1
|
Razazian M, Bahiraii S, Jannat I, Tiffner A, Beilhack G, Levkau B, Voelkl J, Alesutan I. Sphingosine kinase 1 inhibition aggravates vascular smooth muscle cell calcification. Pflugers Arch 2025; 477:815-826. [PMID: 39899071 DOI: 10.1007/s00424-025-03068-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Medial vascular calcification is common in chronic kidney disease patients and linked to hyperphosphatemia. Upon phosphate exposure, intricate signaling events orchestrate pro-calcific effects in the vasculature mediated by vascular smooth muscle cells (VSMCs). Sphingosine kinase 1 (SPHK1) produces sphingosine-1-phosphate (S1P) and is associated with complex effects in the vascular system. The present study investigated a possible involvement of SPHK1 in VSMC calcification. Experiments were performed in primary human aortic VSMCs under pro-calcific conditions, with pharmacological inhibition or knockdown of SPHK1 or SPNS2 (a lysolipid transporter involved in cellular S1P export), as well as in Sphk1-deficient and wild-type mice treated with cholecalciferol. In VSMCs, SPHK1 expression was up-regulated by pro-calcific conditions. Calcification medium up-regulated osteogenic marker mRNA expression and activity as well as calcification of VSMCs, effects significantly augmented by co-treatment with the SPHK1 inhibitor SK1-IN-1. SK1-IN-1 alone was sufficient to up-regulate osteogenic signaling in VSMCs during control conditions. Similarly, the SPHK1 inhibitor PF-543 and SPHK1 knockdown up-regulated osteogenic signaling in VSMCs and aggravated VSMC calcification. In contrast, co-treatment with the SPNS2 inhibitor SLF1081851 suppressed osteogenic signaling and calcification of VSMCs, effects abolished by silencing of SPHK1. In addition, Sphk1 deficiency aggravated vascular calcification and aortic osteogenic marker expression in mice after cholecalciferol overload. In conclusion, SPHK1 inhibition, knockdown, or deficiency aggravates vascular pro-calcific signaling and calcification. The reduced calcification after inhibition of S1P export suggests a possible involvement of intracellular S1P, but further studies are required to elucidate the complex roles of SPHKs and S1P signaling in calcifying VSMCs.
Collapse
MESH Headings
- Animals
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/cytology
- Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors
- Phosphotransferases (Alcohol Group Acceptor)/metabolism
- Phosphotransferases (Alcohol Group Acceptor)/genetics
- Humans
- Vascular Calcification/metabolism
- Mice
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Cells, Cultured
- Male
- Mice, Inbred C57BL
- Signal Transduction
- Anion Transport Proteins/metabolism
- Anion Transport Proteins/genetics
- Lysophospholipids/metabolism
- Sphingosine/metabolism
- Sphingosine/analogs & derivatives
- Osteogenesis/drug effects
- Methanol
- Pyrrolidines
- Sulfones
Collapse
Affiliation(s)
- Mehdi Razazian
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020, Linz, Austria
| | - Sheyda Bahiraii
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020, Linz, Austria
| | - Isratul Jannat
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020, Linz, Austria
| | - Adéla Tiffner
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020, Linz, Austria
- Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Georg Beilhack
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Bodo Levkau
- Institute of Molecular Medicine III, University Hospital and Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jakob Voelkl
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020, Linz, Austria.
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
| | - Ioana Alesutan
- Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020, Linz, Austria
| |
Collapse
|
2
|
Carrié L, Virazels M, Dufau C, Montfort A, Levade T, Ségui B, Andrieu-Abadie N. New Insights into the Role of Sphingolipid Metabolism in Melanoma. Cells 2020; 9:E1967. [PMID: 32858889 PMCID: PMC7565650 DOI: 10.3390/cells9091967] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022] Open
Abstract
Cutaneous melanoma is a deadly skin cancer whose aggressiveness is directly linked to its metastatic potency. Despite remarkable breakthroughs in term of treatments with the emergence of targeted therapy and immunotherapy, the prognosis for metastatic patients remains uncertain mainly because of resistances. Better understanding the mechanisms responsible for melanoma progression is therefore essential to uncover new therapeutic targets. Interestingly, the sphingolipid metabolism is dysregulated in melanoma and is associated with melanoma progression and resistance to treatment. This review summarises the impact of the sphingolipid metabolism on melanoma from the initiation to metastatic dissemination with emphasis on melanoma plasticity, immune responses and resistance to treatments.
Collapse
Affiliation(s)
- Lorry Carrié
- Centre de Recherches en Cancérologie de Toulouse, Equipe Labellisée Fondation ARC, Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm 1037, 2 avenue Hubert Curien, CS 53717, 31037 Toulouse CEDEX 1, France; (L.C.); (M.V.); (C.D.); (A.M.); (T.L.); (B.S.)
| | - Mathieu Virazels
- Centre de Recherches en Cancérologie de Toulouse, Equipe Labellisée Fondation ARC, Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm 1037, 2 avenue Hubert Curien, CS 53717, 31037 Toulouse CEDEX 1, France; (L.C.); (M.V.); (C.D.); (A.M.); (T.L.); (B.S.)
| | - Carine Dufau
- Centre de Recherches en Cancérologie de Toulouse, Equipe Labellisée Fondation ARC, Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm 1037, 2 avenue Hubert Curien, CS 53717, 31037 Toulouse CEDEX 1, France; (L.C.); (M.V.); (C.D.); (A.M.); (T.L.); (B.S.)
| | - Anne Montfort
- Centre de Recherches en Cancérologie de Toulouse, Equipe Labellisée Fondation ARC, Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm 1037, 2 avenue Hubert Curien, CS 53717, 31037 Toulouse CEDEX 1, France; (L.C.); (M.V.); (C.D.); (A.M.); (T.L.); (B.S.)
| | - Thierry Levade
- Centre de Recherches en Cancérologie de Toulouse, Equipe Labellisée Fondation ARC, Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm 1037, 2 avenue Hubert Curien, CS 53717, 31037 Toulouse CEDEX 1, France; (L.C.); (M.V.); (C.D.); (A.M.); (T.L.); (B.S.)
