1
|
Zhong Z, Li Y, Sun Q, Chen D. Tiny but mighty: Diverse functions of uORFs that regulate gene expression. Comput Struct Biotechnol J 2024; 23:3771-3779. [PMID: 39525088 PMCID: PMC11550727 DOI: 10.1016/j.csbj.2024.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Upstream open reading frames (uORFs) are critical cis-acting regulators of downstream gene expression. Specifically, uORFs regulate translation by disrupting translation initiation or mediating mRNA decay. We herein summarize the effects of several uORFs that regulate gene expression in microbes to illustrate the detailed mechanisms mediating uORF functions. Microbes are ideal for uORF studies because of their prompt responses to stimuli. Recent studies revealed uORFs are ubiquitous in higher eukaryotes. Moreover, they influence various physiological processes in mammalian cells by regulating gene expression, mostly at the translational level. Research conducted using rapidly evolving methods for ribosome profiling combined with protein analyses and computational annotations showed that uORFs in mammalian cells control gene expression similar to microbial uORFs, but they also have unique tumorigenesis-related roles because of their protein-encoding capacities. We briefly introduce cutting-edge research findings regarding uORFs in mammalian cells.
Collapse
Affiliation(s)
- Zhenfei Zhong
- Institute of Biomedical Research, Yunnan University, Kunming, Yunnan 650500, China
| | - Yajie Li
- Institute of Biomedical Research, Yunnan University, Kunming, Yunnan 650500, China
| | - Qinmiao Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Organ Regeneration and Reconstruction, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dahua Chen
- Institute of Biomedical Research, Yunnan University, Kunming, Yunnan 650500, China
- Southwest United Graduate School, Kunming 650500, China
| |
Collapse
|
2
|
Manske F, Ogoniak L, Jürgens L, Grundmann N, Makałowski W, Wethmar K. The new uORFdb: integrating literature, sequence, and variation data in a central hub for uORF research. Nucleic Acids Res 2022; 51:D328-D336. [PMID: 36305828 PMCID: PMC9825577 DOI: 10.1093/nar/gkac899] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 02/07/2023] Open
Abstract
Upstream open reading frames (uORFs) are initiated by AUG or near-cognate start codons and have been identified in the transcript leader sequences of the majority of eukaryotic transcripts. Functionally, uORFs are implicated in downstream translational regulation of the main protein coding sequence and may serve as a source of non-canonical peptides. Genetic defects in uORF sequences have been linked to the development of various diseases, including cancer. To simplify uORF-related research, the initial release of uORFdb in 2014 provided a comprehensive and manually curated collection of uORF-related literature. Here, we present an updated sequence-based version of uORFdb, accessible at https://www.bioinformatics.uni-muenster.de/tools/uorfdb. The new uORFdb enables users to directly access sequence information, graphical displays, and genetic variation data for over 2.4 million human uORFs. It also includes sequence data of >4.2 million uORFs in 12 additional species. Multiple uORFs can be displayed in transcript- and reading-frame-specific models to visualize the translational context. A variety of filters, sequence-related information, and links to external resources (UCSC Genome Browser, dbSNP, ClinVar) facilitate immediate in-depth analysis of individual uORFs. The database also contains uORF-related somatic variation data obtained from whole-genome sequencing (WGS) analyses of 677 cancer samples collected by the TCGA consortium.
Collapse
Affiliation(s)
- Felix Manske
- Institute of Bioinformatics, University of Münster, Münster 48149, Germany
| | - Lynn Ogoniak
- Institute of Bioinformatics, University of Münster, Münster 48149, Germany
| | - Lara Jürgens
- Department of Medicine A, Hematology, Oncology, Hemostaseology and Pneumology, University Hospital Münster, Münster 48149, Germany
| | - Norbert Grundmann
- Institute of Bioinformatics, University of Münster, Münster 48149, Germany
| | - Wojciech Makałowski
- Correspondence may also be addressed to Wojciech Makałowski. Tel: +49 2518353006;
| | - Klaus Wethmar
- To whom correspondence should be addressed. Tel: +49 2518347587; Fax: +49 2518347588;
| |
Collapse
|
3
|
Bottorff TA, Park H, Geballe AP, Subramaniam AR. Translational buffering by ribosome stalling in upstream open reading frames. PLoS Genet 2022; 18:e1010460. [PMID: 36315596 PMCID: PMC9648851 DOI: 10.1371/journal.pgen.1010460] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/10/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022] Open
Abstract
Upstream open reading frames (uORFs) are present in over half of all human mRNAs. uORFs can potently regulate the translation of downstream open reading frames through several mechanisms: siphoning away scanning ribosomes, regulating re-initiation, and allowing interactions between scanning and elongating ribosomes. However, the consequences of these different mechanisms for the regulation of protein expression remain incompletely understood. Here, we performed systematic measurements on the uORF-containing 5' UTR of the cytomegaloviral UL4 mRNA to test alternative models of uORF-mediated regulation in human cells. We find that a terminal diproline-dependent elongating ribosome stall in the UL4 uORF prevents decreases in main ORF protein expression when ribosome loading onto the mRNA is reduced. This uORF-mediated buffering is insensitive to the location of the ribosome stall along the uORF. Computational kinetic modeling based on our measurements suggests that scanning ribosomes dissociate rather than queue when they collide with stalled elongating ribosomes within the UL4 uORF. We identify several human uORFs that repress main ORF protein expression via a similar terminal diproline motif. We propose that ribosome stalls in uORFs provide a general mechanism for buffering against reductions in main ORF translation during stress and developmental transitions.
