1
|
Diepstraten ST, Hart AH. Modelling human haemoglobin switching. Blood Rev 2018; 33:11-23. [PMID: 30616747 DOI: 10.1016/j.blre.2018.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/11/2018] [Accepted: 06/14/2018] [Indexed: 12/22/2022]
Abstract
Genetic lesions of the β-globin gene result in haemoglobinopathies such as β-thalassemia and sickle cell disease. To discover and test new molecular medicines for β-haemoglobinopathies, cell-based and animal models are now being widely utilised. However, multiple in vitro and in vivo models are required due to the complex structure and regulatory mechanisms of the human globin gene locus, subtle species-specific differences in blood cell development, and the influence of epigenetic factors. Advances in genome sequencing, gene editing, and precision medicine have enabled the first generation of molecular therapies aimed at reactivating, repairing, or replacing silenced or damaged globin genes. Here we compare and contrast current animal and cell-based models, highlighting their complementary strengths, reflecting on how they have informed the scope and direction of the field, and describing some of the novel molecular and precision medicines currently under development or in clinical trial.
Collapse
Affiliation(s)
- Sarah T Diepstraten
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia.
| | - Adam H Hart
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia.
| |
Collapse
|
2
|
Sokhi UK, Liber MP, Frye L, Park S, Kang K, Pannellini T, Zhao B, Norinsky R, Ivashkiv LB, Gong S. Dissection and function of autoimmunity-associated TNFAIP3 (A20) gene enhancers in humanized mouse models. Nat Commun 2018; 9:658. [PMID: 29440643 PMCID: PMC5811492 DOI: 10.1038/s41467-018-03081-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 01/18/2018] [Indexed: 12/18/2022] Open
Abstract
Enhancers regulate gene expression and have been linked with disease pathogenesis. Little is known about enhancers that regulate human disease-associated genes in primary cells relevant for pathogenesis. Here we use BAC transgenics and genome editing to dissect, in vivo and in primary immune cells, enhancers that regulate human TNFAIP3, which encodes A20 and is linked with autoimmune diseases. A20 expression is dependent on a topologically associating subdomain (sub-TAD) that harbors four enhancers, while another >20 enhancers in the A20 locus are redundant. This sub-TAD contains cell- and activation-specific enhancers, including an enhancer (termed TT>A) harboring a proposed causal SLE-associated SNV. Deletion of the sub-TAD or the TT>A enhancer results in enhanced inflammatory responses, autoantibody production, and inflammatory arthritis, thus establishing functional importance in vivo and linking enhancers with a specific disease phenotype. These findings provide insights into enhancers that regulate human A20 expression to prevent inflammatory pathology and autoimmunity. The human TNFAIP3 gene, which encodes for A20, is associated with autoimmune diseases. Here, the authors use BAC transgenics combined with CRISPR- and recombineering-mediated genome editing to dissect in vivo and in primary immune cells, the role of enhancers regulating TNFAIP3.
Collapse
Affiliation(s)
- Upneet K Sokhi
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Center for Genomic Research, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Mark P Liber
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Center for Genomic Research, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Laura Frye
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Center for Genomic Research, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Sungho Park
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Center for Genomic Research, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Kyuho Kang
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Center for Genomic Research, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Tania Pannellini
- Research Division and Department of Pathology, Hospital for Special Surgery, New York, NY, 10021, USA
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Center for Genomic Research, Hospital for Special Surgery, New York, NY, 10021, USA
| | | | - Lionel B Ivashkiv
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Center for Genomic Research, Hospital for Special Surgery, New York, NY, 10021, USA. .,Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Medicine, New York, NY, 10065, USA. .,Department of Medicine, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Shiaoching Gong
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Center for Genomic Research, Hospital for Special Surgery, New York, NY, 10021, USA. .,Rockefeller University, New York, NY, 10065, USA.