- Laboratoire de Biochimie Métabolique, CHU, 31059 Toulouse, France
| | - Bruno Ségui
- Centre de Recherches en Cancérologie de Toulouse, Equipe Labellisée Fondation ARC, Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm 1037, 2 avenue Hubert Curien, CS 53717, 31037 Toulouse CEDEX 1, France; (L.C.); (M.V.); (C.D.); (A.M.); (T.L.); (B.S.)
| | - Nathalie Andrieu-Abadie
- Centre de Recherches en Cancérologie de Toulouse, Equipe Labellisée Fondation ARC, Université Fédérale de Toulouse Midi-Pyrénées, Université Toulouse III Paul-Sabatier, Inserm 1037, 2 avenue Hubert Curien, CS 53717, 31037 Toulouse CEDEX 1, France; (L.C.); (M.V.); (C.D.); (A.M.); (T.L.); (B.S.)
| |
Collapse
|
3
|
Abstract
MicroRNAs (miRNA) are small non-coding RNAs (∼22 nt in length) that are known as potent master regulators of eukaryotic gene expression. miRNAs have been shown to play a critical role in cancer pathogenesis, and the misregulation of miRNAs is a well-known feature of cancer. In recent years, miR-29 has emerged as a critical miRNA in various cancers, and it has been shown to regulate multiple oncogenic processes, including epigenetics, proteostasis, metabolism, proliferation, apoptosis, metastasis, fibrosis, angiogenesis, and immunomodulation. Although miR-29 has been thoroughly documented as a tumor suppressor in the majority of studies, some controversy remains with conflicting reports of miR-29 as an oncogene. In this review, we provide a systematic overview of miR-29's functional role in various mechanisms of cancer and introspection on the contradictory roles of miR-29.
Collapse
|
4
|
Neuronal SphK1 acetylates COX2 and contributes to pathogenesis in a model of Alzheimer's Disease. Nat Commun 2018; 9:1479. [PMID: 29662056 PMCID: PMC5902554 DOI: 10.1038/s41467-018-03674-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/02/2018] [Indexed: 12/20/2022] Open
Abstract
Although many reports have revealed the importance of defective microglia-mediated amyloid β phagocytosis in Alzheimer’s disease (AD), the underlying mechanism remains to be explored. Here we demonstrate that neurons in the brains of patients with AD and AD mice show reduction of sphingosine kinase1 (SphK1), leading to defective microglial phagocytosis and dysfunction of inflammation resolution due to decreased secretion of specialized proresolving mediators (SPMs). Elevation of SphK1 increased SPMs secretion, especially 15-R-Lipoxin A4, by promoting acetylation of serine residue 565 (S565) of cyclooxygenase2 (COX2) using acetyl-CoA, resulting in improvement of AD-like pathology in APP/PS1 mice. In contrast, conditional SphK1 deficiency in neurons reduced SPMs secretion and abnormal phagocytosis similar to AD. Together, these results uncover a novel mechanism of SphK1 pathogenesis in AD, in which impaired SPMs secretion leads to defective microglial phagocytosis, and suggests that SphK1 in neurons has acetyl-CoA-dependent cytoplasmic acetyltransferase activity towards COX2. Sphingosine kinase (SphK) converts sphingosine into lipids, and is implicated in inflammation. Here the authors show that SphK1 functions as an acetyltransferase, regulates microglial phagocytosis and is reduced in a model of Alzheimer’s Disease, such that its restoration ameliorates pathology
Collapse
|
5
|
Alshaker H, Wang Q, Kawano Y, Arafat T, Böhler T, Winkler M, Cooper C, Pchejetski D. Everolimus (RAD001) sensitizes prostate cancer cells to docetaxel by down-regulation of HIF-1α and sphingosine kinase 1. Oncotarget 2018; 7:80943-80956. [PMID: 27821815 PMCID: PMC5348367 DOI: 10.18632/oncotarget.13115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 10/27/2016] [Indexed: 12/19/2022] Open
Abstract
Resistance to docetaxel is a key problem in current prostate cancer management. Sphingosine kinase 1 (SK1) and phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathways have been implicated in prostate cancer chemoresistance. Here we investigated whether their combined targeting may re-sensitize prostate cancer cells to docetaxel.In hormone-insensitive PC-3 and DU145 prostate cancer cells the mTOR inhibitor everolimus (RAD001) alone did not lead to significant cell death, however, it strongly sensitized cells to low levels (5 nM) of docetaxel. We show that mTOR inhibition has led to a decrease in hypoxia-inducible factor-1α (HIF-1α) protein levels and SK1 mRNA. HIF-1α accumulation induced by CoCl2 has led to a partial chemoresistance to RAD001/docetaxel combination. SK1 overexpression has completely protected prostate cancer cells from RAD001/docetaxel effects. Using gene knockdown and CoCl2 treatment we showed that SK1 mRNA expression is downstream of HIF-1α. In a human xenograft model in nude mice single RAD001 and docetaxel therapies induced 23% and 15% reduction in prostate tumor volume, respectively, while their combination led to a 58% reduction. RAD001 alone or in combination with docetaxel has suppressed intratumoral mTOR and SK1 signaling, however as evidenced by tumor size, it required docetaxel for clinical efficacy. Combination therapy was well tolerated and had similar levels of toxicity to docetaxel alone.Overall, our data demonstrate a new mechanism of docetaxel sensitization in prostate cancer. This provides a mechanistic basis for further clinical application of RAD001/docetaxel combination in prostate cancer therapy.
