1
|
Liu K, Cooper ME, Chai Z, Liu F. High-Density Lipoprotein in Patients with Diabetic Kidney Disease: Friend or Foe? Int J Mol Sci 2025; 26:1683. [PMID: 40004147 PMCID: PMC11855193 DOI: 10.3390/ijms26041683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
High-density lipoprotein (HDL) exhibits multiple metabolic protective functions, such as facilitating cellular cholesterol efflux, antioxidant, anti-inflammatory, anti-apoptotic and anti-thrombotic properties, showing antidiabetic and renoprotective potential. Diabetic kidney disease (DKD) is considered to be associated with high-density lipoprotein cholesterol (HDL-C). The hyperglycemic environment, non-enzymatic glycosylation, carbamylation, oxidative stress and systemic inflammation can cause changes in the quantity and quality of HDL, resulting in reduced HDL levels and abnormal function. Dysfunctional HDL can also have a negative impact on pancreatic β cells and kidney cells, leading to the progression of DKD. Based on these findings, new HDL-related DKD risk predictors have gradually been proposed. Interventions aiming to improve HDL levels and function, such as infusion of recombinant HDL (rHDL) or lipid-poor apolipoprotein A-I (apoA-I), can significantly improve glycemic control and also show renal protective effects. However, recent studies have revealed a U-shaped relationship between HDL-C levels and DKD, and the loss of protective properties of high levels of HDL may be related to changes in composition and the deposition of dysfunctional particles that exacerbate damage. Further research is needed to fully elucidate the complex role of HDL in DKD. Given the important role of HDL in metabolic health, developing HDL-based therapies that augment HDL function, rather than simply increasing its level, is a critical step in managing the development and progression of DKD.
Collapse
Affiliation(s)
- Ke Liu
- Department of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China;
- Laboratory of Diabetic Kidney Disease, Kidney Research Institute, Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mark E. Cooper
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia;
| | - Zhonglin Chai
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia;
| | - Fang Liu
- Department of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China;
- Laboratory of Diabetic Kidney Disease, Kidney Research Institute, Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Marín-Blázquez M, Rovira J, Ramírez-Bajo MJ, Zapata-Pérez R, Rabadán-Ros R. NAD + enhancers as therapeutic agents in the cardiorenal axis. Cell Commun Signal 2024; 22:537. [PMID: 39516787 PMCID: PMC11546376 DOI: 10.1186/s12964-024-01903-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Cardiorenal diseases represent a complex interplay between heart failure and renal dysfunction, being clinically classified as cardiorenal syndromes (CRS). Recently, the contributions of altered nicotinamide adenine dinucleotide (NAD+) metabolism, through deficient NAD+ synthesis and/or elevated consumption, have proved to be decisive in the onset and progress of cardiorenal disease. NAD+ is a pivotal coenzyme in cellular metabolism, being significant in various signaling pathways, such as energy metabolism, DNA damage repair, gene expression, and stress response. Convincing evidence suggests that strategies designed to boost cellular NAD+ levels are a promising therapeutic option to address cardiovascular and renal disorders. Here, we review and discuss the implications of NAD+ metabolism in cardiorenal diseases, focusing on the propitious NAD+ boosting therapeutic strategies, based on the use of NAD+ precursors, poly(ADP-ribose) polymerase inhibitors, sirtuin activators, and other alternative approaches, such as CD38 blockade, nicotinamide phosphoribosyltransferase activation and combined interventions.
Collapse
Affiliation(s)
- Mariano Marín-Blázquez
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain
| | - Jordi Rovira
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Casanova 143 CRB CELLEX sector 2B, Barcelona, 08036, Spain
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS 2040), Madrid, Spain
| | - María José Ramírez-Bajo
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Casanova 143 CRB CELLEX sector 2B, Barcelona, 08036, Spain
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS 2040), Madrid, Spain
| | - Rubén Zapata-Pérez
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain.
| | - Rubén Rabadán-Ros
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain.
