRNA-miRNA-mRNA Regulatory Network in TBI Progression by Influencing Energy Metabolism. J Inflamm Res 2024; 17:10835-10848. [PMID: 39677286 PMCID: PMC11646434 DOI: 10.2147/jir.s491290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024] Open
Abstract
Background Traumatic brain injury (TBI) is associated with disturbances in energy metabolism. This study aimed to construct a lncRNA-miRNA-mRNA network through bioinformatics methods to explore energy metabolism-related genes in the pathogenesis of TBI. Methods Data from datasets GSE171718, GSE131695, and GSE223245 obtained from the Gene Expression Omnibus, were analyzed to identify differentially expressed (DE) genes. Regulatory relationships were investigated through miRDB, miRTarBase, and TargetScan, thereby forming a lncRNA-miRNA-mRNA network. The Molecular Signatures Database (MSigDB) was utilized to identify energy metabolism-related genes, and a protein-protein interaction (PPI) network was established through the STRING database. Functional annotation and enrichment analysis were conducted using GO and KEGG. The TBI mouse model was established to detect the expression levels of GOLGA8B, ZNF367, and SMPD3 in brain tissues. Results SMPD3 emerged as the key DE gene linked to energy metabolism in TBI, demonstrating a negative correlation with miR-218-5p and being associated with moderate unconsciousness and female patients. The PPI network revealed SMPD3 interactions with proteins associated with cell death, sphingolipid metabolism, and neurodegenerative diseases such as Alzheimer's disease. In vivo, GOLGA8B, ZNF367, and SMPD3 mRNA levels were significantly lower in TBI mice. Conclusion In summary, SMPD3 represents a crucial metabolic gene in the progression of TBI. It potentially provides a new therapeutic target for metabolic disorders caused by traumatic brain injury (TBI) and holds significant theoretical value for further research.
Collapse
Affiliation(s)
- Changmeng Cui
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272000, People’s Republic of China
| | - Biao Xu
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272000, People’s Republic of China
| | - Hui Liu
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Shandong First Medical University, Jining, Shandong, 272000, People’s Republic of China
| | - Changshui Wang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, 272000, People’s Republic of China
| | - Tao Zhang
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Shandong First Medical University, Jining, Shandong, 272000, People’s Republic of China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Shandong First Medical University, Jining, Shandong, 272000, People’s Republic of China
| | - Lei Feng
- Department of Neurosurgery, Jining First People’s Hospital, Shandong First Medical University, Jining, Shandong, 272000, People’s Republic of China
| |
Collapse
|
3
|
Wei Y, Shi J, Wang J, Hu Z, Wang M, Wang W, Cui X. Integrated analysis of metabolome and microbiome in a rat model of perimenopausal syndrome. mSystems 2024; 9:e0062324. [PMID: 39431842 PMCID: PMC11575230 DOI: 10.1128/msystems.00623-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/13/2024] [Indexed: 10/22/2024] Open
Abstract
The objectives of this study are to examine the disparities in serum and intestinal tissue metabolites between a perimenopausal rat model and control rats and to analyze the diversity and functionality of intestinal microorganisms to determine the potential correlation between intestinal flora and metabolites. We established a rat model of perimenopausal syndrome (PMS) and performed an integrated analysis of metabolome and microbiome. Orthogonal partial least-squares discriminant analysis scores and replacement tests indicated distinct separations of anion and cation levels between serum and intestinal samples of the model and control groups. Furthermore, lipids and lipid-like molecules constituted the largest percentage of HMDB compounds in both serum and intestinal tissues, followed by organic acids and derivatives, and organoheterocyclic compounds, with other compounds showing significant variability. Moreover, analysis of diversity and functional enrichment of the intestinal microflora and correlation analysis with metabolites revealed significant variability in the composition of the intestinal flora between the normal control and perimenopausal groups, with these differentially expressed intestinal flora strongly correlated with their metabolites. The findings of this study are expected to contribute to understanding the indications and contraindications for estrogen application in perimenopausal women and to aid in the development of appropriate therapeutic agents. IMPORTANCE In this work, we employed 16S ribosomal RNA gene sequencing to analyze the gut microbes in stool samples. In addition, we conducted an ultra-high-performance liquid chromatography-tandem mass spectrometry-based metabolomics approach on gut tissue and serum obtained from rats with perimenopausal syndrome (PMS) and healthy controls. By characterizing the composition and metabolomic properties of gut microbes in PMS rats, we aim to enhance our understanding of their role in women's health, emphasizing the significance of regulating gut microbes in the context of menopausal women's well-being. We aim to provide a theoretical basis for the prevention and treatment of PMS in terms of gut microflora as well as metabolism.
Collapse
Affiliation(s)
- Yanqiu Wei
- Department of Gynecology, Tengzhou Central People's Hospital, Tengzhou, Shandong, China
| | - Juanjuan Shi
- Department of Gynecology, Tengzhou Central People's Hospital, Tengzhou, Shandong, China
| | - Jianhua Wang
- Translational Pharmaceutical Laboratory, Jining No. 1 People's Hospital, Jining, Shandong, China
| | - Zongyan Hu
- Pelvic Floor Rehabilitation Center, Tengzhou Central People's Hospital, Tengzhou, Shandong, China
| | - Min Wang
- Department of Traditional Chinese Medicine, Tengzhou Central People's Hospital, Tengzhou, Shandong, China
| | - Wen Wang
- Department of Gynecology, Tengzhou Central People's Hospital, Tengzhou, Shandong, China
| | - Xiujuan Cui
- Department of Gynecology, Tengzhou Central People's Hospital, Tengzhou, Shandong, China
| |
Collapse
|
4
|
Oft HC, Simon DW, Sun D. New insights into metabolism dysregulation after TBI. J Neuroinflammation 2024; 21:184. [PMID: 39075578 PMCID: PMC11288120 DOI: 10.1186/s12974-024-03177-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
Traumatic brain injury (TBI) remains a leading cause of death and disability that places a great physical, social, and financial burden on individuals and the health system. In this review, we summarize new research into the metabolic changes described in clinical TBI trials, some of which have already shown promise for informing injury classification and staging. We focus our discussion on derangements in glucose metabolism, cell respiration/mitochondrial function and changes to ketone and lipid metabolism/oxidation to emphasize potentially novel biomarkers for clinical outcome prediction and intervention and offer new insights into possible underlying mechanisms from preclinical research of TBI pathology. Finally, we discuss nutrition supplementation studies that aim to harness the gut/microbiome-brain connection and manipulate systemic/cellular metabolism to improve post-TBI recovery. Taken together, this narrative review summarizes published TBI-associated changes in glucose and lipid metabolism, highlighting potential metabolite biomarkers for clinical use, the cellular processes linking these markers to TBI pathology as well as the limitations and future considerations for TBI "omics" work.
Collapse
Affiliation(s)
- Helena C Oft
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Dennis W Simon
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, 4401 Penn Avenue, Pittsburgh, PA, 15224, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Children's Neuroscience Institute, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, PA, 15213, USA.
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
- Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
5
|
Sawant N, Watanabe A, Ueda H, Okano H, Morita M. Incomplete accumulation of perilesional reactive astrocytes exacerbates wound healing after closed-head injury by increasing inflammation and BBB disruption. Exp Neurol 2024; 374:114700. [PMID: 38272160 DOI: 10.1016/j.expneurol.2024.114700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Wound healing after closed-head injury is a significant medical issue. However, conventional models of focal traumatic brain injury, such as fluid percussion injury and controlled cortical impact, employ mechanical impacts on the exposed cerebral cortex after craniotomy. These animal models are inappropriate for studying gliosis, as craniotomy itself induces gliosis. To address this, we developed a closed-head injury model and named "photo injury", which employs intense light illumination through a thinned-skull cranial window. Our prior work demonstrated that the gliosis of focal cerebral lesion after the photo injury does not encompass artificial gliosis and comprises two distinct reactive astrocyte subpopulations. The reactive astrocytes accumulated in the perilesional recovery area actively proliferate and express Nestin, a neural stem cell marker, while those in distal regions do not exhibit these traits. The present study investigated the role of perilesional reactive astrocytes (PRAs) in wound healing using the ablation of reactive astrocytes by the conditional knockout of Stat3. The extensive and non-selective ablation of reactive astrocytes in Nestin-Cre:Stat3f/f mice resulted in an exacerbation of injury, marked by increased inflammation and BBB disruption. On the other hand, GFAP-CreERT2:Stat3f/f mice exhibited the partial and selective ablation of the PRAs, while their exacerbation of injury was at the same extent as in Nestin-Cre:Stat3f/f mice. The comparison of these two mouse strains indicates that the PRAs are an essential astrocyte component for wound healing after closed-head injury, and their anti-inflammatory and regenerative functions are significantly affected even by incomplete accumulation. In addition, the reporter gene expression in the PRAs by GFAP-CreERT2 indicated a substantial elimination of these cells and an absence of differentiation into other cell types, despite Nestin expression, after wound healing. Thus, the accumulation and subsequent elimination of PRA are proposed as promising diagnostic and therapeutic avenues to bolster wound healing after closed-head injury.
Collapse
Affiliation(s)
- Nitin Sawant
- Biomolecular Organization, Department of Biology, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Airi Watanabe
- Biomolecular Organization, Department of Biology, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Haruna Ueda
- Biomolecular Organization, Department of Biology, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Mitsuhiro Morita
- Biomolecular Organization, Department of Biology, Kobe University, Kobe, Hyogo 657-8501, Japan; Application Division, Center of Optical Scattering Image Science, Kobe University, Kobe, Hyogo 657-8501, Japan.
| |
Collapse
|
6
|
Peper CJ, Kilgore MD, Jiang Y, Xiu Y, Xia W, Wang Y, Shi M, Zhou D, Dumont AS, Wang X, Liu N. Tracing the path of disruption: 13C isotope applications in traumatic brain injury-induced metabolic dysfunction. CNS Neurosci Ther 2024; 30:e14693. [PMID: 38544365 PMCID: PMC10973562 DOI: 10.1111/cns.14693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/25/2024] [Accepted: 03/12/2024] [Indexed: 05/14/2024] Open
Abstract
Cerebral metabolic dysfunction is a critical pathological hallmark observed in the aftermath of traumatic brain injury (TBI), as extensively documented in clinical investigations and experimental models. An in-depth understanding of the bioenergetic disturbances that occur following TBI promises to reveal novel therapeutic targets, paving the way for the timely development of interventions to improve patient outcomes. The 13C isotope tracing technique represents a robust methodological advance, harnessing biochemical quantification to delineate the metabolic trajectories of isotopically labeled substrates. This nuanced approach enables real-time mapping of metabolic fluxes, providing a window into the cellular energetic state and elucidating the perturbations in key metabolic circuits. By applying this sophisticated tool, researchers can dissect the complexities of bioenergetic networks within the central nervous system, offering insights into the metabolic derangements specific to TBI pathology. Embraced by both animal studies and clinical research, 13C isotope tracing has bolstered our understanding of TBI-induced metabolic dysregulation. This review synthesizes current applications of isotope tracing and its transformative potential in evaluating and addressing the metabolic sequelae of TBI.