Collapse
Affiliation(s)
- Ty A. Bottorff
- Basic Sciences Division and Computational Biology Program of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Biological Physics, Structure and Design Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - Heungwon Park
- Basic Sciences Division and Computational Biology Program of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Adam P. Geballe
- Human Biology and Clinical Research Divisions, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Arvind Rasi Subramaniam
- Basic Sciences Division and Computational Biology Program of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Biological Physics, Structure and Design Graduate Program, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
4
|
Lee HC, Fu CY, Lin CY, Hu JR, Huang TY, Lo KY, Tsai HY, Sheu JC, Tsai HJ. Poly(U)-specific endoribonuclease ENDOU promotes translation of human CHOP mRNA by releasing uORF element-mediated inhibition. EMBO J 2021; 40:e104123. [PMID: 33511665 PMCID: PMC8167367 DOI: 10.15252/embj.2019104123] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 11/18/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022] Open
Abstract
Upstream open reading frames (uORFs) are known to negatively affect translation of the downstream ORF. The regulatory proteins involved in relieving this inhibition are however poorly characterized. In response to cellular stress, eIF2α phosphorylation leads to an inhibition of global protein synthesis, while translation of specific factors such as CHOP is induced. We analyzed a 105‐nt inhibitory uORF in the transcript of human CHOP (huORFchop) and found that overexpression of the zebrafish or human ENDOU poly(U)‐endoribonuclease (Endouc or ENDOU‐1, respectively) increases CHOP mRNA translation also in the absence of stress. We also found that Endouc/ENDOU‐1 binds and cleaves the huORFchop transcript at position 80G‐81U, which induces CHOP translation independently of phosphorylated eIF2α. However, both ENDOU and phospho‐eIF2α are nonetheless required for maximal translation of CHOP mRNA. Increased levels of ENDOU shift a huORFchop reporter as well as endogenous CHOP transcripts from the monosome to polysome fraction, indicating an increase in translation. Furthermore, we found that the uncapped truncated huORFchop‐69‐105‐nt transcript contains an internal ribosome entry site (IRES), facilitating translation of the cleaved transcript. Therefore, we propose a model where ENDOU‐mediated transcript cleavage positively regulates CHOP translation resulting in increased CHOP protein levels upon stress. Specifically, CHOP transcript cleavage changes the configuration of huORFchop thereby releasing its inhibition and allowing the stalled ribosomes to resume translation of the downstream ORF.
Collapse
Affiliation(s)
- Hung-Chieh Lee
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Chuan-Yang Fu
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Cheng-Yung Lin
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Jia-Rung Hu
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Ting-Ying Huang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Kai-Yin Lo
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Hsin-Yue Tsai
- Institute of Molecular Medicine, School of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jin-Chuan Sheu
- Liver Disease Prevention and Treatment Research Foundation, Taipei, Taiwan
| | - Huai-Jen Tsai
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan.,Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan.,Department of Life Science, Fu Jen Catholic University, New Taipei, Taiwan
| |
Collapse
|
5
|
Disrupting upstream translation in mRNAs is associated with human disease. Nat Commun 2021; 12:1515. [PMID: 33750777 PMCID: PMC7943595 DOI: 10.1038/s41467-021-21812-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/12/2021] [Indexed: 12/04/2022] Open
Abstract
Ribosome-profiling has uncovered pervasive translation in non-canonical open reading frames, however the biological significance of this phenomenon remains unclear. Using genetic variation from 71,702 human genomes, we assess patterns of selection in translated upstream open reading frames (uORFs) in 5’UTRs. We show that uORF variants introducing new stop codons, or strengthening existing stop codons, are under strong negative selection comparable to protein-coding missense variants. Using these variants, we map and validate gene-disease associations in two independent biobanks containing exome sequencing from 10,900 and 32,268 individuals, respectively, and elucidate their impact on protein expression in human cells. Our results suggest translation disrupting mechanisms relating uORF variation to reduced protein expression, and demonstrate that translation at uORFs is genetically constrained in 50% of human genes. The significance of translated upstream open reading frames is not well known. Here, the authors investigate genetic variants in these regions, finding that they are under high evolutionary constraint and may contribute to disease.
