1
|
Gurevich E, Landau D. Tubulointerstitial nephritis in children and adolescents. Pediatr Nephrol 2025; 40:319-328. [PMID: 39320551 DOI: 10.1007/s00467-024-06526-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024]
Abstract
The tubulointerstitial compartment comprises most of the kidney parenchyma. Inflammation in this compartment (tubulointerstitial nephritis-TIN) can be acute and resolves if the offending factor is withdrawn or may enter a chronic process leading to irreversible kidney damage. Etiologic factors differ, including different exposures, infections, and autoimmune and genetic tendency, and the initial damage can be acute, recurrent, or permanent, determining whether the acute inflammatory process will lead to complete healing or to a chronic course of inflammation leading to fibrosis. Clinical and laboratory findings of TIN are often nonspecific, which may lead to delayed diagnosis and a poorer clinical outcome. We provide a general review of TIN, with special mention of the molecular pathophysiological mechanisms of the associated kidney damage.
Collapse
Affiliation(s)
- Evgenia Gurevich
- Pediatrics Department, Barzilai University Medical Center, Ashqelon, Israel.
- Ben Gurion University of Negev, Faculty of Health Sciences, Beer Sheva, Israel.
| | - Daniel Landau
- Department of Nephrology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Bourdon E, Swierczewski T, Goujon M, Boukrout N, Fellah S, Van der Hauwaert C, Larrue R, Lefebvre B, Van Seuningen I, Cauffiez C, Pottier N, Perrais M. MUC1 Drives the Progression and Chemoresistance of Clear Cell Renal Carcinomas. Cancers (Basel) 2024; 16:391. [PMID: 38254882 PMCID: PMC10814283 DOI: 10.3390/cancers16020391] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
While the transmembrane glycoprotein mucin 1 (MUC1) is clustered at the apical borders of normal epithelial cells, with transformation and loss of polarity, MUC1 is found at high levels in the cytosol and is uniformly distributed over the entire surface of carcinoma cells, where it can promote tumor progression and adversely affects the response to therapy. Clear cell renal cell carcinoma (ccRCC), the main histotype of kidney cancer, is typically highly resistant to conventional and targeted therapies for reasons that remain largely unknown. In this context, we investigated whether MUC1 also plays a pivotal role in the cellular and molecular events driving ccRCC progression and chemoresistance. We showed, using loss- and gain-of-function approaches in ccRCC-derived cell lines, that MUC1 not only influences tumor progression but also induces a multi-drug-resistant profile reminiscent of the activation of ABC drug efflux transporters. Overall, our results suggest that targeting MUC1 may represent a novel therapeutic approach to limit ccRCC progression and improve drug sensitivity.
Collapse
Affiliation(s)
- Emma Bourdon
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.B.); (T.S.); (M.G.); (N.B.); (S.F.); (C.V.d.H.); (R.L.); (I.V.S.); (C.C.); (N.P.)
| | - Thomas Swierczewski
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.B.); (T.S.); (M.G.); (N.B.); (S.F.); (C.V.d.H.); (R.L.); (I.V.S.); (C.C.); (N.P.)
| | - Marine Goujon
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.B.); (T.S.); (M.G.); (N.B.); (S.F.); (C.V.d.H.); (R.L.); (I.V.S.); (C.C.); (N.P.)
| | - Nihad Boukrout
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.B.); (T.S.); (M.G.); (N.B.); (S.F.); (C.V.d.H.); (R.L.); (I.V.S.); (C.C.); (N.P.)
| | - Sandy Fellah
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.B.); (T.S.); (M.G.); (N.B.); (S.F.); (C.V.d.H.); (R.L.); (I.V.S.); (C.C.); (N.P.)
| | - Cynthia Van der Hauwaert
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.B.); (T.S.); (M.G.); (N.B.); (S.F.); (C.V.d.H.); (R.L.); (I.V.S.); (C.C.); (N.P.)
| | - Romain Larrue
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.B.); (T.S.); (M.G.); (N.B.); (S.F.); (C.V.d.H.); (R.L.); (I.V.S.); (C.C.); (N.P.)