| |
Collapse
|
3
|
Lee WS, McColl B, Maksimovic J, Vadolas J. Epigenetic interplay at the β-globin locus. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:393-404. [DOI: 10.1016/j.bbagrm.2017.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/28/2017] [Accepted: 01/30/2017] [Indexed: 02/02/2023]
|
4
|
Abstract
The structural and functional conservation of hemoglobin throughout mammals has made the laboratory mouse an exceptionally useful organism in which to study both the protein and the individual globin genes. Early researchers looked to the globin genes as an excellent model in which to examine gene regulation – bountifully expressed and displaying a remarkably consistent pattern of developmental activation and silencing. In parallel with the growth of research into expression of the globin genes, mutations within the β-globin gene were identified as the cause of the β-hemoglobinopathies such as sickle cell disease and β-thalassemia. These lines of enquiry stimulated the development of transgenic mouse models, first carrying individual human globin genes and then substantial human genomic fragments incorporating the multigenic human β-globin locus and regulatory elements. Finally, mice were devised carrying mutant human β-globin loci on genetic backgrounds deficient in the native mouse globins, resulting in phenotypes of sickle cell disease or β-thalassemia. These years of work have generated a group of model animals that display many features of the β-hemoglobinopathies and provided enormous insight into the mechanisms of gene regulation. Substantive differences in the expression of human and mouse globins during development have also come to light, revealing the limitations of the mouse model, but also providing opportunities to further explore the mechanisms of globin gene regulation. In addition, animal models of β-hemoglobinopathies have demonstrated the feasibility of gene therapy for these conditions, now showing success in human clinical trials. Such models remain in use to dissect the molecular events of globin gene regulation and to identify novel treatments based upon the reactivation of developmentally silenced γ-globin. Here, we describe the development of animal models to investigate globin switching and the β-hemoglobinopathies, a field that has paralleled the emergence of modern molecular biology and clinical genetics.
Collapse
Affiliation(s)
- Bradley McColl
- Cell and Gene Therapy Laboratory, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Jim Vadolas
- Cell and Gene Therapy Laboratory, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| |
Collapse
|
5
|
Site-specific integration of bacterial artificial chromosomes into human cells. Methods Mol Biol 2014; 1227:309-21. [PMID: 25239755 DOI: 10.1007/978-1-4939-1652-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Gene therapy of inherited diseases requires long-term maintenance of the corrective transgene. Stable integration of the introduced DNA molecule into one of the host cell chromosomes is the simplest strategy for achieving this. However, genotoxicity resulting from random insertion of the transgene raises serious safety concerns that must be addressed if gene therapy is to enter the clinical mainstream. The following method makes use of the Rep integrase of adeno-associated virus to insert a transgene into the human AAVS1 site, a known "safe harbor" region within the human genome. This approach has the potential for application to novel gene therapy strategies for improved safety. In addition, with this method it is also possible to create cell lines carrying BAC transgenes in the AAVS1 site.
Collapse
|
6
|
McColl B, Kao BR, Lourthai P, Chan K, Wardan H, Roosjen M, Delagneau O, Gearing LJ, Blewitt ME, Svasti S, Fucharoen S, Vadolas J. An in vivo model for analysis of developmental erythropoiesis and globin gene regulation. FASEB J 2014; 28:2306-17. [PMID: 24443374 DOI: 10.1096/fj.13-246637] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Expression of fetal γ-globin in adulthood ameliorates symptoms of β-hemoglobinopathies by compensating for the mutant β-globin. Reactivation of the silenced γ-globin gene is therefore of substantial clinical interest. To study the regulation of γ-globin expression, we created the GG mice, which carry an intact 183-kb human β-globin locus modified to express enhanced green fluorescent protein (eGFP) from the Gγ-globin promoter. GG embryos express eGFP first in the yolk sac blood islands and then in the aorta-gonad mesonephros and the fetal liver, the sites of normal embryonic hematopoiesis. eGFP expression in erythroid cells peaks at E9.5 and then is rapidly silenced (>95%) and maintained at low levels into adulthood, demonstrating appropriate developmental regulation of the human β-globin locus. In vitro knockdown of the epigenetic regulator DNA methyltransferase-1 in GG primary erythroid cells increases the proportion of eGFP(+) cells in culture from 41.9 to 74.1%. Furthermore, eGFP fluorescence is induced >3-fold after treatment of erythroid precursors with epigenetic drugs known to induce γ-globin expression, demonstrating the suitability of the Gγ-globin eGFP reporter for evaluation of γ-globin inducers. The GG mouse model is therefore a valuable model system for genetic and pharmacologic studies of the regulation of the β-globin locus and for discovery of novel therapies for the β-hemoglobinopathies.
