1
|
Zhang Y, Xie JZ, Jiang YL, Yang SJ, Wei H, Yang Y, Wang JZ. Homocysteine-potentiated Kelch-like ECH-associated protein 1 promotes senescence of neuroblastoma 2a cells via inhibiting ubiquitination of β-catenin. Eur J Neurosci 2024; 59:2732-2747. [PMID: 38501537 DOI: 10.1111/ejn.16318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 12/24/2023] [Accepted: 02/25/2024] [Indexed: 03/20/2024]
Abstract
Elevated serum homocysteine (Hcy) level is a risk factor for Alzheimer's disease (AD) and accelerates cell aging. However, the mechanism by which Hcy induces neuronal senescence remains largely unknown. In this study, we observed that Hcy significantly promoted senescence in neuroblastoma 2a (N2a) cells with elevated β-catenin and Kelch-like ECH-associated protein 1 (KEAP1) levels. Intriguingly, Hcy promoted the interaction between KEAP1 and the Wilms tumor gene on the X chromosome (WTX) while hampering the β-catenin-WTX interaction. Mechanistically, Hcy attenuated the methylation level of the KEAP1 promoter CpG island and activated KEAP1 transcription. However, a slow degradation rate rather than transcriptional activation contributed to the high level of β-catenin. Hcy-upregulated KEAP1 competed with β-catenin to bind to WTX. Knockdown of both β-catenin and KEAP1 attenuated Hcy-induced senescence in N2a cells. Our data highlight a crucial role of the KEAP1-β-catenin pathway in Hcy-induced neuronal-like senescence and uncover a promising target for AD treatment.
Collapse
Affiliation(s)
- Yao Zhang
- Endocrine Department of Liyuan Hospital; Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Zhao Xie
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yan-Li Jiang
- Endocrine Department of Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shao-Juan Yang
- Endocrine Department of Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Wei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Yang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
2
|
Omnus DJ, Fink MJ, Kallazhi A, Xandri Zaragoza M, Leppert A, Landreh M, Jonas K. The heat shock protein LarA activates the Lon protease in response to proteotoxic stress. Nat Commun 2023; 14:7636. [PMID: 37993443 PMCID: PMC10665427 DOI: 10.1038/s41467-023-43385-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023] Open
Abstract
The Lon protease is a highly conserved protein degradation machine that has critical regulatory and protein quality control functions in cells from the three domains of life. Here, we report the discovery of a α-proteobacterial heat shock protein, LarA, that functions as a dedicated Lon regulator. We show that LarA accumulates at the onset of proteotoxic stress and allosterically activates Lon-catalysed degradation of a large group of substrates through a five amino acid sequence at its C-terminus. Further, we find that high levels of LarA cause growth inhibition in a Lon-dependent manner and that Lon-mediated degradation of LarA itself ensures low LarA levels in the absence of stress. We suggest that the temporal LarA-dependent activation of Lon helps to meet an increased proteolysis demand in response to protein unfolding stress. Our study defines a regulatory interaction of a conserved protease with a heat shock protein, serving as a paradigm of how protease activity can be tuned under changing environmental conditions.
Collapse
Affiliation(s)
- Deike J Omnus
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm, 10691, Sweden
| | - Matthias J Fink
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm, 10691, Sweden
| | - Aswathy Kallazhi
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm, 10691, Sweden
| | - Maria Xandri Zaragoza
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm, 10691, Sweden
| | - Axel Leppert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, 17165, Solna, Sweden
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solnavägen 9, 17165, Solna, Sweden
- Department of Cell and Molecular Biology, Uppsala University, Box 596, 751 24, Uppsala, Sweden
| | - Kristina Jonas
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm, 10691, Sweden.