Collapse
Affiliation(s)
- Heba Alshaker
- School of Medicine, University of East Anglia, Norwich, UK.,Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Qi Wang
- School of Medicine, University of East Anglia, Norwich, UK
| | - Yoshiaki Kawano
- Department of Urology, University of Kumamoto, Kumamoto, Japan
| | - Tawfiq Arafat
- Department of Pharmaceutical Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Torsten Böhler
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Mathias Winkler
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Colin Cooper
- School of Medicine, University of East Anglia, Norwich, UK
| | | |
Collapse
|
6
|
Sysol JR, Natarajan V, Machado RF. PDGF induces SphK1 expression via Egr-1 to promote pulmonary artery smooth muscle cell proliferation. Am J Physiol Cell Physiol 2016; 310:C983-92. [PMID: 27099350 DOI: 10.1152/ajpcell.00059.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/15/2016] [Indexed: 12/20/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive, life-threatening disease for which there is currently no curative treatment available. Pathologic changes in this disease involve remodeling of the pulmonary vasculature, including marked proliferation of pulmonary artery smooth muscle cells (PASMCs). Recently, the bioactive lipid sphingosine-1-phosphate (S1P) and its activating kinase, sphingosine kinase 1 (SphK1), have been shown to be upregulated in PAH and promote PASMC proliferation. The mechanisms regulating the transcriptional upregulation of SphK1 in PASMCs are unknown. In this study, we investigated the role of platelet-derived growth factor (PDGF), a PAH-relevant stimuli associated with enhanced PASMC proliferation, on SphK1 expression regulation. In human PASMCs (hPASMCs), PDGF significantly increased SphK1 mRNA and protein expression and induced cell proliferation. Selective inhibition of SphK1 attenuated PDGF-induced hPASMC proliferation. In silico promoter analysis for SphK1 identified several binding sites for early growth response protein 1 (Egr-1), a PDGF-associated transcription factor. Luciferase assays demonstrated that PDGF activates the SphK1 promoter in hPASMCs, and truncation of the 5'-promoter reduced PDGF-induced SphK1 expression. Stimulation of hPASMCs with PDGF induced Egr-1 protein expression, and direct binding of Egr-1 to the SphK1 promoter was confirmed by chromatin immunoprecipitation analysis. Inhibition of ERK signaling prevented induction of Egr-1 by PDGF. Silencing of Egr-1 attenuated PDGF-induced SphK1 expression and hPASMC proliferation. These studies demonstrate that SphK1 is regulated by PDGF in hPASMCs via the transcription factor Egr-1, promoting cell proliferation. This novel mechanism of SphK1 regulation may be a therapeutic target in pulmonary vascular remodeling in PAH.
Collapse
Affiliation(s)
- Justin R Sysol
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois; Department of Pharmacology, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois; and Medical Scientist Training Program, University of Illinois at Chicago, Chicago, Illinois
| | - Viswanathan Natarajan
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois; Department of Pharmacology, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois; and
| | - Roberto F Machado
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois; Department of Pharmacology, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois; and
| |
Collapse
|
7
|
Dick TE, Hengst JA, Fox TE, Colledge AL, Kale VP, Sung SS, Sharma A, Amin S, Loughran TP, Kester M, Wang HG, Yun JK. The apoptotic mechanism of action of the sphingosine kinase 1 selective inhibitor SKI-178 in human acute myeloid leukemia cell lines. J Pharmacol Exp Ther 2015; 352:494-508. [PMID: 25563902 PMCID: PMC4352591 DOI: 10.1124/jpet.114.219659] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/05/2015] [Indexed: 12/20/2022] Open
Abstract
We previously developed SKI-178 (N'-[(1E)-1-(3,4-dimethoxyphenyl)ethylidene]-3-(4-methoxxyphenyl)-1H-pyrazole-5-carbohydrazide) as a novel sphingosine kinase-1 (SphK1) selective inhibitor and, herein, sought to determine the mechanism-of-action of SKI-178-induced cell death. Using human acute myeloid leukemia (AML) cell lines as a model, we present evidence that SKI-178 induces prolonged mitosis followed by apoptotic cell death through the intrinsic apoptotic cascade. Further examination of the mechanism of action of SKI-178 implicated c-Jun NH2-terminal kinase (JNK) and cyclin-dependent protein kinase 1 (CDK1) as critical factors required for SKI-178-induced apoptosis. In cell cycle synchronized human AML cell lines, we demonstrate that entry into mitosis is required for apoptotic induction by SKI-178 and that CDK1, not JNK, is required for SKI-178-induced apoptosis. We further demonstrate that the sustained activation of CDK1 during prolonged mitosis, mediated by SKI-178, leads to the simultaneous phosphorylation of the prosurvival Bcl-2 family members, Bcl-2 and Bcl-xl, as well as the phosphorylation and subsequent degradation of Mcl-1. Moreover, multidrug resistance mediated by multidrug-resistant protein1 and/or prosurvival Bcl-2 family member overexpression did not affect the sensitivity of AML cells to SKI-178. Taken together, these findings highlight the therapeutic potential of SKI-178 targeting SphK1 as a novel therapeutic agent for the treatment of AML, including multidrug-resistant/recurrent AML subtypes.
Collapse
Affiliation(s)
- Taryn E Dick
- Department of Pharmacology (T.E.D., J.A.H., A.L.C., V.P.K., S.-S.S., A.S., S.A., H.-G.W., J.K.Y.) and The Jake Gittlen Laboratories for Cancer Research (T.E.D., J.A.H., A.L.C., V.P.K., J.K.Y.), The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Pharmacology (T.E.F., M.K.), and University of Virginia Cancer Center (T.P.L.), University of Virginia, Charlottesville, Virginia
| | - Jeremy A Hengst
- Department of Pharmacology (T.E.D., J.A.H., A.L.C., V.P.K., S.-S.S., A.S., S.A., H.-G.W., J.K.Y.) and The Jake Gittlen Laboratories for Cancer Research (T.E.D., J.A.H., A.L.C., V.P.K., J.K.Y.), The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Pharmacology (T.E.F., M.K.), and University of Virginia Cancer Center (T.P.L.), University of Virginia, Charlottesville, Virginia
