1
|
Gorbushin A, Ruparčič M, Anderluh G. Littoporins: Novel actinoporin-like proteins in caenogastropod genus Littorina. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109698. [PMID: 38871141 DOI: 10.1016/j.fsi.2024.109698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
In the course of searching for genes controlling the immune system in caenogastropod mollusks, we characterized and phylogenetically placed five new actinoporin-like cytolysins expressed in periwinkles of the genus Littorina. These newly discovered proteins, named littoporins (LitP), contain a central cytolysin/lectin domain and exhibit a predicted protein fold that is almost identical to the three-dimensional structures of actinoporins. Two of these proteins, LitP-1 and LitP-2, were found to be upregulated in L. littorea kidney tissues and immune cells in response to natural and experimental infection with the trematode Himasthla elongata, suggesting their potential role as perforins in the systemic anti-trematode immune response. The primary sequence divergence of littoporins is hypothesized to be attributed to the taxonomic range of cell membranes they can recognize and permeabilize.
Collapse
Affiliation(s)
- Alexander Gorbushin
- Sechenov Institute of Evolutionary Physiology and Biochemistry (IEPhB RAS), St Petersburg, Russia.
| | - Matija Ruparčič
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| |
Collapse
|
2
|
Hu Y, Wen HY, Liu MY, Wang JM, Dong RL, Liu SL, Wang ZG. In Situ Quantitative Imaging of Plasma Membrane Stiffness in Live Cells Using a Genetically Encoded FRET Sensor. Anal Chem 2024; 96:8501-8509. [PMID: 38717985 DOI: 10.1021/acs.analchem.4c00433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Cell membrane stiffness is critical for cellular function, with cholesterol and sphingomyelin as pivot contributors. Current methods for measuring membrane stiffness are often invasive, ex situ, and slow in process, prompting the need for innovative techniques. Here, we present a fluorescence resonance energy transfer (FRET)-based protein sensor designed to address these challenges. The sensor consists of two fluorescent units targeting sphingomyelin and cholesterol, connected by a linker that responds to the proximity of these lipids. In rigid membranes, cholesterol and sphingomyelin are in close proximity, leading to an increased FRET signal. We utilized this sensor in combination with confocal microscopy to explore changes in plasma membrane stiffness under various conditions, including differences in osmotic pressure, the presence of reactive oxygen species (ROS) and variations in substrate stiffness. Furthermore, we explored the impact of SARS-CoV-2 on membrane stiffness and the distribution of ACE2 after attachment to the cell membrane. This tool offers substantial potential for future investigations in the field of mechanobiology.
Collapse
Affiliation(s)
- Yusi Hu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Hai-Yan Wen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Meng-Yao Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Juan-Mei Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Ruo-Lan Dong
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Shu-Lin Liu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
3
|
Antman-Passig M, Yaari Z, Goerzen D, Parikh R, Chatman S, Komer LE, Chen C, Grabarnik E, Mathieu M, Haimovitz-Friedman A, Heller DA. Nanoreporter Identifies Lysosomal Storage Disease Lipid Accumulation Intracranially. NANO LETTERS 2023; 23:10687-10695. [PMID: 37889874 PMCID: PMC11246544 DOI: 10.1021/acs.nanolett.3c02502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Dysregulated lipid metabolism contributes to neurodegenerative pathologies and neurological decline in lysosomal storage disorders as well as more common neurodegenerative diseases. Niemann-Pick type A (NPA) is a fatal neurodegenerative lysosomal storage disease characterized by abnormal sphingomyelin accumulation in the endolysosomal lumen. The ability to monitor abnormalities in lipid homeostasis intracranially could improve basic investigations and the development of effective treatment strategies. We investigated the carbon nanotube-based detection of intracranial lipid content. We found that the near-infrared emission of a carbon nanotube-based lipid sensor responds to lipid accumulation in neuronal and in vivo models of NPA. The nanosensor detected lipid accumulation intracranially in an acid sphingomyelinase knockout mouse via noninvasive near-infrared spectroscopy. This work indicates a tool to improve drug development processes in NPA, other lysosomal storage diseases, and neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Zvi Yaari
- Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Dana Goerzen
- Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Weill Cornell Medicine, Cornell University, New York, NY, 10065, USA
| | - Rooshi Parikh
- The City College of New York, New York, NY, 10031 USA
| | - Savannah Chatman
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
- Engineering Program, Scripps College, Claremont, CA, 91711, USA
| | - Lauren E. Komer
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Chen Chen
- Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Weill Cornell Medicine, Cornell University, New York, NY, 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Emma Grabarnik
- Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Mickael Mathieu
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY,10065, USA
| | | | - Daniel A. Heller
- Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Weill Cornell Medicine, Cornell University, New York, NY, 10065, USA
| |
Collapse
|
4
|
Bogard A, Finn PW, Smith AR, Flacau IM, Whiting R, Fologea D. Modulation of Voltage-Gating and Hysteresis of Lysenin Channels by Cu 2+ Ions. Int J Mol Sci 2023; 24:12996. [PMID: 37629177 PMCID: PMC10455686 DOI: 10.3390/ijms241612996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
The intricate voltage regulation presented by lysenin channels reconstituted in artificial lipid membranes leads to a strong hysteresis in conductance, bistability, and memory. Prior investigations on lysenin channels indicate that the hysteresis is modulated by multivalent cations which are also capable of eliciting single-step conformational changes and transitions to stable closed or sub-conducting states. However, the influence on voltage regulation of Cu2+ ions, capable of completely closing the lysenin channels in a two-step process, was not sufficiently addressed. In this respect, we employed electrophysiology approaches to investigate the response of lysenin channels to variable voltage stimuli in the presence of small concentrations of Cu2+ ions. Our experimental results showed that the hysteretic behavior, recorded in response to variable voltage ramps, is accentuated in the presence of Cu2+ ions. Using simultaneous AC/DC stimulation, we were able to determine that Cu2+ prevents the reopening of channels previously closed by depolarizing potentials and the channels remain in the closed state even in the absence of a transmembrane voltage. In addition, we showed that Cu2+ addition reinstates the voltage gating and hysteretic behavior of lysenin channels reconstituted in neutral lipid membranes in which lysenin channels lose their voltage-regulating properties. In the presence of Cu2+ ions, lysenin not only regained the voltage gating but also behaved like a long-term molecular memory controlled by electrical potentials.
Collapse
Affiliation(s)
- Andrew Bogard
- Department of Physics, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Program, State University, Boise, ID 83725, USA
| | - Pangaea W. Finn
- Department of Physics, Boise State University, Boise, ID 83725, USA
| | - Aviana R. Smith
- Department of Physics, Boise State University, Boise, ID 83725, USA
| | - Ilinca M. Flacau
- Department of Physics, Boise State University, Boise, ID 83725, USA
| | - Rose Whiting
- Department of Physics, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Program, State University, Boise, ID 83725, USA
| | - Daniel Fologea
- Department of Physics, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Program, State University, Boise, ID 83725, USA
| |
Collapse
|
5
|
Liu Y, Zhao H, Chen H, Li X, Ran C, Sun H, Wang L. Does mask wearing affect skin health? An untargeted skin metabolomics study. ENVIRONMENT INTERNATIONAL 2023; 178:108073. [PMID: 37399768 DOI: 10.1016/j.envint.2023.108073] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/03/2023] [Accepted: 06/28/2023] [Indexed: 07/05/2023]
Abstract
Wearing masks is used as an effective way to prevent the spread of viruses. However, the effect of wearing masks on skin health requires further assessment. In this study, a non-invasive D-squame sampling method coupled with an untargeted metabolomics analysis by liquid chromatography high-resolution mass spectrometry was developed to identify the changes in the skin metabolome caused by wearing masks. D-squame method was found to have advantages over the commonly used sterile gauze method, especially for the lipids and lipid-like molecules. A total of 356 skin metabolites were putatively identified from the stratum corneum of 10 volunteers, and 17 differential metabolites were significantly downregulated after wearing surgical masks or N95 respirators. The downregulation of metabolites such as phosphatidylethanolamine and sphingomyelin might be related to hypoxia or increased skin moisture caused by wearing masks. Changes in skin metabolomics indicated a potential risk of skin barrier disruption and skin inflammation. Intermittent removal of the masks can effectively alleviate changes in the skin metabolome.
Collapse
Affiliation(s)
- Yu Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Hongzhi Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Xinxin Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Chunmei Ran
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China.
| |
Collapse
|
6
|
Margheritis E, Kappelhoff S, Cosentino K. Pore-Forming Proteins: From Pore Assembly to Structure by Quantitative Single-Molecule Imaging. Int J Mol Sci 2023; 24:ijms24054528. [PMID: 36901959 PMCID: PMC10003378 DOI: 10.3390/ijms24054528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/11/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Pore-forming proteins (PFPs) play a central role in many biological processes related to infection, immunity, cancer, and neurodegeneration. A common feature of PFPs is their ability to form pores that disrupt the membrane permeability barrier and ion homeostasis and generally induce cell death. Some PFPs are part of the genetically encoded machinery of eukaryotic cells that are activated against infection by pathogens or in physiological programs to carry out regulated cell death. PFPs organize into supramolecular transmembrane complexes that perforate membranes through a multistep process involving membrane insertion, protein oligomerization, and finally pore formation. However, the exact mechanism of pore formation varies from PFP to PFP, resulting in different pore structures with different functionalities. Here, we review recent insights into the molecular mechanisms by which PFPs permeabilize membranes and recent methodological advances in their characterization in artificial and cellular membranes. In particular, we focus on single-molecule imaging techniques as powerful tools to unravel the molecular mechanistic details of pore assembly that are often obscured by ensemble measurements, and to determine pore structure and functionality. Uncovering the mechanistic elements of pore formation is critical for understanding the physiological role of PFPs and developing therapeutic approaches.