| |
Collapse
|
3
|
Horne J, Beddingfield E, Knapp M, Mitchell S, Crawford L, Mills SB, Wrist A, Zhang S, Summers RM. Caffeine and Theophylline Inhibit β-Galactosidase Activity and Reduce Expression in Escherichia coli. ACS OMEGA 2020; 5:32250-32255. [PMID: 33376862 PMCID: PMC7758883 DOI: 10.1021/acsomega.0c03909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/03/2020] [Indexed: 05/04/2023]
Abstract
The β-galactosidase enzyme is a common reporter enzyme that has been used extensively in microbiological and synthetic biology research. Here, we demonstrate that caffeine and theophylline, common natural methylxanthine products found in many foods and pharmaceuticals, negatively impact both the expression and activity of β-galactosidase in Escherichia coli. The β-galactosidase activity in E. coli grown with increasing concentrations of caffeine and theophylline was reduced over sixfold in a dose-dependent manner. We also observed decreasing lacZ mRNA transcript levels with increasing methylxanthine concentrations in the growth media. Similarly, caffeine and theophylline inhibit the activity of the purified β-galactosidase enzyme, with an approximately 1.7-fold increase in K M toward o-nitrophenyl-β-galactoside and a concomitant decrease in v max. The authors recommend the use of alternative reporter systems when such methylxanthines are expected to be present.
Collapse
Affiliation(s)
| | - Elizabeth Beddingfield
- Department of Chemical and Biological
Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Madison Knapp
- Department of Chemical and Biological
Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Stephanie Mitchell
- Department of Chemical and Biological
Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Logan Crawford
- Department of Chemical and Biological
Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Shelby Brooks Mills
- Department of Chemical and Biological
Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Alexandra Wrist
- Department of Chemical and Biological
Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Shuyuan Zhang
- Department of Chemical and Biological
Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Ryan M. Summers
- Department of Chemical and Biological
Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
4
|
Babalola MO, Ayodeji AO, Bamidele OS, Ajele JO. Biochemical characterization of a surfactant-stable keratinase purified from Proteus vulgaris EMB-14 grown on low-cost feather meal. Biotechnol Lett 2020; 42:2673-2683. [PMID: 32740782 DOI: 10.1007/s10529-020-02976-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 07/25/2020] [Indexed: 01/17/2023]
Abstract
OBJECTIVES The bioaccumulation of keratinous wastes from poultry and dairy industries poses a danger of instability to the biosphere due to resistance to common proteolysis and as such, microbial- and enzyme-mediated biodegradation are discussed. RESULTS In submerged fermentation medium, Proteus vulgaris EMB-14 utilized and efficiently degraded feather, fur and scales by secreting exogenous keratinase. The keratinase was purified 14-fold as a monomeric 49 kDa by DEAE-Sephadex A-50 anion exchange and Sephadex G-100 size-exclusion chromatography. It exhibited optimum activity at pH 9.0 and 60 °C and was alkaline thermostable (pH 7.0-11.0), retaining 87% of initial activity after 1 h pre-incubation at 60 °C. The Km and Vmax of the keratinase with keratin azure were respectively 0.283 mg/mL and 0.241 U/mL/min. Activity of P. vulgaris keratinase was stimulated by Ca2+, Mg2+, Zn2+, Na+ and maintained in the presence of some denaturing agents, except β-mercaptoethanol while Cu2+ and Pb2+ showed competitive and non-competitive inhibition with Ki 6.5 mM and 17.5 mM, respectively. CONCLUSION This purified P. vulgaris keratinase could be surveyed for the biotechnological transformation of bioorganic keratinous wastes into valuable products such as soluble peptides, cosmetics and biodegradable thermoplastics.
Collapse
Affiliation(s)
- Michael O Babalola
- Enzymology and Microbial Biotechnology Unit, Department of Biochemistry, The Federal University of Technology, P.M.B. 704, Akure, Nigeria
| | - Adeyemi O Ayodeji
- Enzymology and Microbial Biotechnology Unit, Department of Biochemistry, The Federal University of Technology, P.M.B. 704, Akure, Nigeria.