| |
Collapse
|
3
|
Zhang Z, Zhang B, Jiang X, Yu Y, Cui Y, Luo H, Wang B. Hyocholic acid retards renal fibrosis by regulating lipid metabolism and inflammatory response in a sheep model. Int Immunopharmacol 2023; 122:110670. [PMID: 37481851 DOI: 10.1016/j.intimp.2023.110670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/15/2023] [Accepted: 07/16/2023] [Indexed: 07/25/2023]
Abstract
The kidneys are vital organs that regulate metabolic homeostasis in the body, filter waste products from the blood, and remove extrahepatic bile acids. We previously found that the dietary supplementation of hyocholic acid alleviated the sheep body lipid deposition and decreased kidney weight. This study evaluated hyocholic acid's (HCA) roles and mechanisms on lipid metabolism and anti-inflammatory function in the kidney under a high-energy diet. Histomicrograph showing the apparent improvement by HCA by attenuating structural damage. The HCA treatment reduced the renal accumulation of cholesterol. Bile acid receptors such as LXR and FXR were activated at the protein level. HCA significantly altered several genes related to immune response (NF-κB, IL-6, and MCP1) and fibrosis (TGF-β, Col1α1, and α-SMA). These significant changes correlated with renal lipid accumulation. The KEGG pathways including non-alcoholic fatty liver disease, insulin resistance, TNF signaling pathway, and Th17 cell differentiation were enriched and NF-κB, IL-6, and TGF-β were identified as the core interconnected genes. This study revealed that HCA plays an efficient role in alleviating kidney lipids accumulation and inflammatory response through crucial genes such as FXR, LXR, HMGCR, NF-κB, IL-6, MCP1, and TGF-β, and expand our understanding of HCA's role in kidney function. In conclusion, HCA mitigated kidney fibrosis, lipid metabolism disorders and immune responses induced by a high-energy diet by regulating a potential LXR/SREBP2/TGF-β-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zeping Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Boyan Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Xianzhe Jiang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Yue Yu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Yimeng Cui
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Hailing Luo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Bing Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
4
|
Chanvillard L, Tammaro A, Sorrentino V. NAD + Metabolism and Interventions in Premature Renal Aging and Chronic Kidney Disease. Cells 2022; 12:21. [PMID: 36611814 PMCID: PMC9818486 DOI: 10.3390/cells12010021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Premature aging causes morphological and functional changes in the kidney, leading to chronic kidney disease (CKD). CKD is a global public health issue with far-reaching consequences, including cardio-vascular complications, increased frailty, shortened lifespan and a heightened risk of kidney failure. Dialysis or transplantation are lifesaving therapies, but they can also be debilitating. Currently, no cure is available for CKD, despite ongoing efforts to identify clinical biomarkers of premature renal aging and molecular pathways of disease progression. Kidney proximal tubular epithelial cells (PTECs) have high energy demand, and disruption of their energy homeostasis has been linked to the progression of kidney disease. Consequently, metabolic reprogramming of PTECs is gaining interest as a therapeutic tool. Preclinical and clinical evidence is emerging that NAD+ homeostasis, crucial for PTECs' oxidative metabolism, is impaired in CKD, and administration of dietary NAD+ precursors could have a prophylactic role against age-related kidney disease. This review describes the biology of NAD+ in the kidney, including its precursors and cellular roles, and discusses the importance of NAD+ homeostasis for renal health. Furthermore, we provide a comprehensive summary of preclinical and clinical studies aimed at increasing NAD+ levels in premature renal aging and CKD.
Collapse
Affiliation(s)
- Lucie Chanvillard
- Nestlé Institute of Health Sciences, Nestlé Research, 1015 Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Alessandra Tammaro
- Department of Pathology, Amsterdam UMC location University of Amsterdam, 1105AZ Amsterdam, The Netherlands
- Amsterdam Infection & Immunity, 1105AZ Amsterdam, The Netherlands
| | - Vincenzo Sorrentino
- Nestlé Institute of Health Sciences, Nestlé Research, 1015 Lausanne, Switzerland
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| |
Collapse
|
5
|
Wang Z, Zeng X, Zhang C, Wang Q, Zhang W, Xie J, Chen J, Hu Q, Wang Q, Yang H, Yin Y. Higher niacin intakes improve the lean meat rate of Ningxiang pigs by regulating lipid metabolism and gut microbiota. Front Nutr 2022; 9:959039. [PMID: 36276825 PMCID: PMC9582987 DOI: 10.3389/fnut.2022.959039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/06/2022] [Indexed: 12/04/2022] Open
Abstract
As one of the local pig breeds in China with a high fat rate, improving the lean meat rate of Ningxiang pigs through nutritional intervention is an urgent issue to be solved. As an important feed additive, niacin plays an important role in lipid metabolism. The purpose of this study was to investigate the regulation and mechanism of niacin on fat deposition in Ningxiang pigs. Thirty-four Ningxiang pigs (53.34 ± 2.78 kg) were randomly divided into two groups with five replicates each, with three to four Ningxiang pigs per replicate. The control group was fed a basal diet (contained 22 mg/kg niacin), and the experimental group was fed the same diet supplemented with an additional 100 mg/kg of niacin. The experimental period lasted 60 days. One Ningxiang pig was selected for slaughter sampling for each replicate. This study found that lean meat percentage of Ningxiang pigs in the experimental group was significantly increased (P < 0.05), accompanied by a significant decrease in fat percentage (P < 0.05). 16S rRNA sequencing analysis found an abundance of Streptococcus in the experimental group (P < 0.05), along with significantly decreased levels of Lactobacillus (P < 0.05). The changes in some OTUs belonging to Firmicutes, Bacteroidota, and Actinobacteriota were closely related to the changes in the fat rate and lean meat rate of Ningxiang pigs (P < 0.05). LC–MS metabolomics analysis found that about 43.75% of the differential metabolites were related to lipids and lipid-like molecules in the liver (P < 0.05). Spearman's correlation analysis showed correlations between the carcass traits, microbiota, and liver metabolites. In conclusion, niacin improves lean meat percentage and reduces fat deposition by regulating lipid metabolism and gut microbiota composition in Ningxiang pigs.