Collapse
|
7
|
Stanovova MV, Gazizova GR, Gorbushin AM. Transcriptomic profiling of immune-associated molecules in the coelomocytes of lugworm Arenicola marina (Linnaeus, 1758). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:34-55. [PMID: 35438249 DOI: 10.1002/jez.b.23135] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/04/2022] [Accepted: 03/11/2022] [Indexed: 12/16/2022]
Abstract
Organization and functioning of immune system remain unevenly studied in different taxa of lophotrochozoan animals. We analyzed transcriptomic data on coelomocytes of the lugworm Arenicola marina (Linnaeus, 1758; Annelida, Polychaeta) to gain insights into the molecular mechanisms involved in polychaete immunity. Coelomocytes are specialized motile cells populating coelomic fluid of annelids, responsible for cellular defense reactions and providing humoral immune factors. The transcriptome was enriched with immune-related transcripts by challenging the cells in vitro with lipopolysaccharides of Escherichia coli and Zymosan from Saccharomyces cerevisiae. Our analysis revealed a multifaceted and complex internal defense system of the lugworm. A. marina possesses orthologs of proto-complement-like factors: six thioester-containing proteins, a complement-like receptor, and a MASP-related serine protease (MReM2). A. marina coelomocytes employ pattern-recognition receptors to detect pathogens and regulate immune responses. Among them, there are 18 Toll-like receptors and various putative lectin-like proteins with evolutionary conserved and taxa-specific domains. C-type lectins and a novel family of Gal-binding and CUB domains containing receptors were the most abundant in the transcriptome. The array of pore-forming proteins in the coelomocytes was surprisingly reduced compared to that of other invertebrate species. We characterized a set of conserved proteins metabolizing reactive oxygen species and nitric oxide and expanded the arsenal of potential antimicrobial peptides. Phenoloxidase activity in immune cells of lugworm is mediated only by laccase enzyme. The described repertoire of immune-associated molecules provides valuable candidates for further functional and comparative research on the immunity of annelids.
Collapse
Affiliation(s)
- Maria V Stanovova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Guzel R Gazizova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Alexander M Gorbushin
- Sechenov Institute of Evolutionary Physiology and Biochemistry (IEPhB RAS), St. Petersburg, Russia
| |
Collapse
|
8
|
Marshall S, McGill B, Morcrette H, Winlove CP, Chimerel C, Petrov PG, Bokori-Brown M. Interaction of Clostridium perfringens Epsilon Toxin with the Plasma Membrane: The Role of Amino Acids Y42, Y43 and H162. Toxins (Basel) 2022; 14:toxins14110757. [PMID: 36356007 PMCID: PMC9694948 DOI: 10.3390/toxins14110757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Clostridium perfringens epsilon toxin (Etx) is a pore forming toxin that causes enterotoxaemia in ruminants and may be a cause of multiple sclerosis in humans. To date, most in vitro studies of Etx have used the Madin-Darby canine kidney (MDCK) cell line. However, studies using Chinese hamster ovary (CHO) cells engineered to express the putative Etx receptor, myelin and lymphocyte protein (MAL), suggest that amino acids important for Etx activity differ between species. In this study, we investigated the role of amino acids Y42, Y43 and H162, previously identified as important in Etx activity towards MDCK cells, in Etx activity towards CHO-human MAL (CHO-hMAL) cells, human red blood cells (hRBCs) and synthetic bilayers using site-directed mutants of Etx. We show that in CHO-hMAL cells Y42 is critical for Etx binding and not Y43 as in MDCK cells, indicating that surface exposed tyrosine residues in the receptor binding domain of Etx impact efficiency of cell binding to MAL-expressing cells in a species-specific manner. We also show that Etx mutant H162A was unable to lyse CHO-hMAL cells, lysed hRBCs, whilst it was able to form pores in synthetic bilayers, providing evidence of the complexity of Etx pore formation in different lipid environments.
Collapse
Affiliation(s)
- Skye Marshall
- Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
| | - Beth McGill
- Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
| | - Helen Morcrette
- College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - C. Peter Winlove
- Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
| | - Catalin Chimerel
- Automation Department, Faculty of Electrical Engineering and Computer Science, Transilvania University of Brasov, 500036 Brasov, Romania
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Peter G. Petrov
- Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
- Correspondence: (P.G.P.); (M.B.-B.); Tel.: +44-1392-724139 (P.G.P.)
| | - Monika Bokori-Brown
- College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
- Correspondence: (P.G.P.); (M.B.-B.); Tel.: +44-1392-724139 (P.G.P.)
| |
Collapse
|
9
|
Hu Y, Zhang RQ, Wang ZG, Liu SL. In Situ Quantification of Lipids in Live Cells by Using Lipid-Binding Domain-Based Biosensors. Bioconjug Chem 2022; 33:2076-2087. [DOI: 10.1021/acs.bioconjchem.2c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yusi Hu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Rui-Qiao Zhang
- Qingdao Academy of Agricultural Sciences, Qingdao 266100, P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
10
|
Bogard A, Finn PW, McKinney F, Flacau IM, Smith AR, Whiting R, Fologea D. The Ionic Selectivity of Lysenin Channels in Open and Sub-Conducting States. MEMBRANES 2021; 11:897. [PMID: 34832126 PMCID: PMC8622276 DOI: 10.3390/membranes11110897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 01/13/2023]
Abstract
The electrochemical gradients established across cell membranes are paramount for the execution of biological functions. Besides ion channels, other transporters, such as exogenous pore-forming toxins, may present ionic selectivity upon reconstitution in natural and artificial lipid membranes and contribute to the electrochemical gradients. In this context, we utilized electrophysiology approaches to assess the ionic selectivity of the pore-forming toxin lysenin reconstituted in planar bilayer lipid membranes. The membrane voltages were determined from the reversal potentials recorded upon channel exposure to asymmetrical ionic conditions, and the permeability ratios were calculated from the fit with the Goldman-Hodgkin-Katz equation. Our work shows that lysenin channels are ion-selective and the determined permeability coefficients are cation and anion-species dependent. We also exploited the unique property of lysenin channels to transition to a stable sub-conducting state upon exposure to calcium ions and assessed their subsequent change in ionic selectivity. The observed loss of selectivity was implemented in an electrical model describing the dependency of reversal potentials on calcium concentration. In conclusion, our work demonstrates that this pore-forming toxin presents ionic selectivity but this is adjusted by the particular conduction state of the channels.
Collapse
Affiliation(s)
- Andrew Bogard
- Department of Physics, Boise State University, Boise, ID 83725, USA; (A.B.); (P.W.F.); (F.M.); (I.M.F.); (A.R.S.); (R.W.)
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| | - Pangaea W. Finn
- Department of Physics, Boise State University, Boise, ID 83725, USA; (A.B.); (P.W.F.); (F.M.); (I.M.F.); (A.R.S.); (R.W.)
| | - Fulton McKinney
- Department of Physics, Boise State University, Boise, ID 83725, USA; (A.B.); (P.W.F.); (F.M.); (I.M.F.); (A.R.S.); (R.W.)
| | - Ilinca M. Flacau
- Department of Physics, Boise State University, Boise, ID 83725, USA; (A.B.); (P.W.F.); (F.M.); (I.M.F.); (A.R.S.); (R.W.)
| | - Aviana R. Smith
- Department of Physics, Boise State University, Boise, ID 83725, USA; (A.B.); (P.W.F.); (F.M.); (I.M.F.); (A.R.S.); (R.W.)
| | - Rosey Whiting
- Department of Physics, Boise State University, Boise, ID 83725, USA; (A.B.); (P.W.F.); (F.M.); (I.M.F.); (A.R.S.); (R.W.)
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| | - Daniel Fologea
- Department of Physics, Boise State University, Boise, ID 83725, USA; (A.B.); (P.W.F.); (F.M.); (I.M.F.); (A.R.S.); (R.W.)
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA
| |
Collapse
|
11
|
Scott-Fordsmand JJ, Amorim MJB. The Curious Case of Earthworms and COVID-19. BIOLOGY 2021; 10:biology10101043. [PMID: 34681142 PMCID: PMC8533077 DOI: 10.3390/biology10101043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary Earthworms have been used for centuries in traditional medicine, and more than a century ago were praised by Charles Darwin as one of the most important organisms in the history of the world. These worms are well-studied with a wealth of information available, for example on the genome, the gene expression, the immune system, the general biology, and ecology. These worms live in many habitats, and they had to find solutions for severe environmental challenges. The common compost worm, Eisenia fetida, has developed a unique mechanism to deal with intruding (nano)materials, bacteria, and viruses. It deals with the intruders by covering these with a defence toxin (lysenin) targeted to kill the intruder. We outline how this mechanism probably can be used as a therapeutic model for human COVID-19 (Severe Acute Respiratory Syndrome Coronavirus 2, SARS-CoV-2) and other corona viruses. Abstract Earthworms have been used for centuries in traditional medicine and are used globally as an ecotoxicological standard test species. Studies of the earthworm Eisenia fetida have shown that exposure to nanomaterials activates a primary corona-response, which is covering the nanomaterial with native proteins, the same response as to biological invaders such as a virus. We outline that the earthworm Eisenia fetida is possibly immune to COVID-19 (Severe Acute Respiratory Syndrome Coronavirus 2, SARS-CoV-2), and we describe the likely mechanisms of highly receptor-specific pore-forming proteins (PFPs). A non-toxic version of this protein is available, and we hypothesize that it is possible to use the earthworm’s PFPs based anti-viral mechanism as a therapeutic model for human SARS-CoV-2 and other corona viruses. The proteins can be used as a drug, for example, delivered with a nanoparticle in a similar way to the current COVID-19 vaccines. Obviously, careful consideration should be given to the potential risk of toxicity elicited by lysenin for in vivo usage. We aim to share this view to activate its exploration by the wider scientific community while promoting a potential therapeutic development.