| | - Olufemi S Bamidele
- Enzymology and Microbial Biotechnology Unit, Department of Biochemistry, The Federal University of Technology, P.M.B. 704, Akure, Nigeria
| | - Joshua O Ajele
- Enzymology and Microbial Biotechnology Unit, Department of Biochemistry, The Federal University of Technology, P.M.B. 704, Akure, Nigeria
| |
Collapse
|
5
|
Walsh R. Response to the Article "Enzyme-Inhibitor Interactions and a Simple, Rapid Method for Determining Inhibition Modality". SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2020; 25:7. [PMID: 31513471 DOI: 10.1177/2472555219872211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
|
6
|
Gilbert J, Valldeperas M, Dhayal SK, Barauskas J, Dicko C, Nylander T. Immobilisation of β-galactosidase within a lipid sponge phase: structure, stability and kinetics characterisation. NANOSCALE 2019; 11:21291-21301. [PMID: 31667477 DOI: 10.1039/c9nr06675f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the formulation of an active enzyme enclosed in a matrix for controlled delivery, it is a challenge to achieve a high protein load and to ensure high activity of the protein. For the first time to our knowledge, we report the use of a highly swollen lipid sponge (L3) phase for encapsulation of the large active enzyme, β-galactosidase (β-gal, 238 kDa). This enzyme has large relevance for applications in, e.g. the production of lactose free milk products. The formulation consisted of diglycerol monooleate (DGMO), and a mixture of mono-, di- and triglycerides (Capmul GMO-50) stabilised by polysorbate 80 (P80). The advantage of this type of matrix is that it can be produced on a large scale with a fairly simple and mild process as the system is in practice self-dispersing, yet it has a well-defined internal nano-structure. Minor effects on the sponge phase structure due to the inclusion of the enzyme were observed using small angle X-ray scattering (SAXS). The effect of encapsulation on the enzymatic activity and kinetic characteristics of β-galactosidase activity was also investigated and can be related to the enzyme stability and confinement within the lipid matrix. The encapsulated β-galactosidase maintained its activity for a significantly longer time when compared to the free solution at the same temperature. Differences in the particle size and charge of sponge-like nanoparticles (L3-NPs) with and without the enzyme were analysed by dynamic light scattering (DLS) and zeta-potential measurements. Moreover, all the initial β-galactosidase was encapsulated within L3-NPs as revealed by size exclusion chromatography.
Collapse
Affiliation(s)
- Jennifer Gilbert
- Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden. and Department of Chemistry, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Maria Valldeperas
- Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden. and NanoLund, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
| | | | - Justas Barauskas
- Camurus AB, Ideon Science Park, Gamma Building, Sölvegatan 41, SE-22379 Lund, Sweden
| | - Cedric Dicko
- Pure and Applied Biochemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Tommy Nylander
- Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden. and NanoLund, Lund University, P.O. Box 118, SE-22100 Lund, Sweden and LINXS - Lund Institute of Advanced Neutron and X-ray Science, Scheelevägen, 1922370 Lund, Sweden
| |
Collapse
|
7
|
Walsh R. A reanalysis of protein tyrosine phosphatases inhibitory studies using the unnatural substrate analogue p-nitrophenyl phosphate. Anal Biochem 2019; 572:58-62. [PMID: 30844368 DOI: 10.1016/j.ab.2019.02.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 11/17/2022]
Abstract
The determination of inhibition mode is extremely important in the understanding of drug interactions and biological mechanisms. The data presented by Hjortness et al. in their recent papers [1,2] on the inhibition of various Protein Tyrosine Phosphatases addresses this issue in an exemplary manner, determining the mode of inhibition based on global fitting of the data to multiple models of inhibition. However, Protein Tyrosine Phosphatases are known to undergo substrate induced conformational changes, so inhibition models which are based on enzyme that adhere to Michaelis-Menten single substrate kinetics may not be appropriate for examining these interactions. To examine the appropriateness of these models, the reported raw data was examined using a recently developed template for global data fitting in Excel. Based on the sum of squared residuals this analysis demonstrates that the excel template was able to match or improve on the reported fittings and demonstrates that a better fit can be achieved with a model that takes into account p-nitrophenyl phosphate-based substrate activation. Whether the substrate activation observed with this model substrate has physiological relevance is debatable, however, it does correspond to the known conformational rearrangement these enzymes undergo when working on their larger peptide substrates.