Collapse
|
6
|
Schieweck R, Ninkovic J, Kiebler MA. RNA-binding proteins balance brain function in health and disease. Physiol Rev 2020; 101:1309-1370. [PMID: 33000986 DOI: 10.1152/physrev.00047.2019] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Posttranscriptional gene expression including splicing, RNA transport, translation, and RNA decay provides an important regulatory layer in many if not all molecular pathways. Research in the last decades has positioned RNA-binding proteins (RBPs) right in the center of posttranscriptional gene regulation. Here, we propose interdependent networks of RBPs to regulate complex pathways within the central nervous system (CNS). These are involved in multiple aspects of neuronal development and functioning, including higher cognition. Therefore, it is not sufficient to unravel the individual contribution of a single RBP and its consequences but rather to study and understand the tight interplay between different RBPs. In this review, we summarize recent findings in the field of RBP biology and discuss the complex interplay between different RBPs. Second, we emphasize the underlying dynamics within an RBP network and how this might regulate key processes such as neurogenesis, synaptic transmission, and synaptic plasticity. Importantly, we envision that dysfunction of specific RBPs could lead to perturbation within the RBP network. This would have direct and indirect (compensatory) effects in mRNA binding and translational control leading to global changes in cellular expression programs in general and in synaptic plasticity in particular. Therefore, we focus on RBP dysfunction and how this might cause neuropsychiatric and neurodegenerative disorders. Based on recent findings, we propose that alterations in the entire regulatory RBP network might account for phenotypic dysfunctions observed in complex diseases including neurodegeneration, epilepsy, and autism spectrum disorders.
Collapse
Affiliation(s)
- Rico Schieweck
- Biomedical Center (BMC), Department for Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| | - Jovica Ninkovic
- Biomedical Center (BMC), Department for Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| | - Michael A Kiebler
- Biomedical Center (BMC), Department for Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| |
Collapse
|
7
|
Renz PF, Valdivia-Francia F, Sendoel A. Some like it translated: small ORFs in the 5'UTR. Exp Cell Res 2020; 396:112229. [PMID: 32818479 DOI: 10.1016/j.yexcr.2020.112229] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/28/2020] [Accepted: 08/07/2020] [Indexed: 01/06/2023]
Abstract
The 5' untranslated region (5'UTR) is critical in determining post-transcriptional control, which is partly mediated by short upstream open reading frames (uORFs) present in half of mammalian transcripts. uORFs are generally considered to provide functionally important repression of the main-ORF by engaging initiating ribosomes, but under specific environmental conditions such as cellular stress, uORFs can become essential to activate the translation of the main coding sequence. In addition, a growing number of uORF-encoded bioactive microproteins have been described, which have the potential to significantly increase cellular protein diversity. Here we review the diverse cellular contexts in which uORFs play a critical role and discuss the molecular mechanisms underlying their function and regulation. The progress over the last decades in dissecting uORF function suggests that the 5'UTR remains an exciting frontier towards understanding how the cellular proteome is shaped in health and disease.
Collapse
Affiliation(s)
- Peter F Renz
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, CH-8952 Schlieren, Switzerland
| | - Fabiola Valdivia-Francia
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, CH-8952 Schlieren, Switzerland; Life Science Zurich Graduate School, Molecular Life Science Program, University of Zurich/ ETH Zurich, Switzerland
| | - Ataman Sendoel
- Institute for Regenerative Medicine (IREM), University of Zurich, Wagistrasse 12, CH-8952 Schlieren, Switzerland.
| |
Collapse
|
8
|
Silva J, Fernandes R, Romão L. Translational Regulation by Upstream Open Reading Frames and Human Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1157:99-116. [DOI: 10.1007/978-3-030-19966-1_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Bucio-Mendez A, Cruz-Becerra G, Valadez-Graham V, Dinkova TD, Zurita M. The Dmp8-Dmp18 bicistron messenger RNA enables unusual translation during cellular stress. J Cell Biochem 2018; 120:3887-3897. [PMID: 30270456 DOI: 10.1002/jcb.27670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/21/2018] [Indexed: 11/07/2022]
Abstract
Alternatives to the cap mechanism in translation are often used by viruses and cells to allow them to synthesize proteins in events of stress and viral infection. In Drosophila there are hundreds of polycistronic messenger RNA (mRNA), and various mechanisms are known to achieve this. However, proteins in a same mRNA often work in the same cellular mechanism, this is not the case for Drosophila's Swc6/p18Hamlet homolog Dmp18, part of the SWR1 chromatin remodeling complex, who is encoded in a bicistronic mRNA next to Dmp8 (Dmp8-Dmp18 transcript), a structural component of transcription factor TFIIH. The organization of these two genes as a bicistron is conserved in all arthropods, however the length of the intercistronic sequence varies from more than 90 to 2 bases, suggesting an unusual translation mechanism for the second open reading frame. We found that even though translation of Dmp18 occurs independently from that of Dmp8, it is necessary for Dmp18 to be in that conformation to allow its correct translation during cellular stress caused by damage via heat-shock and UV radiation.