Collapse
Affiliation(s)
- Janeck J. Scott-Fordsmand
- Department of Biosciences, Aarhus University, 8600 Silkeborg, Denmark
- Correspondence: ; Tel.: +45-4025-6803
| | - Monica J. B. Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
12
|
The Natterin Proteins Diversity: A Review on Phylogeny, Structure, and Immune Function. Toxins (Basel) 2021; 13:toxins13080538. [PMID: 34437409 PMCID: PMC8402412 DOI: 10.3390/toxins13080538] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/12/2021] [Accepted: 07/21/2021] [Indexed: 12/14/2022] Open
Abstract
Since the first record of the five founder members of the group of Natterin proteins in the venom of the medically significant fish Thalassophryne nattereri, new sequences have been identified in other species. In this work, we performed a detailed screening using available genome databases across a wide range of species to identify sequence members of the Natterin group, sequence similarities, conserved domains, and evolutionary relationships. The high-throughput tools have enabled us to dramatically expand the number of members within this group of proteins, which has a remote origin (around 400 million years ago) and is spread across Eukarya organisms, even in plants and primitive Agnathans jawless fish. Overall, the survey resulted in 331 species presenting Natterin-like proteins, mainly fish, and 859 putative genes. Besides fish, the groups with more species included in our analysis were insects and birds. The number and variety of annotations increased the knowledge of the obtained sequences in detail, such as the conserved motif AGIP in the pore-forming loop involved in the transmembrane barrel insertion, allowing us to classify them as important constituents of the innate immune defense system as effector molecules activating immune cells by interacting with conserved intracellular signaling mechanisms in the hosts.
Collapse
|
13
|
Bhattacharya A, Cho CJ, Brea RJ, Devaraj NK. Expression of Fatty Acyl-CoA Ligase Drives One-Pot De Novo Synthesis of Membrane-Bound Vesicles in a Cell-Free Transcription-Translation System. J Am Chem Soc 2021; 143:11235-11242. [PMID: 34260248 DOI: 10.1021/jacs.1c05394] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite the central importance of lipid membranes in cellular organization, it is challenging to reconstitute their formation de novo from minimal chemical and biological elements. Here, we describe a chemoenzymatic route to membrane-forming noncanonical phospholipids in which cysteine-modified lysolipids undergo spontaneous coupling with fatty acyl-CoA thioesters generated enzymatically by a fatty acyl-CoA ligase. Due to the high efficiency of the reaction, we were able to optimize phospholipid formation in a cell-free transcription-translation (TX-TL) system. Combining DNA encoding the fatty acyl-CoA ligase with suitable lipid precursors enabled one-pot de novo synthesis of membrane-bound vesicles. Noncanonical sphingolipid synthesis was also possible by using a cysteine-modified lysosphingomyelin as a precursor. When the sphingomyelin-interacting protein lysenin was coexpressed alongside the acyl-CoA ligase, the in situ assembled membranes were spontaneously decorated with protein. Our strategy of coupling gene expression with membrane lipid synthesis in a one-pot fashion could facilitate the generation of proteoliposomes and brings us closer to the bottom-up generation of synthetic cells using recombinant synthetic biology platforms.
Collapse
Affiliation(s)
- Ahanjit Bhattacharya
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Christy J Cho
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Roberto J Brea
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
14
|
Liposomes Prevent In Vitro Hemolysis Induced by Streptolysin O and Lysenin. MEMBRANES 2021; 11:membranes11050364. [PMID: 34069894 PMCID: PMC8157566 DOI: 10.3390/membranes11050364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022]
Abstract
The need for alternatives to antibiotics in the fight against infectious diseases has inspired scientists to focus on antivirulence factors instead of the microorganisms themselves. In this respect, prior work indicates that tiny, enclosed bilayer lipid membranes (liposomes) have the potential to compete with cellular targets for toxin binding, hence preventing their biological attack and aiding with their clearance. The effectiveness of liposomes as decoy targets depends on their availability in the host and how rapidly they are cleared from the circulation. Although liposome PEGylation may improve their circulation time, little is known about how such a modification influences their interactions with antivirulence factors. To fill this gap in knowledge, we investigated regular and long-circulating liposomes for their ability to prevent in vitro red blood cell hemolysis induced by two potent lytic toxins, lysenin and streptolysin O. Our explorations indicate that both regular and long-circulating liposomes are capable of similarly preventing lysis induced by streptolysin O. In contrast, PEGylation reduced the effectiveness against lysenin-induced hemolysis and altered binding dynamics. These results suggest that toxin removal by long-circulating liposomes is feasible, yet dependent on the particular virulence factor under scrutiny.
Collapse
|
15
|
Gudeta K, Julka J, Kumar A, Bhagat A, Kumari A. Vermiwash: An agent of disease and pest control in soil, a review. Heliyon 2021; 7:e06434. [PMID: 33732941 PMCID: PMC7944038 DOI: 10.1016/j.heliyon.2021.e06434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/11/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022] Open
Abstract
Vermiwash is a liquid extract produced from vermicompost in a medium where earthworms are richly populated. It comprises a massive decomposer bacteria count, mucus, vitamins, different bioavailable minerals, hormones, enzymes, different antimicrobial peptides, etc. This paper aimed to assess how these natural products in vermiwash suppressed the pathogen and pests. Thus, we have reviewed the importance of vermiwash/vermicompost in disease control, the mechanism of disease suppression, the components of vermiwash applied in disease suppression, and pest control to use the scientific facts in agriculture to enhance the productivity of the crops. The bioactive macromolecules from the skin secretion of earthworm, coelomic fluid, and mucus directly able to defend pathogenic soil microbes against the worm and thereby freed the environment from the disease. Earthworms establish symbiotic relations with microbes, produce an essential product that supports the growth of plants, and suppress plant's root disease. It is recomended that earthworm should be inoculated in an agricultural field, or prepare and apply its vermiwash/vermicompost as a spray or as additive bio-fertilizer in the soil to enhance the productivities of the crops.
Collapse
Affiliation(s)
- Kasahun Gudeta
- Adama Science and Technology University, Department of Biology, P.O. Box 1888, Adama, Ethiopia
- Shoolini University Biotechnology and Management Sciences, School of Biological and Environmental Sciences, Solan 173212, Himachal Pradesh, India
| | - J.M. Julka
- Shoolini University Biotechnology and Management Sciences, School of Biological and Environmental Sciences, Solan 173212, Himachal Pradesh, India
| | - Arun Kumar
- Shoolini University Biotechnology and Management Sciences, School of Biotechnology, Solan 173212, Himachal Pradesh, India
| | - Ankeet Bhagat
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Amita Kumari
- Shoolini University Biotechnology and Management Sciences, School of Biological and Environmental Sciences, Solan 173212, Himachal Pradesh, India
| |
Collapse
|
16
|
Larpin Y, Besançon H, Babiychuk VS, Babiychuk EB, Köffel R. Small Pore-Forming Toxins Different Membrane Area Binding and Ca 2+ Permeability of Pores Determine Cellular Resistance of Monocytic Cells. Toxins (Basel) 2021; 13:toxins13020126. [PMID: 33572185 PMCID: PMC7914786 DOI: 10.3390/toxins13020126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 01/06/2023] Open
Abstract
Pore-forming toxins (PFTs) form multimeric trans-membrane pores in cell membranes that differ in pore channel diameter (PCD). Cellular resistance to large PFTs (>20 nm PCD) was shown to rely on Ca2+ influx activated membrane repair mechanisms. Small PFTs (<2 nm PCD) were shown to exhibit a high cytotoxic activity, but host cell response and membrane repair mechanisms are less well studied. We used monocytic immune cell lines to investigate the cellular resistance and host membrane repair mechanisms to small PFTs lysenin (Eisenia fetida) and aerolysin (Aeromonas hydrophila). Lysenin, but not aerolysin, is shown to induce Ca2+ influx from the extracellular space and to activate Ca2+ dependent membrane repair mechanisms. Moreover, lysenin binds to U937 cells with higher efficiency as compared to THP-1 cells, which is in line with a high sensitivity of U937 cells to lysenin. In contrast, aerolysin equally binds to U937 or THP-1 cells, but in different plasma membrane areas. Increased aerolysin induced cell death of U937 cells, as compared to THP-1 cells, is suggested to be a consequence of cap-like aerolysin binding. We conclude that host cell resistance to small PFTs attack comprises binding efficiency, pore localization, and capability to induce Ca2+ dependent membrane repair mechanisms.
Collapse
|
17
|
Kobayashi T, Tomishige N, Inaba T, Makino A, Murata M, Yamaji-Hasegawa A, Murate M. Impact of Intrinsic and Extrinsic Factors on Cellular Sphingomyelin Imaging with Specific Reporter Proteins. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2021; 4:25152564211042456. [PMID: 37366372 PMCID: PMC10259817 DOI: 10.1177/25152564211042456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Sphingomyelin (SM) is a major sphingolipid in mammalian cells. Although SM is enriched in the outer leaflet of the cell plasma membrane, lipids are also observed in the inner leaflet of the plasma membrane and intracellular organelles such as endolysosomes, the Golgi apparatus and nuclei. SM is postulated to form clusters with glycosphingolipids (GSLs), cholesterol (Chol), and other SM molecules through hydrophobic interactions and hydrogen bonding. Thus, different clusters composed of SM, SM/Chol, SM/GSL and SM/GSL/Chol with different stoichiometries may exist in biomembranes. In addition, SM monomers may be located in the glycerophospholipid-rich areas of membranes. Recently developed SM-binding proteins (SBPs) distinguish these different SM assemblies. Here, we summarize the effects of intrinsic factors regulating the lipid-binding specificity of SBPs and extrinsic factors, such as the lipid phase and lipid density, on SM recognition by SBPs. The combination of different SBPs revealed the heterogeneity of SM domains in biomembranes.