Collapse
Affiliation(s)
- Ryan Walsh
- Department of Microbiology and Biochemistry, INRS-Institut Armand-Frappier, Laval, Québec, H7V 1B7, Canada.
| |
Collapse
|
8
|
Anyanwu GO, Iqbal J, Khan SU, Zaib S, Rauf K, Onyeneke CE, Ojo OO. Antidiabetic activities of chloroform fraction of Anthocleista vogelii Planch root bark in rats with diet- and alloxan-induced obesity-diabetes. JOURNAL OF ETHNOPHARMACOLOGY 2019; 229:293-302. [PMID: 30342966 DOI: 10.1016/j.jep.2018.10.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 10/01/2018] [Accepted: 10/14/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anthocleista vogelii Planch is a medicinal plant traditionally used in West Africa for the management and treatment of diabetes mellitus. AIM OF THE STUDY To determine the antidiabetic activities of chloroform fraction (CF) of Anthocleista vogelii Planch root bark in rats with diet- and alloxan-induced obesity-diabetes. MATERIALS AND METHODS Inhibitory activities of CF against α-amylase and α-glucosidase activities were determined in vitro. Three weeks old rats were fed with high-fat diet for 9 weeks to induce obesity prior to further induction of diabetes using alloxan (150 mg/kg body weight, i.p.). Blood glucose levels and body weight were measured every 7 days throughout the experiment. Glucose tolerance was assessed in normal and CF-treated rats on day 21. Terminal blood samples were collected from sacrificed animals for the measurement of serum insulin levels. Pancreases were excised from treated and untreated animals for histopathological examination. RESULTS LCMS/MS chromatographic profile of CF via positive and negative modes revealed 13 and 23 compounds respectively. Further analysis revealed quebrachitol (QCT), loganin, sweroside, oleoside 11-methyl ester and ferulic acid, which have been previously reported for their antidiabetic activities, as constituents of CF. CF inhibited activities of α-amylase (IC50 = 51.60 ± 0.92 µg/ml) and α-glucosidase (IC50 = 5.86 ± 0.97 µg/ml) in a dose-dependent manner. Treatment of animals with obesity-diabetes with 100 and 200 mg/kg CF significantly improved glucose tolerance (P < 0.001) and enhanced serum insulin levels (P < 0.05) compared to diabetic control rats. CONCLUSIONS Antidiabetic activities of CF might be mediated via inhibition of α-amylase and α-glucosidase activities, elevation of serum insulin concentration, and enhancement of insulin and leptin sensitivity in obesity-diabetes rats. This study further substantiates the traditional use of A. vogelii in the management and treatment of diabetes in Africa and encourages further studies to investigate its mechanism of action.
Collapse
Affiliation(s)
- Gabriel O Anyanwu
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, KP, Pakistan.
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, KP, Pakistan
| | - Shafi U Khan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Sumera Zaib
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, KP, Pakistan
| | - Khalid Rauf
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, KP, Pakistan
| | - Chukwu E Onyeneke
- Department of Biochemistry, University of Benin, Benin City, Edo State, Nigeria
| | - Opeolu O Ojo
- Biotechnology, School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, UK
| |
Collapse
|
9
|
Walsh R. Comparing enzyme activity modifier equations through the development of global data fitting templates in Excel. PeerJ 2018; 6:e6082. [PMID: 30581673 PMCID: PMC6296338 DOI: 10.7717/peerj.6082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/07/2018] [Indexed: 11/20/2022] Open
Abstract
The classical way of defining enzyme inhibition has obscured the distinction between inhibitory effect and the inhibitor binding constant. This article examines the relationship between the simple binding curve used to define biomolecular interactions and the standard inhibitory term (1 + ([I]∕Ki)). By understanding how this term relates to binding curves which are ubiquitously used to describe biological processes, a modifier equation which distinguishes between inhibitor binding and the inhibitory effect, is examined. This modifier equation which can describe both activation and inhibition is compared to standard inhibitory equations with the development of global data fitting templates in Excel and via the global fitting of these equations to simulated and previously published datasets. In both cases, this modifier equation was able to match or outperform the other equations by providing superior fits to the datasets. The ability of this single equation to outperform the other equations suggests an over-complication of the field. This equation and the template developed in this article should prove to be useful tools in the study of enzyme inhibition and activation.