Collapse
Affiliation(s)
- Charles J. Peper
- Clinical Neuroscience Research Center, Departments of Neurosurgery and NeurologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Mitchell D. Kilgore
- Clinical Neuroscience Research Center, Departments of Neurosurgery and NeurologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Yinghua Jiang
- Clinical Neuroscience Research Center, Departments of Neurosurgery and NeurologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Yuwen Xiu
- Clinical Neuroscience Research Center, Departments of Neurosurgery and NeurologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Winna Xia
- Clinical Neuroscience Research Center, Departments of Neurosurgery and NeurologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Yingjie Wang
- Clinical Neuroscience Research Center, Departments of Neurosurgery and NeurologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Mengxuan Shi
- Clinical Neuroscience Research Center, Departments of Neurosurgery and NeurologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Di Zhou
- Clinical Neuroscience Research Center, Departments of Neurosurgery and NeurologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Aaron S. Dumont
- Clinical Neuroscience Research Center, Departments of Neurosurgery and NeurologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Xiaoying Wang
- Clinical Neuroscience Research Center, Departments of Neurosurgery and NeurologyTulane University School of MedicineNew OrleansLouisianaUSA
- Neuroscience Program, Tulane Brain InstituteTulane UniversityNew OrleansLouisianaUSA
| | - Ning Liu
- Clinical Neuroscience Research Center, Departments of Neurosurgery and NeurologyTulane University School of MedicineNew OrleansLouisianaUSA
- Neuroscience Program, Tulane Brain InstituteTulane UniversityNew OrleansLouisianaUSA
- Tulane University Translational Sciences InstituteNew OrleansLouisianaUSA
| |
Collapse
|
7
|
Muñoz-Ballester C, Robel S. Astrocyte-mediated mechanisms contribute to traumatic brain injury pathology. WIREs Mech Dis 2023; 15:e1622. [PMID: 37332001 PMCID: PMC10526985 DOI: 10.1002/wsbm.1622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/20/2023]
Abstract
Astrocytes respond to traumatic brain injury (TBI) with changes to their molecular make-up and cell biology, which results in changes in astrocyte function. These changes can be adaptive, initiating repair processes in the brain, or detrimental, causing secondary damage including neuronal death or abnormal neuronal activity. The response of astrocytes to TBI is often-but not always-accompanied by the upregulation of intermediate filaments, including glial fibrillary acidic protein (GFAP) and vimentin. Because GFAP is often upregulated in the context of nervous system disturbance, reactive astrogliosis is sometimes treated as an "all-or-none" process. However, the extent of astrocytes' cellular, molecular, and physiological adjustments is not equal for each TBI type or even for each astrocyte within the same injured brain. Additionally, new research highlights that different neurological injuries and diseases result in entirely distinctive and sometimes divergent astrocyte changes. Thus, extrapolating findings on astrocyte biology from one pathological context to another is problematic. We summarize the current knowledge about astrocyte responses specific to TBI and point out open questions that the field should tackle to better understand how astrocytes shape TBI outcomes. We address the astrocyte response to focal versus diffuse TBI and heterogeneity of reactive astrocytes within the same brain, the role of intermediate filament upregulation, functional changes to astrocyte function including potassium and glutamate homeostasis, blood-brain barrier maintenance and repair, metabolism, and reactive oxygen species detoxification, sex differences, and factors influencing astrocyte proliferation after TBI. This article is categorized under: Neurological Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Carmen Muñoz-Ballester
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Stefanie Robel
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
8
|
Lendvai D, Whittemore R, Womack JA, Fortier CB, Milberg WP, Fonda JR. The Impact of Blast Exposure-With or Without Traumatic Brain Injury-on Metabolic Abnormalities in Post-9/11 Veterans. J Head Trauma Rehabil 2023; 38:380-390. [PMID: 36951458 PMCID: PMC10514232 DOI: 10.1097/htr.0000000000000874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
OBJECTIVE The primary aim included explorations of: (1) the associations between the history of blast exposure (BE), close blast exposure (CBE), and blast-related traumatic brain injury (bTBI) and metabolic abnormality; and (2) the potential mediating effect of comorbid psychological and somatic conditions on these associations. The secondary aim explored the association of dose-response impact of BE, CBE, and bTBI and metabolic abnormality. SETTING Data were collected by the Translational Research Center for TBI and Stress Disorders (TRACTS). PARTICIPANTS Post-9/11 veterans from the TRACTS baseline sample who had conflict-zone deployment experience ( N = 734). DESIGN Cross-sectional secondary data analysis. We computed relative risks (RRs) and 95% CI using modified Poisson regression. We quantified the impact of co-occurring psychological and somatic conditions on this association using mediation analyses. MAIN MEASURES Exposures included BE (<100 m), CBE (<10 m), and bTBI. Metabolic abnormality outcomes included (1) overweight/obesity (defined by abnormal waist-hip ratio [WHR] and abnormal waist circumference [WC]); (2) glucose dysregulation; and (3) meeting criteria for cardiometabolic syndrome (defined by guidelines). RESULTS The sample was majority male (91%) and White (68%), with a mean age of 34.6 years (SD = 8.99). Most participants had 1 or more BE (83%); 48% experienced 1 or more CBE. Overweight/obesity was highly prevalent in the sample (51% had abnormal WHR and 60% abnormal WC). There was no significant direct or indirect association between BE, CBE, and bTBI and metabolic abnormalities (RRs: 0.70-1.51; P 's > .05). CONCLUSION Future research is needed to investigate the association of BE with metabolic abnormalities with larger, more targeted sample selection, and longer follow-up. Effective and sustainable weight management and metabolic health prevention interventions for this veteran cohort are needed.
Collapse
Affiliation(s)
- Dora Lendvai
- VA Connecticut Healthcare System, West Haven, Connecticut
- Yale University, School of Nursing, Orange, Connecticut
| | | | - Julie A. Womack
- VA Connecticut Healthcare System, West Haven, Connecticut
- Yale University, School of Nursing, Orange, Connecticut
| | - Catherine B. Fortier
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Education and Clinical Center (GRECC), VA Boston Healthcare System, Boston, Massachusetts
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - William P. Milberg
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Education and Clinical Center (GRECC), VA Boston Healthcare System, Boston, Massachusetts
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Jennifer R. Fonda
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Education and Clinical Center (GRECC), VA Boston Healthcare System, Boston, Massachusetts
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
9
|
Zhang J, Li A, Gu R, Tong Y, Cheng J. Role and regulatory mechanism of microRNA mediated neuroinflammation in neuronal system diseases. Front Immunol 2023; 14:1238930. [PMID: 37637999 PMCID: PMC10457161 DOI: 10.3389/fimmu.2023.1238930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs with the unique ability to degrade or block specific RNAs and regulate many cellular processes. Neuroinflammation plays the pivotal role in the occurrence and development of multiple central nervous system (CNS) diseases. The ability of miRNAs to enhance or restrict neuroinflammatory signaling pathways in CNS diseases is an emerging and important research area, including neurodegenerative diseases, stroke, and traumatic brain injury (TBI). In this review, we summarize the roles and regulatory mechanisms of recently identified miRNAs involved in neuroinflammation-mediated CNS diseases, aiming to explore and provide a better understanding and direction for the treatment of CNS diseases.
Collapse
Affiliation(s)
| | | | | | | | - Jinbo Cheng
- Center on Translational Neuroscience, College of Life and Environmental Science, Minzu University of China, Beijing, China
| |
Collapse
|
10
|
Lazzarino G, Mangione R, Saab MW, Tavazzi B, Pittalà A, Signoretti S, Di Pietro V, Lazzarino G, Amorini AM. Traumatic Brain Injury Alters Cerebral Concentrations and Redox States of Coenzymes Q 9 and Q 10 in the Rat. Antioxidants (Basel) 2023; 12:antiox12050985. [PMID: 37237851 DOI: 10.3390/antiox12050985] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
To date, there is no information on the effect of TBI on the changes in brain CoQ levels and possible variations in its redox state. In this study, we induced graded TBIs (mild TBI, mTBI and severe TBI, sTBI) in male rats, using the weight-drop closed-head impact acceleration model of trauma. At 7 days post-injury, CoQ9, CoQ10 and α-tocopherol were measured by HPLC in brain extracts of the injured rats, as well as in those of a group of control sham-operated rats. In the controls, about the 69% of total CoQ was in the form of CoQ9 and the oxidized/reduced ratios of CoQ9 and CoQ10 were, respectively, 1.05 ± 0.07 and 1.42 ± 0.17. No significant changes in these values were observed in rats experiencing mTBI. Conversely, in the brains of sTBI-injured animals, an increase in reduced and a decrease in oxidized CoQ9 produced an oxidized/reduced ratio of 0.81 ± 0.1 (p < 0.001 compared with both controls and mTBI). A concomitant decrease in both reduced and oxidized CoQ10 generated a corresponding oxidized/reduced ratio of 1.38 ± 0.23 (p < 0.001 compared with both controls and mTBI). An overall decrease in the concentration of the total CoQ pool was also found in sTBI-injured rats (p < 0.001 compared with both controls and mTBI). Concerning α-tocopherol, whilst no differences compared with the controls were found in mTBI animals, a significant decrease was observed in rats experiencing sTBI (p < 0.01 compared with both controls and mTBI). Besides suggesting potentially different functions and intracellular distributions of CoQ9 and CoQ10 in rat brain mitochondria, these results demonstrate, for the first time to the best of knowledge, that sTBI alters the levels and redox states of CoQ9 and CoQ10, thus adding a new explanation to the mitochondrial impairment affecting ETC, OXPHOS, energy supply and antioxidant defenses following sTBI.
Collapse
Affiliation(s)
- Giacomo Lazzarino
- Departmental Faculty of Medicine and Surgery, UniCamillus-Saint Camillus International University of Health and Medical Sciences, Via di Sant'Alessandro 8, 00131 Rome, Italy
| | - Renata Mangione
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of the Sacred Heart of Rome, Largo F. Vito 1, 00168 Rome, Italy
| | - Miriam Wissam Saab
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | - Barbara Tavazzi
- Departmental Faculty of Medicine and Surgery, UniCamillus-Saint Camillus International University of Health and Medical Sciences, Via di Sant'Alessandro 8, 00131 Rome, Italy
| | - Alessandra Pittalà
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | - Stefano Signoretti
- Departmental Faculty of Medicine and Surgery, UniCamillus-Saint Camillus International University of Health and Medical Sciences, Via di Sant'Alessandro 8, 00131 Rome, Italy
- Department of Emergency and Urgency, Division of Neurosurgery, S. Eugenio/CTO Hospital, A.S.L. Roma2 Piazzale dell'Umanesimo 10, 00144 Rome, Italy
| | - Valentina Di Pietro
- Neurotrauma and Ophthalmology Research Group, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Edgbaston, Birmingham B15 2TH, UK
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | - Angela Maria Amorini
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| |
Collapse
|
11
|
Privitera A, Cardaci V, Weerasekara D, Saab MW, Diolosà L, Fidilio A, Jolivet RB, Lazzarino G, Amorini AM, Camarda M, Lunte SM, Caraci F, Caruso G. Microfluidic/HPLC combination to study carnosine protective activity on challenged human microglia: Focus on oxidative stress and energy metabolism. Front Pharmacol 2023; 14:1161794. [PMID: 37063279 PMCID: PMC10095171 DOI: 10.3389/fphar.2023.1161794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/03/2023] [Indexed: 03/31/2023] Open
Abstract
Carnosine (β-alanyl-L-histidine) is a naturally occurring endogenous peptide widely distributed in excitable tissues such as the brain. This dipeptide possesses well-demonstrated antioxidant, anti-inflammatory, and anti-aggregation properties, and it may be useful for treatment of pathologies characterized by oxidative stress and energy unbalance such as depression and Alzheimer's disease (AD). Microglia, the brain-resident macrophages, are involved in different physiological brain activities such synaptic plasticity and neurogenesis, but their dysregulation has been linked to the pathogenesis of numerous diseases. In AD brain, the activation of microglia towards a pro-oxidant and pro-inflammatory phenotype has found in an early phase of cognitive decline, reason why new pharmacological targets related to microglia activation are of great importance to develop innovative therapeutic strategies. In particular, microglia represent a common model of lipopolysaccharides (LPS)-induced activation to identify novel pharmacological targets for depression and AD and numerous studies have linked the impairment of energy metabolism, including ATP dyshomeostasis, to the onset of depressive episodes. In the present study, we first investigated the toxic potential of LPS + ATP in the absence or presence of carnosine. Our studies were carried out on human microglia (HMC3 cell line) in which LPS + ATP combination has shown the ability to promote cell death, oxidative stress, and inflammation. Additionally, to shed more light on the molecular mechanisms underlying the protective effect of carnosine, its ability to modulate reactive oxygen species production and the variation of parameters representative of cellular energy metabolism was evaluated by microchip electrophoresis coupled to laser-induced fluorescence and high performance liquid chromatography, respectively. In our experimental conditions, carnosine prevented LPS + ATP-induced cell death and oxidative stress, also completely restoring basal energy metabolism in human HMC3 microglia. Our results suggest a therapeutic potential of carnosine as a new pharmacological tool in the context of multifactorial disorders characterize by neuroinflammatory phenomena including depression and AD.
Collapse
Affiliation(s)
- Anna Privitera
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Vincenzo Cardaci
- Vita-Salute San Raffaele University, Milano, Italy
- Scuola Superiore di Catania, University of Catania, Catania, Italy
| | - Dhanushka Weerasekara
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, United States
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
| | - Miriam Wissam Saab
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Lidia Diolosà
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | - Annamaria Fidilio
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, Troina, Italy
| | - Renaud Blaise Jolivet
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, Netherlands
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Angela Maria Amorini
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Susan Marie Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, United States
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, United States
- Department of Chemistry, University of Kansas, Lawrence, KS, United States
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, Troina, Italy
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Unit of Neuropharmacology and Translational Neurosciences, Oasi Research Institute-IRCCS, Troina, Italy
| |
Collapse
|
12
|
ILB®, a Low Molecular Weight Dextran Sulphate, Restores Glutamate Homeostasis, Amino Acid Metabolism and Neurocognitive Functions in a Rat Model of Severe Traumatic Brain Injury. Int J Mol Sci 2022; 23:ijms23158460. [PMID: 35955592 PMCID: PMC9368799 DOI: 10.3390/ijms23158460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/04/2022] Open
Abstract
In a previous study, we found that administration of ILB®, a new low molecular weight dextran sulphate, significantly improved mitochondrial functions and energy metabolism, as well as decreased oxidative/nitrosative stress, of brain tissue of rats exposed to severe traumatic brain injury (sTBI), induced by the closed-head weight-drop model of diffused TBI. Using aliquots of deproteinized brain tissue of the same animals of this former study, we here determined the concentrations of 24 amino acids of control rats, untreated sTBI rats (sacrificed at 2 and 7 days post-injury) and sTBI rats receiving a subcutaneous ILB® administration (at the dose levels of 1, 5 and 15 mg/kg b.w.) 30 min post-impact (sacrificed at 2 and 7 days post-injury). Additionally, in a different set of experiments, new groups of control rats, untreated sTBI rats and ILB®-treated rats (administered 30 min after sTBI at the dose levels of 1 or 5 mg/kg b.w.) were studied for their neurocognitive functions (anxiety, locomotor capacities, short- and long-term memory) at 7 days after the induction of sTBI. Compared to untreated sTBI animals, ILB® significantly decreased whole brain glutamate (normalizing the glutamate/glutamine ratio), glycine, serine and g-aminobutyric acid. Furthermore, ILB® administration restored arginine metabolism (preventing nitrosative stress), levels of amino acids involved in methylation reactions (methionine, L-cystathionine, S-adenosylhomocysteine), and N-acetylaspartate homeostasis. The macroscopic evidences of the beneficial effects on brain metabolism induced by ILB® were the relevant improvement in neurocognitive functions of the group of animals treated with ILB® 5 mg/kg b.w., compared to the marked cognitive decline measured in untreated sTBI animals. These results demonstrate that ILB® administration 30 min after sTBI prevents glutamate excitotoxicity and normalizes levels of amino acids involved in crucial brain metabolic functions. The ameliorations of amino acid metabolism, mitochondrial functions and energy metabolism in ILB®-treated rats exposed to sTBI produced significant improvement in neurocognitive functions, reinforcing the concept that ILB® is a new effective therapeutic tool for the treatment of sTBI, worth being tested in the clinical setting.