Collapse
Affiliation(s)
- Toshihide Kobayashi
- Lipid Biology Laboratory, RIKEN, Wako, Saitama, Japan
- Cellular Informatics Laboratory, RIKEN
CPR, Wako, Saitama, Japan
- Laboratoire de Bioimagerie et
Pathologies, Faculté de Pharmacie, UMR 7021 CNRS, Université de Strasbourg,
Illkirch, France
| | - Nario Tomishige
- Lipid Biology Laboratory, RIKEN, Wako, Saitama, Japan
- Cellular Informatics Laboratory, RIKEN
CPR, Wako, Saitama, Japan
- Laboratoire de Bioimagerie et
Pathologies, Faculté de Pharmacie, UMR 7021 CNRS, Université de Strasbourg,
Illkirch, France
| | | | - Asami Makino
- Lipid Biology Laboratory, RIKEN, Wako, Saitama, Japan
| | - Michio Murata
- Department of Chemistry, Graduate
School of Science, Osaka University, Toyonaka, Osaka, Japan
- ERATO, Lipid Active Structure Project,
Japan Science and Technology Agency, Graduate School of Science, Osaka University,
Osaka, Japan
| | | | - Motohide Murate
- Lipid Biology Laboratory, RIKEN, Wako, Saitama, Japan
- Cellular Informatics Laboratory, RIKEN
CPR, Wako, Saitama, Japan
- Laboratoire de Bioimagerie et
Pathologies, Faculté de Pharmacie, UMR 7021 CNRS, Université de Strasbourg,
Illkirch, France
| |
Collapse
|
18
|
Ogasawara M, Yoshii K, Wada J, Yamamoto Y, Inouye K. Identification of guanine, guanosine, and inosine for α-amylase inhibitors in the extracts of the earthworm Eisenia fetida and characterization of their inhibitory activities against porcine pancreatic α-amylase. Enzyme Microb Technol 2020; 142:109693. [DOI: 10.1016/j.enzmictec.2020.109693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/08/2020] [Accepted: 10/15/2020] [Indexed: 01/21/2023]
|
19
|
Lysenin Channels as Sensors for Ions and Molecules. SENSORS 2020; 20:s20216099. [PMID: 33120957 PMCID: PMC7663491 DOI: 10.3390/s20216099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022]
Abstract
Lysenin is a pore-forming protein extracted from the earthworm Eisenia fetida, which inserts large conductance pores in artificial and natural lipid membranes containing sphingomyelin. Its cytolytic and hemolytic activity is rather indicative of a pore-forming toxin; however, lysenin channels present intricate regulatory features manifested as a reduction in conductance upon exposure to multivalent ions. Lysenin pores also present a large unobstructed channel, which enables the translocation of analytes, such as short DNA and peptide molecules, driven by electrochemical gradients. These important features of lysenin channels provide opportunities for using them as sensors for a large variety of applications. In this respect, this literature review is focused on investigations aimed at the potential use of lysenin channels as analytical tools. The described explorations include interactions with multivalent inorganic and organic cations, analyses on the reversibility of such interactions, insights into the regulation mechanisms of lysenin channels, interactions with purines, stochastic sensing of peptides and DNA molecules, and evidence of molecular translocation. Lysenin channels present themselves as versatile sensing platforms that exploit either intrinsic regulatory features or the changes in ionic currents elicited when molecules thread the conducting pathway, which may be further developed into analytical tools of high specificity and sensitivity or exploited for other scientific biotechnological applications.
Collapse
|
20
|
Rudd AK, Mittal N, Lim EW, Metallo CM, Devaraj NK. A Small Molecule Fluorogenic Probe for the Detection of Sphingosine in Living Cells. J Am Chem Soc 2020; 142:17887-17891. [DOI: 10.1021/jacs.0c06652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Andrew K. Rudd
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Neel Mittal
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Esther W. Lim
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Christian M. Metallo
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Neal K. Devaraj
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
21
|
Nishimura S, Matsumori N. Chemical diversity and mode of action of natural products targeting lipids in the eukaryotic cell membrane. Nat Prod Rep 2020; 37:677-702. [PMID: 32022056 DOI: 10.1039/c9np00059c] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Covering: up to 2019Nature furnishes bioactive compounds (natural products) with complex chemical structures, yet with simple, sophisticated molecular mechanisms. When natural products exhibit their activities in cells or bodies, they first have to bind or react with a target molecule in/on the cell. The cell membrane is a major target for bioactive compounds. Recently, our understanding of the molecular mechanism of interactions between natural products and membrane lipids progressed with the aid of newly-developed analytical methods. New technology reconnects old compounds with membrane lipids, while new membrane-targeting molecules are being discovered through the screening for antimicrobial potential of natural products. This review article focuses on natural products that bind to eukaryotic membrane lipids, and includes clinically important molecules and key research tools. The chemical diversity of membrane-targeting natural products and the molecular basis of lipid recognition are described. The history of how their mechanism was unveiled, and how these natural products are used in research are also mentioned.
Collapse
Affiliation(s)
- Shinichi Nishimura
- Department of Biotechnology, Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan.
| | | |
Collapse
|
22
|
Insight into the Structural Dynamics of the Lysenin During Prepore-to-Pore Transition Using Hydrogen-Deuterium Exchange Mass Spectrometry. Toxins (Basel) 2019; 11:toxins11080462. [PMID: 31394843 PMCID: PMC6722932 DOI: 10.3390/toxins11080462] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 11/16/2022] Open
Abstract
Lysenin is a pore-forming toxin of the aerolysin family, which is derived from coelomic fluid of the earthworm Eisenia fetida. Upon binding to sphingomyelin (SM)-containing membranes, lysenin undergoes a series of structural changes promoting the conversion of water-soluble monomers into oligomers, leading to its insertion into the membrane and the formation of a lytic β-barrel pore. The soluble monomer and transmembrane pore structures were recently described, but the underlying structural details of oligomerization remain unclear. To investigate the molecular mechanisms controlling the conformational rearrangements accompanying pore formation, we compared the hydrogen–deuterium exchange pattern between lyseninWT and its mutant lyseninV88C/Y131C. This mutation arrests lysenin oligomers in the prepore state at the membrane surface and does not affect the structural dynamics of the water-soluble form of lysenin. In contrast, membrane-bound lyseninV88C/Y131C exhibited increased structural stabilization, especially within the twisted β-sheet of the N-terminal domain. We demonstrated that the structural stabilization of the lysenin prepore started at the site of lysenin’s initial interaction with the lipid membrane and was transmitted to the twisted β-sheet of the N-terminal domain, and that lyseninV88C/Y131C was arrested in this conformation. In lyseninWT, stabilization of these regions drove the conformational changes necessary for pore formation.
Collapse
|
23
|
Acid sphingomyelinase plays a critical role in LPS- and cytokine-induced tissue factor procoagulant activity. Blood 2019; 134:645-655. [PMID: 31262782 DOI: 10.1182/blood.2019001400] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/24/2019] [Indexed: 12/29/2022] Open
Abstract
Tissue factor (TF) is a cofactor for factor VIIa and the primary cellular initiator of coagulation. Typically, most TF on cell surfaces exists in a cryptic coagulant-inactive state but are transformed to a procoagulant form (decryption) following cell activation. Our recent studies in cell model systems showed that sphingomyelin (SM) in the outer leaflet of the plasma membrane is responsible for maintaining TF in an encrypted state in resting cells, and the hydrolysis of SM leads to decryption of TF. The present study was carried out to investigate the relevance of this novel mechanism in the regulation of TF procoagulant activity in pathophysiology. As observed in cell systems, administration of adenosine triphosphate (ATP) to mice enhanced lipopolysaccharide (LPS)-induced TF procoagulant activity in monocytes. Treatment of mice with pharmacological inhibitors of acid sphingomyelinase (ASMase), desipramine and imipramine, attenuated ATP-induced TF decryption. Interestingly, ASMase inhibitors also blocked LPS-induced TF procoagulant activity without affecting the LPS-induced de novo synthesis of TF protein. Additional studies showed that LPS induced translocation of ASMase to the outer leaflet of the plasma membrane and reduced SM levels in monocytes. Studies using human monocyte-derived macrophages and endothelial cells further confirmed the role of ASMase in LPS- and cytokine-induced TF procoagulant activity. Overall, our data indicate that LPS- or cytokine-induced TF procoagulant activity requires the decryption of newly synthesized TF protein by ASMase-mediated hydrolysis of SM. The observation that ASMase inhibitors attenuate TF-induced coagulation raises the possibility of their therapeutic use in treating thrombotic disorders associated with aberrant expression of TF.
Collapse
|
24
|
Savva CG, Clark AR, Naylor CE, Popoff MR, Moss DS, Basak AK, Titball RW, Bokori-Brown M. The pore structure of Clostridium perfringens epsilon toxin. Nat Commun 2019; 10:2641. [PMID: 31201325 PMCID: PMC6572795 DOI: 10.1038/s41467-019-10645-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/20/2019] [Indexed: 12/25/2022] Open
Abstract
Epsilon toxin (Etx), a potent pore forming toxin (PFT) produced by Clostridium perfringens, is responsible for the pathogenesis of enterotoxaemia of ruminants and has been suggested to play a role in multiple sclerosis in humans. Etx is a member of the aerolysin family of β-PFTs (aβ-PFTs). While the Etx soluble monomer structure was solved in 2004, Etx pore structure has remained elusive due to the difficulty of isolating the pore complex. Here we show the cryo-electron microscopy structure of Etx pore assembled on the membrane of susceptible cells. The pore structure explains important mutant phenotypes and suggests that the double β-barrel, a common feature of the aβ-PFTs, may be an important structural element in driving efficient pore formation. These insights provide the framework for the development of novel therapeutics to prevent human and animal infections, and are relevant for nano-biotechnology applications. Epsilon toxin (Etx) is a potent pore forming toxin (PFT) produced by Clostridium perfringens. Here authors show the cryo-EM structure of the Etx pore assembled on the membrane of susceptible cells and shed light on pore formation and mutant phenotypes.