- CHU Lille, Service de Toxicologie et Génopathies, F-59000 Lille, France
| | - Bruno Lefebvre
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR-S1172, Neuroscience & Cognition, Alzheimer & Tauopathies, F-59000 Lille, France;
| | - Isabelle Van Seuningen
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.B.); (T.S.); (M.G.); (N.B.); (S.F.); (C.V.d.H.); (R.L.); (I.V.S.); (C.C.); (N.P.)
| | - Christelle Cauffiez
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.B.); (T.S.); (M.G.); (N.B.); (S.F.); (C.V.d.H.); (R.L.); (I.V.S.); (C.C.); (N.P.)
| | - Nicolas Pottier
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.B.); (T.S.); (M.G.); (N.B.); (S.F.); (C.V.d.H.); (R.L.); (I.V.S.); (C.C.); (N.P.)
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR-S1172, Neuroscience & Cognition, Alzheimer & Tauopathies, F-59000 Lille, France;
| | - Michaël Perrais
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.B.); (T.S.); (M.G.); (N.B.); (S.F.); (C.V.d.H.); (R.L.); (I.V.S.); (C.C.); (N.P.)
| |
Collapse
|
3
|
Naas S, Krüger R, Knaup KX, Naas J, Grampp S, Schiffer M, Wiesener M, Schödel J. Hypoxia controls expression of kidney-pathogenic MUC1 variants. Life Sci Alliance 2023; 6:e202302078. [PMID: 37316299 PMCID: PMC10267510 DOI: 10.26508/lsa.202302078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/16/2023] Open
Abstract
The interplay between genetic and environmental factors influences the course of chronic kidney disease (CKD). In this context, genetic alterations in the kidney disease gene MUC1 (Mucin1) predispose to the development of CKD. These variations comprise the polymorphism rs4072037, which alters splicing of MUC1 mRNA, the length of a region with variable number of tandem repeats (VNTR), and rare autosomal-dominant inherited dominant-negative mutations in or 5' to the VNTR that causes autosomal dominant tubulointerstitial kidney disease (ADTKD-MUC1). As hypoxia plays a pivotal role in states of acute and chronic kidney injury, we explored the effects of hypoxia-inducible transcription factors (HIF) on the expression of MUC1 and its pathogenic variants in isolated primary human renal tubular cells. We defined a HIF-binding DNA regulatory element in the promoter-proximal region of MUC1 from which hypoxia or treatment with HIF stabilizers, which were recently approved for an anti-anemic therapy in CKD patients, increased levels of wild-type MUC1 and the disease-associated variants. Thus, application of these compounds might exert unfavorable effects in patients carrying MUC1 risk variants.
Collapse
Affiliation(s)
- Stephanie Naas
- Department of Nephrology and Hypertension, Uniklinikum Erlangen und Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - René Krüger
- Department of Nephrology and Hypertension, Uniklinikum Erlangen und Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Karl Xaver Knaup
- Department of Nephrology and Hypertension, Uniklinikum Erlangen und Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Naas
- Center for Integrative Bioinformatics Vienna (CIBIV), Max Perutz Labs, University of Vienna and Medical University of Vienna, Wien, Austria
| | - Steffen Grampp
- Department of Nephrology and Hypertension, Uniklinikum Erlangen und Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Mario Schiffer
- Department of Nephrology and Hypertension, Uniklinikum Erlangen und Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Wiesener
- Department of Nephrology and Hypertension, Uniklinikum Erlangen und Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Johannes Schödel
- Department of Nephrology and Hypertension, Uniklinikum Erlangen und Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
4
|
Kang HM. Kidney Organoid Derived from Human Pluripotent and Adult Stem Cells for Disease Modeling. Dev Reprod 2023; 27:57-65. [PMID: 37529017 PMCID: PMC10390101 DOI: 10.12717/dr.2023.27.2.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/27/2023] [Accepted: 05/26/2023] [Indexed: 08/03/2023]
Abstract
Kidney disease affects a significant portion of the global population, yet effective therapies are lacking despite advancements in identifying genetic causes. This limitation can be attributed to the absence of adequate in vitro models that accurately mimic human kidney disease, hindering targeted therapeutic development. However, the emergence of human induced pluripotent stem cells (PSCs) and the development of organoids using them have opened up a way to model kidney development and disease in humans, as well as validate the effects of new drugs. To fully leverage their capabilities in these fields, it is crucial for kidney organoids to closely resemble the structure and functionality of adult human kidneys. In this review, we aim to discuss the potential of using human PSCs or adult kidney stem cell-derived kidney organoids to model genetic kidney disease and renal cancer.