| | - Todd E Fox
- Department of Pharmacology (T.E.D., J.A.H., A.L.C., V.P.K., S.-S.S., A.S., S.A., H.-G.W., J.K.Y.) and The Jake Gittlen Laboratories for Cancer Research (T.E.D., J.A.H., A.L.C., V.P.K., J.K.Y.), The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Pharmacology (T.E.F., M.K.), and University of Virginia Cancer Center (T.P.L.), University of Virginia, Charlottesville, Virginia
| | - Ashley L Colledge
- Department of Pharmacology (T.E.D., J.A.H., A.L.C., V.P.K., S.-S.S., A.S., S.A., H.-G.W., J.K.Y.) and The Jake Gittlen Laboratories for Cancer Research (T.E.D., J.A.H., A.L.C., V.P.K., J.K.Y.), The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Pharmacology (T.E.F., M.K.), and University of Virginia Cancer Center (T.P.L.), University of Virginia, Charlottesville, Virginia
| | - Vijay P Kale
- Department of Pharmacology (T.E.D., J.A.H., A.L.C., V.P.K., S.-S.S., A.S., S.A., H.-G.W., J.K.Y.) and The Jake Gittlen Laboratories for Cancer Research (T.E.D., J.A.H., A.L.C., V.P.K., J.K.Y.), The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Pharmacology (T.E.F., M.K.), and University of Virginia Cancer Center (T.P.L.), University of Virginia, Charlottesville, Virginia
| | - Shen-Shu Sung
- Department of Pharmacology (T.E.D., J.A.H., A.L.C., V.P.K., S.-S.S., A.S., S.A., H.-G.W., J.K.Y.) and The Jake Gittlen Laboratories for Cancer Research (T.E.D., J.A.H., A.L.C., V.P.K., J.K.Y.), The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Pharmacology (T.E.F., M.K.), and University of Virginia Cancer Center (T.P.L.), University of Virginia, Charlottesville, Virginia
| | - Arun Sharma
- Department of Pharmacology (T.E.D., J.A.H., A.L.C., V.P.K., S.-S.S., A.S., S.A., H.-G.W., J.K.Y.) and The Jake Gittlen Laboratories for Cancer Research (T.E.D., J.A.H., A.L.C., V.P.K., J.K.Y.), The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Pharmacology (T.E.F., M.K.), and University of Virginia Cancer Center (T.P.L.), University of Virginia, Charlottesville, Virginia
| | - Shantu Amin
- Department of Pharmacology (T.E.D., J.A.H., A.L.C., V.P.K., S.-S.S., A.S., S.A., H.-G.W., J.K.Y.) and The Jake Gittlen Laboratories for Cancer Research (T.E.D., J.A.H., A.L.C., V.P.K., J.K.Y.), The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Pharmacology (T.E.F., M.K.), and University of Virginia Cancer Center (T.P.L.), University of Virginia, Charlottesville, Virginia
| | - Thomas P Loughran
- Department of Pharmacology (T.E.D., J.A.H., A.L.C., V.P.K., S.-S.S., A.S., S.A., H.-G.W., J.K.Y.) and The Jake Gittlen Laboratories for Cancer Research (T.E.D., J.A.H., A.L.C., V.P.K., J.K.Y.), The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Pharmacology (T.E.F., M.K.), and University of Virginia Cancer Center (T.P.L.), University of Virginia, Charlottesville, Virginia
| | - Mark Kester
- Department of Pharmacology (T.E.D., J.A.H., A.L.C., V.P.K., S.-S.S., A.S., S.A., H.-G.W., J.K.Y.) and The Jake Gittlen Laboratories for Cancer Research (T.E.D., J.A.H., A.L.C., V.P.K., J.K.Y.), The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Pharmacology (T.E.F., M.K.), and University of Virginia Cancer Center (T.P.L.), University of Virginia, Charlottesville, Virginia
| | - Hong-Gang Wang
- Department of Pharmacology (T.E.D., J.A.H., A.L.C., V.P.K., S.-S.S., A.S., S.A., H.-G.W., J.K.Y.) and The Jake Gittlen Laboratories for Cancer Research (T.E.D., J.A.H., A.L.C., V.P.K., J.K.Y.), The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Pharmacology (T.E.F., M.K.), and University of Virginia Cancer Center (T.P.L.), University of Virginia, Charlottesville, Virginia
| | - Jong K Yun
- Department of Pharmacology (T.E.D., J.A.H., A.L.C., V.P.K., S.-S.S., A.S., S.A., H.-G.W., J.K.Y.) and The Jake Gittlen Laboratories for Cancer Research (T.E.D., J.A.H., A.L.C., V.P.K., J.K.Y.), The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and Department of Pharmacology (T.E.F., M.K.), and University of Virginia Cancer Center (T.P.L.), University of Virginia, Charlottesville, Virginia
| |
Collapse
|
8
|
Chen J, Tang H, Sysol JR, Moreno-Vinasco L, Shioura KM, Chen T, Gorshkova I, Wang L, Huang LS, Usatyuk PV, Sammani S, Zhou G, Raj JU, Garcia JGN, Berdyshev E, Yuan JXJ, Natarajan V, Machado RF. The sphingosine kinase 1/sphingosine-1-phosphate pathway in pulmonary arterial hypertension. Am J Respir Crit Care Med 2014; 190:1032-43. [PMID: 25180446 DOI: 10.1164/rccm.201401-0121oc] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Sphingosine kinases (SphKs) 1 and 2 regulate the synthesis of the bioactive sphingolipid sphingosine-1-phosphate (S1P), an important lipid mediator that promotes cell proliferation, migration, and angiogenesis. OBJECTIVES We aimed to examine whether SphKs and their product, S1P, play a role in the development of pulmonary arterial hypertension (PAH). METHODS SphK1(-/-), SphK2(-/-), and S1P lyase heterozygous (Sgpl1(+/-)) mice, a pharmacologic SphK inhibitor (SKI2), and a S1P receptor 2 (S1PR2) antagonist (JTE013) were used in rodent models of hypoxia-mediated pulmonary hypertension (HPH). S1P levels in lung tissues from patients with PAH and pulmonary arteries (PAs) from rodent models of HPH were measured. MEASUREMENTS AND MAIN RESULTS mRNA and protein levels of SphK1, but not SphK2, were significantly increased in the lungs and isolated PA smooth muscle cells (PASMCs) from patients with PAH, and in lungs of experimental rodent models of HPH. S1P levels were increased in lungs of patients with PAH and PAs from rodent models of HPH. Unlike SphK2(-/-) mice, SphK1(-/-) mice were protected against HPH, whereas Sgpl1(+/-) mice were more susceptible to HPH. Pharmacologic SphK1 and S1PR2 inhibition prevented the development of HPH in rodent models of HPH. Overexpression of SphK1 and stimulation with S1P potentially via ligation of S1PR2 promoted PASMC proliferation in vitro, whereas SphK1 deficiency inhibited PASMC proliferation. CONCLUSIONS The SphK1/S1P axis is a novel pathway in PAH that promotes PASMC proliferation, a major contributor to pulmonary vascular remodeling. Our results suggest that this pathway is a potential therapeutic target in PAH.