Collapse
Affiliation(s)
- Bradley McColl
- 2Cell and Gene Therapy Group, Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC, 3052, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Boonkusol D, Dinnyés A, Sa-Ardrit M, Svasti S, Faisaikarm T, Vadolas J, Fucharoen S, Kitiyanant Y. Phenotypic comparison of four thalassemia model mice reconstructed from cryo-banked embryos. ACTA BIOLOGICA HUNGARICA 2013; 64:453-61. [PMID: 24275591 DOI: 10.1556/abiol.64.2013.4.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A major clinical feature of patients with thalassemia is growth retardation due to anemia, therefore, the hematological parameters, weanling weight and post-weanling weight of pups obtained from vitrified warmed embryo transfers were studied for the first time in this report. Two-cell embryos of four transgenic (TG) thalassemic mouse lines (BKO, 654, E2, and E4) were produced by breeding four lines of TG thalassemic males to wild-type (WT) females (C57BL/6J) and were cryopreserved by vitrification in straws using 35% ethylene glycol. After transfer of vitrified-warmed embryos, hematological parameters, spleen index, weanling and post-weanling weight were determined in TG and WT viable pups. In the BKO and 654 mice significantly abnormal hematological parameters and spleen index were observed compared to WT, E2 and E4 mice. The weanling and post-weanling weights of BKO and 654 pups were significantly less than that of the age-matched WT pups. However, no significant differences in weanling and post-weanling weight were found between WT and E2-TG or E4-TG pups. In conclusion, the four transgenic mice lines produced from cryopreserved embryo transfer retain the phenotype of the natural breeding mice indicating that these banked embryos are appropriate for thalassemia model productions.
Collapse
Affiliation(s)
- D Boonkusol
- Thepsatri Rajabhat University Department of Biology, Faculty of Science and Technology Maung, Lopburi 15000 Thailand
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Schmouth JF, Bonaguro RJ, Corso-Diaz X, Simpson EM. Modelling human regulatory variation in mouse: finding the function in genome-wide association studies and whole-genome sequencing. PLoS Genet 2012; 8:e1002544. [PMID: 22396661 PMCID: PMC3291530 DOI: 10.1371/journal.pgen.1002544] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
An increasing body of literature from genome-wide association studies and human whole-genome sequencing highlights the identification of large numbers of candidate regulatory variants of potential therapeutic interest in numerous diseases. Our relatively poor understanding of the functions of non-coding genomic sequence, and the slow and laborious process of experimental validation of the functional significance of human regulatory variants, limits our ability to fully benefit from this information in our efforts to comprehend human disease. Humanized mouse models (HuMMs), in which human genes are introduced into the mouse, suggest an approach to this problem. In the past, HuMMs have been used successfully to study human disease variants; e.g., the complex genetic condition arising from Down syndrome, common monogenic disorders such as Huntington disease and β-thalassemia, and cancer susceptibility genes such as BRCA1. In this commentary, we highlight a novel method for high-throughput single-copy site-specific generation of HuMMs entitled High-throughput Human Genes on the X Chromosome (HuGX). This method can be applied to most human genes for which a bacterial artificial chromosome (BAC) construct can be derived and a mouse-null allele exists. This strategy comprises (1) the use of recombineering technology to create a human variant-harbouring BAC, (2) knock-in of this BAC into the mouse genome using Hprt docking technology, and (3) allele comparison by interspecies complementation. We demonstrate the throughput of the HuGX method by generating a series of seven different alleles for the human NR2E1 gene at Hprt. In future challenges, we consider the current limitations of experimental approaches and call for a concerted effort by the genetics community, for both human and mouse, to solve the challenge of the functional analysis of human regulatory variation.