Collapse
Affiliation(s)
- Hyun Mi Kang
- Korea Research Institute of Bioscience
and Biotechnology (KRIBB), Daejeon 34141,
Korea
- Department of Functional Genomics, Korea
University of Science and Technology (UST), Daejeon
34113, Korea
| |
Collapse
|
5
|
Mantell BS, Cordero H, See SB, Clerkin KJ, Vasilescu R, Marboe CC, Naka Y, Restaino S, Colombo PC, Addonizio LJ, Farr MA, Zorn E. Transcriptomic heterogeneity of antibody mediated rejection after heart transplant with or without donor specific antibodies. J Heart Lung Transplant 2021; 40:1472-1480. [PMID: 34420852 PMCID: PMC8571048 DOI: 10.1016/j.healun.2021.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Antibody mediated rejection (AMR) is an increasingly studied cause of graft failure after heart transplantation. AMR diagnosis previously required the detection of circulating donor specific antibodies (DSA); however, the most recent criteria only require pathological findings. This classification defined a subset of patients with AMR, yet without known antibodies. Here, we sought to evaluate differences in the transcriptome profile associated with different types of AMR. METHODS RNA sequencing was used on endomyocardial biopsies to analyze and compare transcriptomic profiles associated with different subtypes of AMR defined by immunopathological and histopathological findings, as well as the presence or absence of DSA. Gene expression profiles were characterized for each diagnostic group. RESULTS The most divergent gene expression profiles were observed between patients with or without DSA. AMR subtypes associated with DSA showed expression of signature genes involved in monocyte activation and response to interferon. There was also substantial difference between the transcriptomic profiles of AMR defined by histopathological and immunopathological findings, the latter being associated with expression of mucin genes. In contrast, there was no differential RNA expression between patients with pAMR1i without DSA and those without AMR. Likewise, no differential expression was observed between patients with pAMR1h with DSA and pAMR2. CONCLUSIONS Overall, our studies reveal different expression profiles in endomyocardial biopsies in relation to some key criteria used to diagnose AMR. These findings support the view that the diagnosis of AMR encompasses several phenotypes that may rely on distinct mechanisms of injury.
Collapse
Affiliation(s)
- Benjamin S Mantell
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York; Department of Pediatrics, Division of Pediatric Cardiology, Columbia University Medical Center, New York, New York
| | - Hector Cordero
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York
| | - Sarah B See
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York
| | - Kevin J Clerkin
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York
| | - Rodica Vasilescu
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Charles C Marboe
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Yoshifumi Naka
- Department of Surgery, Division of Cardiothoracic Surgery, Columbia University Medical Center, New York, New York
| | - Susan Restaino
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, New York
| | - Paolo C Colombo
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, New York
| | - Linda J Addonizio
- Department of Pediatrics, Division of Pediatric Cardiology, Columbia University Medical Center, New York, New York
| | - Maryjane A Farr
- Department of Medicine, Division of Cardiology, Columbia University Medical Center, New York, New York
| | - Emmanuel Zorn
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York.
| |
Collapse
|
6
|
Tao Y, Han J, Liu W, An L, Hu W, Wang N, Yu Y. MUC1 Promotes Mesangial Cell Proliferation and Kidney Fibrosis in Diabetic Nephropathy Through Activating STAT and β-Catenin Signal Pathway. DNA Cell Biol 2021; 40:1308-1316. [PMID: 34520253 DOI: 10.1089/dna.2021.0098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Diabetic nephropathy (DN) is a complication of diabetes, which leads to most end-stage kidney diseases and threatens health of patients. Mucin 1 (MUC1) is a heterodimeric oncoprotein, which is abnormally expressed in tumors and hematologic diseases. The aim of this study is to clarify the mechanism and role of MUC1 in DN. The mesangial cells (MCs) suffered from high glucose (HG) treatment to mimic DN in vitro. The cell proliferation was detected by Cell Counting Kit-8 assay and 5-ethynyl-2-deoxyuridine (EdU) staining assay. The expression of MUC1 and fibrosis markers: fibronectin, collagen I, and collagen IV were assessed by western blot. In this study, we demonstrated that HG treatment induced MUC1 expression in MCs. With knockdown of MUC1 or overexpressed MUC1 in MCs, the results indicated that knockdown of MUC1 inhibited MCs proliferation and reduced kidney fibrosis markers expression, including fibronectin, collagen I, and collagen IV, whereas overexpression of MUC1 led to opposite results. Mechanically, MUC1 activated signal transducers and activators of transcription (STAT) and β-catenin signal pathway. After added AG490 (STAT inhibitor) or FH535 (β-catenin inhibitor), blocking STAT3 and β-catenin signal pathway attenuated MUC1-induced cell proliferation and fibronectin production in MCs. Finally, knockdown of MUC1 attenuated DN-induced kidney fibrosis in db/db mice. Therapeutic target for DN. In conclusion, MUC1 promotes MCs proliferation and kidney fibrosis in DN through activating STAT and β-catenin signal pathway, which can help to provide a novel therapeutic target for DN.