Collapse
Affiliation(s)
- Alyeri Bucio-Mendez
- Department of Developmental Genetics and Molecular Physiology, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Grisel Cruz-Becerra
- Department of Developmental Genetics and Molecular Physiology, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Viviana Valadez-Graham
- Department of Developmental Genetics and Molecular Physiology, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Tzvetanka D Dinkova
- Department of Biochemistry and Molecular Biology, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Mario Zurita
- Department of Developmental Genetics and Molecular Physiology, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| |
Collapse
|
10
|
Zhang H, Dou S, He F, Luo J, Wei L, Lu J. Genome-wide maps of ribosomal occupancy provide insights into adaptive evolution and regulatory roles of uORFs during Drosophila development. PLoS Biol 2018; 16:e2003903. [PMID: 30028832 PMCID: PMC6070289 DOI: 10.1371/journal.pbio.2003903] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 08/01/2018] [Accepted: 07/03/2018] [Indexed: 11/19/2022] Open
Abstract
Upstream open reading frames (uORFs) play important roles in regulating the main coding DNA sequences (CDSs) via translational repression. Despite their prevalence in the genomes, uORFs are overall discriminated against by natural selection. However, it remains unclear why in the genomes there are so many uORFs more conserved than expected under the assumption of neutral evolution. Here, we generated genome-wide maps of translational efficiency (TE) at the codon level throughout the life cycle of Drosophila melanogaster. We identified 35,735 uORFs that were expressed, and 32,224 (90.2%) of them showed evidence of ribosome occupancy during Drosophila development. The ribosome occupancy of uORFs is determined by genomic features, such as optimized sequence contexts around their start codons, a shorter distance to CDSs, and higher coding potentials. Our population genomic analysis suggests the segregating mutations that create or disrupt uORFs are overall deleterious in D. melanogaster. However, we found for the first time that many (68.3% of) newly fixed uORFs that are associated with ribosomes in D. melanogaster are driven by positive Darwinian selection. Our findings also suggest that uORFs play a vital role in controlling the translational program in Drosophila. Moreover, we found that many uORFs are transcribed or translated in a developmental stage-, sex-, or tissue-specific manner, suggesting that selective transcription or translation of uORFs could potentially modulate the TE of the downstream CDSs during Drosophila development. Upstream open reading frames (uORFs) in the 5′ untranslated regions (UTRs) of messenger RNAs can potentially inhibit translation of the downstream regions that encode proteins by sequestering protein-making machinery the ribosome. Moreover, mutations that destroy existing uORFs or create new ones are known to cause human disease. Although mutations that create new uORFs are generally deleterious and are selected against, many uORFs are evolutionarily conserved across eukaryotic species. To resolve this dilemma, we used extensive mRNA-Seq and ribosome profiling to generate high-resolution genome-wide maps of ribosome occupancy and translational efficiency (TE) during the life cycle of the fruit fly D. melanogaster. This allowed us to identify the sequence features of uORFs that influence their ability to associate with ribosomes. We demonstrate for the first time that the majority of the newly fixed uORFs in D. melanogaster, especially the translated ones, are under positive Darwinian selection. We also show that uORFs exert widespread repressive effects on the translation of the downstream protein-coding region. We find that many uORFs are transcribed or translated in a developmental stage-, sex-, or tissue-specific manner. Our results suggest that during Drosophila development, changes in the TE of uORFs, as well as the inclusion/exclusion of uORFs, are frequently exploited to inversely influence the translation of the downstream protein-coding regions. Our study provides novel insights into the molecular mechanisms and functional consequences of uORF-mediated regulation.