Collapse
Affiliation(s)
- Ryan Walsh
- Microbiology/Biochemistry, INRS-Institut Armand-Frappier, Laval, Quebec, Canada
| |
Collapse
|
10
|
Characterization of novel Trichoderma hemicellulase and its use to enhance downstream processing of lignocellulosic biomass to simple fermentable sugars. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Alvarado-Gámez AL, Alonso-Lomillo MA, Domínguez-Renedo O, Arcos-Martínez MJ. A chronoamperometric screen printed carbon biosensor based on alkaline phosphatase inhibition for W(IV) determination in water, using 2-phospho-L-ascorbic acid trisodium salt as a substrate. SENSORS (BASEL, SWITZERLAND) 2015; 15:2232-43. [PMID: 25621602 PMCID: PMC4367303 DOI: 10.3390/s150202232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/31/2014] [Accepted: 01/13/2015] [Indexed: 11/16/2022]
Abstract
This paper presents a chronoamperometric method to determine tungsten in water using screen-printed carbon electrodes modified with gold nanoparticles and cross linked alkaline phosphatase immobilized in the working electrode. Enzymatic activity over 2-phospho-l-ascorbic acid trisodium salt, used as substrate, was affected by tungsten ions, which resulted in a decrease of chronoamperometric current, when a potential of 200 mV was applied on 10 mM of substrate in a Tris HCl buffer pH 8.00 and 0.36 M of KCl. Calibration curves for the electrochemical method validation, give a reproducibility of 5.2% (n = 3), a repeatability of 9.4% (n = 3) and a detection limit of 0.29 ± 0.01 µM. Enriched tap water, purified laboratory water and bottled drinking water, with a certified tungsten reference solution traceable to NIST, gave a recovery of 97.1%, 99.1% and 99.1% respectively (n = 4 in each case) and a dynamic range from 0.6 to 30 µM. This study was performed by means of a Lineweaver-Burk plot, showing a mixed kinetic inhibition.
Collapse
Affiliation(s)
- Ana Lorena Alvarado-Gámez
- School of Chemistry & CELEQ, University of Costa Rica, San Pedro de Montes de Oca, 11500-2060 San José, Costa Rica.
| | | | - Olga Domínguez-Renedo
- Department of Chemistry, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - María Julia Arcos-Martínez
- Department of Chemistry, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
| |
Collapse
|
12
|
Fogel R, Limson JL. Electrochemically Predicting Phenolic Substrates’ Suitability for Detection by Amperometric Laccase Biosensors. ELECTROANAL 2013. [DOI: 10.1002/elan.201200642] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Walsh R, Martin E, Darvesh S. Limitations of conventional inhibitor classifications. Integr Biol (Camb) 2011; 3:1197-201. [PMID: 22038120 DOI: 10.1039/c1ib00053e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzyme inhibitors are usually classified as competitive, non-competitive or mixed non-competitive. Each of these designations has a serious limitation in that it only describes an extreme of inhibitory behaviour. The non-competitive inhibition equation only considers an approach to complete inhibition of the catalytic turnover rate, while the competitive inhibition equation predicts an infinite increase in the Michaelis-Menten constant (decrease in enzyme affinity for substrate), resulting from increased inhibitor concentration. Both of these models exclude the possibility of a finite inhibitor-induced change in the kinetic parameters of the enzyme they are affecting. They also exclude the possibility of an inhibitor affecting both the substrate affinity and the catalytic turnover at the same time. Mixed non-competitive inhibition describes a hybrid form of inhibition displaying some characteristics of both competitive and non-competitive inhibition. It also suffers from an inability to describe finite changes in activity and to describe concomitant changes in substrate affinity and catalytic turnover. Two inhibitor binding constants are invoked in this equation, suggesting that such inhibitors interact with the enzyme in two completely independent manners. From these considerations, it is suggested here that conventional equations do not adequately describe observed kinetic data due to a lack of distinction between the mass action binding term describing inhibitor-enzyme association and the terms representing the actual effect of the inhibitor on the enzyme. Herein we describe an alternate approach for representing enzyme activity modulation based on a re-examination of conventional inhibition equations. The arguments presented are illustrated using the known competitive inhibition of Kallikrein with benzamidine.