Collapse
Affiliation(s)
- Jean-François Schmouth
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, Canada
- Genetics Graduate Program, University of British Columbia, Vancouver, Canada
| | - Russell J. Bonaguro
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, Canada
| | - Ximena Corso-Diaz
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, Canada
- Genetics Graduate Program, University of British Columbia, Vancouver, Canada
| | - Elizabeth M. Simpson
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, Vancouver, Canada
- Genetics Graduate Program, University of British Columbia, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
- * E-mail:
| |
Collapse
|
9
|
Chan KSK, Xu J, Wardan H, McColl B, Orkin S, Vadolas J. Generation of a genomic reporter assay system for analysis of γ- and β-globin gene regulation. FASEB J 2012; 26:1736-44. [PMID: 22267339 DOI: 10.1096/fj.11-199356] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A greater understanding of the regulatory mechanisms that govern γ-globin expression in humans, especially the switching from γ- to β-globin, which occurs after birth, would help to identify new therapeutic targets for patients with β-hemoglobinopathy. To further elucidate the mechanisms involved in γ-globin expression, a novel fluorescent-based cellular reporter assay system was developed. Using homologous recombination, two reporter genes, DsRed and EGFP, were inserted into a 183-kb intact human β-globin locus under the control of (G)γ- or (A)γ-globin promoter and β-globin promoter, respectively. The modified constructs were stably transfected into adult murine erythroleukaemic (MEL) cells and human embryonic or fetal erythroleukemic (K562) cells, allowing for rapid and simultaneous analysis of fetal and adult globin gene expression according to their developmental stage-specific expression. To demonstrate the utility of this system, we performed RNA interference (RNAi)-mediated knockdown of BCL11A in the presence or absence of known fetal hemoglobin inducers and demonstrated functional derepression of a γ-globin-linked reporter in an adult erythroid environment. Our results demonstrate that the cellular assay system represents a promising approach to perform genetic and functional genomic studies to identify and evaluate key factors associated with γ-globin gene suppression.
Collapse
Affiliation(s)
- Kasey S K Chan
- Cell and Gene Therapy Group, Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | | | | | | | | | | |
Collapse
|
10
|
Watanabe M, Kurome M, Matsunari H, Nakano K, Umeyema K, Shiota A, Nakauchi H, Nagashima H. The creation of transgenic pigs expressing human proteins using BAC-derived, full-length genes and intracytoplasmic sperm injection-mediated gene transfer. Transgenic Res 2011; 21:605-18. [PMID: 22038447 DOI: 10.1007/s11248-011-9561-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 09/16/2011] [Indexed: 11/29/2022]
Abstract
In most transgenic (Tg) animals created to date, a transgene consisting of the minimum promoter region linked to a cDNA has been used. However, transgenes on small plasmids are susceptible to the position effect, increasing the difficulty of controlling transgene expression. In this study, we attempted to create Tg pigs by intracytoplasmic sperm injection-mediated gene transfer (ICSI-MGT) using two large genomic transgenes derived from a bacterial artificial chromosome (BAC) containing the full genomic region encoding two human proteins, type I collagen and albumin. The production efficiencies (Tg piglets/live offspring) of type I collagen and albumin Tg pigs were 11.8% (6/51) and 18.2% (2/11), respectively. In all of the Tg pigs examined by real-time PCR analysis, tissue-specific expression of the transgene was confirmed (type I collagen: skin, tendon, vessels, genitalia; albumin: liver). The production of human proteins derived from BAC transgenes was also confirmed. Fluorescence in situ hybridization analysis indicated that the BAC transgenes transferred into porcine oocytes by ICSI-MGT were integrated into single or multiple sites on the host chromosomes. These data demonstrate that Tg pigs expressing human proteins in a tissue-specific manner can be created using a BAC transgenic construct and the ICSI-MGT method.