Collapse
Affiliation(s)
- Yiying Tao
- Department of Nephrology, Qinghai Provincial People's Hospital, Xining City, China
| | - Jianfang Han
- Department of Nephrology, Qinghai Provincial People's Hospital, Xining City, China
| | - Wenhua Liu
- Department of Nephrology, Qinghai Provincial People's Hospital, Xining City, China
| | - Ling An
- Department of Nephrology, Qinghai Provincial People's Hospital, Xining City, China
| | - Wenbo Hu
- Department of Nephrology, Qinghai Provincial People's Hospital, Xining City, China
| | - Ningning Wang
- Department of Nephrology, Qinghai Provincial People's Hospital, Xining City, China
| | - Yean Yu
- Department of Nephrology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan City, China
| |
Collapse
|
7
|
Jamaly S, Tsokos MG, Bhargava R, Brook OR, Hecht JL, Abdi R, Moulton VR, Satyam A, Tsokos GC. Complement activation and increased expression of Syk, mucin-1 and CaMK4 in kidneys of patients with COVID-19. Clin Immunol 2021; 229:108795. [PMID: 34252574 PMCID: PMC8270746 DOI: 10.1016/j.clim.2021.108795] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
Acute and chronic kidney failure is common in hospitalized patients with COVID-19, yet the mechanism of injury and predisposing factors remain poorly understood. We investigated the role of complement activation by determining the levels of deposited complement components (C1q, C3, FH, C5b-9) and immunoglobulin along with the expression levels of the injury-associated molecules spleen tyrosine kinase (Syk), mucin-1 (MUC1) and calcium/calmodulin-dependent protein kinase IV (CaMK4) in the kidney tissues of people who succumbed to COVID-19. We report increased deposition of C1q, C3, C5b-9, total immunoglobulin, and high expression levels of Syk, MUC1 and CaMK4 in the kidneys of COVID-19 patients. Our study provides strong rationale for the expansion of trials involving the use of inhibitors of these molecules, in particular C1q, C3, Syk, MUC1 and CaMK4 to treat patients with COVID-19.
Collapse
Affiliation(s)
- Simin Jamaly
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; Department of Medical Biology, Faculty of Health Science, UiT Arctic University of Norway, N-9037 Tromsø, Norway
| | - Maria G Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Rhea Bhargava
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Olga R Brook
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Jonathan L Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Vaishali R Moulton
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Abhigyan Satyam
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Chen W, Zhang Z, Zhang S, Zhu P, Ko JKS, Yung KKL. MUC1: Structure, Function, and Clinic Application in Epithelial Cancers. Int J Mol Sci 2021; 22:ijms22126567. [PMID: 34207342 PMCID: PMC8234110 DOI: 10.3390/ijms22126567] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/18/2022] Open
Abstract
The transmembrane glycoprotein mucin 1 (MUC1) is a mucin family member that has different functions in normal and cancer cells. Owing to its structural and biochemical properties, MUC1 can act as a lubricant, moisturizer, and physical barrier in normal cells. However, in cancer cells, MUC1 often undergoes aberrant glycosylation and overexpression. It is involved in cancer invasion, metastasis, angiogenesis, and apoptosis by virtue of its participation in intracellular signaling processes and the regulation of related biomolecules. This review introduces the biological structure and different roles of MUC1 in normal and cancer cells and the regulatory mechanisms governing these roles. It also evaluates current research progress and the clinical applications of MUC1 in cancer therapy based on its characteristics.