Collapse
Affiliation(s)
- Hong Zhang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Shengqian Dou
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Feng He
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Junjie Luo
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Liping Wei
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- * E-mail:
| |
Collapse
|
11
|
Young SK, Wek RC. Upstream Open Reading Frames Differentially Regulate Gene-specific Translation in the Integrated Stress Response. J Biol Chem 2016; 291:16927-35. [PMID: 27358398 DOI: 10.1074/jbc.r116.733899] [Citation(s) in RCA: 264] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Translation regulation largely occurs during initiation, which features ribosome assembly onto mRNAs and selection of the translation start site. Short, upstream ORFs (uORFs) located in the 5'-leader of the mRNA can be selected for translation. Multiple transcripts associated with stress amelioration are preferentially translated through uORF-mediated mechanisms during activation of the integrated stress response (ISR) in which phosphorylation of the α subunit of eIF2 results in a coincident global reduction in translation initiation. This review presents key features of uORFs that serve to optimize translational control that is essential for regulation of cell fate in response to environmental stresses.
Collapse
Affiliation(s)
- Sara K Young
- From the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5126
| | - Ronald C Wek
- From the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5126
| |
Collapse
|
12
|
Liu S, Wu N, Liu J, Liu H, Su X, Liu Z, Zuo Y, Chen W, Liu G, Chen Y, Ming Y, Yuan T, Li X, Chen J, Xia Z, Wang S, Chen J, Liu T, Yang X, Ma Y, Zhang J, Shen J, Li S, Wang Y, Zhao H, Yu K, Zhao Y, Huang S, Weng X, Qiu G, Wan C, Zhou G, Wu Z. Association between ADAMTS-4 gene polymorphism and lumbar disc degeneration in Chinese Han population. J Orthop Res 2016; 34:860-4. [PMID: 26495885 DOI: 10.1002/jor.23081] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/20/2015] [Indexed: 02/05/2023]
Abstract
Low back pain (LBP) is a common health problem and many LBP are caused by lumbar disc degeneration (LDD). ADAMTS-4 (a disintegrin and metalloprotease with thrombospondin motifs-4), also known as aggrecanse-1, plays a core role in degeneration of extracellular matrix in LDD. To investigate the association between ADAMTS-4 genetic polymorphism and LDD, we genotyped SNPs in and around ADAMTS-4. We recruited 482 sporadic cases of LDD and 496 healthy controls from Chinese Han population. Five SNPs were selected and phenotyped by the Sequenom MassARRAY system. Allelic, genotypic, and haplotypic association was performed. Rs4233367 (c.1877 C>T), which located in exon of ADAMTS-4 showed significant association with LDD. The T allele conferred a lower risk of LDD with an OR of 0.69 and TT genotype is at nearly one-fifth of the risk compared to CC genotype. Other tested SNPs didn't show significant difference between the case and control groups. The SNP rs4233367 in the exon of ADAMTS-4 gene may be associated with lumbar disc degeneration. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:860-864, 2016.
Collapse
Affiliation(s)
- Sen Liu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing 100730, P.R. China.,Beijing Key Laboratory for Genetic Research of Bone and Joint Disease, No.1 Shuaifuyuan, Beijing 100730, P.R. China
| | - Nan Wu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing 100730, P.R. China.,Beijing Key Laboratory for Genetic Research of Bone and Joint Disease, No.1 Shuaifuyuan, Beijing 100730, P.R. China
| | - Jiaqi Liu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing 100730, P.R. China
| | - Hao Liu
- Biology and Biomedical Sciences, Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts
| | - Xinlin Su
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing 100730, P.R. China
| | - Zhenlei Liu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing 100730, P.R. China
| | - Yuzhi Zuo
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing 100730, P.R. China
| | - Weisheng Chen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing 100730, P.R. China
| | - Gang Liu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing 100730, P.R. China
| | - Yixin Chen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing 100730, P.R. China
| | - Yue Ming
- PET-CT Center, Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 17, Pan Jia Yuan Nan-li, Beijing 100021, P.R. China
| | - Tangmi Yuan
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing 100730, P.R. China
| | - Xiao Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing 100730, P.R. China
| | - Jun Chen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing 100730, P.R. China
| | - Zenan Xia
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing 100730, P.R. China
| | - Shengru Wang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing 100730, P.R. China
| | - Jia Chen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing 100730, P.R. China
| | - Tao Liu
- Shenzhen Key Laboratory of Anti-Ageing and Regenerative Medicine, Center for Anti-Ageing and Regenerative Medicine, Shenzhen University Medical School, Shenzhen, Guangdong Province 506080, P.R. China
| | - Xu Yang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing 100730, P.R. China
| | - Yufen Ma
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing 100730, P.R. China
| | - Jianguo Zhang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing 100730, P.R. China
| | - Jianxiong Shen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing 100730, P.R. China
| | - Shugang Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing 100730, P.R. China
| | - Yipeng Wang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing 100730, P.R. China
| | - Hong Zhao