Collapse
Affiliation(s)
- Masahito Watanabe
- Nakauchi Stem Cell and Organ Regeneration Project, Japan Science and Technology Agency (JST), ERATO, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Hatzistavrou T, Micallef SJ, Ng ES, Vadolas J, Stanley EG, Elefanty AG. ErythRED, a hESC line enabling identification of erythroid cells. Nat Methods 2009; 6:659-62. [PMID: 19701193 DOI: 10.1038/nmeth.1364] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 07/06/2009] [Indexed: 12/17/2022]
Abstract
A human embryonic stem cell (hESC) line that enabled globin-expressing cells to be easily recognized would facilitate optimization of erythroid differentiation in vitro and aid in the identification of hESC-derived erythroid cells in transplanted animals. We describe a genetically modified hESC line, ErythRED, in which expression of RFP, controlled by regulatory sequences from the human beta-globin locus control region, is restricted to maturing erythroid cells.
Collapse
Affiliation(s)
- Tanya Hatzistavrou
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
12
|
Zaibak F, Kozlovski J, Vadolas J, Sarsero JP, Williamson R, Howden SE. Integration of functional bacterial artificial chromosomes into human cord blood-derived multipotent stem cells. Gene Ther 2009; 16:404-14. [PMID: 19177134 DOI: 10.1038/gt.2008.187] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 12/15/2008] [Accepted: 12/15/2008] [Indexed: 01/14/2023]
Abstract
Stem cells from a patient with a genetic disease could be used for cell therapy if it were possible to insert a functional copy of the defective gene. In this study, we investigate the transfection and subsequent integration of large genomic fragments into human cord blood-derived multipotent stem cells. We describe for the first time the creation of clonal stem cells carrying a human bacterial artificial chromosome (BAC) containing the Friedreich ataxia locus with an enhanced green fluorescent protein (EGFP) reporter gene fused to exon 5a of the frataxin (FXN) gene. Integration of the BAC into the host cell genome was confirmed by PCR, Southern blot and fluorescent in situ hybridization analysis. Reverse transcription-PCR and flow cytometry confirmed expression of FXN-EGFP. Correct mitochondrial localization of the protein was confirmed using fluorescent microscopy. The transfected stem cells also retained the ability to differentiate into cells from all three germline layers, as demonstrated by the capacity to form neuron-specific beta-tubulin-expressing cells, Alizarin Red S-positive bone-like cells, and epithelial-like cells expressing surfactant protein C. This is the first study to demonstrate that cord blood-derived multipotent stem cells may be useful targets for gene therapy applications using large genomic loci.
Collapse
Affiliation(s)
- F Zaibak
- Department of Paediatrics, The University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
13
|
Cha Y, Sung MK, Jung KW, Kim HH, Lee SM, Park KS. Epigenetic deregulation of the human Oct4 promoter in mouse cells. Dev Genes Evol 2008; 218:561-6. [PMID: 18810488 DOI: 10.1007/s00427-008-0253-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 09/05/2008] [Indexed: 10/21/2022]
Abstract
To examine whether the epigenetic status of the human Oct4 promoter is similarly regulated in mouse cells, we engineered a human bacterial artificial chromosome to express green fluorescent protein under the control of the hOct4 promoter and stably integrated it into mouse embryonic stem cells (mESCs), NIH3T3, and 293T cells. The hOct4 promoter is unmethylated in mESCs and it undergoes methylation during retinoic acid-induced differentiation. However, the hOct4 promoter is demethylated in NIH3T3 cells even though it is fully methylated in 293T cells. Methylation status of the hOct4 promoter is associated with green fluorescent protein expression at transcription level. Our findings indicate that the hOct4 promoter is differently regulated in mouse cells.