Collapse
Affiliation(s)
- Christos G Savva
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester, LE1 7HB, UK
| | - Alice R Clark
- Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton, WV1 1LY, UK
| | - Claire E Naylor
- Molecular Dimensions, Willie Snaith Road, Newmarket, CB8 7SQ, UK
| | - Michel R Popoff
- Bactéries Anaérobies et Toxines, Institut Pasteur, 25-28 Rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - David S Moss
- Department of Biological Sciences, Birkbeck College, Malet Street, London, WC1E 7HX, UK
| | - Ajit K Basak
- Department of Biological Sciences, Birkbeck College, Malet Street, London, WC1E 7HX, UK
| | - Richard W Titball
- College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Monika Bokori-Brown
- College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| |
Collapse
|
25
|
Drücker P, Iacovache I, Bachler S, Zuber B, Babiychuk EB, Dittrich PS, Draeger A. Membrane deformation and layer-by-layer peeling of giant vesicles induced by the pore-forming toxin pneumolysin. Biomater Sci 2019; 7:3693-3705. [DOI: 10.1039/c9bm00134d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Membranes under attack by the pore-forming toxin pneumolysin reveal a hitherto unknown layer-by-layer peeling mechanism and disclose the multilamellar structure.
Collapse
Affiliation(s)
- Patrick Drücker
- Department of Biosystems Science and Engineering
- ETH Zurich
- 4058 Basel
- Switzerland
- Department of Cell Biology
| | - Ioan Iacovache
- Laboratory of Experimental Morphology
- Institute of Anatomy
- University of Bern
- 3000 Bern 9
- Switzerland
| | - Simon Bachler
- Department of Biosystems Science and Engineering
- ETH Zurich
- 4058 Basel
- Switzerland
| | - Benoît Zuber
- Laboratory of Experimental Morphology
- Institute of Anatomy
- University of Bern
- 3000 Bern 9
- Switzerland
| | - Eduard B. Babiychuk
- Department of Cell Biology
- Institute of Anatomy
- University of Bern
- 3000 Bern 9
- Switzerland
| | - Petra S. Dittrich
- Department of Biosystems Science and Engineering
- ETH Zurich
- 4058 Basel
- Switzerland
| | - Annette Draeger
- Department of Cell Biology
- Institute of Anatomy
- University of Bern
- 3000 Bern 9
- Switzerland
| |
Collapse
|
26
|
Vázquez RF, Daza Millone MA, Pavinatto FJ, Fanani ML, Oliveira ON, Vela ME, Maté SM. Impact of sphingomyelin acyl chain (16:0 vs 24:1) on the interfacial properties of Langmuir monolayers: A PM-IRRAS study. Colloids Surf B Biointerfaces 2019; 173:549-556. [DOI: 10.1016/j.colsurfb.2018.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/28/2018] [Accepted: 10/09/2018] [Indexed: 11/17/2022]
|
27
|
Bryant SL, Clark T, Thomas CA, Ware KS, Bogard A, Calzacorta C, Prather D, Fologea D. Insights into the Voltage Regulation Mechanism of the Pore-Forming Toxin Lysenin. Toxins (Basel) 2018; 10:toxins10080334. [PMID: 30126104 PMCID: PMC6115918 DOI: 10.3390/toxins10080334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/02/2018] [Accepted: 08/15/2018] [Indexed: 11/30/2022] Open
Abstract
Lysenin, a pore forming toxin (PFT) extracted from Eisenia fetida, inserts voltage-regulated channels into artificial lipid membranes containing sphingomyelin. The voltage-induced gating leads to a strong static hysteresis in conductance, which endows lysenin with molecular memory capabilities. To explain this history-dependent behavior, we hypothesized a gating mechanism that implies the movement of a voltage domain sensor from an aqueous environment into the hydrophobic core of the membrane under the influence of an external electric field. In this work, we employed electrophysiology approaches to investigate the effects of ionic screening elicited by metal cations on the voltage-induced gating and hysteresis in conductance of lysenin channels exposed to oscillatory voltage stimuli. Our experimental data show that screening of the voltage sensor domain strongly affects the voltage regulation only during inactivation (channel closing). In contrast, channel reactivation (reopening) presents a more stable, almost invariant voltage dependency. Additionally, in the presence of anionic Adenosine 5′-triphosphate (ATP), which binds at a different site in the channel’s structure and occludes the conducting pathway, both inactivation and reactivation pathways are significantly affected. Therefore, the movement of the voltage domain sensor into a physically different environment that precludes electrostatically bound ions may be an integral part of the gating mechanism.
Collapse
Affiliation(s)
- Sheenah Lynn Bryant
- Department of Physics, Boise State University, Boise, ID 83725, USA.
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA.
| | - Tyler Clark
- Department of Physics, Boise State University, Boise, ID 83725, USA.
| | | | | | - Andrew Bogard
- Department of Physics, Boise State University, Boise, ID 83725, USA.
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA.
| | | | - Daniel Prather
- Department of Physics, Boise State University, Boise, ID 83725, USA.
| | - Daniel Fologea
- Department of Physics, Boise State University, Boise, ID 83725, USA.
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA.
| |
Collapse
|
28
|
Podobnik M, Kisovec M, Anderluh G. Molecular mechanism of pore formation by aerolysin-like proteins. Philos Trans R Soc Lond B Biol Sci 2018. [PMID: 28630149 DOI: 10.1098/rstb.2016.0209] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aerolysin-like pore-forming proteins are an important family of proteins able to efficiently damage membranes of target cells by forming transmembrane pores. They are characterized by a unique domain organization and mechanism of action that involves extensive conformational rearrangements. Although structures of soluble forms of many different members of this family are well understood, the structures of pores and their mechanism of assembly have been described only recently. The pores are characterized by well-defined β-barrels, which are devoid of any vestibular regions commonly found in other protein pores. Many members of this family are bacterial toxins; therefore, structural details of their transmembrane pores, as well as the mechanism of pore formation, are an important base for future drug design. Stability of pores and other properties, such as specificity for some cell surface molecules, make this family of proteins a useful set of molecular tools for molecular recognition and sensing in cell biology.This article is part of the themed issue 'Membrane pores: from structure and assembly, to medicine and technology'.
Collapse
Affiliation(s)
- Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Matic Kisovec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, 1000 Ljubljana, Slovenia
| |
Collapse
|
29
|
Naito A, Matsumori N, Ramamoorthy A. Dynamic membrane interactions of antibacterial and antifungal biomolecules, and amyloid peptides, revealed by solid-state NMR spectroscopy. Biochim Biophys Acta Gen Subj 2018; 1862:307-323. [PMID: 28599848 PMCID: PMC6384124 DOI: 10.1016/j.bbagen.2017.06.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 05/28/2017] [Accepted: 06/02/2017] [Indexed: 12/12/2022]
Abstract
A variety of biomolecules acting on the cell membrane folds into a biologically active structure in the membrane environment. It is, therefore, important to determine the structures and dynamics of such biomolecules in a membrane environment. While several biophysical techniques are used to obtain low-resolution information, solid-state NMR spectroscopy is one of the most powerful means for determining the structure and dynamics of membrane bound biomolecules such as antibacterial biomolecules and amyloidogenic proteins; unlike X-ray crystallography and solution NMR spectroscopy, applications of solid-state NMR spectroscopy are not limited by non-crystalline, non-soluble nature or molecular size of membrane-associated biomolecules. This review article focuses on the applications of solid-state NMR techniques to study a few selected antibacterial and amyloid peptides. Solid-state NMR studies revealing the membrane inserted bent α-helical structure associated with the hemolytic activity of bee venom melittin and the chemical shift oscillation analysis used to determine the transmembrane structure (with α-helix and 310-helix in the N- and C-termini, respectively) of antibiotic peptide alamethicin are discussed in detail. Oligomerization of an amyloidogenic islet amyloid polypeptide (IAPP, or also known as amylin) resulting from its aggregation in a membrane environment, molecular interactions of the antifungal natural product amphotericin B with ergosterol in lipid bilayers, and the mechanism of lipid raft formation by sphingomyelin studied using solid state NMR methods are also discussed in this review article. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato.
Collapse
Affiliation(s)
- Akira Naito
- Graduate School of Engineering, Yokohama National University, Yokohama 240-8501, Japan.
| | - Nobuaki Matsumori
- Department of Chemistry, Graduate School of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109-1055, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
30
|
Sphingomyelin Metabolism Is a Regulator of K-Ras Function. Mol Cell Biol 2018; 38:MCB.00373-17. [PMID: 29158292 DOI: 10.1128/mcb.00373-17] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/08/2017] [Indexed: 01/07/2023] Open
Abstract
K-Ras must localize to the plasma membrane (PM) for biological activity. We show here that multiple acid sphingomyelinase (ASM) inhibitors, including tricyclic antidepressants, mislocalized phosphatidylserine (PtdSer) and K-RasG12V from the PM, resulting in abrogation of K-RasG12V signaling and potent, selective growth inhibition of mutant K-Ras-transformed cancer cells. Concordantly, in nude mice, the ASM inhibitor fendiline decreased the rate of growth of oncogenic K-Ras-expressing MiaPaCa-2 tumors but had no effect on the growth of the wild-type K-Ras-expressing BxPC-3 tumors. ASM inhibitors also inhibited activated LET-60 (a K-Ras ortholog) signaling in Caenorhabditis elegans, as evidenced by suppression of the induced multivulva phenotype. Using RNA interference against C. elegans genes encoding other enzymes in the sphingomyelin (SM) biosynthetic pathway, we identified 14 enzymes whose knockdown strongly or moderately suppressed the LET-60 multivulva phenotype. In mammalian cells, pharmacological agents that target these enzymes all depleted PtdSer from the PM and caused K-RasG12V mislocalization. These effects correlated with changes in SM levels or subcellular distribution. Selected compounds, including sphingosine kinase inhibitors, potently inhibited the proliferation of oncogenic K-Ras-expressing pancreatic cancer cells. In conclusion, these results show that normal SM metabolism is critical for K-Ras function, which may present therapeutic options for the treatment of K-Ras-driven cancers.