Collapse
Affiliation(s)
- Wenqing Chen
- Division of Teaching and Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China;
| | - Zhu Zhang
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China; (Z.Z.); (S.Z.); (P.Z.)
| | - Shiqing Zhang
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China; (Z.Z.); (S.Z.); (P.Z.)
| | - Peili Zhu
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China; (Z.Z.); (S.Z.); (P.Z.)
| | - Joshua Ka-Shun Ko
- Division of Teaching and Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China;
- Correspondence: (J.K.-S.K.); (K.K.-L.Y.); Tel.: +852-3411-2907 (J.K.-S.K.); +852-3411-7060 (K.K.-L.Y.); Fax: +852-3411-2461 (J.K.-S.K.); +852-3411-5995 (K.K.-L.Y.)
| | - Ken Kin-Lam Yung
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China; (Z.Z.); (S.Z.); (P.Z.)
- Correspondence: (J.K.-S.K.); (K.K.-L.Y.); Tel.: +852-3411-2907 (J.K.-S.K.); +852-3411-7060 (K.K.-L.Y.); Fax: +852-3411-2461 (J.K.-S.K.); +852-3411-5995 (K.K.-L.Y.)
| |
Collapse
|
9
|
MUC1 Mitigates Renal Injury and Inflammation in Endotoxin Induced Acute Kidney Injury by Inhibiting the TLR4-MD2 Axis and Reducing Pro-Inflammatory Macrophages Infiltration. Shock 2021; 56:629-638. [PMID: 33534395 DOI: 10.1097/shk.0000000000001742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Sepsis is the leading cause of acute kidney injury (AKI) in critical care patients. A cornerstone of sepsis-associated AKI is dysregulated inflammation driven by excessive activation of Toll-like receptor 4 (TLR4) pathway. MUC1, a membrane bound mucin expressed in both epithelial tubular cells and renal macrophages, has been shown to be involved in the regulation of TLRs. Therefore we hypothesized that MUC1 could mitigate the renal inflammatory response to TLR4 activation. To test this hypothesis, we used a murine model of endotoxin-induced AKI by intraperitoneal injection of lipopolysaccharide (LPS). We showed that Muc1-/- mice have a more severe renal dysfunction, an increased activation of the tissular NF-kB pathway and secreted more pro inflammatory cytokines compare to Muc1+/+ mice. By flow cytometry, we observed that the proportion of M1 (pro-inflammatory) macrophages in the kidneys of Muc1-/- mice was significantly increased. In human and murine primary macrophages, we showed that MUC1 is only induced in M1 type macrophages and that macrophages derived from Muc1-/- mice secreted more pro-inflammatory cytokines. Eventually, in HEK293 cells, we showed that (i) MUC1 cytosolic domain (CT) seems necessary for the negative regulation of TLR4 (ii) by proximity ligation assay, MUC1-CT is in close relationship with TLR4 and acts as a competitive inhibitor of the recruitment of MYD88. Overall our results support that in the context of endotoxin-induced AKI, MUC1 plays a significant role in controlling disease severity by regulating negatively the TLR4-MD2 axis.
Collapse
|
10
|
Zheng J, Mei Y, Zhai G, Zhao N, Jia D, Fan Y. Downregulation of RUNX3 has a poor prognosis and promotes tumor progress in kidney cancer. Urol Oncol 2020; 38:740.e11-740.e20. [PMID: 32600926 DOI: 10.1016/j.urolonc.2020.05.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 05/07/2020] [Accepted: 05/19/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Kidney cancer usually shows no symptoms until the tumor is relatively large, and current drugs fail to stop the tumor recurrence. The transcriptional factor Runt-related transcription factor 3 (RUNX3) has been reported to function as a tumor suppressor in many types of cancers. METHODS Kidney cancer and adjacent normal tissues were collected from 12 patients to test the expression of RUNX3 by real-time quantitative PCR, immunoblotting, and immunohistochemistry. Promoter methylation status of RUNX3 was determined using methylation analysis from 103 patient samples. Kidney cancer cell lines and xenograft mouse model were used to investigate the promoter methylation and cancer progression through inhibitor treatment and loss/gain-of-function experiments. RESULTS RUNX3 was significantly downregulated in kidney cancer tissues and cells, which could be elevated by higher methylation status at its promoter region. RUNX3 promoter methylation was positively correlated with poor prognosis of kidney cancer. RUNX3 loss-of-function promoted the cell proliferation, migration, and invasion of kidney cancer cells, in contrast, RUNX3 overexpression inhibited the cancer cell progression. This study provides the first instance of the effect of RUNX3 expression and its promoter methylation status on kidney cancer. CONCLUSION Targeting RUNX3 pathway and its promoter methylation are potential therapeutic strategies to treat kidney cancer.