Collapse
Affiliation(s)
- Ryan Walsh
- Department of Chemistry, Carleton University, Ottawa, Ontario, Canada.
| | | | | |
Collapse
|
14
|
Walsh R, Rockwood K, Martin E, Darvesh S. Synergistic inhibition of butyrylcholinesterase by galantamine and citalopram. Biochim Biophys Acta Gen Subj 2011; 1810:1230-5. [PMID: 21872646 DOI: 10.1016/j.bbagen.2011.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 07/27/2011] [Accepted: 08/14/2011] [Indexed: 12/16/2022]
Abstract
BACKGROUND Many persons with Alzheimer's disease (AD) treated with galantamine appear to receive additional cognitive benefit from citalopram. Both drugs inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). These enzymes co-regulate acetylcholine catabolism. In AD brain, AChE is diminished while BuChE is not, suggesting BuChE inhibition may be important in raising acetylcholine levels. BuChE is subject to activation at high acetylcholine levels reached at the synaptic cleft. The present study explores one way combining galantamine and citalopram could be beneficial in AD. METHODS Spectrophotometric studies of BuChE catalysis in the absence or presence of galantamine or citalopram or both, were performed using the Ellman method. Data analysis involved expansion of our previous equation describing BuChE catalysis. RESULTS Galantamine almost completely inhibited BuChE at low substrate concentrations (V(S)=43.6 μM/min; V(S(gal))=0.34 μM/min) without influencing the substrate-activated form of the enzyme (V(SS)=64.0 μM/min;V(SS(gal))=62.3 μM/min). Conversely, citalopram inhibited both un-activated (V(S)=43.6 μM/min; V(S(cit))=10.2 μM/min) and substrate-activated (V(SS)=64.0 μM/min; V(SS(cit))=47.3 μM/min) forms of BuChE. Combined galantamine and citalopram increased inhibition of un-activated BuChE (V(S)=43.6 μM/min; V(S(gal)(cit))=2.73 μM/min) and substrate-activated form (V(SS)=64.0 μM/min; V(SS(gal)(cit))=42.2 μM/min). CONCLUSION Citalopram and galantamine produce a combined inhibition of BuChE that is considered to be synergistic. GENERAL SIGNIFICANCE Clinical benefit from combined galantamine and citalopram may be related to a synergistic inhibition of BuChE, facilitating cholinergic neurotransmission. This emphasizes the importance of further study into use of drug combinations in AD treatment.
Collapse
Affiliation(s)
- Ryan Walsh
- Department of Anatomy and Neurobiology and the Neuroscience Institute, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|
15
|
Vein J, Grandemange A, Cosson JF, Benoit E, Berny PJ. Are water vole resistant to anticoagulant rodenticides following field treatments? ECOTOXICOLOGY (LONDON, ENGLAND) 2011; 20:1432-1441. [PMID: 21630005 DOI: 10.1007/s10646-011-0700-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/03/2011] [Indexed: 05/30/2023]
Abstract
The anti-vitamin Ks (AVKs) are widely used to control rodent populations. They inhibit Vitamin K regeneration by the Vitamin K Epoxide Reductase (VKOR) and cause a fatal hemorrhagic syndrome. Because of repeated use, some populations of commensal rodents have expressed resistance to these compounds. In Franche-Comté (France), the water vole exhibits cyclic population outbreaks. A second generation AVK, bromadiolone, has been used for the last 20 years to control vole populations. The aim of this study is to determine whether these repeated treatments could have led to the development of resistance to AVKs in water vole populations. We conducted enzymatic and genetic studies on water voles trapped in treated and non treated plot. The results indicate that voles from the most heavily treated area exhibit enzymatic changes in VKOR activity hence arguing for resistance to AVKs and that an intronic haplotype on the vkorc1 gene seems to be associated with these enzymatic changes.