Collapse
|
13
|
Neuroprotective Effects of Pharmacological Hypothermia on Hyperglycolysis and Gluconeogenesis in Rats after Ischemic Stroke. Biomolecules 2022; 12:biom12060851. [PMID: 35740974 PMCID: PMC9220898 DOI: 10.3390/biom12060851] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/26/2022] Open
Abstract
Stroke is a leading threat to human life. Metabolic dysfunction of glucose may play a key role in stroke pathophysiology. Pharmacological hypothermia (PH) is a potential neuroprotective strategy for stroke, in which the temperature is decreased safely. The present study determined whether neuroprotective PH with chlorpromazine and promethazine (C + P), plus dihydrocapsaicin (DHC) improved glucose metabolism in acute ischemic stroke. A total of 208 adult male Sprague Dawley rats were randomly divided into the following groups: sham, stroke, and stroke with various treatments including C + P, DHC, C + P + DHC, phloretin (glucose transporter (GLUT)-1 inhibitor), cytochalasin B (GLUT-3 inhibitor), TZD (thiazolidinedione, phosphoenolpyruvate carboxykinase (PCK) inhibitor), and apocynin (nicotinamide adenine dinucleotide phosphate oxidase (NOX) inhibitor). Stroke was induced by middle cerebral artery occlusion (MCAO) for 2 h followed by 6 or 24 h of reperfusion. Rectal temperature was monitored before, during, and after PH. Infarct volume and neurological deficits were measured to assess the neuroprotective effects. Reactive oxygen species (ROS), NOX activity, lactate, apoptotic cell death, glucose, and ATP levels were measured. Protein expression of GLUT-1, GLUT-3, phosphofructokinase (PFK), lactate dehydrogenase (LDH), PCK1, PCK2, and NOX subunit gp91 was measured with Western blotting. PH with a combination of C + P and DHC induced faster, longer, and deeper hypothermia, as compared to each alone. PH significantly improved every measured outcome as compared to stroke and monotherapy. PH reduced brain infarction, neurological deficits, protein levels of glycolytic enzymes (GLUT-1, GLUT-3, PFK and LDH), gluconeogenic enzymes (PCK1 and PCK2), NOX activity and its subunit gp91, ROS, apoptotic cell death, glucose, and lactate, while raising ATP levels. In conclusion, stroke impaired glucose metabolism by enhancing hyperglycolysis and gluconeogenesis, which led to ischemic injury, all of which were reversed by PH induced by a combination of C + P and DHC.
Collapse
|
14
|
Salivary S100 calcium-binding protein beta (S100B) and neurofilament light (NfL) after acute exposure to repeated head impacts in collegiate water polo players. Sci Rep 2022; 12:3439. [PMID: 35236877 PMCID: PMC8891257 DOI: 10.1038/s41598-022-07241-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/04/2022] [Indexed: 11/08/2022] Open
Abstract
Blood-based biomarkers of brain injury may be useful for monitoring brain health in athletes at risk for concussions. Two putative biomarkers of sport-related concussion, neurofilament light (NfL), an axonal structural protein, and S100 calcium-binding protein beta (S100B), an astrocyte-derived protein, were measured in saliva, a biofluid which can be sampled in an athletic setting without the risks and burdens associated with blood sampled by venipuncture. Samples were collected from men’s and women’s collegiate water polo players (n = 65) before and after a competitive tournament. Head impacts were measured using sensors previously evaluated for use in water polo, and video recordings were independently reviewed for the purpose of validating impacts recorded by the sensors. Athletes sustained a total of 107 head impacts, all of which were asymptomatic (i.e., no athlete was diagnosed with a concussion or more serious). Post-tournament salivary NfL was directly associated with head impact frequency (RR = 1.151, p = 0.025) and cumulative head impact magnitude (RR = 1.008, p = 0.014), while controlling for baseline salivary NfL. Change in S100B was not associated with head impact exposure (RR < 1.001, p > 0.483). These patterns suggest that repeated head impacts may cause axonal injury, even in asymptomatic athletes.
Collapse
|
15
|
TIAN Y, ZHAO R, LI X, ZHOU J, ZHAN D, WANG Y, HE Y, ZHANG J, YUAN H. Alterations of microRNAs expression profiles in small extracellular vesicle after traumatic brain injury in mice. Exp Anim 2022; 71:329-337. [PMID: 35249933 PMCID: PMC9388336 DOI: 10.1538/expanim.21-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of mortality and morbidity worldwide. Tools available for diagnosis and therapy are limited. Small extracellular vesicle (sEV)
microRNAs (miRNAs) play an important role in TBI disease progression. This study aimed to investigate the alterations in sEV miRNAs expression in the mouse brain extracellular space after
TBI. Twenty-four C57BL/6J mice were randomly divided into two groups (12/group). The TBI group was subjected to all surgical procedures and fluid percussion injury (FPI). The sham group only
underwent surgery. Brain specimens were collected 3 h after TBI/sham. The brain sEV were isolated. Differentially expressed miRNAs were identified. A total of 50 miRNAs were observed to be
differentially expressed (fold change ≥1.5 and P<0.05) after TBI, including 5 upregulated and 45 downregulated. The major enriched Gene Ontology terms were metabolic
processes, cell, intracellular, organelle, cytoplasm, axon, binding, protein kinase activity, protein binding, and protein dimerization activity. The KEGG pathway analysis predicted that the
pathways affected by the variation of miRNAs in sEVs after TBI included the Wnt signaling pathway and NF-κB signaling pathway. The changes in five miRNAs were confirmed by qRT-PCR. In
conclusion, this study demonstrated the differential expression of a series of miRNAs in brain sEV after TBI, which might be correlated with post-TBI physiological and pathological
processes. The findings might also provide novel targets for further investigating the molecular mechanisms underlying TBI and potential therapeutic interventions.
Collapse
Affiliation(s)
- Ye TIAN
- Department of Neurosurgery, General Hospital, Tianjin Neurological Institute, Tianjin Medical University
| | - Ruiting ZHAO
- Department of Pharmacy, Tianjin Medical University General Hospital Airport Hospital
| | - Xiaochun LI
- Department of Pharmacy, General Hospital, Tianjin Medical University
| | - Ju ZHOU
- Department of Pharmacy, General Hospital, Tianjin Medical University
| | - Daqiang ZHAN
- Department of Pharmacy, General Hospital, Tianjin Medical University
| | - Yuanzhi WANG
- Department of Pharmacy, General Hospital, Tianjin Medical University
| | - Yifan HE
- Department of Pharmacy, General Hospital, Tianjin Medical University
| | - Jiacheng ZHANG
- Department of Pharmacy, General Hospital, Tianjin Medical University
| | - Hengjie YUAN
- Department of Neurosurgery, General Hospital, Tianjin Neurological Institute, Tianjin Medical University
| |
Collapse
|
16
|
Köhli P, Otto E, Jahn D, Reisener MJ, Appelt J, Rahmani A, Taheri N, Keller J, Pumberger M, Tsitsilonis S. Future Perspectives in Spinal Cord Repair: Brain as Saviour? TSCI with Concurrent TBI: Pathophysiological Interaction and Impact on MSC Treatment. Cells 2021; 10:2955. [PMID: 34831179 PMCID: PMC8616497 DOI: 10.3390/cells10112955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/08/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022] Open
Abstract
Traumatic spinal cord injury (TSCI), commonly caused by high energy trauma in young active patients, is frequently accompanied by traumatic brain injury (TBI). Although combined trauma results in inferior clinical outcomes and a higher mortality rate, the understanding of the pathophysiological interaction of co-occurring TSCI and TBI remains limited. This review provides a detailed overview of the local and systemic alterations due to TSCI and TBI, which severely affect the autonomic and sensory nervous system, immune response, the blood-brain and spinal cord barrier, local perfusion, endocrine homeostasis, posttraumatic metabolism, and circadian rhythm. Because currently developed mesenchymal stem cell (MSC)-based therapeutic strategies for TSCI provide only mild benefit, this review raises awareness of the impact of TSCI-TBI interaction on TSCI pathophysiology and MSC treatment. Therefore, we propose that unravelling the underlying pathophysiology of TSCI with concomitant TBI will reveal promising pharmacological targets and therapeutic strategies for regenerative therapies, further improving MSC therapy.
Collapse
Affiliation(s)
- Paul Köhli
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Ellen Otto
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Denise Jahn
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Marie-Jacqueline Reisener
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
| | - Jessika Appelt
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Adibeh Rahmani
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Nima Taheri
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
| | - Johannes Keller
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany;
- University Hospital Hamburg-Eppendorf, Department of Trauma Surgery and Orthopaedics, Martinistraße 52, 20246 Hamburg, Germany
| | - Matthias Pumberger
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany;
| | - Serafeim Tsitsilonis
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Center for Musculoskeletal Surgery, Augustenburger Platz 1, 13353 Berlin, Germany; (P.K.); (E.O.); (D.J.); (M.-J.R.); (J.A.); (A.R.); (N.T.)
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Julius Wolff Institute, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany;
| |
Collapse
|
17
|
Contributing to Understand the Crosstalk between Brain and Periphery in Methylmercury Intoxication: Neurotoxicity and Extracellular Vesicles. Int J Mol Sci 2021; 22:ijms221910855. [PMID: 34639196 PMCID: PMC8509412 DOI: 10.3390/ijms221910855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 01/08/2023] Open
Abstract
Human exposure to methylmercury (MeHg) is currently high in regions such as the Amazon. Understanding the molecular changes associated with MeHg-induced neurotoxicity and the crosstalk with the periphery is essential to support early diagnoses. This work aimed to evaluate cellular and molecular changes associated with behavioral alterations in MeHg acute exposure and the possible changes in extracellular vesicles (EVs) number and S100β content. Adults male Wistar rats were orally treated with 5 mg/kg for four days. Behavioral performance, molecular and histological changes in the cerebellum, and plasma EVs were assessed. MeHg-intoxicated animals performed significantly worse in behavioral tests. MeHg increased the number of GFAP+ cells and GFAP and S100β mRNA expression in the cerebellum but no change in NeuN+ or IBA-1+ cells number was detected. The number of exosomes isolated from plasma were decreased by the metal. S100B mRNA was detected in circulating plasma EVs cargo in MeHg exposure. Though preliminary, our results suggest astrocytic reactivity is displaying a protective role once there was no neuronal death. Interestingly, the reduction in exosomes number could be a new mechanism associated with MeHg-induced neurotoxicity and plasma EVs could represent a source of future biomarkers in MeHg intoxication.
Collapse
|
18
|
Pourhamzeh M, Joghataei MT, Mehrabi S, Ahadi R, Hojjati SMM, Fazli N, Nabavi SM, Pakdaman H, Shahpasand K. The Interplay of Tau Protein and β-Amyloid: While Tauopathy Spreads More Profoundly Than Amyloidopathy, Both Processes Are Almost Equally Pathogenic. Cell Mol Neurobiol 2021; 41:1339-1354. [PMID: 32696288 PMCID: PMC11448628 DOI: 10.1007/s10571-020-00906-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/15/2020] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder, in which amyloid precursor protein (APP) misprocessing and tau protein hyperphosphorylation are well-established pathogenic cascades. Despite extensive considerations, the central mediator of neuronal cell death upon AD remains under debate. Therefore, we examined the direct interplay between tauopathy and amyloidopathy processes. We employed primary culture neurons and examined pathogenic P-tau and Aβ oligomers upon hypoxia treatment by immunofluorescence and immunoblotting. We observed both tauopathy and amyloidopathy processes upon the hypoxia condition. We also applied Aβ1-42 or P-tau onto primary cultured neurons. We overexpressed P-tau in SH-SY5Y cells and found Aβ accumulation. Furthermore, adult male rats received Aβ1-42 or pathogenic P-tau in the dorsal hippocampus and were examined for 8 weeks. Learning and memory performance, as well as anxiety behaviors, were assessed by Morris water maze and elevated plus-maze tests. Both Aβ1-42 and pathogenic P-tau significantly induced learning and memory deficits and enhanced anxiety behavior after treatment 2 weeks. Aβ administration induced robust tauopathy distribution in the cortex, striatum, and corpus callosum as well as CA1. On the other hand, P-tau treatment developed Aβ oligomers in the cortex and CA1 only. Our findings indicate that Aβ1-42 and pathogenic P-tau may induce each other and cause almost identical neurotoxicity in a time-dependent manner, while tauopathy seems to be more distributable than amyloidopathy.