Collapse
Affiliation(s)
- Jianbo Zheng
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Department of Urology, Central Hospital of Zibo, Zibo, Shandong, China
| | - Yanhui Mei
- Department of Urology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Guangsheng Zhai
- Department of Radiotherapy, Central Hospital of Zibo, Zibo, Shandong, China
| | - Ning Zhao
- Department of Urology, Central Hospital of Zibo, Zibo, Shandong, China
| | - Dongsheng Jia
- Department of Urology, Central Hospital of Zibo, Zibo, Shandong, China
| | - Yidong Fan
- Department of Urology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
11
|
Small Molecule Targets TMED9 and Promotes Lysosomal Degradation to Reverse Proteinopathy. Cell 2020; 178:521-535.e23. [PMID: 31348885 DOI: 10.1016/j.cell.2019.07.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 04/19/2019] [Accepted: 06/28/2019] [Indexed: 02/07/2023]
Abstract
Intracellular accumulation of misfolded proteins causes toxic proteinopathies, diseases without targeted therapies. Mucin 1 kidney disease (MKD) results from a frameshift mutation in the MUC1 gene (MUC1-fs). Here, we show that MKD is a toxic proteinopathy. Intracellular MUC1-fs accumulation activated the ATF6 unfolded protein response (UPR) branch. We identified BRD4780, a small molecule that clears MUC1-fs from patient cells, from kidneys of knockin mice and from patient kidney organoids. MUC1-fs is trapped in TMED9 cargo receptor-containing vesicles of the early secretory pathway. BRD4780 binds TMED9, releases MUC1-fs, and re-routes it for lysosomal degradation, an effect phenocopied by TMED9 deletion. Our findings reveal BRD4780 as a promising lead for the treatment of MKD and other toxic proteinopathies. Generally, we elucidate a novel mechanism for the entrapment of misfolded proteins by cargo receptors and a strategy for their release and anterograde trafficking to the lysosome.
Collapse
|
12
|
Qiu Y, Huang X, He W. The regulatory role of HIF-1 in tubular epithelial cells in response to kidney injury. Histol Histopathol 2019; 35:321-330. [PMID: 31691948 DOI: 10.14670/hh-18-182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The high sensitivity to changes in oxygen tension makes kidney vulnerable to hypoxia. Both acute kidney injury and chronic kidney disease are almost always accompanied by hypoxia. Tubular epithelial cells (TECs), the dominant intrinsic cells in kidney tissue, are believed to be not only a victim in the pathological process of various kidney diseases, but also a major contributor to kidney damage. Hypoxia inducible factor-1 (HIF-1) is the main regulator of adaptive response of cells to hypoxia. Under various clinical and experimental kidney disease conditions, HIF-1 plays a pivotal role in modulating multiple cellular processes in TECs, including apoptosis, autophagy, inflammation, metabolic pattern alteration, and cell cycle arrest. A comprehensive understanding of the mechanisms by which HIF-1 regulates these cellular processes in TECs may help identify potential therapeutic targets to improve the outcome of acute kidney injury and delay the progression of chronic kidney disease.