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing 100730, P.R. China
| | - Keyi Yu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing 100730, P.R. China
| | - Yu Zhao
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing 100730, P.R. China
| | - Shishu Huang
- Department of Orthopaedic Surgery, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Xisheng Weng
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing 100730, P.R. China
| | - Guixing Qiu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing 100730, P.R. China.,Beijing Key Laboratory for Genetic Research of Bone and Joint Disease, No.1 Shuaifuyuan, Beijing 100730, P.R. China
| | - Chao Wan
- School of Biomedical Sciences Core Laboratory, Institute of Stem Cell, Genomics and Translational Research, Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen 518057, China.,Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Guangqian Zhou
- Shenzhen Key Laboratory of Anti-Ageing and Regenerative Medicine, Center for Anti-Ageing and Regenerative Medicine, Shenzhen University Medical School, Shenzhen, Guangdong Province 506080, P.R. China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Bone and Joint Disease, No.1 Shuaifuyuan, Beijing 100730, P.R. China.,Central laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Beijing 100730, P.R. China
| |
Collapse
|
13
|
Kanduc D. Role of codon usage and tRNA changes in rat cytomegalovirus latency and (re)activation. J Basic Microbiol 2016; 56:617-26. [DOI: 10.1002/jobm.201500621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/27/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies, and Biopharmaceutics; University of Bari; Bari 70126 Italy
| |
Collapse
|
14
|
Kumar M, Srinivas V, Patankar S. Upstream AUGs and upstream ORFs can regulate the downstream ORF in Plasmodium falciparum. Malar J 2015; 14:512. [PMID: 26692187 PMCID: PMC4687322 DOI: 10.1186/s12936-015-1040-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 12/08/2015] [Indexed: 11/10/2022] Open
Abstract
Background Upstream open reading frames (uORFs) and upstream AUGs (uAUGs) can regulate the translation of downstream ORFs. The AT rich genome of Plasmodium falciparum, due to the higher AT content of start and stop codons, has the potential to give rise to a large number of uORFs and uAUGs that may affect expression of their flanking ORFs. Methods A bioinformatics approach was used to detect uATGs associated with different genes in the parasite. To study the effect of some of these uAUGs on the expression of the downstream ORF, promoters and 5′ leaders containing uAUGs and uORFs were cloned upstream of a luciferase reporter gene. Luciferase assays were carried out in transient transfection experiments to assess the effects of uAUGs and mutations on reporter expression. Results The average number of uATGs and uORFs seen in P. falciparum coding sequences (CDS) is expectedly high compared to other less biased genomes. Certain genes, including the var gene family contain the maximum number of uATGs and uORFs in the parasite. They possess ~5 times more uORFs and ~4.5 times more uAUGs within 100 bases upstream of the start codons than other CDS of the parasite. A 60 bp upstream region containing three ORFs and five ATGs from var gene PF3D7_0400100 and a gene of unknown function (PF3D7_0517100) when cloned upstream of the luciferase start codon, driven by the hsp86 promoter, resulted in loss of luciferase activity. This was restored when all the ATGs present in the −60 bp were mutated to TTGs. Point mutations in the ATGs showed that even one AUG was sufficient to repress the luciferase gene. Conclusions Overall, this work indicates that the P. falciparum genome has a large number of uATGs and uORFs that can repress the expression of flanking ORFs. The role of AUGs in translation initiation suggests that this repression is mediated by preventing the translation initiation complex from reaching the main AUG of the downstream ORF. How the P. falciparum ribosome is able to bypass these uAUGs and uORFs for highly expressed genes remains a question for future research. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-1040-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mayank Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| | - Vivek Srinivas
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| | - Swati Patankar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
15
|
A perspective on mammalian upstream open reading frame function. Int J Biochem Cell Biol 2013; 45:1690-700. [PMID: 23624144 PMCID: PMC7172355 DOI: 10.1016/j.biocel.2013.04.020] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/16/2013] [Accepted: 04/17/2013] [Indexed: 12/11/2022]
Abstract
Post-transcriptional control makes a major contribution to the overall regulation of gene expression pathway. Within the cytoplasm this is mediated by a combination of regulatory RNA motifs within the 5′ and 3′ untranslated regions of mRNAs and their interacting protein/RNA partners. One of the most common regulatory RNA elements in mammalian transcripts (present in approximately 40% of all mRNAs) are upstream open reading frames (uORFs). However, despite the prevalence of these RNA elements how they function is not well understood. In general, they act to repress translation of the physiological ORF under control conditions, and under certain pathophysiological stresses this repression can be alleviated. It is known that re-initiation following the translation of an uORF is utilised in some situations however there are numerous alternative mechanisms that control the synthesis of a protein whose mRNA contains uORFs. Moreover, the trans-acting factors that are also involved in this process are not well defined. In this review we summarise our current understanding of this area and highlight some common features of these RNA motifs that have been discovered to date.