Collapse
Affiliation(s)
- Mahsa Pourhamzeh
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Soraya Mehrabi
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Ahadi
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Nasrin Fazli
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyed Massood Nabavi
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Pakdaman
- Brain Mapping Research Center, Department of Neurology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Koorosh Shahpasand
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
19
|
Liu X, Shen L, Han B, Yao H. Involvement of noncoding RNA in blood-brain barrier integrity in central nervous system disease. Noncoding RNA Res 2021; 6:130-138. [PMID: 34377876 PMCID: PMC8327137 DOI: 10.1016/j.ncrna.2021.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Given the important role of the blood-brain barrier (BBB) in the central nervous system (CNS), increasing studies have been carried out to determine how the structural and functional integrity of the BBB impacts the pathogenesis of CNS diseases such as stroke, traumatic brain injuries (TBIs), and gliomas. Emerging studies have revealed that noncoding RNAs (ncRNAs) help to maintain the integrity and permeability of the BBB, thereby mediating CNS homeostasis. This review summarizes recent studies that focus on the effects of ncRNAs on the BBB in CNS diseases, including regulating the biological processes of inflammation, necrosis, and apoptosis of cells, affecting the translational dysfunction of proteins and regulating tight junctions (TJs). A comprehensive and detailed understanding of the interaction between ncRNAs and the BBB will lay a solid foundation for the development of early diagnostic methods and effective treatments for CNS diseases.
Collapse
Affiliation(s)
- Xi Liu
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Ling Shen
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Bing Han
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Honghong Yao
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| |
Collapse
|
20
|
Brain Energy Deficit as a Source of Oxidative Stress in Migraine: A Molecular Basis for Migraine Susceptibility. Neurochem Res 2021; 46:1913-1932. [PMID: 33939061 DOI: 10.1007/s11064-021-03335-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/06/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
People with migraine are prone to a brain energy deficit between attacks, through increased energy demand (hyperexcitable brain) or decreased supply (mitochondrial impairment). However, it is uncertain how this precipitates an acute attack. Here, the central role of oxidative stress is adduced. Specifically, neurons' antioxidant defenses rest ultimately on internally generated NADPH (reduced nicotinamide adenine dinucleotide phosphate), whose levels are tightly coupled to energy production. Mitochondrial NADPH is produced primarily by enzymes involved in energy generation, including isocitrate dehydrogenase of the Krebs (tricarboxylic acid) cycle; and an enzyme, nicotinamide nucleotide transhydrogenase (NNT), that depends on the Krebs cycle and oxidative phosphorylation to function, and that works in reverse, consuming antioxidants, when energy generation fails. In migraine aura, cortical spreading depression (CSD) causes an initial severe drop in level of NADH (reduced nicotinamide adenine dinucleotide), causing NNT to impair antioxidant defense. This is followed by functional hypoxia and a rebound in NADH, in which the electron transport chain overproduces oxidants. In migraine without aura, a similar biphasic fluctuation in NADH very likely generates oxidants in cortical regions farthest from capillaries and penetrating arterioles. Thus, the perturbations in brain energy demand and/or production seen in migraine are likely sufficient to cause oxidative stress, triggering an attack through oxidant-sensing nociceptive ion channels. Implications are discussed for the development of new classes of migraine preventives, for the current use of C57BL/6J mice (which lack NNT) in preclinical studies of migraine, for how a microembolism initiates CSD, and for how CSD can trigger a migraine.
Collapse
|
21
|
Geng Z, Guo Z, Guo R, Ye R, Zhu W, Yan B. Ferroptosis and traumatic brain injury. Brain Res Bull 2021; 172:212-219. [PMID: 33932492 DOI: 10.1016/j.brainresbull.2021.04.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) is a worldwide health problem contributing to significant economic burden. TBI is difficult to treat partly due to incomplete understanding of pathophysiology. Ferroptosis is a type of iron-dependent programmed cell death which has gained increasing attention due to its possible role in TBI. Current studies have demonstrated that ferroptosis is related to the pathology of TBI, and inhibition of ferroptosis may improve long term outcomes of TBI. Therefore, clarification of the exact association between ferroptosis and traumatic brain injury is necessary and may provide new targets for treatment. This review describes (1) the ferroptosis pathways following traumatic brain injury, (2) the role of ferroptosis during the chronic phase of traumatic brain injury, and (3) potential therapies targeting the ferroptosis pathways.
Collapse
Affiliation(s)
- Zhiwen Geng
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, China.
| | - Zhiliang Guo
- Department of Neurology, The Second Affiliated Hospital of Soochow University, China.
| | - Ruibing Guo
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, China.
| | - Ruidong Ye
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, China.
| | - Wusheng Zhu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, China.
| | - Bernard Yan
- Department of Neurology, Neurointervention Service, Royal Melbourne Hospital, Australia; Melbourne Brain Centre @ RMH, Department of Medicine, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
22
|
Caruso G, Fresta CG, Costantino A, Lazzarino G, Amorini AM, Lazzarino G, Tavazzi B, Lunte SM, Dhar P, Gulisano M, Caraci F. Lung Surfactant Decreases Biochemical Alterations and Oxidative Stress Induced by a Sub-Toxic Concentration of Carbon Nanoparticles in Alveolar Epithelial and Microglial Cells. Int J Mol Sci 2021; 22:2694. [PMID: 33800016 PMCID: PMC7962095 DOI: 10.3390/ijms22052694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022] Open
Abstract
Carbon-based nanomaterials are nowadays attracting lots of attention, in particular in the biomedical field, where they find a wide spectrum of applications, including, just to name a few, the drug delivery to specific tumor cells and the improvement of non-invasive imaging methods. Nanoparticles inhaled during breathing accumulate in the lung alveoli, where they interact and are covered with lung surfactants. We recently demonstrated that an apparently non-toxic concentration of engineered carbon nanodiamonds (ECNs) is able to induce oxidative/nitrosative stress, imbalance of energy metabolism, and mitochondrial dysfunction in microglial and alveolar basal epithelial cells. Therefore, the complete understanding of their "real" biosafety, along with their possible combination with other molecules mimicking the in vivo milieu, possibly allowing the modulation of their side effects becomes of utmost importance. Based on the above, the focus of the present work was to investigate whether the cellular alterations induced by an apparently non-toxic concentration of ECNs could be counteracted by their incorporation into a synthetic lung surfactant (DPPC:POPG in 7:3 molar ratio). By using two different cell lines (alveolar (A549) and microglial (BV-2)), we were able to show that the presence of lung surfactant decreased the production of ECNs-induced nitric oxide, total reactive oxygen species, and malondialdehyde, as well as counteracted reduced glutathione depletion (A549 cells only), ameliorated cell energy status (ATP and total pool of nicotinic coenzymes), and improved mitochondrial phosphorylating capacity. Overall, our results on alveolar basal epithelial and microglial cell lines clearly depict the benefits coming from the incorporation of carbon nanoparticles into a lung surfactant (mimicking its in vivo lipid composition), creating the basis for the investigation of this combination in vivo.
Collapse
Affiliation(s)
- Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.C.); (M.G.); (F.C.)
| | - Claudia G. Fresta
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (C.G.F.); (A.M.A.); (G.L.)
| | - Angelita Costantino
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.C.); (M.G.); (F.C.)
- Interuniversity Consortium for Biotechnology, Area di Ricerca, Padriciano, 34149 Trieste, Italy
| | - Giacomo Lazzarino
- UniCamillus-Saint Camillus International University of Health Sciences, 00131 Rome, Italy;
| | - Angela M. Amorini
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (C.G.F.); (A.M.A.); (G.L.)
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), University of Catania, 95125 Catania, Italy; (C.G.F.); (A.M.A.); (G.L.)
| | - Barbara Tavazzi
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of the Sacred Heart of Rome, 00168 Rome, Italy;
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Susan M. Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA;
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA;
- Department of Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
| | - Prajnaparamita Dhar
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA;
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS 66045-7576, USA
| | - Massimo Gulisano
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.C.); (M.G.); (F.C.)
- Interuniversity Consortium for Biotechnology, Area di Ricerca, Padriciano, 34149 Trieste, Italy
- Molecular Preclinical and Translational Imaging Research Centre-IMPRonTE, University of Catania, 95125 Catania, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (A.C.); (M.G.); (F.C.)
- Oasi Research Institute-IRCCS, 94018 Troina (EN), Italy
| |
Collapse
|
23
|
Metabolic Reprogramming by Malat1 Depletion in Prostate Cancer. Cancers (Basel) 2020; 13:cancers13010015. [PMID: 33375130 PMCID: PMC7801945 DOI: 10.3390/cancers13010015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Prostate cancer (PCa) is one of the most common cancers in developed countries, being the second leading cause of cancer death among men. Surgery is the primary therapeutic option, but about one-third of patients develop a recurrence within ten years, for which successful therapy is unavailable. Based on these observations, it has become urgent to develop novel molecular tools for predicting clinical outcome. Here, we focus on one of the best characterized cancer-associated long non-coding transcripts, namely metastasis-associated lung adenocarcinoma transcript 1 (MALAT1). This study highlighted a novel role for MALAT1 as a controller of prostate cancer metabolism. MALAT1 silencing caused a metabolic rewire in both experimental models adopted, prostate cancer cell lines, and organotypic slice cultures derived from surgical specimens. PCa cells upon MALAT1 silencing revert their phenotype towards glycolysis, which is characteristic of normal prostate cells. In this regard, MALAT1 targeting may represent a promising diagnostic tool and a novel therapeutic option. Abstract The lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) promotes growth and progression in prostate cancer (PCa); however, little is known about its possible impact in PCa metabolism. The aim of this work has been the assessment of the metabolic reprogramming associated with MALAT1 silencing in human PCa cells and in an ex vivo model of organotypic slice cultures (OSCs). Cultured cells and OSCs derived from primary tumors were transfected with MALAT1 specific gapmers. Cell growth and survival, gene profiling, and evaluation of targeted metabolites and metabolic enzymes were assessed. Computational analysis was made considering expression changes occurring in metabolic markers following MALAT1 targeting in cultured OSCs. MALAT1 silencing reduced expression of some metabolic enzymes, including malic enzyme 3, pyruvate dehydrogenase kinases 1 and 3, and choline kinase A. Consequently, PCa metabolism switched toward a glycolytic phenotype characterized by increased lactate production paralleled by growth arrest and cell death. Conversely, the function of mitochondrial succinate dehydrogenase and the expression of oxidative phosphorylation enzymes were markedly reduced. A similar effect was observed in OSCs. Based on this, a predictive algorithm was developed aimed to predict tumor recurrence in a subset of patients. MALAT1 targeting by gapmer delivery restored normal metabolic energy pathway in PCa cells and OSCs.
Collapse
|
24
|
Low Molecular Weight Dextran Sulfate (ILB ®) Administration Restores Brain Energy Metabolism Following Severe Traumatic Brain Injury in the Rat. Antioxidants (Basel) 2020; 9:antiox9090850. [PMID: 32927770 PMCID: PMC7555574 DOI: 10.3390/antiox9090850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of death and disability in people less than 40 years of age in Western countries. Currently, there are no satisfying pharmacological treatments for TBI patients. In this study, we subjected rats to severe TBI (sTBI), testing the effects of a single subcutaneous administration, 30 min post-impact, of a new low molecular weight dextran sulfate, named ILB®, at three different dose levels (1, 5, and 15 mg/kg body weight). A group of control sham-operated animals and one of untreated sTBI rats were used for comparison (each group n = 12). On day 2 or 7 post-sTBI animals were sacrificed and the simultaneous HPLC analysis of energy metabolites, N-acetylaspartate (NAA), oxidized and reduced nicotinic coenzymes, water-soluble antioxidants, and biomarkers of oxidative/nitrosative stress was carried out on deproteinized cerebral homogenates. Compared to untreated sTBI rats, ILB® improved energy metabolism by increasing ATP, ATP/ adenosine diphosphate ratio (ATP/ADP ratio), and triphosphate nucleosides, dose-dependently increased NAA concentrations, protected nicotinic coenzyme levels and their oxidized over reduced ratios, prevented depletion of ascorbate and reduced glutathione (GSH), and decreased oxidative (malondialdehyde formation) and nitrosative stress (nitrite + nitrate production). Although needing further experiments, these data provide the first evidence that a single post-injury injection of a new low molecular weight dextran sulfate (ILB®) has beneficial effects on sTBI metabolic damages. Due to the absence of adverse effects in humans, ILB® represents a promising therapeutic agent for the treatment of sTBI patients.