Collapse
Affiliation(s)
- Jiwang Chen
- 1 Section of Pulmonary, Critical Care Medicine, Sleep and Allergy, Department of Medicine
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
The role, mechanism and potentially therapeutic application of microRNA-29 family in acute myeloid leukemia. Cell Death Differ 2013; 21:100-12. [PMID: 24076586 DOI: 10.1038/cdd.2013.133] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/04/2013] [Accepted: 08/16/2013] [Indexed: 12/12/2022] Open
Abstract
Abnormal proliferation, apoptosis repression and differentiation blockage of hematopoietic stem/progenitor cells have been characterized to be the main reasons leading to acute myeloid leukemia (AML). Previous studies showed that miR-29a and miR-29b could function as tumor suppressors in leukemogenesis. However, a comprehensive investigation of the function and mechanism of miR-29 family in AML development and their potentiality in AML therapy still need to be elucidated. Herein, we reported that the family members, miR-29a, -29b and -29c, were commonly downregulated in peripheral blood mononuclear cells and bone marrow (BM) CD34+ cells derived from AML patients as compared with the healthy donors. Overexpression of each miR-29 member in THP1 and NB4 cells markedly inhibited cell proliferation and promoted cell apoptosis. AKT2 and CCND2 mRNAs were demonstrated to be targets of the miR-29 members, and the role of miR-29 family was attributed to the decrease of Akt2 and CCND2, two key signaling molecules. Significantly increased Akt2, CCND2 and c-Myc levels in the AML cases were detected, which were correlated with the decreased miR-29 expression in AML blasts. Furthermore, a feed-back loop comprising of c-Myc, miR-29 family and Akt2 were found in myeloid leukemogenesis. Reintroduction of each miR-29 member partially corrected abnormal cell proliferation and apoptosis repression and myeloid differentiation arrest in AML BM blasts. An intravenous injection of miR-29a, -29b and -29c in the AML model mice relieved leukemic symptoms significantly. Taken together, our finding revealed a pivotal role of miR-29 family in AML development and rescue of miR-29 family expression in AML patients could provide a new therapeutic strategy.
Collapse
|
10
|
Abstract
The role of sphingolipids as bioactive signaling molecules that can regulate cell fate decisions puts them at center stage for cancer treatment and prevention. While ceramide and sphingosine have been established as antigrowth molecules, sphingosine-1-phosphate (S1P) offers a progrowth message to cells. The enzymes responsible for maintaining the balance between these "stop" or "go" signals are the sphingosine kinases (SK), SK1 and SK2. While the relative contribution of SK2 is still being elucidated and may involve an intranuclear role, a substantial amount of evidence suggests that regulation of sphingolipid levels by SK1 is an important component of carcinogenesis. Here, we review the literature regarding the role of SK1 as an oncogene that can function to enhance cancer cell viability and promote tumor growth and metastasis; highlighting the importance of developing specific SK1 inhibitors to supplement current cancer therapies.
Collapse
Affiliation(s)
- Linda A Heffernan-Stroud
- Molecular and Cellular Biology and Pathobiology Program, Medical University of South Carolina, Charleston, SC, USA
| | | |
Collapse
|
11
|
Gandy KAO, Obeid LM. Regulation of the sphingosine kinase/sphingosine 1-phosphate pathway. Handb Exp Pharmacol 2013:275-303. [PMID: 23563662 DOI: 10.1007/978-3-7091-1511-4_14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Sphingolipids have emerged as pleiotropic signaling molecules with roles in numerous cellular and biological functions. Defining the regulatory mechanisms governing sphingolipid metabolism is crucial in order to develop a complete understanding of the biological functions of sphingolipid metabolites. The sphingosine kinase/ sphingosine 1-phosphate pathway was originally thought to function in the irreversible breakdown of sphingoid bases; however, in the last few decades it has materialized as an extremely important signaling pathway involved in a plethora of cellular events contributing to both normal and pathophysiological events. Recognition of the SK/S1P pathway as a second messaging system has aided in the identification of many mechanisms of its regulation; however, a cohesive, global understanding of the regulatory mechanisms controlling the SK/S1P pathway is lacking. In this chapter, the role of the SK/S1P pathway as a second messenger is discussed, and its role in mediating TNF-α- and EGF-induced biologies is examined. This work provides a comprehensive look into the roles and regulation of the sphingosine kinase/ sphingosine 1-phosphate pathway and highlights the potential of the pathway as a therapeutic target.
Collapse
Affiliation(s)
- K Alexa Orr Gandy
- The Department of Molecular and Cellular Biology and Pathobiology, The Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
12
|
Madhunapantula SV, Hengst J, Gowda R, Fox TE, Yun JK, Robertson GP. Targeting sphingosine kinase-1 to inhibit melanoma. Pigment Cell Melanoma Res 2012; 25:259-74. [PMID: 22236408 DOI: 10.1111/j.1755-148x.2012.00970.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Resistance to therapies develops rapidly for melanoma leading to more aggressive disease. Therefore, agents are needed that specifically inhibit proteins or pathways controlling the development of this disease, which can be combined, dependent on genes deregulated in a particular patient's tumors. This study shows that elevated sphingosine-1-phosphate (S-1-P) levels resulting from increased activity of sphingosine kinase-1 (SPHK1) occur in advanced melanomas. Targeting SPHK1 using siRNA decreased anchorage-dependent and -independent growth as well as sensitized melanoma cells to apoptosis-inducing agents. Pharmacological SPHK1 inhibitors SKI-I but not SKI-II decreased S-1-P content, elevated ceramide levels, caused a G2-M block and induced apoptotic cell death in melanomas. Targeting SPHK1 using siRNA or the pharmacological agent called SKI-I decreased the levels of pAKT. Furthermore, SKI-I inhibited the expression of CYCLIN D1 protein and increased the activity of caspase-3/7, which in turn led to the degradation of PARP. In animals, SKI-I but not SKI-II retarded melanoma growth by 25-40%. Thus, targeting SPHK1 using siRNAs or SKI-I has therapeutic potential for melanoma treatment either alone or in combination with other targeted agents.