Collapse
Affiliation(s)
- Julie Vein
- UMR 1233 INRA, VetAgro Sup, VetAgro Sup Campus Vétérinaire de Lyon 1 Avenue Bourgelat, 69280, Marcy L'Etoile, France
| | | | | | | | | |
Collapse
|
16
|
Fogel R, Limson JL. Probing fundamental film parameters of immobilized enzymes--towards enhanced biosensor performance. Part II-Electroanalytical estimation of immobilized enzyme performance. Enzyme Microb Technol 2011; 49:153-9. [PMID: 22112402 DOI: 10.1016/j.enzmictec.2011.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 02/17/2011] [Accepted: 05/07/2011] [Indexed: 11/17/2022]
Abstract
The method of immobilization of a protein has a great influence on the overall conformation, and hence, functioning of the protein. Thus, a greater understanding of the events undergone by the protein during immobilization is key to manipulating the immobilization method to produce a strategy that influences the advantages of immobilization while minimizing their disadvantages in biosensor design. In this, the second paper of a two-part series, we have assessed the kinetic parameters of thin-film laccase monolayers, covalently attached to SAMs differing in spacer-arm length and lateral density of spacer arms. This was achieved using chronoamperometry and an electroactive product (p-benzoquinone), which was modeled in a non-linear regressional fashion to extract the relevant parameters. Finally, comparisons between the kinetic parameters presented in this paper and the rheological parameters of laccase monolayers immobilized in the same manner (Part I of this two paper series) were performed. Improvements in the maximal enzyme-catalysed current, i(max), the apparent Michaelis-Menten constant, K(m) and the apparent biosensor sensitivity were noted for most of the surfaces with increasing linker length. Decreasing the lateral density of the spacer-arms brought about a general improvement in these parameters, which is attributed to the decrease in multiple points of immobilization undergone by functional proteins. Finally, comparisons between rheological data and kinetics data showed that the degree of viscosity exhibited by protein films has a negative influence on attached protein layers, while enhanced protein hydration levels (assessed piezoelectrically from data obtained in Paper 1) has a positive effect on those surfaces comprising rigidly bound protein layers.
Collapse
Affiliation(s)
- R Fogel
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, P.O. Box 94, Grahamstown, South Africa
| | | |
Collapse
|
17
|
Walsh R, Martin E, Darvesh S. A method to describe enzyme-catalyzed reactions by combining steady state and time course enzyme kinetic parameters. Biochim Biophys Acta Gen Subj 2009; 1800:1-5. [PMID: 19840832 DOI: 10.1016/j.bbagen.2009.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 09/17/2009] [Accepted: 10/12/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Complete analysis of single substrate enzyme-catalyzed reactions has required a separate use of two distinct approaches. Steady state approximations are employed to obtain substrate affinity and initial velocity information. Alternatively, first order exponential decay models permit simulation of the time course data for the reactions. Attempts to use integrals of steady state equations to describe reaction time courses have so far met with little success. METHODS Here we use equations based on steady state approximations to directly model time course plots. RESULTS Testing these expressions with the enzyme beta-galactosidase, which adheres to classical Michaelis-Menten kinetics, produced a good fit between observed and calculated values. GENERAL SIGNIFICANCE This study indicates that, in addition to providing information on initial kinetic parameters, steady state approximations can be employed to directly model time course kinetics. Integrated forms of the Michaelis-Menten equation have previously been reported in the literature. Here we describe a method to directly apply steady state approximations to time course analysis for predicting product formation and simultaneously obtain multiple kinetic parameters.
Collapse
Affiliation(s)
- Ryan Walsh
- Department of Chemistry, Carleton University, 203 Steacie Building, 1125 Colonel By Drive, Ottawa, Ontario K1S5B6, Canada.
| | | | | |
Collapse
|