Collapse
Affiliation(s)
- Yumei Qiu
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaowen Huang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weichun He
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
13
|
Fini ME, Jeong S, Gong H, Martinez-Carrasco R, Laver NMV, Hijikata M, Keicho N, Argüeso P. Membrane-associated mucins of the ocular surface: New genes, new protein functions and new biological roles in human and mouse. Prog Retin Eye Res 2019; 75:100777. [PMID: 31493487 DOI: 10.1016/j.preteyeres.2019.100777] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/26/2019] [Accepted: 08/31/2019] [Indexed: 01/17/2023]
Abstract
The mucosal glycocalyx of the ocular surface constitutes the point of interaction between the tear film and the apical epithelial cells. Membrane-associated mucins (MAMs) are the defining molecules of the glycocalyx in all mucosal epithelia. Long recognized for their biophysical properties of hydration, lubrication, anti-adhesion and repulsion, MAMs maintain the wet ocular surface, lubricate the blink, stabilize the tear film and create a physical barrier to the outside world. However, it is increasingly appreciated that MAMs also function as cell surface receptors that transduce information from the outside to the inside of the cell. A number of excellent review articles have provided perspective on the field as it has progressed since 1987, when molecular cloning of the first MAM was reported. The current article provides an update for the ocular surface, placing it into the broad context of findings made in other organ systems, and including new genes, new protein functions and new biological roles. We discuss the epithelial tissue-equivalent with mucosal differentiation, the key model system making these advances possible. In addition, we make the first systematic comparison of MAMs in human and mouse, establishing the basis for using knockout mice for investigations with the complexity of an in vivo system. Lastly, we discuss findings from human genetics/genomics, which are providing clues to new MAM roles previously unimagined. Taken together, this information allows us to generate hypotheses for the next stage of investigation to expand our knowledge of MAM function in intracellular signaling and roles unique to the ocular surface.
Collapse
Affiliation(s)
- M Elizabeth Fini
- Department of Ophthalmology, Tufts University School of Medicine, at New England Eye Center, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA.
| | - Shinwu Jeong
- USC Roski Eye Institute and Department of Ophthalmology, Keck School of Medicine of USC, University of Southern California, 1975 Zonal Ave, Los Angeles, CA, 90033, USA.
| | - Haiyan Gong
- Department of Ophthalmology, Boston University School of Medicine, 72 E Concord St, Boston, MA, 02118, USA.
| | - Rafael Martinez-Carrasco
- Department of Ophthalmology, Tufts University School of Medicine, at New England Eye Center, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA.
| | - Nora M V Laver
- Department of Ophthalmology, Tufts University School of Medicine, at New England Eye Center, Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA.
| | - Minako Hijikata
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, 3-1-24 Matsuyama, Kiyose-shi, Tokyo, 204-8533, Japan.
| | - Naoto Keicho
- Department of Pathophysiology and Host Defense, The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, 3-1-24 Matsuyama, Kiyose-shi, Tokyo, 204-8533, Japan.
| | - Pablo Argüeso
- Department of Ophthalmology, Harvard Medical School, at Schepens Eye Research Institute of Mass. Eye and Ear, 20 Staniford St, Boston, MA, 02114, USA.
| |
Collapse
|
14
|
Cameron GJM, Jiang SH, Loering S, Deshpande AV, Hansbro PM, Starkey MR. Emerging therapeutic potential of group 2 innate lymphoid cells in acute kidney injury. J Pathol 2019; 248:9-15. [PMID: 30684265 DOI: 10.1002/path.5242] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/16/2019] [Accepted: 01/20/2019] [Indexed: 12/26/2022]
Abstract
Acute kidney injury (AKI) remains a global challenge and, despite the availability of dialysis and transplantation, can be fatal. Those that survive an AKI are at increased risk of developing chronic kidney disease and end stage renal failure. Understanding the fundamental mechanisms underpinning the pathophysiology of AKI is critical for developing novel strategies for diagnosis and treatment. A growing body of evidence indicates that amplifying type 2 immunity may have therapeutic potential in kidney injury and disease. Of particular interest are the recently described subset of innate immune cells, termed group 2 innate lymphoid cells (ILCs). Group 2 ILCs are crucial tissue-resident immune cells that maintain homeostasis and regulate tissue repair at multiple organ sites, including the kidney. They are critical mediators of type 2 immune responses following infection and injury. The existing literature suggests that activation of group 2 ILCs and production of a local type 2 immune milieu is protective against renal injury and associated pathology. In this review, we describe the emerging role for group 2 ILCs in renal homeostasis and repair. We provide an in-depth discussion of the most recent literature that use preclinical models of AKI and assess the therapeutic effect of modulating group 2 ILC function. We debate the potential for targeting these cells as novel cellular therapies in AKI and discuss the implications for future studies and translation. Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Guy J M Cameron