Collapse
|
25
|
Tan Z, Chen L, Ren Y, Jiang X, Gao W. Neuroprotective effects of FK866 against traumatic brain injury: Involvement of p38/ERK pathway. Ann Clin Transl Neurol 2020; 7:742-756. [PMID: 32302063 PMCID: PMC7261767 DOI: 10.1002/acn3.51044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/20/2020] [Accepted: 03/20/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE FK866 is an inhibitor of nicotinamide phosphoribosyltransferase (NAMPT), which exhibits neuroprotective effects in ischemic brain injury. However, in traumatic brain injury (TBI), the role and mechanism of FK866 remain unclear. The present research was aimed to investigate whether FK866 could attenuate TBI and clarified the underlying mechanisms. METHODS A controlled cortical impact model was established, and FK866 at a dose of 5 mg/kg was administered intraperitoneally at 1 h and 6 h, then twice per day post-TBI until sacrifice. Brain water content, Evans blue dye extravasation, modified neurological severity scores (mNSS), Morris water maze test, enzyme-linked immunosorbent assay (ELISA), immunofluorescence staining, and western blot were performed. RESULTS The results demonstrated that FK866 significantly mitigated the brain edema, blood-brain barrier (BBB) disruption, and ameliorated the neurological function post-TBI. Moreover, FK866 decreased the number of Iba-1-positive cells, GFAP-positive astrocytes, and AQP4-positive cells. FK866 reduced the protein levels of proinflammatory cytokines and inhibited NF-κB from translocation to the nucleus. FK866 upregulated the expression of Bcl-2, diminished the expression of Bax and caspase 3, and the number of apoptotic cells. Moreover, p38 MAPK and ERK activation were significantly inhibited by FK866. INTERPRETATION FK866 attenuated TBI-induced neuroinflammation and apoptosis, at least in part, through p38/ERK MAPKs signaling pathway.
Collapse
Affiliation(s)
- Zhongju Tan
- Department of GeriatricsThe First Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Lili Chen
- Department of NeurologyXiasha CampusSir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Yucheng Ren
- Department of NeurosurgeryThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Xiaohang Jiang
- Department of NeurosurgeryThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouZhejiangChina
| | - Wei Gao
- Department of NeurologyChangxing People’s HospitalThe Second Affiliated Hospital of Zhejiang University Changxing CampusChangxingZhejiangChina
| |
Collapse
|
26
|
Axonal transport dysfunction of mitochondria in traumatic brain injury: A novel therapeutic target. Exp Neurol 2020; 329:113311. [PMID: 32302676 DOI: 10.1016/j.expneurol.2020.113311] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/27/2020] [Accepted: 04/10/2020] [Indexed: 01/05/2023]
|
27
|
Di Pietro V, Yakoub KM, Caruso G, Lazzarino G, Signoretti S, Barbey AK, Tavazzi B, Lazzarino G, Belli A, Amorini AM. Antioxidant Therapies in Traumatic Brain Injury. Antioxidants (Basel) 2020; 9:antiox9030260. [PMID: 32235799 PMCID: PMC7139349 DOI: 10.3390/antiox9030260] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/14/2020] [Accepted: 03/20/2020] [Indexed: 02/08/2023] Open
Abstract
Due to a multiplicity of causes provoking traumatic brain injury (TBI), TBI is a highly heterogeneous pathology, characterized by high mortality and disability rates. TBI is an acute neurodegenerative event, potentially and unpredictably evolving into sub-chronic and chronic neurodegenerative events, with transient or permanent neurologic, cognitive, and motor deficits, for which no valid standardized therapies are available. A vast body of literature demonstrates that TBI-induced oxidative/nitrosative stress is involved in the development of both acute and chronic neurodegenerative disorders. Cellular defenses against this phenomenon are largely dependent on low molecular weight antioxidants, most of which are consumed with diet or as nutraceutical supplements. A large number of studies have evaluated the efficacy of antioxidant administration to decrease TBI-associated damage in various animal TBI models and in a limited number of clinical trials. Points of weakness of preclinical studies are represented by the large variability in the TBI model adopted, in the antioxidant tested, in the timing, dosages, and routes of administration used, and in the variety of molecular and/or neurocognitive parameters evaluated. The analysis of the very few clinical studies does not allow strong conclusions to be drawn on the real effectiveness of antioxidant administration to TBI patients. Standardizing TBI models and different experimental conditions, as well as testing the efficacy of administration of a cocktail of antioxidants rather than only one, should be mandatory. According to some promising clinical results, it appears that sports-related concussion is probably the best type of TBI to test the benefits of antioxidant administration.
Collapse
Affiliation(s)
- Valentina Di Pietro
- Neurotrauma and Ophthalmology Research Group, Institute of Inflammation and Aging, University of Birmingham, Birmingham B15 2TT, UK; (V.D.P.); (K.M.Y.)
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, UK
- The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, Champaign, IL 61801, USA;
| | - Kamal M. Yakoub
- Neurotrauma and Ophthalmology Research Group, Institute of Inflammation and Aging, University of Birmingham, Birmingham B15 2TT, UK; (V.D.P.); (K.M.Y.)
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, UK
| | - Giuseppe Caruso
- Department of Laboratories, Oasi Research Institute – IRCCS, Via Conte Ruggero 73, 94018 Troina (EN), Italy;
| | - Giacomo Lazzarino
- UniCamillus, Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy;
| | - Stefano Signoretti
- UOC Neurochirurgia, ASL Roma2, S. Eugenio Hospital, Piazzale dell’Umanesimo 10, 00144 Rome, Italy;
| | - Aron K. Barbey
- The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, Champaign, IL 61801, USA;
| | - Barbara Tavazzi
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, Largo F.Vito 1, 00168 Rome, Italy
- Department of Scienze di laboratorio e infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy
- Correspondence: (B.T.); (G.L.); (A.B.)
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Via S.Sofia 97, 95123 Catania, Italy;
- Correspondence: (B.T.); (G.L.); (A.B.)
| | - Antonio Belli
- Neurotrauma and Ophthalmology Research Group, Institute of Inflammation and Aging, University of Birmingham, Birmingham B15 2TT, UK; (V.D.P.); (K.M.Y.)
- NIHR Surgical Reconstruction and Microbiology Research Centre, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TT, UK
- Correspondence: (B.T.); (G.L.); (A.B.)
| | - Angela Maria Amorini
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Via S.Sofia 97, 95123 Catania, Italy;
| |
Collapse
|
28
|
Wu J, He J, Tian X, Luo Y, Zhong J, Zhang H, Li H, Cen B, Jiang T, Sun X. microRNA-9-5p alleviates blood-brain barrier damage and neuroinflammation after traumatic brain injury. J Neurochem 2020; 153:710-726. [PMID: 31951014 PMCID: PMC7317896 DOI: 10.1111/jnc.14963] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/02/2020] [Accepted: 01/10/2020] [Indexed: 01/27/2023]
Abstract
The level of microRNA‐9‐5p (miRNA‐9‐5p) in brain tissues is significantly changed after traumatic brain injury (TBI). However, the effect of miRNA‐9‐5p for brain function in TBI has not been elucidated. In this study, a controlled cortical impact model was used to induce TBI in Sprague–Dawley rats, and an oxygen glucose deprivation model was used to mimic the pathological state in vitro. Brain microvascular endothelial cells (BMECs) and astrocytes were extracted from immature Sprague–Dawley rats and cocultured to reconstruct blood–brain barrier (BBB) in vitro. The results show that the level of miRNA‐9‐5p was significantly increased in brain tissues after TBI, and up‐regulation of miRNA9‐5p contributed to the recovery of neurological function. Up‐regulation of miRNA‐9‐5p with miRNA agomir may significantly alleviate apoptosis, neuroinflammation, and BBB damage in rats after TBI. Moreover, a dual luciferase reporter assay confirmed that miRNA‐9‐5p is a post‐transcriptional modulator of Ptch‐1. In in vitro experiments, the results confirmed that up‐regulation of miRNA‐9‐5p with miRNA mimic alleviates cellular apoptosis, inflammatory response, and BBB damage mainly by inhibiting Ptch‐1. In addition, we found that the activation of Hedgehog pathway was accompanied by inhibition of NF‐κB/MMP‐9 pathway in the BMECs treated with miRNA‐9‐5p mimic. Taken together, these results indicate that up‐regulation of miRNA‐9‐5p alleviates BBB damage and neuroinflammatory responses by activating the Hedgehog pathway and inhibiting NF‐κB/MMP‐9 pathway, which promotes the recovery of neurological function after TBI. ![]()
Collapse
Affiliation(s)
- Jingchuan Wu
- Department of Neurosurgery, General Hospital of The YangTze River Shipping, Wuhan Brain Hospital, Wuhan, China.,Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junchi He
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaocui Tian
- College of Pharmacy, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, District of Yuzhong, Chongqing, China
| | - Yuetao Luo
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jianjun Zhong
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongrong Zhang
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hui Li
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bo Cen
- Department of Neurosurgery, General Hospital of The YangTze River Shipping, Wuhan Brain Hospital, Wuhan, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaochuan Sun
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
29
|
Fresta CG, Fidilio A, Lazzarino G, Musso N, Grasso M, Merlo S, Amorini AM, Bucolo C, Tavazzi B, Lazzarino G, Lunte SM, Caraci F, Caruso G. Modulation of Pro-Oxidant and Pro-Inflammatory Activities of M1 Macrophages by the Natural Dipeptide Carnosine. Int J Mol Sci 2020; 21:ijms21030776. [PMID: 31991717 PMCID: PMC7038063 DOI: 10.3390/ijms21030776] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/23/2019] [Accepted: 01/22/2020] [Indexed: 12/21/2022] Open
Abstract
Carnosine is a natural endogenous dipeptide widely distributed in mammalian tissues, existing at particularly high concentrations in the muscles and brain and possesses well-characterized antioxidant and anti-inflammatory activities. In an in vitro model of macrophage activation, induced by lipopolysaccharide + interferon-gamma (LPS + IFN-γ), we here report the ability of carnosine to modulate pro-oxidant and pro-inflammatory activities of macrophages, representing the primary cell type that is activated as a part of the immune response. An ample set of parameters aimed to evaluate cytotoxicity (MTT assay), energy metabolism (HPLC), gene expressions (high-throughput real-time PCR (qRT-PCR)), protein expressions (western blot) and nitric oxide production (qRT-PCR and HPLC), was used to assess the effects of carnosine on activated macrophages challenged with a non cytotoxic LPS (100 ng/mL) + IFN-γ (600 U/mL) concentration. In our experimental model, main carnosine beneficial effects were: (1) the modulation of nitric oxide production and metabolism; (2) the amelioration of the macrophage energy state; (3) the decrease of the expressions of pro-oxidant enzymes (Nox-2, Cox-2) and of the lipid peroxidation product malondialdehyde; (4) the restoration and/or increase of the expressions of antioxidant enzymes (Gpx1, SOD-2 and Cat); (5) the increase of the transforming growth factor-β1 (TGF-β1) and the down-regulation of the expressions of interleukins 1β and 6 (IL-1β and IL-6) and 6) the increase of the expressions of Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 (HO-1). According to these results carnosine is worth being tested in the treatment of diseases characterized by elevated levels of oxidative stress and inflammation (atherosclerosis, cancer, depression, metabolic syndrome, and neurodegenerative diseases).
Collapse
Affiliation(s)
- Claudia G. Fresta
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA; (C.G.F.); (S.M.L.)
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
| | - Annamaria Fidilio
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (A.F.); (M.G.); (F.C.)
| | - Giacomo Lazzarino
- UniCamillus—Saint Camillus International University of Health Sciences, 00131 Rome, Italy;
| | - Nicolò Musso
- Bio-nanotech Research and Innovation Tower (BRIT), University of Catania, 95125 Catania, Italy;
| | - Margherita Grasso
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (A.F.); (M.G.); (F.C.)
- Oasi Research Institute—IRCCS, 94018 Troina (EN), Italy
| | - Sara Merlo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (A.M.A.); (C.B.)
| | - Angela M. Amorini
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (A.M.A.); (C.B.)
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (A.M.A.); (C.B.)
| | - Barbara Tavazzi
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, 00168 Rome, Italy;
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (S.M.); (A.M.A.); (C.B.)
- Correspondence: (G.L.); (G.C.)
| | - Susan M. Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA; (C.G.F.); (S.M.L.)
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
- Department of Chemistry, University of Kansas, Lawrence, KS 66047-1620, USA
| | - Filippo Caraci
- Department of Drug Sciences, University of Catania, 95125 Catania, Italy; (A.F.); (M.G.); (F.C.)