Collapse
Affiliation(s)
- Young Cha
- Graduate School of Life Science and Biotechnology, CHA Research Institute, College of Medicine, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
14
|
Site-specific, Rep-mediated integration of the intact β-globin locus in the human erythroleukaemic cell line K562. Gene Ther 2008; 15:1372-83. [DOI: 10.1038/gt.2008.84] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
Bender B, Bodrogi L, Mayer B, Schneider Z, Zhao Y, Hammarström L, Eggen A, Kacskovics I, Bosze Z. Position independent and copy-number-related expression of the bovine neonatal Fc receptor α-chain in transgenic mice carrying a 102 kb BAC genomic fragment. Transgenic Res 2007; 16:613-27. [PMID: 17594529 DOI: 10.1007/s11248-007-9108-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 05/22/2007] [Indexed: 01/25/2023]
Abstract
We generated and characterized transgenic mice carrying a 102 kb bovine genomic fragment, encoding the neonatal Fc receptor alpha-chain (bFcRn). FcRn plays a crucial role in the maternal IgG transport and it also regulates the IgG and albumin homeostasis. Some of its functions and transcriptional regulation show species specific differences. The FcRn heterodimer is composed of the alpha-chain and beta-2-microglobulin (beta2 m). A bacterial artificial chromosome containing the bovine FcRn alpha-chain gene (bFCGRT) with its 44 kb 5' and 50 kb long 3' flanking sequences was microinjected into fertilized mouse oocytes. Two of the transgenic lines generated, showed copy number related and integration site independent bFcRn expression. The bFcRn alpha-chain forms a functional receptor with the mouse beta2-microglobulin and extends the half-life of the mouse IgG in transgenic mice. Our results underline the feasibility of creating BAC transgenic mouse models of economically important bovine genes.
Collapse
Affiliation(s)
- Balázs Bender
- Agricultural Biotechnology Center, 2100, Szent-Györgyi A. st.4, Godollo, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Jamsai D, Zaibak F, Vadolas J, Voullaire L, Fowler KJ, Gazeas S, Peters H, Fucharoen S, Williamson R, Ioannou PA. A humanized BAC transgenic/knockout mouse model for HbE/beta-thalassemia. Genomics 2006; 88:309-15. [PMID: 16631345 DOI: 10.1016/j.ygeno.2006.03.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 03/07/2006] [Accepted: 03/16/2006] [Indexed: 10/24/2022]
Abstract
Hemoglobin E (HbE) is caused by a G-->A mutation at codon 26 of the beta-globin gene, which substitutes Glu-->Lys. This mutation gives rise to functional but unstable hemoglobin and activates a cryptic splice site causing mild anemia. HbE reaches a carrier frequency of 60-80% in some Southeast Asian populations. HbE causes serious disease when co-inherited with a beta-thalassemia mutation. In this study, we report the creation and evaluation of humanized transgenic mice containing the beta(E) mutation in the context of the human beta-globin locus. Developmental expression of the human beta(E) locus transgene partially complements the hematological abnormalities in heterozygous knockout mice ((mu)beta(th-3/+)) and rescues the embryonic lethality of homozygous knockout mice ((mu)beta(th-3/th-3)). The phenotype of rescued mice was dependent on the transgene copy number. This mouse model displays hematological abnormalities similar to HbE/beta-thalassemia patients and represent an ideal in vivo model system for pathophysiological studies and evaluation of novel therapies.