Collapse
|
16
|
Hsu MK, Chen FC. Selective constraint on the upstream open reading frames that overlap with coding sequences in animals. PLoS One 2012; 7:e48413. [PMID: 23133632 PMCID: PMC3486843 DOI: 10.1371/journal.pone.0048413] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 09/24/2012] [Indexed: 11/18/2022] Open
Abstract
Upstream open reading frames (uORFs) are translational regulatory elements located in 5′ untranslated regions. They can significantly repress the translation of the downstream coding sequences (CDS), and participate in the spatio-temporal regulations of protein translation. Notwithstanding this biological significance, the selective constraint on uORFs remains underexplored. Particularly, the uORFs that partially overlap with CDS with a different reading frame (overlapping uORFs, or “VuORFs”) may lead to strong translational inhibition or N-terminal truncation of the peptides encoded by the affected CDS. By analyzing VuORF-containing transcripts (designated as “VuORF transcripts”) in human, mouse, and fruit fly, we demonstrate that VuORFs are in general slightly deleterious - the proportion of genes that encode at least one VuORF transcript is significantly smaller than expected in all of the three examined species. In addition, this proportion is significantly smaller in fruit fly than in mammals, indicating a higher efficiency of removing VuORFs in the former species because of its larger effective population size. Furthermore, the deleterious effect of a VuORF depends on the sequence context of its start codon (VuAUG). VuORFs with an optimal VuAUG context are more strongly disfavored than those with a suboptimal context in all of the three examined species. And the propensity to remove optimal-context VuAUGs is stronger in fruit fly than in mammals. Intriguingly, however, the currently observable optimal-context VuAUGs (but not suboptimal-context VuAUGs) are more conserved than expected. These observations suggest that the regulatory functions of VuORFs may have been gained fortuitously in organisms with a small effective population size because the slightly deleterious effect of these elements can be better tolerated in these organisms, thus allowing opportunities for the development of novel biological functions. Nevertheless, once the functions of VuORFs were established, they became subject to negative selection.
Collapse
Affiliation(s)
- Ming-Kung Hsu
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Feng-Chi Chen
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
- Department of Life Sciences, National Chiao-Tung University, Hsinchu, Taiwan
- Department of Dentistry, China Medical University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
17
|
Fritsch C, Herrmann A, Nothnagel M, Szafranski K, Huse K, Schumann F, Schreiber S, Platzer M, Krawczak M, Hampe J, Brosch M. Genome-wide search for novel human uORFs and N-terminal protein extensions using ribosomal footprinting. Genome Res 2012; 22:2208-18. [PMID: 22879431 PMCID: PMC3483550 DOI: 10.1101/gr.139568.112] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
So far, the annotation of translation initiation sites (TISs) has been based mostly upon bioinformatics rather than experimental evidence. We adapted ribosomal footprinting to puromycin-treated cells to generate a transcriptome-wide map of TISs in a human monocytic cell line. A neural network was trained on the ribosomal footprints observed at previously annotated AUG translation initiation codons (TICs), and used for the ab initio prediction of TISs in 5062 transcripts with sufficient sequence coverage. Functional interpretation suggested 2994 novel upstream open reading frames (uORFs) in the 5′ UTR, 1406 uORFs overlapping with the coding sequence, and 546 N-terminal protein extensions. The TIS detection method was validated on the basis of previously published alternative TISs and uORFs. Among primates, TICs in newly annotated TISs were significantly more conserved than control codons, both for AUGs and near-cognate codons. The transcriptome-wide map of novel candidate TISs derived as part of the study will shed further light on the way in which human proteome diversity is influenced by alternative translation initiation and regulation.
Collapse
Affiliation(s)
- Claudia Fritsch
- Department of Internal Medicine I, University Hospital Schleswig Holstein, 24105 Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tran MK, Schultz CJ, Baumann U. Conserved upstream open reading frames in higher plants. BMC Genomics 2008; 9:361. [PMID: 18667093 PMCID: PMC2527020 DOI: 10.1186/1471-2164-9-361] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 07/31/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Upstream open reading frames (uORFs) can down-regulate the translation of the main open reading frame (mORF) through two broad mechanisms: ribosomal stalling and reducing reinitiation efficiency. In distantly related plants, such as rice and Arabidopsis, it has been found that conserved uORFs are rare in these transcriptomes with approximately 100 loci. It is unclear how prevalent conserved uORFs are in closely related plants. RESULTS We used a homology-based approach to identify conserved uORFs in five cereals (monocots) that could potentially regulate translation. Our approach used a modified reciprocal best hit method to identify putative orthologous sequences that were then analysed by a comparative R-nomics program called uORFSCAN to find conserved uORFs. CONCLUSION This research identified new genes that may be controlled at the level of translation by conserved uORFs. We report that conserved uORFs are rare (<150 loci contain them) in cereal transcriptomes, are generally short (less than 100 nt), highly conserved (50% median amino acid sequence similarity), position independent in their 5'-UTRs, and their start codon context and the usage of rare codons for translation does not appear to be important.