Collapse
|
13
|
Sinha UK, Schorn VJ, Hochstim C, Chinn SB, Zhu S, Masood R. Increased radiation sensitivity of head and neck squamous cell carcinoma with sphingosine kinase 1 inhibition. Head Neck 2011; 33:178-88. [PMID: 20848438 DOI: 10.1002/hed.21418] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sphingosine kinase 1 (SphK1) is an important regulator of apoptosis, survival, and proliferation in cancer cells. SphK1 expression in head and neck squamous cell cancer (HNSCC) cell lines and tumor tissue was assessed, and the efficacy of SphK1 knockdown in increasing tumor radiosensitivity was evaluated in vitro and in vivo. METHODS Expression of SphK1 was determined by immunohistochemistry, Western blot, and real-time polymerase chain reaction (RT-PCR) in 34 prospectively collected HNSCC tumor samples. HNSCC cell lines squamous cell carcinoma (SCC)-15 and SCC-25 were treated with SphK1 inhibitor SKI-II and siRNA targeting SphK1 with and without radiation, and the cell viability was assessed. SCC-15 cells with and without transfection of SphK1 siRNA were then injected into athymic nude mice to develop tumor xenografts, and these 2 groups were further divided into 1 group that received radiation and 1 group that did not. Tumor size was measured over 18 days, when the animals were killed and the tumors were evaluated by immunohistochemistry. RESULTS SphK1 is found in both HNSCC cell lines and human tumor samples, with higher expression correlated with advanced tumor stage, nodal involvement, and recurrence. In vitro, both SCC-15 and SCC-25 were found to be radioresistant; however, they were sensitized by administration of SKI-II and transfection with siRNA targeting SphK1. In vivo, SphK1-siRNA transfected xenografts were decreased in size compared with both nonradiated control and radiated control mice, whereas mice with both SphK1-siRNA and radiation treatment showed a synergistic reduction in tumor volume. Histopathologic analysis demonstrated a decreased proliferative state in SphK1-siRNA transfected tumors. CONCLUSION SphK1 is upregulated in HNSCC, and inhibition of SphK1 sensitizes HNSCC to radiation-induced cytotoxicity.
Collapse
Affiliation(s)
- Uttam K Sinha
- Department of Otolaryngology - Head and Neck Surgery, University of Southern California, Keck School of Medicine, Los Angeles, California, USA
| | | | | | | | | | | |
Collapse
|
14
|
Estrada-Bernal A, Lawler SE, Nowicki MO, Chaudhury AR, Van Brocklyn JR. The role of sphingosine kinase-1 in EGFRvIII-regulated growth and survival of glioblastoma cells. J Neurooncol 2011; 102:353-66. [PMID: 20938717 PMCID: PMC3085825 DOI: 10.1007/s11060-010-0345-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 08/06/2010] [Indexed: 10/19/2022]
Abstract
We have previously shown that high expression levels of the lipid kinase sphingosine kinase-1 (SphK1) correlate with poor survival of glioblastoma (GBM) patients. In this study we examined the regulation of SphK1 expression by epidermal growth factor receptor (EGFR) signaling in GBM cells. As the EGFR gene is often overexpressed and mutated in GBM, and EGFR has been shown to regulate SphK1 in some cell types, we examined the effect of EGF signaling and the constitutively active EGFRvIII mutant on SphK1 in GBM cells. Treatment of glioma cell lines with EGF led to increased expression and activity of SphK1. Expression of EGFRvIII in glioma cells also activated and induced SphK1. In addition, siRNA to SphK1 partially inhibited EGFRvIII-induced growth and survival of glioma cells as well as ERK MAP kinase activation. To further evaluate the connection between EGFR and SphK1 in GBM we examined primary neurosphere cells isolated from fresh human GBM tissue. The GBM-derived neurosphere cell line GBM9, which forms GBM-like tumors intracranially in nude mice, maintained expression of EGFRvIII in culture and had high levels of SphK1 activity. EGFR inhibitors modestly decreased SphK1 activity and proliferation of GBM9 cells. More extensive blockage of SphK1 activity by a SphK inhibitor, potently blocked cell proliferation and induced apoptotic cell death of GBM9 cells. Thus, SphK1 activity is necessary for survival of GBM-derived neurosphere cells, and EGFRvIII partially utilizes SphK1 to further enhance cell proliferation.
Collapse
Affiliation(s)
- Adriana Estrada-Bernal
- Department of Pathology, The Ohio State University, 4164 Graves Hall, 333 W. 10th Ave., Columbus, OH 43210, USA
| | - Sean E. Lawler
- Department of Neurosurgery, The Ohio State University, Columbus, OH, USA
| | - Michal O. Nowicki
- Department of Neurosurgery, The Ohio State University, Columbus, OH, USA
| | - Abhik Ray Chaudhury
- Department of Pathology, The Ohio State University, 4164 Graves Hall, 333 W. 10th Ave., Columbus, OH 43210, USA
| | - James R. Van Brocklyn
- Department of Pathology, The Ohio State University, 4164 Graves Hall, 333 W. 10th Ave., Columbus, OH 43210, USA
| |
Collapse
|
15
|
Marfe G, Di Stefano C, Gambacurta A, Ottone T, Martini V, Abruzzese E, Mologni L, Sinibaldi-Salimei P, de Fabritis P, Gambacorti-Passerini C, Amadori S, Birge RB. Sphingosine kinase 1 overexpression is regulated by signaling through PI3K, AKT2, and mTOR in imatinib-resistant chronic myeloid leukemia cells. Exp Hematol 2011; 39:653-665.e6. [PMID: 21392556 DOI: 10.1016/j.exphem.2011.02.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 02/18/2011] [Accepted: 02/26/2011] [Indexed: 01/08/2023]
Abstract
OBJECTIVE As a better understanding of the molecular basis of carcinogenesis has emerged, oncogene-specific cell-signaling pathways have been successfully targeted to treat human malignances. Despite impressive advances in oncogene-directed therapeutics, genetic instability in cancer cells often manifest acquired resistance. This is particularly noted in the use of tyrosine kinase inhibitors therapies and not more evident than for chronic myeloid leukemia. Therefore, it is of great importance to understand the molecular mechanisms affecting cancer cell sensitivity and resistance to tyrosine kinase inhibitors. MATERIALS AND METHODS In this study, we used continuous exposure to stepwise increasing concentrations of imatinib (0.6-1 μM) to select imatinib-resistant K562 cells. RESULTS Expression of BCR-ABL increased both at RNA and protein levels in imatinib-resistant cell lines. Furthermore, expression levels of sphingosine kinase 1 (SphK1) were increased significantly in resistant cells, channeling sphingoid bases to the SphK1 pathway and activating sphingosine-1-phosphate-dependent tyrosine phosphorylation pathways that include the adaptor protein Crk. The partial inhibition of SphK1 activity by N,N-dimethylsphingosine or expression by small interfering RNA increased sensitivity to imatinib-induced apoptosis in resistant cells and returned BCR-ABL to baseline levels. To determine the resistance mechanism-induced SphK1 upregulation, we used pharmacological inhibitors of the phosphoinositide 3-kinase/AKT/mammalian target of rapamycin signaling pathway and observed robust downmodulation of SphK1 expression and activity when AKT2, but not AKT1 or AKT3, was suppressed. CONCLUSIONS These results demonstrate that SphK1 is upregulated in imatinib-resistant K562 cells by a pathway contingent on a phosphoinositide 3-kinase/AKT2/mammalian target of rapamycin signaling pathway. We propose that SphK1 plays an important role in development of acquired resistance to imatinib in chronic myeloid leukemia cell lines.