- Oasi Research Institute—IRCCS, 94018 Troina (EN), Italy
| | - Giuseppe Caruso
- Oasi Research Institute—IRCCS, 94018 Troina (EN), Italy
- Correspondence: (G.L.); (G.C.)
| |
Collapse
|
30
|
Pyruvate Dehydrogenase and Tricarboxylic Acid Cycle Enzymes Are Sensitive Targets of Traumatic Brain Injury Induced Metabolic Derangement. Int J Mol Sci 2019; 20:ijms20225774. [PMID: 31744143 PMCID: PMC6888669 DOI: 10.3390/ijms20225774] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/05/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
Using a closed-head impact acceleration model of mild or severe traumatic brain injury (mTBI or sTBI, respectively) in rats, we evaluated the effects of graded head impacts on the gene and protein expressions of pyruvate dehydrogenase (PDH), as well as major enzymes of mitochondrial tricarboxylic acid cycle (TCA). TBI was induced in anaesthetized rats by dropping 450 g from 1 (mTBI) or 2 m height (sTBI). After 6 h, 12 h, 24 h, 48 h, and 120 h gene expressions of enzymes and subunits of PDH. PDH kinases and phosphatases (PDK1-4 and PDP1-2, respectively), citrate synthase (CS), isocitrate dehydrogenase (IDH), oxoglutarate dehydrogenase (OGDH), succinate dehydrogenase (SDH), succinyl-CoA synthase (SUCLG), and malate dehydrogenase (MDH) were determined in whole brain extracts (n = 6 rats at each time for both TBI levels). In the same samples, the high performance liquid chromatographic (HPLC) determination of acetyl-coenzyme A (acetyl-CoA) and free coenzyme A (CoA-SH) was performed. Sham-operated animals (n = 6) were used as controls. After mTBI, the results indicated a general transient decrease, followed by significant increases, in PDH and TCA gene expressions. Conversely, permanent PDH and TCA downregulation occurred following sTBI. The inhibitory conditions of PDH (caused by PDP1-2 downregulations and PDK1-4 overexpression) and SDH appeared to operate only after sTBI. This produced almost no change in acetyl-CoA and free CoA-SH following mTBI and a remarkable depletion of both compounds after sTBI. These results again demonstrated temporary or steady mitochondrial malfunctioning, causing minimal or profound modifications to energy-related metabolites, following mTBI or sTBI, respectively. Additionally, PDH and SDH appeared to be highly sensitive to traumatic insults and are deeply involved in mitochondrial-related energy metabolism imbalance.
Collapse
|
31
|
Davies D, Yakoub KM, Scarpa U, Bentley C, Grey M, Hammond D, Sawlani V, Belli A, Di Pietro V. Serum miR-502: A potential biomarker in the diagnosis of concussion in a pilot study of patients with normal structural brain imaging. JOURNAL OF CONCUSSION 2019. [DOI: 10.1177/2059700219886190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Establishing a diagnosis of concussion within the context of competitive sport is frequently difficult due to the heterogeneity of presentation. Over the years, many endogenous proteins, including the recent Food and Drug Administration approved for mild-to-moderate traumatic brain injury, glial fibrillary acid protein and ubiquitin carboxy-terminal hydrolase, have been studied as potential biomarkers for the diagnosis of mild traumatic brain injury. Recently, a new class of potential biomarkers, the microRNAs, has shown promise as indicators of traumatic brain injury. In this pilot study, we have analysed the ability of pre-validated serum microRNAs (mi-425-5p and miR-502) to diagnose concussion, in cases without structural pathology. Their performance has been assessed alongside a set of identified protein biomarkers for traumatic brain injury in cohort of 41 concussed athletes. Athletes with a confirmed concussion underwent blood sampling after 48 h from concussion along with magnetic resonance imaging. Serum mi-425-5p and miR-502 were analysed by quantitative reverse transcription polymerase chain reaction, and digital immunoassay was used to determine serum concentrations of ubiquitin carboxy-terminal hydrolase, glial fibrillary acid protein, neurofilament light and Tau. Results were matched with 15 healthy volunteers. No structural/haemorrhagic pathology was identified. Protein biomarkers demonstrated variability among groups reflecting previous performance in the literature. Neurofilament light was the only marker to positively correlate with symptoms reported and SCAT5 scores. Despite the sub optimal timing of sampling beyond the optimal window for many of the protein biomarkers measured, miR-502 was significantly downregulated at all time points within a week form concussion ictus, showing a diagnostic sensitivity in cases beyond 48 h and without structural pathology.
Collapse
Affiliation(s)
- David Davies
- Neurotrauma and Ophthalmology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, UK
| | - Kamal M Yakoub
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Edgbaston, Birmingham, UK
| | - Ugo Scarpa
- Neurotrauma and Ophthalmology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, UK
| | - Connor Bentley
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Edgbaston, Birmingham, UK
| | - Michael Grey
- School of Sport and Exercise, University of East Anglia, Norwich, UK
| | - Douglas Hammond
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Edgbaston, Birmingham, UK
| | - Vijay Sawlani
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Edgbaston, Birmingham, UK
| | - Antonio Belli
- Neurotrauma and Ophthalmology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, UK
| | - Valentina Di Pietro
- Neurotrauma and Ophthalmology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
32
|
Abstract
Concussion, a peculiar type of mild traumatic brain injury (mTBI), is an injury frequently encountered in various contact and noncontact sports, such as boxing, martial arts, American football, rugby, soccer, ice hockey, horse riding, and alpine skiing. Concussion occurs anytime external forces of specific intensities provoke acceleration-deceleration of the brain, and it is characterized by the rapid onset of short-lived impairment of neurologic functions, spontaneously resolving within weeks, persisting for longer times only in a small percentage of cases. A wide range of molecular alterations, including mitochondrial dysfunction, energy deficit, and gene and protein expression changes, is triggered by concussion and lasts longer than clinical symptoms. In recent years, concussion has become a primary issue of discussion among sports medicine professionals, athletes, media, and sports sponsors in relation to athletes' return to play, after a concussion. Continued improvement in prevention and management of concussed athletes requires extensive research from different disciplines. Research work needs to focus on both prevention and management. Researchers and clinicians' efforts should be dedicated to a better understanding of the molecular changes occurring in the post-concussed brain and to clearly define healing after concussion for a safe return of athletes to play. It is essential for sports medicine professionals to stay informed about the advances in understanding concussions and how to rehabilitate each single player who sustained a concussion.
Collapse
|
33
|
Narayana S, Charles C, Collins K, Tsao JW, Stanfill AG, Baughman B. Neuroimaging and Neuropsychological Studies in Sports-Related Concussions in Adolescents: Current State and Future Directions. Front Neurol 2019; 10:538. [PMID: 31178818 PMCID: PMC6542940 DOI: 10.3389/fneur.2019.00538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/07/2019] [Indexed: 12/21/2022] Open
Abstract
Sports-related concussion, is a serious neurological concern that many adolescent athletes will face during their athletic careers. In some instances, the effects of sports-related head injury are long-lasting. Due to their still-developing brains, adolescents appear to be more vulnerable to long-term repercussions of these injuries. As all sports-related concussions are mild traumatic brain injuries (mTBI), this review we will examine the pathophysiology of mTBI, its acute effects and long-term risks from sustaining injury, and current and needed advancements in the areas of neuropsychological testing, accelerometer telemetry, and neuroimaging. Current methods do not adequately measure the extent of an injury that an athlete may sustain, potentially putting these athletes at a much greater risk for long-term effects. To better understand mTBI, neuropsychological testing best practices need to be developed, standardized, and implemented based on sound scientific evidence in order to be propagated as clinical guidelines. Wearable accelerometers can be used to assess thresholds for mTBI and cumulative effects of concussive and subconcussive injuries. Novel neuroimaging methods that can detect anatomical abnormalities and functional deficits with more specificity and sensitivity should be developed. Young athletes are particularly a vulnerable population warranting immediate and significant research aimed at protecting them against sports related injury and mitigating their long-term deficits.
Collapse
Affiliation(s)
- Shalini Narayana
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, The Neuroscience Institute, Memphis, TN, United States
| | - Christopher Charles
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Kassondra Collins
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Jack W Tsao
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, United States.,Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Foundation Research Institute, Memphis, TN, United States.,Department of Neurology, Memphis Veterans Affairs Medical Center, Memphis, TN, United States
| | - Ansley Grimes Stanfill
- Department of Acute and Tertiary Care, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Brandon Baughman
- Semmes Murphey Neurologic and Spine Institute, Memphis, TN, United States.,Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
34
|
Tabor J, Collins R, Debert CT, Shultz SR, Mychasiuk R. Neuroendocrine Whiplash: Slamming the Breaks on Anabolic-Androgenic Steroids Following Repetitive Mild Traumatic Brain Injury in Rats May Worsen Outcomes. Front Neurol 2019; 10:481. [PMID: 31133974 PMCID: PMC6517549 DOI: 10.3389/fneur.2019.00481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/23/2019] [Indexed: 11/13/2022] Open
Abstract
Sport-related concussion is an increasingly common injury among adolescents, with repetitive mild traumatic brain injuries (RmTBI) being a significant risk factor for long-term neurobiological and psychological consequences. It is not uncommon for younger professional athletes to consume anabolic-androgenic steroids (AAS) in an attempt to enhance their performance, subjecting their hormonally sensitive brains to potential impairment during neurodevelopment. Furthermore, RmTBI produces acute neuroendocrine dysfunction, specifically in the anterior pituitary, disrupting the hypothalamic-pituitary adrenal axis, lowering cortisol secretion that is needed to appropriately respond to injury. Some AAS users exhibit worse symptoms post-RmTBI if they quit their steroid regime. We sought to examine the pathophysiological outcomes associated with the abrupt cessation of the commonly abused AAS, Metandienone (Met) on RmTBI outcomes in rats. Prior to injury, adolescent male rats received either Met or placebo, and exercise. Rats were then administered RmTBIs or sham injuries, followed by steroid and exercise cessation (SEC) or continued treatment. A behavioral battery was conducted to measure outcomes consistent with clinical representations of post-concussion syndrome and chronic AAS exposure, followed by analysis of serum hormone levels, and qRT-PCR for mRNA expression and telomere length. RmTBI increased loss of consciousness and anxiety-like behavior, while also impairing balance and short-term working memory. SEC induced hyperactivity while Met treatment alone increased depressive-like behavior. There were cumulative effects whereby RmTBI and SEC exacerbated anxiety and short-term memory outcomes. mRNA expression in the prefrontal cortex, amygdala, hippocampus, and pituitary were modified in response to Met and SEC. Analysis of telomere length revealed the negative impact of SEC while Met and SEC produced changes in serum levels of testosterone and corticosterone. We identified robust changes in mRNA to serotonergic circuitry, neuroinflammation, and an enhanced stress response. Interestingly, Met treatment promoted glucocorticoid secretion after injury, suggesting that maintained AAS may be more beneficial than abstaining after mTBI.
Collapse
Affiliation(s)
- Jason Tabor
- Department of Psychology, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Reid Collins
- Department of Psychology, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Chantel T Debert
- Department of Psychology, University of Calgary, Calgary, AB, Canada.,Division of Physical Medicine and Rehabilitation, Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Sandy R Shultz
- Department of Neuroscience, Monash University, Melbourne, VIC, Australia.,Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Richelle Mychasiuk
- Department of Psychology, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Neuroscience, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
35
|
Yakoub KM, Lazzarino G, Amorini AM, Caruso G, Scazzone C, Ciaccio M, Tavazzi B, Lazzarino G, Belli A, Di Pietro V. Fructose-1,6-Bisphosphate Protects Hippocampal Rat Slices from NMDA Excitotoxicity. Int J Mol Sci 2019; 20:2239. [PMID: 31067671 PMCID: PMC6540300 DOI: 10.3390/ijms20092239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 04/29/2019] [Accepted: 05/04/2019] [Indexed: 12/18/2022] Open
Abstract
Effects of fructose 1,6-bisphosphate (F-1,6-P2) towards N-methyl-d-aspartate NMDA excitotoxicity were evaluated in rat organotypic hippocampal brain slice cultures (OHSC) challenged for 3 h with 30 μM NMDA, followed by incubations (24, 48, and 72 h) without (controls) and with F-1,6-P2 (0.5, 1 or 1.5 mM). At each time, cell necrosis was determined by measuring LDH in the medium. Energy metabolism was evaluated by measuring ATP, GTP, ADP, AMP, and ATP catabolites (nucleosides and oxypurines) in deproteinized OHSC extracts. Gene expressions of phosphofructokinase, aldolase, and glyceraldehyde-3-phosphate dehydrogenase were also measured. F-1,6-P2 dose-dependently decreased NMDA excitotoxicity, abolishing cell necrosis at the highest concentration tested (1.5 mM). Additionally, F-1,6-P2 attenuated cell energy imbalance caused by NMDA, ameliorating the mitochondrial phosphorylating capacity (increase in ATP/ADP ratio) Metabolism normalization occurred when using 1.5 mM F-1,6-P2. Remarkable increase in expressions of phosphofructokinase, aldolase and glyceraldehyde-3-phosphate dehydrogenase (up to 25 times over the values of controls) was also observed. Since this phenomenon was recorded even in OHSC treated with F-1,6-P2 with no prior challenge with NMDA, it is highly conceivable that F-1,6-P2 can enter into intact cerebral cells producing significant benefits on energy metabolism. These effects are possibly mediated by changes occurring at the gene level, thus opening new perspectives for F-1,6-P2 application as a useful adjuvant to rescue mitochondrial metabolism of cerebral cells under stressing conditions.