Collapse
Affiliation(s)
- Michael K Tran
- Australian Centre for Plant Functional Genomics PMB 1 Glen Osmond SA 5064, Australia.
| | | | | |
Collapse
|
19
|
Giancaspero TA, Wait R, Boles E, Barile M. Succinate dehydrogenase flavoprotein subunit expression in Saccharomyces cerevisiae--involvement of the mitochondrial FAD transporter, Flx1p. FEBS J 2008; 275:1103-17. [PMID: 18279395 DOI: 10.1111/j.1742-4658.2008.06270.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The mitochondrial FAD transporter, Flx1p, is a member of the mitochondrial carrier family responsible for FAD transport in Saccharomyces cerevisiae. It has also been suggested that it has a role in maintaining the normal activity of mitochondrial FAD-binding enzymes, including lipoamide dehydrogenase and succinate dehydrogenase flavoprotein subunit Sdh1p. A decrease in the amount of Sdh1p in the flx1Delta mutant strain has been determined here to be due to a post-transcriptional control that involves regulatory sequences located upstream of the SDH1 coding sequence. The SDH1 coding sequence and the regulatory sequences located downstream of the SDH1 coding region, as well as protein import and cofactor attachment, seem to be not involved in the decrease in the amount of protein.
Collapse
Affiliation(s)
- Teresa A Giancaspero
- Dipartimento di Biochimica e Biologia Molecolare E. Quagliariello, Università degli Studi di Bari, Via Orabona 4, Bari, Italy
| | | | | | | |
Collapse
|
20
|
Ragsdale SW. Catalysis of methyl group transfers involving tetrahydrofolate and B(12). VITAMINS AND HORMONES 2008; 79:293-324. [PMID: 18804699 PMCID: PMC3037834 DOI: 10.1016/s0083-6729(08)00410-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review focuses on the reaction mechanism of enzymes that use B(12) and tetrahydrofolate (THF) to catalyze methyl group transfers. It also covers the related reactions that use B(12) and tetrahydromethanopterin (THMPT), which is a THF analog used by archaea. In the past decade, our understanding of the mechanisms of these enzymes has increased greatly because the crystal structures for three classes of B(12)-dependent methyltransferases have become available and because biophysical and kinetic studies have elucidated the intermediates involved in catalysis. These steps include binding of the cofactors and substrates, activation of the methyl donors and acceptors, the methyl transfer reaction itself, and product dissociation. Activation of the methyl donor in one class of methyltransferases is achieved by an unexpected proton transfer mechanism. The cobalt (Co) ion within the B(12) macrocycle must be in the Co(I) oxidation state to serve as a nucleophile in the methyl transfer reaction. Recent studies have uncovered important principles that control how this highly reducing active state of B(12) is generated and maintained.
Collapse
Affiliation(s)
- Stephen W Ragsdale
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0606, USA
| |
Collapse
|
21
|
Abstract
Tetrahydrofolate (THF) polyglutamates are a family of cofactors that carry and chemically activate one-carbon units for biosynthesis. THF-mediated one-carbon metabolism is a metabolic network of interdependent biosynthetic pathways that is compartmentalized in the cytoplasm, mitochondria, and nucleus. One-carbon metabolism in the cytoplasm is required for the synthesis of purines and thymidylate and the remethylation of homocysteine to methionine. One-carbon metabolism in the mitochondria is required for the synthesis of formylated methionyl-tRNA; the catabolism of choline, purines, and histidine; and the interconversion of serine and glycine. Mitochondria are also the primary source of one-carbon units for cytoplasmic metabolism. Increasing evidence indicates that folate-dependent de novo thymidylate biosynthesis occurs in the nucleus of certain cell types. Disruption of folate-mediated one-carbon metabolism is associated with many pathologies and developmental anomalies, yet the biochemical mechanisms and causal metabolic pathways responsible for the initiation and/or progression of folate-associated pathologies have yet to be established. This chapter focuses on our current understanding of mammalian folate-mediated one-carbon metabolism, its cellular compartmentation, and knowledge gaps that limit our understanding of one-carbon metabolism and its regulation.
Collapse
Affiliation(s)
- Jennifer T Fox
- Graduate Field of Biochemistry, Molecular and Cellular Biology, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|