Collapse
|
31
|
Sarangi NK, Basu JK. Pathways for creation and annihilation of nanoscale biomembrane domains reveal alpha and beta-toxin nanopore formation processes. Phys Chem Chem Phys 2018; 20:29116-29130. [DOI: 10.1039/c8cp05729j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Raft-like functional domains with putative sizes of 20–200 nm and which are evolving dynamically are believed to be the most crucial regions in cellular membranes which determine cell signaling and various functions of cells.
Collapse
Affiliation(s)
| | - Jaydeep Kumar Basu
- Department of Physics
- Indian Institute of Science
- Bangalore – 560 012
- India
| |
Collapse
|
32
|
Dumitru AC, Conrard L, Lo Giudice C, Henriet P, Veiga-da-Cunha M, Derclaye S, Tyteca D, Alsteens D. High-resolution mapping and recognition of lipid domains using AFM with toxin-derivatized probes. Chem Commun (Camb) 2018; 54:6903-6906. [DOI: 10.1039/c8cc02201a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Specific mapping using AFM tips derivatized with toxin fragments targeting specific lipids as a novel approach to evidence lateral lipid heterogeneities at high-resolution.
Collapse
Affiliation(s)
- Andra C. Dumitru
- Louvain Institute of Biomolecular Science and Technology
- Université catholique de Louvain
- Croix du sud 4-5
- 1348 Louvain-La-Neuve
- Belgium
| | - Louise Conrard
- de Duve Institute
- Université catholique de Louvain
- Avenue Hippocrate 75
- 1200 Woluwe-Saint-Lambert
- Belgium
| | - Cristina Lo Giudice
- Louvain Institute of Biomolecular Science and Technology
- Université catholique de Louvain
- Croix du sud 4-5
- 1348 Louvain-La-Neuve
- Belgium
| | - Patrick Henriet
- de Duve Institute
- Université catholique de Louvain
- Avenue Hippocrate 75
- 1200 Woluwe-Saint-Lambert
- Belgium
| | - Maria Veiga-da-Cunha
- de Duve Institute
- Université catholique de Louvain
- Avenue Hippocrate 75
- 1200 Woluwe-Saint-Lambert
- Belgium
| | - Sylvie Derclaye
- Louvain Institute of Biomolecular Science and Technology
- Université catholique de Louvain
- Croix du sud 4-5
- 1348 Louvain-La-Neuve
- Belgium
| | - Donatienne Tyteca
- de Duve Institute
- Université catholique de Louvain
- Avenue Hippocrate 75
- 1200 Woluwe-Saint-Lambert
- Belgium
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology
- Université catholique de Louvain
- Croix du sud 4-5
- 1348 Louvain-La-Neuve
- Belgium
| |
Collapse
|
33
|
Pore-forming toxins in Cnidaria. Semin Cell Dev Biol 2017; 72:133-141. [DOI: 10.1016/j.semcdb.2017.07.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/14/2017] [Accepted: 07/20/2017] [Indexed: 01/05/2023]
|
34
|
Moreno-Hagelsieb G, Vitug B, Medrano-Soto A, Saier MH. The Membrane Attack Complex/Perforin Superfamily. J Mol Microbiol Biotechnol 2017; 27:252-267. [PMID: 29145176 DOI: 10.1159/000481286] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 09/05/2017] [Indexed: 12/30/2022] Open
Abstract
The membrane attack complex/perforin (MACPF) superfamily consists of a diverse group of proteins involved in bacterial pathogenesis and sporulation as well as eukaryotic immunity, embryonic development, neural migration and fruiting body formation. The present work shows that the evolutionary relationships between the members of the superfamily, previously suggested by comparison of their tertiary structures, can also be supported by analyses of their primary structures. The superfamily includes the MACPF family (TC 1.C.39), the cholesterol-dependent cytolysin (CDC) family (TC 1.C.12.1 and 1.C.12.2) and the pleurotolysin pore-forming (pleurotolysin B) family (TC 1.C.97.1), as revealed by expansion of each family by comparison against a large protein database, and by the comparisons of their hidden Markov models. Clustering analyses demonstrated grouping of the CDC homologues separately from the 12 MACPF subfamilies, which also grouped separately from the pleurotolysin B family. Members of the MACPF superfamily revealed a remarkably diverse range of proteins spanning eukaryotic, bacterial, and archaeal taxonomic domains, with notable variations in protein domain architectures. Our strategy should also be helpful in putting together other highly divergent protein families.
Collapse
|
35
|
Mound A, Lozanova V, Warnon C, Hermant M, Robic J, Guere C, Vie K, Lambert de Rouvroit C, Tyteca D, Debacq-Chainiaux F, Poumay Y. Non-senescent keratinocytes organize in plasma membrane submicrometric lipid domains enriched in sphingomyelin and involved in re-epithelialization. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:958-971. [DOI: 10.1016/j.bbalip.2017.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/26/2017] [Accepted: 06/03/2017] [Indexed: 12/22/2022]
|
36
|
Abstract
The ability of pore-forming proteins to interact with various analytes has found vast applicability in single molecule sensing and characterization. In spite of their abundance in organisms from all kingdoms of life, only a few pore-forming proteins have been successfully reconstituted in artificial membrane systems for sensing purposes. Lysenin, a pore-forming toxin extracted from the earthworm E. fetida, inserts large conductance nanopores in lipid membranes containing sphingomyelin. Here we show that single lysenin channels may function as stochastic nanosensors by allowing the short cationic peptide angiotensin II to be electrophoretically driven through the conducting pathway. Long-term translocation experiments performed using large populations of lysenin channels allowed unequivocal identification of the unmodified analyte by Liquid Chromatography-Mass Spectrometry. However, application of reverse voltages or irreversible blockage of the macroscopic conductance of lysenin channels by chitosan addition prevented analyte translocation. This investigation demonstrates that lysenin channels have the potential to function as nano-sensing devices capable of single peptide molecule identification and characterization, which may be further extended to other macromolecular analytes.
Collapse
|
37
|
Wang J, Pendurthi UR, Rao LVM. Sphingomyelin encrypts tissue factor: ATP-induced activation of A-SMase leads to tissue factor decryption and microvesicle shedding. Blood Adv 2017; 1:849-862. [PMID: 28758160 PMCID: PMC5531194 DOI: 10.1182/bloodadvances.2016003947] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 04/09/2017] [Indexed: 11/20/2022] Open
Abstract
A majority of tissue factor (TF) on cell surfaces exists in an encrypted state with minimal to no procoagulant activity. At present, it is unclear whether limited availability of phosphatidylserine (PS) and/or a specific membrane lipid in the outer leaflet of the plasma membrane contributes to TF encryption. Sphingomyelin (SM) is a major phospholipid in the outer leaflet, and SM metabolism is shown to be altered in many disease settings that cause thrombotic disorders. The present study is carried out to investigate the effect of SM metabolism on TF activity and TF+ microvesicles (MVs) release. In vitro studies using TF reconstituted into liposomes containing varying molar ratios of SM showed that a high molar ratio of SM in the proteoliposomes inhibits TF coagulant activity. Treatment of macrophages with sphingomyelinase (SMase) that hydrolyzes SM in the outer leaflet results in increased TF activity at the cell surface and TF+ MVs release without increasing PS externalization. Adenosine triphosphate (ATP) stimulation of macrophages that activates TF and induces MV shedding also leads to translocation of acid-sphingomyelinase (A-SMase) to the plasma membrane. ATP stimulation increases the hydrolysis of SM in the outer leaflet. Inhibition of A-SMase expression or activity not only attenuates ATP-induced SM hydrolysis, but also inhibits ATP-induced TF decryption and TF+ MVs release. Overall, our novel findings show that SM plays a role in maintaining TF in an encrypted state in resting cells and hydrolysis of SM following cell injury removes the inhibitory effect of SM on TF activity, thus leading to TF decryption.
Collapse
Affiliation(s)
- Jue Wang
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - Usha R Pendurthi
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| | - L Vijaya Mohan Rao
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX
| |
Collapse
|
38
|
Bryant S, Shrestha N, Carnig P, Kosydar S, Belzeski P, Hanna C, Fologea D. Purinergic control of lysenin's transport and voltage-gating properties. Purinergic Signal 2016; 12:549-59. [PMID: 27318938 DOI: 10.1007/s11302-016-9520-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/08/2016] [Indexed: 02/07/2023] Open
Abstract
Lysenin, a pore-forming protein extracted from the coelomic fluid of the earthworm Eisenia foetida, manifests cytolytic activity by inserting large conductance pores in host membranes containing sphingomyelin. In the present study, we found that adenosine phosphates control the biological activity of lysenin channels inserted into planar lipid membranes with respect to their macroscopic conductance and voltage-induced gating. Addition of ATP, ADP, or AMP decreased the macroscopic conductance of lysenin channels in a concentration-dependent manner, with ATP being the most potent inhibitor and AMP the least. ATP removal from the bulk solutions by buffer exchange quickly reinstated the macroscopic conductance and demonstrated reversibility. Single-channel experiments pointed to an inhibition mechanism that most probably relies on electrostatic binding and partial occlusion of the channel-conducting pathway, rather than ligand gating induced by the highly charged phosphates. The Hill analysis of the changes in macroscopic conduction as a function of the inhibitor concentration suggested cooperative binding as descriptive of the inhibition process. Ionic screening significantly reduced the ATP inhibitory efficacy, in support of the electrostatic binding hypothesis. In addition to conductance modulation, purinergic control over the biological activity of lysenin channels has also been observed to manifest as changes of the voltage-induced gating profile. Our analysis strongly suggests that not only the inhibitor's charge but also its ability to adopt a folded conformation may explain the differences in the observed influence of ATP, ADP, and AMP on lysenin's biological activity.