Collapse
Affiliation(s)
- Kamal M Yakoub
- Neurotrauma and Ophthalmology Research Group, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Edgbaston, Birmingham B15 2TH, UK.
| | - Giacomo Lazzarino
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, Largo F. Vito 1, 00168 Rome, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy.
| | - Angela M Amorini
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Giuseppe Caruso
- Oasi Research Institute⁻IRCCS, Via Conte Ruggero 73, 94018 Troina (EN), Italy.
| | - Concetta Scazzone
- Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, Via del Vespro 129, 90127 Palermo, Italy.
| | - Marcello Ciaccio
- Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, Via del Vespro 129, 90127 Palermo, Italy.
| | - Barbara Tavazzi
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, Largo F. Vito 1, 00168 Rome, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy.
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Antonio Belli
- Neurotrauma and Ophthalmology Research Group, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Edgbaston, Birmingham B15 2TH, UK.
| | - Valentina Di Pietro
- Neurotrauma and Ophthalmology Research Group, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Edgbaston, Birmingham B15 2TH, UK.
| |
Collapse
|
36
|
Koenig JB, Cantu D, Low C, Sommer M, Noubary F, Croker D, Whalen M, Kong D, Dulla CG. Glycolytic inhibitor 2-deoxyglucose prevents cortical hyperexcitability after traumatic brain injury. JCI Insight 2019; 5:126506. [PMID: 31038473 DOI: 10.1172/jci.insight.126506] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Traumatic brain injury (TBI) causes cortical dysfunction and can lead to post-traumatic epilepsy. Multiple studies demonstrate that GABAergic inhibitory network function is compromised following TBI, which may contribute to hyperexcitability and motor, behavioral, and cognitive deficits. Preserving the function of GABAergic interneurons, therefore, is a rational therapeutic strategy to preserve cortical function after TBI and prevent long-term clinical complications. Here, we explored an approach based on the ketogenic diet, a neuroprotective and anticonvulsant dietary therapy which results in reduced glycolysis and increased ketosis. Utilizing a pharmacologic inhibitor of glycolysis (2-deoxyglucose, or 2-DG), we found that acute in vitro application of 2-DG decreased the excitability of excitatory neurons, but not inhibitory interneurons, in cortical slices from naïve mice. Employing the controlled cortical impact (CCI) model of TBI in mice, we found that in vitro 2-DG treatment rapidly attenuated epileptiform activity seen in acute cortical slices 3 to 5 weeks after TBI. One week of in vivo 2-DG treatment immediately after TBI prevented the development of epileptiform activity, restored excitatory and inhibitory synaptic activity, and attenuated the loss of parvalbumin-expressing inhibitory interneurons. In summary, 2-DG may have therapeutic potential to restore network function following TBI.
Collapse
Affiliation(s)
- Jenny B Koenig
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA.,Neuroscience Program, Tufts University Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts, USA
| | - David Cantu
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Cho Low
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA.,Cellular, Molecular, and Developmental Biology Program, Tufts University Sackler School of Graduate Biomedical Sciences, Boston, Massachusetts, USA
| | - Mary Sommer
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Farzad Noubary
- Department of Health Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Danielle Croker
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Michael Whalen
- Neuroscience Center, Harvard Medical School, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Dong Kong
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
37
|
Atif H, Hicks SD. A Review of MicroRNA Biomarkers in Traumatic Brain Injury. J Exp Neurosci 2019; 13:1179069519832286. [PMID: 30886525 PMCID: PMC6410383 DOI: 10.1177/1179069519832286] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/29/2019] [Indexed: 12/13/2022] Open
Abstract
There is growing public concern surrounding traumatic brain injury (TBI). TBI can cause significant morbidity, and the long-term sequelae are poorly understood. TBI diagnosis and management rely on patient-reported symptoms and subjective clinical assessment. There are no biologic tools to detect mild TBI or to track brain recovery. Emerging evidence suggests that microRNAs (miRNAs) may provide information about the injured brain. These tiny epigenetic molecules are expressed throughout the body. However, they are particularly important in neurons, can cross the blood-brain barrier, and are securely transported from cell to cell, where they regulate gene expression. miRNA levels may identify patients with TBI and predict symptom duration. This review synthesizes miRNA findings from 14 human studies. We distill more than 291 miRNAs to 17 biomarker candidates that overlap across multiple studies and multiple biofluids. The goal of this review is to establish a collective understanding of miRNA biology in TBI and identify clinical priorities for future investigations of this promising biomarker.
Collapse
Affiliation(s)
| | - Steven D Hicks
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
38
|
Koenig JB, Dulla CG. Dysregulated Glucose Metabolism as a Therapeutic Target to Reduce Post-traumatic Epilepsy. Front Cell Neurosci 2018; 12:350. [PMID: 30459556 PMCID: PMC6232824 DOI: 10.3389/fncel.2018.00350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) is a significant cause of disability worldwide and can lead to post-traumatic epilepsy. Multiple molecular, cellular, and network pathologies occur following injury which may contribute to epileptogenesis. Efforts to identify mechanisms of disease progression and biomarkers which predict clinical outcomes have focused heavily on metabolic changes. Advances in imaging approaches, combined with well-established biochemical methodologies, have revealed a complex landscape of metabolic changes that occur acutely after TBI and then evolve in the days to weeks after. Based on this rich clinical and preclinical data, combined with the success of metabolic therapies like the ketogenic diet in treating epilepsy, interest has grown in determining whether manipulating metabolic activity following TBI may have therapeutic value to prevent post-traumatic epileptogenesis. Here, we focus on changes in glucose utilization and glycolytic activity in the brain following TBI and during seizures. We review relevant literature and outline potential paths forward to utilize glycolytic inhibitors as a disease-modifying therapy for post-traumatic epilepsy.
Collapse
Affiliation(s)
- Jenny B Koenig
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| |
Collapse
|
39
|
Lazzarino G, Listorti I, Muzii L, Amorini AM, Longo S, Di Stasio E, Caruso G, D’Urso S, Puglia I, Pisani G, Lazzarino G, Tavazzi B, Bilotta P. Low-molecular weight compounds in human seminal plasma as potential biomarkers of male infertility. Hum Reprod 2018; 33:1817-1828. [DOI: 10.1093/humrep/dey279] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/22/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Giacomo Lazzarino
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, and Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, Rome, Italy
| | - Ilaria Listorti
- Alma Res Fertility Centre, Centro di Fecondazione Assistita Alma Res, Via Parenzo 12, Rome, Italy
| | - Luigi Muzii
- Alma Res Fertility Centre, Centro di Fecondazione Assistita Alma Res, Via Parenzo 12, Rome, Italy
| | - Angela Maria Amorini
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, and Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, Rome, Italy
| | - Salvatore Longo
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, and Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, Rome, Italy
- LTA-Biotech srl, Viale Don Orione, 3D, Paternò, Catania, Italy
| | - Enrico Di Stasio
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, and Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, Rome, Italy
| | - Giuseppe Caruso
- Oasi Research Institute—IRCCS, Via Conte Ruggero, 73, Troina, Enna, Italy
| | - Serafina D’Urso
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Viale A. Doria 6, Catania, Italy
| | - Ilaria Puglia
- Faculty of Biosciences and Agro-Food and Environmental Technologies, University of Teramo, Via R. Balzarini 1, Teramo, Italy
| | - Giuseppe Pisani
- Department of Obstetrics and Gynecology, Azienda Ospedaliera S. Camillo-Forlanini, Cir.ne Gianicolense 87, Rome, Italy
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Viale A. Doria 6, Catania, Italy
- LTA-Biotech srl, Viale Don Orione, 3D, Paternò, Catania, Italy
| | - Barbara Tavazzi
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, and Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, Rome, Italy
| | - Pasquale Bilotta
- Alma Res Fertility Centre, Centro di Fecondazione Assistita Alma Res, Via Parenzo 12, Rome, Italy
| |
Collapse
|
40
|
Di Pietro V, Yakoub KM, Scarpa U, Di Pietro C, Belli A. MicroRNA Signature of Traumatic Brain Injury: From the Biomarker Discovery to the Point-of-Care. Front Neurol 2018; 9:429. [PMID: 29963002 PMCID: PMC6010584 DOI: 10.3389/fneur.2018.00429] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/22/2018] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) is a serious problem that causes high morbidity and mortality around the world. Currently, no reliable biomarkers are used to assess the severity and predict the recovery. Many protein biomarkers were extensively studied for diagnosis and prognosis of different TBI severities such as S-100β, glial fibrillary acidic protein (GFAP), neuron-specific enolase (NSE), neurofilament light chain (NFL), cleaved tau protein (C-tau), and ubiquitin C-terminal hydrolase-L1 (UCH-L1). However, none of these candidates is currently used in the clinical practice, due to relatively low sensitivity, for the diagnosis of mild TBI (mTBI) or mild to moderate TBI (MMTBI) patients who are clinically well and do not have a detectable intracranial pathology on the scans. MicroRNAs (miRNAs or miRs) are a class of small endogenous molecular regulators, which showed to be altered in different pathologies, including TBI and for this reason, their potential role in diagnosis, prognosis and therapeutic applications, is explored. Promising miRNAs such as miR-21, miR-16 or let-7i were identified as suitable candidate biomarkers for TBI and can differentiate mild from severe TBI. Also, they might represent new potential therapeutic targets. Identification of miRNA signature in tissue or biofluids, for several pathological conditions, is now possible thanks to the introduction of new high-throughput technologies such as microarray platform, Nanostring technologies or Next Generation Sequencing. This review has the aim to describe the role of microRNA in TBI and to explore the most commonly used techniques to identify microRNA profile. Understanding the strengths and limitations of the different methods can aid in the practical use of miRNA profiling for diverse clinical applications, including the development of a point-of-care device.
Collapse
Affiliation(s)
- Valentina Di Pietro
- Neurotrauma and Ophthalmology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,Surgical Reconstruction and Microbiology Research Centre, National Institute for Health Research, Queen Elizabeth Hospital, Birmingham, United Kingdom.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Illinois, IL, United States
| | - Kamal M Yakoub
- Surgical Reconstruction and Microbiology Research Centre, National Institute for Health Research, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Ugo Scarpa
- Surgical Reconstruction and Microbiology Research Centre, National Institute for Health Research, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Cinzia Di Pietro
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Section of Biology and Genetics G Sichel, Department of Biomedical Sciences and Biotechnology, University of Catania, Catania, Italy
| | - Antonio Belli
- Neurotrauma and Ophthalmology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,Surgical Reconstruction and Microbiology Research Centre, National Institute for Health Research, Queen Elizabeth Hospital, Birmingham, United Kingdom
| |
Collapse
|
41
|
Fresta CG, Chakraborty A, Wijesinghe MB, Amorini AM, Lazzarino G, Lazzarino G, Tavazzi B, Lunte SM, Caraci F, Dhar P, Caruso G. Non-toxic engineered carbon nanodiamond concentrations induce oxidative/nitrosative stress, imbalance of energy metabolism, and mitochondrial dysfunction in microglial and alveolar basal epithelial cells. Cell Death Dis 2018; 9:245. [PMID: 29445138 PMCID: PMC5833425 DOI: 10.1038/s41419-018-0280-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/14/2017] [Accepted: 12/22/2017] [Indexed: 12/27/2022]
Abstract
Engineered nanoparticles are finding a wide spectrum of biomedical applications, including drug delivery and capacity to trigger cytotoxic phenomena, potentially useful against tumor cells. The full understanding of their biosafety and interactions with cell processes is mandatory. Using microglial (BV-2) and alveolar basal epithelial (A549) cells, in this study we determined the effects of engineered carbon nanodiamonds (ECNs) on cell viability, nitric oxide (NO) and reactive oxygen species (ROS) production, as well as on energy metabolism. Particularly, we initially measured decrease in cell viability as a function of increasing ECNs doses, finding similar cytotoxic ECN effects in the two cell lines. Subsequently, using apparently non-cytotoxic ECN concentrations (2 µg/mL causing decrease in cell number < 5%) we determined NO and ROS production, and measured the concentrations of compounds related to energy metabolism, mitochondrial functions, oxido-reductive reactions, and antioxidant defences. We found that in both cell lines non-cytotoxic ECN concentrations increased NO and ROS production with sustained oxidative/nitrosative stress, and caused energy metabolism imbalance (decrease in high energy phosphates and nicotinic coenzymes) and mitochondrial malfunctioning (decrease in ATP/ADP ratio).These results underline the importance to deeply investigate the molecular and biochemical changes occurring upon the interaction of ECNs (and nanoparticles in general) with living cells, even at apparently non-toxic concentration. Since the use of ECNs in biomedical field is attracting increasing attention the complete evaluation of their biosafety, toxicity and/or possible side effects both in vitro and in vivo is mandatory before these highly promising tools might find the correct application.