Collapse
Affiliation(s)
- Gabriella Marfe
- Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Samadi N, Bekele R, Capatos D, Venkatraman G, Sariahmetoglu M, Brindley DN. Regulation of lysophosphatidate signaling by autotaxin and lipid phosphate phosphatases with respect to tumor progression, angiogenesis, metastasis and chemo-resistance. Biochimie 2010; 93:61-70. [PMID: 20709140 DOI: 10.1016/j.biochi.2010.08.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 08/03/2010] [Accepted: 08/04/2010] [Indexed: 12/21/2022]
Abstract
Evidence from clinical, animal and cell culture studies demonstrates that increased autotaxin (ATX) expression is responsible for enhancing tumor progression, cell migration, metastases, angiogenesis and chemo-resistance. These effects depend mainly on the rapid formation of lysophosphatidate (LPA) by ATX. Circulating LPA has a half-life of about 3 min in mice and it is degraded by the ecto-activities of lipid phosphate phosphatases (LPPs). These enzymes also hydrolyze extracellular sphingosine 1-phosphate (S1P), a potent signal for cell division, survival and angiogenesis. Many aggressive tumor cells express high ATX levels and low LPP activities. This favors the formation of locally high LPA and S1P concentrations. Furthermore, LPPs attenuate signaling downstream of the activation of G-protein coupled receptors and receptor tyrosine kinases. Therefore, we propose that the low expression of LPPs in many tumor cells makes them hypersensitive to growth promoting and survival signals that are provided by LPA, S1P, platelet-derived growth factor (PDGF) and epidermal growth factor (EGF). One of the key signaling pathways in this respect appears to be activation of phospholipase D (PLD) and phosphatidate (PA) production. This is required for the transactivations of the EGFR and PDGFR and also for LPA-induced cell migration. PA also increases the activities of ERK, mTOR, myc and sphingosine kinase-1 (SK-1), which provide individual signals for cells division, survival, chemo-resistance and angiogenesis. This review focuses on the balance of signaling by bioactive lipids including LPA, phosphatidylinositol 3,4,5-trisphosphate, PA and S1P versus the action of ceramides. We will discuss how these lipid mediators interact to produce an aggressive neoplastic phenotype.
Collapse
Affiliation(s)
- Nasser Samadi
- Signal Transduction Research Group, Department of Biochemistry, School of Molecular and Systems Medicine, University of Alberta, Edmonton, T6G 2S2 Alberta, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Ogawa A, Firth AL, Yao W, Madani MM, Kerr KM, Auger WR, Jamieson SW, Thistlethwaite PA, Yuan JXJ. Inhibition of mTOR attenuates store-operated Ca2+ entry in cells from endarterectomized tissues of patients with chronic thromboembolic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2009; 297:L666-76. [PMID: 19633069 DOI: 10.1152/ajplung.90548.2008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pulmonary vascular remodeling occurs in patients with chronic thromboembolic pulmonary hypertension (CTEPH). One factor contributing to this vascular wall thickening is the proliferation of pulmonary artery smooth muscle cells (PASMC). Store-operated Ca(2+) entry (SOCE) and cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)) in PASMC are known to be important in cell proliferation and vascular remodeling in pulmonary hypertension. Rapamycin is widely known for its antiproliferative effects in injured coronary arteries. Although several reports have suggested favorable effects of rapamycin in animal models of pulmonary hypertension, no reports have been published to date in human tissues. Here we report that rapamycin has an inhibitory effect on SOCE and an antiproliferative effect on PASMC derived from endarterectomized tissues of CTEPH patients. Cells were isolated from endarterectomized tissues obtained from patients undergoing pulmonary thromboendarterectomy (PTE). Immunohistochemical analysis indicated high deposition of platelet-derived growth factor (PDGF) in tissue sections from PTE tissues and increased PDGF receptor expression. PDGF transiently phosphorylated Akt, mammalian target of rapamycin (mTOR), and p70S6 kinase in CTEPH cells from CTEPH patients. Acute treatment (30 min) with rapamycin (10 nM) slightly increased cyclopiazonic acid (10 microM)-induced Ca(2+) mobilization and significantly reduced SOCE. Chronic treatment (24 h) with rapamycin reduced Ca(2+) mobilization and markedly inhibited SOCE. The inhibitory effects of rapamycin on SOCE were less prominent in control cells. Rapamycin also significantly reduced PDGF-stimulated cell proliferation. In conclusion, the data from this study indicate the importance of the mTOR pathway in the development of pulmonary vascular remodeling in CTEPH and suggest a potential therapeutic benefit of rapamycin (or inhibition of mTOR) in these patients.