Collapse
Affiliation(s)
- Sheenah Bryant
- Department of Physics, Boise State University, Boise, ID, 83725, USA.,Biomolecular Sciences PhD Program, Boise State University, Boise, ID, 83725, USA
| | - Nisha Shrestha
- Department of Physics, Boise State University, Boise, ID, 83725, USA.,Biomolecular Sciences PhD Program, Boise State University, Boise, ID, 83725, USA
| | - Paul Carnig
- Department of Physics, Boise State University, Boise, ID, 83725, USA
| | - Samuel Kosydar
- Department of Physics, Boise State University, Boise, ID, 83725, USA
| | - Philip Belzeski
- Department of Physics, Boise State University, Boise, ID, 83725, USA
| | - Charles Hanna
- Department of Physics, Boise State University, Boise, ID, 83725, USA.,Biomolecular Sciences PhD Program, Boise State University, Boise, ID, 83725, USA
| | - Daniel Fologea
- Department of Physics, Boise State University, Boise, ID, 83725, USA. .,Biomolecular Sciences PhD Program, Boise State University, Boise, ID, 83725, USA.
| |
Collapse
|
39
|
Crystal structure of an invertebrate cytolysin pore reveals unique properties and mechanism of assembly. Nat Commun 2016; 7:11598. [PMID: 27176125 PMCID: PMC4865846 DOI: 10.1038/ncomms11598] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/11/2016] [Indexed: 01/01/2023] Open
Abstract
The invertebrate cytolysin lysenin is a member of the aerolysin family of pore-forming toxins that includes many representatives from pathogenic bacteria. Here we report the crystal structure of the lysenin pore and provide insights into its assembly mechanism. The lysenin pore is assembled from nine monomers via dramatic reorganization of almost half of the monomeric subunit structure leading to a β-barrel pore ∼10 nm long and 1.6–2.5 nm wide. The lysenin pore is devoid of additional luminal compartments as commonly found in other toxin pores. Mutagenic analysis and atomic force microscopy imaging, together with these structural insights, suggest a mechanism for pore assembly for lysenin. These insights are relevant to the understanding of pore formation by other aerolysin-like pore-forming toxins, which often represent crucial virulence factors in bacteria. Pore-forming toxins act by forming oligomeric pores in lipid membranes. Here the authors report the crystal structure of the lysenin pore, providing insights into the assembly and function of the pore in addition to suggesting that its properties make lysenin potentially well-suited for nanopore sensing applications.
Collapse
|
40
|
Carquin M, D'Auria L, Pollet H, Bongarzone ER, Tyteca D. Recent progress on lipid lateral heterogeneity in plasma membranes: From rafts to submicrometric domains. Prog Lipid Res 2015; 62:1-24. [PMID: 26738447 DOI: 10.1016/j.plipres.2015.12.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/22/2015] [Accepted: 12/22/2015] [Indexed: 12/29/2022]
Abstract
The concept of transient nanometric domains known as lipid rafts has brought interest to reassess the validity of the Singer-Nicolson model of a fluid bilayer for cell membranes. However, this new view is still insufficient to explain the cellular control of surface lipid diversity or membrane deformability. During the past decades, the hypothesis that some lipids form large (submicrometric/mesoscale vs nanometric rafts) and stable (>min vs s) membrane domains has emerged, largely based on indirect methods. Morphological evidence for stable submicrometric lipid domains, well-accepted for artificial and highly specialized biological membranes, was further reported for a variety of living cells from prokaryot es to yeast and mammalian cells. However, results remained questioned based on limitations of available fluorescent tools, use of poor lipid fixatives, and imaging artifacts due to non-resolved membrane projections. In this review, we will discuss recent evidence generated using powerful and innovative approaches such as lipid-specific toxin fragments that support the existence of submicrometric domains. We will integrate documented mechanisms involved in the formation and maintenance of these domains, and provide a perspective on their relevance on membrane deformability and regulation of membrane protein distribution.
Collapse
Affiliation(s)
- Mélanie Carquin
- CELL Unit, de Duve Institute & Université Catholique de Louvain, UCL B1.75.05, Avenue Hippocrate, 75, B-1200 Brussels, Belgium
| | - Ludovic D'Auria
- The Myelin Regeneration Group at the Dept. Anatomy & Cell Biology, College of Medicine, University of Illinois, 808 S. Wood St. MC512, Chicago, IL. 60612. USA
| | - Hélène Pollet
- CELL Unit, de Duve Institute & Université Catholique de Louvain, UCL B1.75.05, Avenue Hippocrate, 75, B-1200 Brussels, Belgium
| | - Ernesto R Bongarzone
- The Myelin Regeneration Group at the Dept. Anatomy & Cell Biology, College of Medicine, University of Illinois, 808 S. Wood St. MC512, Chicago, IL. 60612. USA
| | - Donatienne Tyteca
- CELL Unit, de Duve Institute & Université Catholique de Louvain, UCL B1.75.05, Avenue Hippocrate, 75, B-1200 Brussels, Belgium.
| |
Collapse
|
41
|
Abstract
Pore forming toxins (PFTs) evolved to permeate the plasma membrane of target cells. This is achieved in a multistep mechanism that usually involves binding of soluble protein monomer to the lipid membrane, oligomerization at the plane of the membrane, and insertion of part of the polypeptide chain across the lipid membrane to form a conductive channel. Introduced pores allow uncontrolled transport of solutes across the membrane, inflicting damage to the target cell. PFTs are usually studied from the perspective of structure-function relationships, often neglecting the important role of the bulk membrane properties on the PFT mechanism of action. In this Account, we discuss how membrane lateral heterogeneity, thickness, and fluidity influence the pore forming process of PFTs. In general, lipid molecules are more accessible for binding in fluid membranes due to steric reasons. When PFT specifically binds ordered domains, it usually recognizes a specific lipid distribution pattern, like sphingomyelin (SM) clusters or SM/cholesterol complexes, and not individual lipid species. Lipid domains were also suggested to act as an additional concentration platform facilitating PFT oligomerization, but this is yet to be shown. The last stage in PFT action is the insertion of the transmembrane segment across the membranes to build the transmembrane pore walls. Conformational changes are a spontaneous process, and sufficient free energy has to be available for efficient membrane penetration. Therefore, fluid bilayers are permeabilized more readily in comparison to highly ordered and thicker liquid ordered lipid phase (Lo). Energetically more costly insertion into the Lo phase can be driven by the hydrophobic mismatch between the thinner liquid disordered phase (Ld) and large protein complexes, which are unable to tilt like single transmembrane segments. In the case of proteolipid pores, membrane properties can directly modulate pore size, stability, and even selectivity. Finally, events associated with pore formation can modulate properties of the lipid membrane and affect its organization. Model membranes do not necessarily reproduce the physicochemical properties of the native cellular membrane, and caution is needed when transferring results from model to native lipid membranes. In this context, the utilization of novel approaches that enable studying PFTs on living cells at a single molecule level should reveal complex protein-lipid membrane interactions in greater detail.
Collapse
Affiliation(s)
- Nejc Rojko
- Laboratory
for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Gregor Anderluh
- Laboratory
for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
- Department
of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva
101, 1000 Ljubljana, Slovenia
| |
Collapse
|
42
|
Abstract
Eukaryotic cells have been confronted throughout their evolution with potentially lethal plasma membrane injuries, including those caused by osmotic stress, by infection from bacterial toxins and parasites, and by mechanical and ischemic stress. The wounded cell can survive if a rapid repair response is mounted that restores boundary integrity. Calcium has been identified as the key trigger to activate an effective membrane repair response that utilizes exocytosis and endocytosis to repair a membrane tear, or remove a membrane pore. We here review what is known about the cellular and molecular mechanisms of membrane repair, with particular emphasis on the relevance of repair as it relates to disease pathologies. Collective evidence reveals membrane repair employs primitive yet robust molecular machinery, such as vesicle fusion and contractile rings, processes evolutionarily honed for simplicity and success. Yet to be fully understood is whether core membrane repair machinery exists in all cells, or whether evolutionary adaptation has resulted in multiple compensatory repair pathways that specialize in different tissues and cells within our body.
Collapse
Affiliation(s)
- Sandra T Cooper
- Institute for Neuroscience and Muscle Research, Kids Research Institute, The Children's Hospital at Westmead, Sydney, New South Wales, Australia; Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia; and Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, Georgia
| | - Paul L McNeil
- Institute for Neuroscience and Muscle Research, Kids Research Institute, The Children's Hospital at Westmead, Sydney, New South Wales, Australia; Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia; and Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, Georgia
| |
Collapse
|
43
|
Rojko N, Dalla Serra M, Maček P, Anderluh G. Pore formation by actinoporins, cytolysins from sea anemones. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:446-56. [PMID: 26351738 DOI: 10.1016/j.bbamem.2015.09.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/31/2015] [Accepted: 09/02/2015] [Indexed: 11/30/2022]
Abstract
Actinoporins (APs) from sea anemones are ~20 kDa pore forming toxins with a β-sandwich structure flanked by two α-helices. The molecular mechanism of APs pore formation is composed of several well-defined steps. APs bind to membrane by interfacial binding site composed of several aromatic amino acid residues that allow binding to phosphatidylcholine and specific recognition of sphingomyelin. Subsequently, the N-terminal α-helix from the β-sandwich has to be inserted into the lipid/water interphase in order to form a functional pore. Functional studies and single molecule imaging revealed that only several monomers, 3-4, oligomerise to form a functional pore. In this model the α-helices and surrounding lipid molecules build toroidal pore. In agreement, AP pores are transient and electrically heterogeneous. On the contrary, crystallized oligomers of actinoporin fragaceatoxin C were found to be composed of eight monomers with no lipids present between the adjacent α-helices. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Maur Dalla Serra and Franco Gambale.