Collapse
Affiliation(s)
- Duangporn Jamsai
- Cell and Gene Therapy Research Group, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, VIC 3052, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Vadolas J, Nefedov M, Wardan H, Mansooriderakshan S, Voullaire L, Jamsai D, Williamson R, Ioannou PA. Humanized beta-thalassemia mouse model containing the common IVSI-110 splicing mutation. J Biol Chem 2006; 281:7399-405. [PMID: 16421096 DOI: 10.1074/jbc.m512931200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Splicing mutations are common causes of beta-thalassemia. Some splicing mutations permit normal splicing as well as aberrant splicing, which can give a reduced level of normal beta-globin synthesis causing mild disease (thalassemia intermedia). For other mutations, normal splicing is reduced to low levels, and patients are transfusion-dependent when homozygous for the disease. The development of therapies for beta-thalassemia will require suitable mouse models for preclinical studies. In this study, we report the generation of a humanized mouse model carrying the common IVSI-110 splicing mutation on a BAC including the human beta-globin ((hu)beta-globin) locus. We examined heterozygous murine beta-globin knock-out mice ((mu)beta(th-3/+)) carrying either the IVSI-110 or the normal (hu)beta-globin locus. Our results show a 90% decrease in (hu)beta-globin chain synthesis in the IVSI-110 mouse model compared with the mouse model carrying the normal (hu)beta-globin locus. This notable difference is attributed to aberrant splicing. The humanized IVSI-110 mouse model accurately recapitulates the splicing defect found in comparable beta-thalassemia patients. This mouse model is available as a platform for testing strategies for the restoration of normal splicing.
Collapse
Affiliation(s)
- Jim Vadolas
- Cell and Gene Therapy Research Group, Murdoch Childrens Research Institute, The University of Melbourne, Royal Children's Hospital, Parkville 3052, Melbourne, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Al-Hasani K, Vadolas J, Knaupp AS, Wardan H, Voullaire L, Williamson R, Ioannou PA. A 191-kb genomic fragment containing the human alpha-globin locus can rescue alpha-thalassemic mice. Mamm Genome 2005; 16:847-53. [PMID: 16284800 DOI: 10.1007/s00335-005-0089-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Accepted: 08/05/2005] [Indexed: 11/24/2022]
Abstract
A 191-kb human bacterial artificial chromosome (BAC) containing the human alpha-globin genomic locus was used to generate transgenic mice that express, exclusively, human alpha-globin ((hu)alpha-globin). Expression of (hu)alpha-globin reaches a level of 36% of that of endogenous mouse alpha-globin ((mu)alpha-globin) on a heterozygous mouse alpha-thalassemia background ((mu)alpha-globin knockout, (mu)alpha(+/-)). Hemizygous transgenic mice carrying the (hu)alpha-globin locus on a heterozygous knockout background ((hu)alpha(+/0), (mu)alpha(++/--)) demonstrated complementation of most hematologic parameters. By crossing (hu)alpha(+/0), (mu)alpha(++/--) mice, we were able to generate mice entirely dependent on (hu)alpha-globin synthesis. Breeding and fluorescent in situ hybridization studies demonstrate that only mice homozygous for the transgene were able to rescue embryonic lethal homozygous (mu)alpha-globin knockout embryos ((mu)alpha(--/--)). Adult rescued mice produce hemoglobin at levels similar to wild-type mice, with partial red cell complementation based on mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and red cell distribution width (RDW) measurements. Significant erythrocythemia above wild-type levels seems to be the main compensatory mechanism for the normalization of the hemoglobin levels in the rescued animals. Our studies demonstrate that the (hu)alpha-globin locus in the 191-kb transgene contains all the necessary elements for the regulated expression of (hu)alpha-globin in transgenic mice. This animal model should be valuable for studying the mechanisms regulating (hu)alpha-globin production and for development of therapeutic strategies for beta-thalassemia based on downregulation of alpha-globin expression.
Collapse
Affiliation(s)
- Keith Al-Hasani
- The CAGT Research Group, University of Melbourne Department of Paediatrics, The Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Melbourne, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|