Collapse
Affiliation(s)
- Claudia G Fresta
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 66045, Lawrence, KS, USA.,Department of Pharmaceutical Chemistry, University of Kansas, 66045, Lawrence, KS, USA
| | - Aishik Chakraborty
- Department of Chemical and Petroleum Engineering, University of Kansas, 66045, Lawrence, KS, USA
| | - Manjula B Wijesinghe
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 66045, Lawrence, KS, USA.,Department of Pharmaceutical Chemistry, University of Kansas, 66045, Lawrence, KS, USA
| | - Angela M Amorini
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of the Sacred Heart, 00168, Rome, Italy
| | - Giacomo Lazzarino
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of the Sacred Heart, 00168, Rome, Italy
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, 94018, Catania, Italy.
| | - Barbara Tavazzi
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of the Sacred Heart, 00168, Rome, Italy
| | - Susan M Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 66045, Lawrence, KS, USA.,Department of Pharmaceutical Chemistry, University of Kansas, 66045, Lawrence, KS, USA.,Department of Chemistry, University of Kansas, 66045, Lawrence, KS, USA
| | - Filippo Caraci
- Oasi Research Institute - IRCCS, 94018, Troina, Italy.,Department of Drug Sciences, University of Catania, 95125, Catania, Italy
| | - Prajnaparamita Dhar
- Department of Pharmaceutical Chemistry, University of Kansas, 66045, Lawrence, KS, USA. .,Department of Chemical and Petroleum Engineering, University of Kansas, 66045, Lawrence, KS, USA.
| | | |
Collapse
|
42
|
Kim S, Han SC, Gallan AJ, Hayes JP. Neurometabolic indicators of mitochondrial dysfunction in repetitive mild traumatic brain injury. Concussion 2017; 2:CNC48. [PMID: 30202587 PMCID: PMC6128012 DOI: 10.2217/cnc-2017-0013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/17/2017] [Indexed: 12/21/2022] Open
Abstract
Mild traumatic brain injury (mTBI) is a significant national health concern and there is growing evidence that repetitive mTBI (rmTBI) can cause long-term change in brain structure and function. The mitochondrion has been suggested to be involved in the mechanism of TBI. There are noninvasive methods of determining mitochondrial dysfunction through biomarkers and spectroscopy. Mitochondrial dysfunction has been implicated in a variety of neurological consequences secondary to rmTBI through activation of caspases and calpains. The purpose of this review is to examine the mechanism of mitochondrial dysfunction in rmTBI and its downstream effects on neuronal cell death, axonal injury and blood–brain barrier compromise.
Collapse
Affiliation(s)
- Susan Kim
- Boston University School of Medicine, Boston, MA 02118, USA.,Boston University School of Medicine, Boston, MA 02118, USA
| | - Steve C Han
- Boston University School of Medicine, Boston, MA 02118, USA.,Boston University School of Medicine, Boston, MA 02118, USA
| | - Alexander J Gallan
- Department of Pathology, University of Chicago Medical Center, Chicago, IL 60637, USA.,Department of Pathology, University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jasmeet P Hayes
- National Center for PTSD, VA Boston Healthcare System, Jamaica Plain, MA 02130, USA.,Department of Psychiatry, Boston University School of Medicine, Boston, MA 02118, USA.,National Center for PTSD, VA Boston Healthcare System, Jamaica Plain, MA 02130, USA.,Department of Psychiatry, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
43
|
McDougall M, Choi J, Truong L, Tanguay R, Traber MG. Vitamin E deficiency during embryogenesis in zebrafish causes lasting metabolic and cognitive impairments despite refeeding adequate diets. Free Radic Biol Med 2017; 110. [PMID: 28645790 PMCID: PMC5548191 DOI: 10.1016/j.freeradbiomed.2017.06.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Vitamin E (α-tocopherol; VitE) is a lipophilic antioxidant required for normal embryonic development in vertebrates, but the long-term effects of embryonic VitE deficiency, and whether they are ameliorated by feeding VitE-adequate diets, remain unknown. We addressed these questions using a zebrafish (Danio rerio) model of developmental VitE deficiency followed by dietary remediation. Adult zebrafish maintained on VitE-deficient (E-) or sufficient (E+) diets were spawned to obtained E- and E+ embryos, respectively, which we evaluated up to 12 days post-fertilization (dpf). The E- group suffered significantly increased morbidity and mortality as well as altered DNA methylation status through 5 dpf when compared to E+ larvae, but upon feeding with a VitE-adequate diet from 5 to 12 dpf both the E- and E+ groups survived and grew normally; the DNA methylation profile also was similar between groups by 12 dpf. However, 12 dpf E- larvae still had behavioral defects. These observations coincided with sustained VitE deficiency in the E- vs. E+ larvae (p < 0.0001), despite adequate dietary supplementation. We also found in E- vs. E+ larvae continued docosahexaenoic acid (DHA) depletion (p < 0.0001) and significantly increased lipid peroxidation. Further, targeted metabolomics analyses revealed persistent dysregulation of the cellular antioxidant network, the CDP-choline pathway, and glucose metabolism. While anaerobic processes were increased, aerobic metabolism was decreased in the E- vs. E+ larvae, indicating mitochondrial damage. Taken together, these outcomes suggest embryonic VitE deficiency causes lasting behavioral impairments due to persistent lipid peroxidation and metabolic perturbations that are not resolved via later dietary VitE supplementation.
Collapse
Affiliation(s)
- Melissa McDougall
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97330, USA; College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97330, USA
| | - Jaewoo Choi
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97330, USA
| | - Lisa Truong
- Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97330, USA; Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR 97330, USA
| | - Robert Tanguay
- Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97330, USA; Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR 97330, USA
| | - Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97330, USA; College of Public Health and Human Sciences, Oregon State University, Corvallis, OR 97330, USA.
| |
Collapse
|
44
|
Di Pietro V, Lazzarino G, Amorini AM, Signoretti S, Hill LJ, Porto E, Tavazzi B, Lazzarino G, Belli A. Fusion or Fission: The Destiny of Mitochondria In Traumatic Brain Injury of Different Severities. Sci Rep 2017; 7:9189. [PMID: 28835707 PMCID: PMC5569027 DOI: 10.1038/s41598-017-09587-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/27/2017] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial dynamics are regulated by a complex system of proteins representing the mitochondrial quality control (MQC). MQC balances antagonistic forces of fusion and fission determining mitochondrial and cell fates. In several neurological disorders, dysfunctional mitochondria show significant changes in gene and protein expression of the MQC and contribute to the pathophysiological mechanisms of cell damage. In this study, we evaluated the main gene and protein expression involved in the MQC in rats receiving traumatic brain injury (TBI) of different severities. At 6, 24, 48 and 120 hours after mild TBI (mTBI) or severe TBI (sTBI), gene and protein expressions of fusion and fission were measured in brain tissue homogenates. Compared to intact brain controls, results showed that genes and proteins inducing fusion or fission were upregulated and downregulated, respectively, in mTBI, but downregulated and upregulated, respectively, in sTBI. In particular, OPA1, regulating inner membrane dynamics, cristae remodelling, oxidative phosphorylation, was post-translationally cleaved generating differential amounts of long and short OPA1 in mTBI and sTBI. Corroborated by data referring to citrate synthase, these results confirm the transitory (mTBI) or permanent (sTBI) mitochondrial dysfunction, enhancing MQC importance to maintain cell functions and indicating in OPA1 an attractive potential therapeutic target for TBI.
Collapse
Affiliation(s)
- Valentina Di Pietro
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK.,National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Edgbaston, B15 2TH, Birmingham, UK
| | - Giacomo Lazzarino
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, Largo F. Vito 1, 00168, Rome, Italy
| | - Angela Maria Amorini
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, Largo F. Vito 1, 00168, Rome, Italy
| | - Stefano Signoretti
- Division of Neurosurgery, Department of Neurosciences Head and Neck Surgery, S. Camillo Hospital, Circonvallazione Gianicolense 87, 00152, Rome, Italy
| | - Lisa J Hill
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK.,National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Edgbaston, B15 2TH, Birmingham, UK
| | - Edoardo Porto
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK
| | - Barbara Tavazzi
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, Largo F. Vito 1, 00168, Rome, Italy.
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Viale A. Doria 6, 95125, Catania, Italy.
| | - Antonio Belli
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, UK.,National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Edgbaston, B15 2TH, Birmingham, UK
| |
Collapse
|
45
|
Lourenço CF, Ledo A, Barbosa RM, Laranjinha J. Neurovascular-neuroenergetic coupling axis in the brain: master regulation by nitric oxide and consequences in aging and neurodegeneration. Free Radic Biol Med 2017; 108:668-682. [PMID: 28435052 DOI: 10.1016/j.freeradbiomed.2017.04.026] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 02/21/2017] [Accepted: 04/18/2017] [Indexed: 02/08/2023]
Abstract
The strict energetic demands of the brain require that nutrient supply and usage be fine-tuned in accordance with the specific temporal and spatial patterns of ever-changing levels of neuronal activity. This is achieved by adjusting local cerebral blood flow (CBF) as a function of activity level - neurovascular coupling - and by changing how energy substrates are metabolized and shuttled amongst astrocytes and neurons - neuroenergetic coupling. Both activity-dependent increase of CBF and O2 and glucose utilization by active neural cells are inextricably linked, establishing a functional metabolic axis in the brain, the neurovascular-neuroenergetic coupling axis. This axis incorporates and links previously independent processes that need to be coordinated in the normal brain. We here review evidence supporting the role of neuronal-derived nitric oxide (•NO) as the master regulator of this axis. Nitric oxide is produced in tight association with glutamatergic activation and, diffusing several cell diameters, may interact with different molecular targets within each cell type. Hemeproteins such as soluble guanylate cyclase, cytochrome c oxidase and hemoglobin, with which •NO reacts at relatively fast rates, are but a few of the key in determinants of the regulatory role of •NO in the neurovascular-neuroenergetic coupling axis. Accordingly, critical literature supporting this concept is discussed. Moreover, in view of the controversy regarding the regulation of catabolism of different neural cells, we further discuss key aspects of the pathways through which •NO specifically up-regulates glycolysis in astrocytes, supporting lactate shuttling to neurons for oxidative breakdown. From a biomedical viewpoint, derailment of neurovascular-neuroenergetic axis is precociously linked to aberrant brain aging, cognitive impairment and neurodegeneration. Thus, we summarize current knowledge of how both neurovascular and neuroenergetic coupling are compromised in aging, traumatic brain injury, epilepsy and age-associated neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease, suggesting that a shift in cellular redox balance may contribute to divert •NO bioactivity from regulation to dysfunction.
Collapse
Affiliation(s)
- Cátia F Lourenço
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Ana Ledo
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Rui M Barbosa
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - João Laranjinha
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
46
|
Amorini AM, Lazzarino G, Di Pietro V, Signoretti S, Lazzarino G, Belli A, Tavazzi B. Severity of experimental traumatic brain injury modulates changes in concentrations of cerebral free amino acids. J Cell Mol Med 2016; 21:530-542. [PMID: 27696676 PMCID: PMC5323875 DOI: 10.1111/jcmm.12998] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/26/2016] [Indexed: 12/29/2022] Open
Abstract
In this study, concentrations of free amino acids (FAA) and amino group containing compounds (AGCC) following graded diffuse traumatic brain injury (mild TBI, mTBI; severe TBI, sTBI) were evaluated. After 6, 12, 24, 48 and 120 hr aspartate (Asp), glutamate (Glu), asparagine (Asn), serine (Ser), glutamine (Gln), histidine (His), glycine (Gly), threonine (Thr), citrulline (Cit), arginine (Arg), alanine (Ala), taurine (Tau), γ‐aminobutyrate (GABA), tyrosine (Tyr), S‐adenosylhomocysteine (SAH), l‐cystathionine (l‐Cystat), valine (Val), methionine (Met), tryptophane (Trp), phenylalanine (Phe), isoleucine (Ile), leucine (Leu), ornithine (Orn), lysine (Lys), plus N‐acetylaspartate (NAA) were determined in whole brain extracts (n = 6 rats at each time for both TBI levels). Sham‐operated animals (n = 6) were used as controls. Results demonstrated that mTBI caused modest, transient changes in NAA, Asp, GABA, Gly, Arg. Following sTBI, animals showed profound, long‐lasting modifications of Glu, Gln, NAA, Asp, GABA, Ser, Gly, Ala, Arg, Citr, Tau, Met, SAH, l‐Cystat, Tyr and Phe. Increase in Glu and Gln, depletion of NAA and Asp increase, suggested a link between NAA hydrolysis and excitotoxicity after sTBI. Additionally, sTBI rats showed net imbalances of the Glu‐Gln/GABA cycle between neurons and astrocytes, and of the methyl‐cycle (demonstrated by decrease in Met, and increase in SAH and l‐Cystat), throughout the post‐injury period. Besides evidencing new potential targets for novel pharmacological treatments, these results suggest that the force acting on the brain tissue at the time of the impact is the main determinant of the reactions ignited and involving amino acid metabolism.
Collapse
Affiliation(s)
- Angela Maria Amorini
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, Rome, Italy
| | - Giacomo Lazzarino
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, Rome, Italy
| | - Valentina Di Pietro
- Neuroscience and Ophthalmology group, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Stefano Signoretti
- Division of Neurosurgery, Department of Neurosciences Head and Neck Surgery, S. Camillo Hospital, Rome, Italy
| | - Giuseppe Lazzarino
- Division of Medical Biochemistry, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Antonio Belli
- Neuroscience and Ophthalmology group, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Birmingham, UK
| | - Barbara Tavazzi
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, Rome, Italy
| |
Collapse
|
47
|
Zhang C, Li JM, Dou DZ, Hu JL. Clinical study on acute craniocerebral injury treated with mild hypothermia auxiliary therapy. JOURNAL OF ACUTE DISEASE 2016. [DOI: 10.1016/j.joad.2016.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|