Collapse
Affiliation(s)
- Nejc Rojko
- Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Mauro Dalla Serra
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche & Fondazione Bruno Kessler, via alla Cascata 56/C, 38123 Trento, Italy
| | - Peter Maček
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Gregor Anderluh
- Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| |
Collapse
|
44
|
Fang RH, Luk BT, Hu CMJ, Zhang L. Engineered nanoparticles mimicking cell membranes for toxin neutralization. Adv Drug Deliv Rev 2015; 90:69-80. [PMID: 25868452 DOI: 10.1016/j.addr.2015.04.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/08/2015] [Accepted: 04/01/2015] [Indexed: 11/27/2022]
Abstract
Protein toxins secreted from pathogenic bacteria and venomous animals rely on multiple mechanisms to overcome the cell membrane barrier to inflict their virulence effect. A promising therapeutic concept toward developing a broadly applicable anti-toxin platform is to administer cell membrane mimics as decoys to sequester these virulence factors. As such, lipid membrane-based nanoparticulates are an ideal candidate given their structural similarity to cellular membranes. This article reviews the virulence mechanisms employed by toxins at the cell membrane interface and highlights the application of cell-membrane mimicking nanoparticles as toxin decoys for systemic detoxification. In addition, the implication of particle/toxin nanocomplexes in the development of toxoid vaccines is discussed.
Collapse
|
45
|
Nakano T, Takahashi-Nakaguchi A, Yamamoto M, Watanabe M. Pierisins and CARP-1: ADP-ribosylation of DNA by ARTCs in butterflies and shellfish. Curr Top Microbiol Immunol 2015; 384:127-49. [PMID: 25033755 DOI: 10.1007/82_2014_416] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cabbage butterfly, Pieris rapae, and related species possess a previously unknown ADP-ribosylating toxin, guanine specific ADP-ribosyltransferase. This enzyme toxin, known as pierisin, consists of enzymatic N-terminal domain and receptor-binding C-terminal domain, or typical AB-toxin structure. Pierisin efficiently transfers an ADP-ribosyl moiety to the N(2) position of the guanine base of dsDNA. Receptors for pierisin are suggested to be the neutral glycosphingolipids, globotriaosylceramide (Gb3), and globotetraosylceramide (Gb4). This DNA-modifying toxin exhibits strong cytotoxicity and induces apoptosis in various human cell lines, which can be blocked by Bcl-2. Pierisin also produces detrimental effects on the eggs and larvae of the non-habitual parasitoids. In contrast, a natural parasitoid of the cabbage butterfly, Cotesia glomerata, was resistant to this toxin. The physiological role of pierisin in the butterfly is suggested to be a defense factor against parasitization by wasps. Other type of DNA ADP-ribosyltransferase is present in certain kinds of edible clams. For example, the CARP-1 protein found in Meretrix lamarckii consists of an enzymatic domain without a possible receptor-binding domain. Pierisin and CARP-1 are almost fully non-homologous at the amino acid sequence level, but other ADP-ribosyltransferases homologous to pierisin are present in different biological species such as eubacterium Streptomyces. Possible diverse physiological roles of the DNA ADP-ribosyltransferases are discussed.
Collapse
Affiliation(s)
- Tsuyoshi Nakano
- Division of Cancer Development System, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan,
| | | | | | | |
Collapse
|
46
|
Barceló-Coblijn G, Fernández JA. Mass spectrometry coupled to imaging techniques: the better the view the greater the challenge. Front Physiol 2015; 6:3. [PMID: 25657625 PMCID: PMC4302787 DOI: 10.3389/fphys.2015.00003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/06/2015] [Indexed: 11/13/2022] Open
Abstract
These are definitively exciting times for membrane lipid researchers. Once considered just as the cell membrane building blocks, the important role these lipids play is steadily being acknowledged. The improvement occurred in mass spectrometry techniques (MS) allows the establishment of the precise lipid composition of biological extracts. However, to fully understand the biological function of each individual lipid species, we need to know its spatial distribution and dynamics. In the past 10 years, the field has experienced a profound revolution thanks to the development of MS-based techniques allowing lipid imaging (MSI). Images reveal and verify what many lipid researchers had already shown by different means, but none as convincing as an image: each cell type presents a specific lipid composition, which is highly sensitive to its physiological and pathological state. While these techniques will help to place membrane lipids in the position they deserve, they also open the black box containing all the unknown regulatory mechanisms accounting for such tailored lipid composition. Thus, these results urges to different disciplines to redefine their paradigm of study by including the complexity revealed by the MSI techniques.
Collapse
Affiliation(s)
- Gwendolyn Barceló-Coblijn
- Lipids in Human Pathology, Research Unit, Hospital Universitari Son Espases, Institut d'Investigació Sanitària de Palma (IdISPa) Palma, Spain
| | - José A Fernández
- Departamento de Química-Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU) Leioa, Spain
| |
Collapse
|
47
|
Yilmaz N, Yamada T, Greimel P, Uchihashi T, Ando T, Kobayashi T. Real-time visualization of assembling of a sphingomyelin-specific toxin on planar lipid membranes. Biophys J 2014; 105:1397-405. [PMID: 24047991 DOI: 10.1016/j.bpj.2013.07.052] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 07/16/2013] [Accepted: 07/22/2013] [Indexed: 10/26/2022] Open
Abstract
Pore-forming toxins (PFTs) are soluble proteins that can oligomerize on the cell membrane and induce cell death by membrane insertion. PFT oligomers sometimes form hexagonal close-packed (hcp) structures on the membrane. Here, we show the assembling of the sphingomyelin (SM)-binding PFT, lysenin, into an hcp structure after oligomerization on SM/cholesterol membrane. This process was monitored by high-speed atomic force microscopy. Hcp assembly was driven by reorganization of lysenin oligomers such as association/dissociation and rapid diffusion along the membrane. Besides rapid association/dissociation of oligomers, the height change for some oligomers, possibly resulting from conformational changes in lysenin, could also be visualized. After the entire membrane surface was covered with a well-ordered oligomer lattice, the lysenin molecules were firmly bound on the membrane and the oligomers neither dissociated nor diffused. Our results reveal the dynamic nature of the oligomers of a lipid-binding toxin during the formation of an hcp structure. Visualization of this dynamic process is essential for the elucidation of the assembling mechanism of some PFTs that can form ordered structures on the membrane.
Collapse
Affiliation(s)
- Neval Yilmaz
- Lipid Biology Laboratory, RIKEN, Wako, Saitama, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Scheuring S. High-speed atomic force microscopy tracks toxin action. Biophys J 2014; 105:1292. [PMID: 24047979 DOI: 10.1016/j.bpj.2013.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 08/02/2013] [Accepted: 08/05/2013] [Indexed: 11/27/2022] Open
Affiliation(s)
- Simon Scheuring
- Institut National de la Santé et de la Recherche Médicale U1006, Université Aix-Marseille, Parc Scientifique et Technologique de Luminy, Marseille, France.
| |
Collapse
|
49
|
Franco-Villanueva A, Fernández-López E, Gabandé-Rodríguez E, Bañón-Rodríguez I, Esteban JA, Antón IM, Ledesma MD. WIP modulates dendritic spine actin cytoskeleton by transcriptional control of lipid metabolic enzymes. Hum Mol Genet 2014; 23:4383-95. [PMID: 24698977 DOI: 10.1093/hmg/ddu155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We identify Wiskott-Aldrich syndrome protein (WASP)-interacting protein (WIP) as a novel component of neuronal synapses whose absence increases dendritic spine size and filamentous actin levels in an N-WASP/Arp2/3-independent, RhoA/ROCK/profilinIIa-dependent manner. These effects depend on the reduction of membrane sphingomyelin (SM) due to transcriptional upregulation of neutral sphingomyelinase (NSM) through active RhoA; this enhances RhoA binding to the membrane, raft partitioning and activation in steady state but prevents RhoA changes in response to stimulus. Inhibition of NSM or SM addition reverses RhoA, filamentous actin and functional anomalies in synapses lacking WIP. Our findings characterize WIP as a link between membrane lipid composition and actin cytoskeleton at dendritic spines. They also contribute to explain cognitive deficits shared by individuals bearing mutations in the region assigned to the gene encoding for WIP.
Collapse
Affiliation(s)
- Ana Franco-Villanueva
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| | - Estefanía Fernández-López
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM) and Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| | | | | | | | - Inés M Antón
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid 28049, Spain
| | | |
Collapse
|
50
|
Davis W. The ATP-binding cassette transporter-2 (ABCA2) regulates esterification of plasma membrane cholesterol by modulation of sphingolipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:168-79. [PMID: 24201375 DOI: 10.1016/j.bbalip.2013.10.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/09/2013] [Accepted: 10/29/2013] [Indexed: 10/26/2022]
Abstract
The ATP-binding cassette transporters are a large family (~48 genes divided into seven families A-G) of proteins that utilize the energy of ATP-hydrolysis to pump substrates across lipid bilayers against a concentration gradient. The ABC "A" subfamily is comprised of 13 members and transport sterols, phospholipids and bile acids. ABCA2 is the most abundant ABC transporter in human and rodent brain with highest expression in oligodendrocytes, although it is also expressed in neurons. Several groups have studied a possible connection between ABCA2 and Alzheimer's disease as well as early atherosclerosis. ABCA2 expression levels have been associated with changes in cholesterol and sphingolipid metabolism. In this paper, we hypothesized that ABCA2 expression level may regulate esterification of plasma membrane-derived cholesterol by modulation of sphingolipid metabolism. ABCA2 overexpression in N2a neuroblastoma cells was associated with an altered bilayer distribution of the sphingolipid ceramide that inhibited acylCoA:cholesterol acyltransferase (ACAT) activity and cholesterol esterification. In contrast, depletion of endogenous ABCA2 in the rat schwannoma cell line D6P2T increased esterification of plasma membrane cholesterol following treatment with exogenous bacterial sphingomyelinase. These findings suggest that control of ABCA2 expression level may be a key locus of regulation for esterification of plasma membrane-derived cholesterol through modulation of sphingolipid metabolism.
Collapse
Affiliation(s)
- Warren Davis
- Department of Pharmacology, Medical University of South Carolina, Charleston, SC 29403, USA.
| |
Collapse
|