- Priority Research Centre's GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Simon H Jiang
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australia National University, Canberra, ACT, Australia.,Department of Renal Medicine, The Canberra Hospital, Canberra, ACT, Australia
| | - Svenja Loering
- Priority Research Centre's GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Aniruddh V Deshpande
- Priority Research Centre's GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,The John Hunter Children's Hospital, New Lambton Heights, NSW, Australia
| | - Philip M Hansbro
- Priority Research Centre's GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Centre for inflammation, Centenary Institute, Sydney, NSW, Australia.,Faculty of Science, University of Technology, Ultimo, NSW, Australia
| | - Malcolm R Starkey
- Priority Research Centre's GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Recent studies in the kidney have revealed that the well characterized tumor antigen mucin 1 (MUC1/Muc1) also has numerous functions in the normal and injured kidney. RECENT FINDINGS Mucin 1 is a transmembrane mucin with a robust glycan-dependent apical targeting signal and efficient recycling from endosomes. It was recently reported that the TRPV5 calcium channel is stabilized on the cell surface by galectin-dependent cross-linking to mucin 1, providing a novel mechanism for regulation of ion channels and normal electrolyte balance.Our recent studies in mice show that Muc 1 is induced after ischemia, stabilizing hypoxia-inducible factor 1 (HIF-1)α and β-catenin levels, and transactivating the HIF-1 and β-catenin protective pathways. However, prolonged induction of either pathway in the injured kidney can proceed from apparent full recovery to chronic kidney disease. A very recent report indicates that aberrant activation of mucin 1 signaling after ischemic injury in mice and humans is associated with development of chronic kidney disease and fibrosis. A frameshift mutation in MUC1 was recently identified as the genetic lesion causing medullary cystic kidney disease type 1, now appropriately renamed MUC1 Kidney Disease. SUMMARY Studies of mucin 1 in the kidney now reveal significant functions for the extracellular mucin-like domain and signaling through the cytoplasmic tail.
Collapse
|
16
|
Hultström M, Becirovic-Agic M, Jönsson S. Comparison of acute kidney injury of different etiology reveals in-common mechanisms of tissue damage. Physiol Genomics 2017; 50:127-141. [PMID: 29341864 DOI: 10.1152/physiolgenomics.00037.2017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Acute kidney injury (AKI) is a syndrome of reduced glomerular filtration rate and urine production caused by a number of different diseases. It is associated with renal tissue damage. This tissue damage can cause tubular atrophy and interstitial fibrosis that leads to nephron loss and progression of chronic kidney disease (CKD). This review describes the in-common mechanisms behind tissue damage in AKI caused by different underlying diseases. Comparing six high-quality microarray studies of renal gene expression after AKI in disease models (gram-negative sepsis, gram-positive sepsis, ischemia-reperfusion, malignant hypertension, rhabdomyolysis, and cisplatin toxicity) identified 5,254 differentially expressed genes in at least one of the AKI models; 66% of genes were found only in one model, showing that there are unique features to AKI depending on the underlying disease. There were in-common features in the form of four genes that were differentially expressed in all six models, 49 in at least five, and 215 were found in common between at least four models. Gene ontology enrichment analysis could be broadly categorized into the injurious processes hypoxia, oxidative stress, and inflammation, as well as the cellular outcomes of cell death and tissue remodeling in the form of epithelial-to-mesenchymal transition. Pathway analysis showed that MYC is a central connection in the network of activated genes in-common to AKI, which suggests that it may be a central regulator of renal gene expression in tissue injury during AKI. The outlining of this molecular network may be useful for understanding progression from AKI to CKD.
Collapse
Affiliation(s)
- Michael Hultström
- Integrative Physiology, Department of Medical Cell Biology, Uppsala University , Uppsala , Sweden.,Anaesthesia and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University , Uppsala , Sweden
| | - Mediha Becirovic-Agic
- Integrative Physiology, Department of Medical Cell Biology, Uppsala University , Uppsala , Sweden
| | - Sofia Jönsson
- Integrative Physiology, Department of Medical Cell Biology, Uppsala University , Uppsala , Sweden
| |
Collapse
|