Collapse
Affiliation(s)
- Aiko Ogawa
- Dept. of Medicine, Univ. of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0725, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Schnitzer SE, Weigert A, Zhou J, Brüne B. Hypoxia Enhances Sphingosine Kinase 2 Activity and Provokes Sphingosine-1-Phosphate-Mediated Chemoresistance in A549 Lung Cancer Cells. Mol Cancer Res 2009; 7:393-401. [DOI: 10.1158/1541-7786.mcr-08-0156] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Paugh BS, Bryan L, Paugh SW, Wilczynska KM, Alvarez SM, Singh SK, Kapitonov D, Rokita H, Wright S, Griswold-Prenner I, Milstien S, Spiegel S, Kordula T. Interleukin-1 regulates the expression of sphingosine kinase 1 in glioblastoma cells. J Biol Chem 2008; 284:3408-17. [PMID: 19074142 DOI: 10.1074/jbc.m807170200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chronic inflammation and inflammatory cytokines have recently been implicated in the development and progression of various types of cancer. In the brain, neuroinflammatory cytokines affect the growth and differentiation of both normal and malignant glial cells, with interleukin 1 (IL-1) shown to be secreted by the majority of glioblastoma cells. Recently, elevated levels of sphingosine kinase 1 (SphK1), but not SphK2, were correlated with a shorter survival prognosis for patients with glioblastoma multiforme. SphK1 is a lipid kinase that produces the pro-growth, anti-apoptotic sphingosine 1-phosphate, which can induce invasion of glioblastoma cells. Here, we show that the expression of IL-1 correlates with the expression of SphK1 in glioblastoma cells, and neutralizing anti-IL-1 antibodies inhibit both the growth and invasion of glioblastoma cells. Furthermore, IL-1 up-regulates SphK1 mRNA levels, protein expression, and activity in both primary human astrocytes and various glioblastoma cell lines; however, it does not affect SphK2 expression. The IL-1-induced SphK1 up-regulation can be blocked by the inhibition of JNK, the overexpression of the dominant-negative c-Jun(TAM67), and the down-regulation of c-Jun expression by small interference RNA. Activation of SphK1 expression by IL-1 occurs on the level of transcription and is mediated via a novel AP-1 element located within the first intron of the sphk1 gene. In summary, our results suggest that SphK1 expression is transcriptionally regulated by IL-1 in glioblastoma cells, and this pathway may be important in regulating survival and invasiveness of glioblastoma cells.
Collapse
Affiliation(s)
- Barbara S Paugh
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bayerl MG, Bruggeman RD, Conroy EJ, Hengst JA, King TS, Jimenez M, Claxton DF, Yun JK. Sphingosine kinase 1 protein and mRNA are overexpressed in non-Hodgkin lymphomas and are attractive targets for novel pharmacological interventions. Leuk Lymphoma 2008; 49:948-54. [PMID: 18452097 DOI: 10.1080/10428190801911654] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Sphingosine kinase 1 (SphK1) is an oncoprotein capable of directly transforming cells and is associated with resistance to chemotherapy and radiotherapy. SphK1 is increased in various human cancers; whereas, blockade restores sensitivity to therapeutic killing in chemotherapy resistant cancer cell lines. We investigated SphK1 expression in clinical tissue samples from patients with non-Hodgkin lymphomas (NHL). Tissues from 69 patients with either NHL (n = 44) or reactive lymphoid hyperplasias (RH) (n = 25) were examined for expression of SphK1 protein by Western blot and immunohistochemistry (IHC), and SphK1 and SphK2 mRNA by quantitative real-time reverse transcriptase polymerase chain reaction. SphK1 protein (p = 0.008) and mRNA (p = 0.035) levels were higher in NHL than RH, with a clear trend toward increasing levels with increasing clinical grade (p = 0.005 for SphK1 protein, p = 0.035 for IHC score and p = 0.002 for SphK1 mRNA). IHC generally confirmed protein signal in neoplastic cells, but some lymphomas exhibited staining in non-neoplastic cells. SphK1 is overexpressed in NHL and increases with increasing clinical grade. These results, combined with prior mechanistic studies suggest that SphK1 is an attractive novel target for pharmacological interventions for NHL.
Collapse
Affiliation(s)
- Michael G Bayerl
- Division of Anatomic Pathology, Department of Pathology, Penn State College of Medicine and Milton S. Hershey Medical Centre, Hershey, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Itagaki K, Yun JK, Hengst JA, Yatani A, Hauser CJ, Spolarics Z, Deitch EA. Sphingosine 1-phosphate has dual functions in the regulation of endothelial cell permeability and Ca2+ metabolism. J Pharmacol Exp Ther 2007; 323:186-91. [PMID: 17626797 DOI: 10.1124/jpet.107.121210] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ca2+ signaling plays an important role in endothelial cell (EC) functions including the regulation of barrier integrity. Recently, the endogenous lipid derivative, sphingosine-1-phosphate (S1P), has emerged as an important modulator of EC barrier function. We investigated the role of endogenously generated S1P in Ca2+ metabolism and barrier function in human umbilical endothelial cells (HUVECs) stimulated by thrombin, histamine, or other agonists. Barrier function was assessed by dextran diffusion through HUVEC monolayers, and Ca2+ transients were measured using a fluoroprobe. Thrombin or histamine increased Ca2+ release from the endoplasmic reticulum (ER) and Ca2+ entry through store-operated channels (SOCs) that was accompanied by increased EC permeability. Inhibition of S1P synthesis by a specific sphingosine kinase inhibitor (SKI) decreased thrombin or histamine-induced increased permeability and decreased Ca2+ entry via SOC in a concentration-dependent fashion. SKI had minuscule effects on thrombin or histamine-induced Ca2+ release from ER. SKI also inhibited thapsigargin or ionomycin-induced Ca2+ entry via SOC without affecting Ca2+ release from the ER. In contrast to the effects of endogenously generated S1P, when S1P was administered externally, it initiated Ca2+ release from ER similar to thrombin and histamine while decreasing EC permeability. These observations indicate that after agonist-induced conditions, endogenously generated S1P functions as a positive modulator of Ca2+ entry via SOC and a mediator of increased cell permeability. In contrast, extracellular exposure to S1P has different signaling mechanisms and effects. Thus, the potential dual roles of endogenous and exogenous S1P on EC function need to be considered in pharmacological studies targeting sphingosine metabolism.
Collapse
Affiliation(s)
- Kiyoshi Itagaki
- Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, 330 Brookline Avenue, ST-8M10A, Boston, MA 02215, USA.
| | | | | | | | | | | | | |
Collapse
|