Collapse
Affiliation(s)
- Zhaobin Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China,Key Laboratory of Subtropical Agro-ecological Processes, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China,National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xianglin Zeng
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China,National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Cheng Zhang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qianqian Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Weidong Zhang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Junyan Xie
- Key Laboratory of Subtropical Agro-ecological Processes, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China,National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jiashun Chen
- Key Laboratory of Subtropical Agro-ecological Processes, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China,National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Qin Hu
- Anyou Biotechnology Group Co., Ltd., Taicang, China
| | - Qiye Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China,Key Laboratory of Subtropical Agro-ecological Processes, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China,National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China,*Correspondence: Qiye Wang
| | - Huansheng Yang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China,Key Laboratory of Subtropical Agro-ecological Processes, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China,Huansheng Yang
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China,Key Laboratory of Subtropical Agro-ecological Processes, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China,National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
6
|
Pham KO, Hara A, Tsujiguchi H, Suzuki K, Suzuki F, Miyagi S, Kannon T, Sato T, Hosomichi K, Tsuboi H, Nguyen TTT, Shimizu Y, Kambayashi Y, Nakamura M, Takazawa C, Nakamura H, Hamagishi T, Shibata A, Konoshita T, Tajima A, Nakamura H. Association between Vitamin Intake and Chronic Kidney Disease According to a Variant Located Upstream of the PTGS1 Gene: A Cross-Sectional Analysis of Shika Study. Nutrients 2022; 14:2082. [PMID: 35631221 PMCID: PMC9143472 DOI: 10.3390/nu14102082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/02/2022] [Accepted: 05/14/2022] [Indexed: 11/22/2022] Open
Abstract
Chronic kidney disease (CKD) patients have been advised to take vitamins; however, the effects have been controversial. The individual differences in developing CKD might involve genetic variants of inflammation, including variant rs883484 located upstream of the prostaglandin-endoperoxide synthase 1 (PTGS1) gene. We aimed to identify whether the 12 dietary vitamin intake interacts with genotypes of the rs883484 on developing CKD. The population-based, cross-sectional study had 684 Japanese participants (≥40 years old). The study used a validated, brief, self-administered diet history questionnaire to estimate the intake of the dietary vitamins. CKD was defined as estimated glomerular filtration < 60 mL/min/1.73 m2. The study participants had an average age of 62.1 ± 10.8 years with 15.4% minor homozygotes of rs883484, and 114 subjects had CKD. In the fully adjusted model, the higher intake of vitamins, namely niacin (odds ratio (OR) = 0.74, 95% confidence interval (CI): 0.57−0.96, p = 0.024), α-tocopherol (OR = 0.49, 95% CI: 0.26−0.95, p = 0.034), and vitamin C (OR = 0.97, 95% CI: 0.95−1.00, p = 0.037), was independently associated with lower CKD tendency in the minor homozygotes of rs883484. The results suggested the importance of dietary vitamin intake in the prevention of CKD in middle-aged to older-aged Japanese with minor homozygous of rs883484 gene variant.
Collapse
Affiliation(s)
- Kim-Oanh Pham
- Information Management Department, Asia Center for Air Pollution Research, Niigata City 950-2144, Japan
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa City 920-8640, Japan; (A.H.); (H.T.); (K.S.); (F.S.); (M.N.); (C.T.); (H.N.); (T.H.); (A.S.); (H.N.)
| | - Akinori Hara
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa City 920-8640, Japan; (A.H.); (H.T.); (K.S.); (F.S.); (M.N.); (C.T.); (H.N.); (T.H.); (A.S.); (H.N.)
| | - Hiromasa Tsujiguchi
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa City 920-8640, Japan; (A.H.); (H.T.); (K.S.); (F.S.); (M.N.); (C.T.); (H.N.); (T.H.); (A.S.); (H.N.)
| | - Keita Suzuki
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa City 920-8640, Japan; (A.H.); (H.T.); (K.S.); (F.S.); (M.N.); (C.T.); (H.N.); (T.H.); (A.S.); (H.N.)
| | - Fumihiko Suzuki
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa City 920-8640, Japan; (A.H.); (H.T.); (K.S.); (F.S.); (M.N.); (C.T.); (H.N.); (T.H.); (A.S.); (H.N.)
- Community Medicine Support Dentistry, Faculty of Dentist, Ohu University Hospital, Koriyama 963-8611, Japan
| | - Sakae Miyagi
- Innovative Clinical Research Center, Takaramachi Campus, Kanazawa University, Kanazawa City 920-8640, Japan;
| | - Takayuki Kannon
- Department of Bioinformatics and Genomics, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa City 920-8640, Japan; (T.K.); (T.S.); (K.H.); (A.T.)
| | - Takehiro Sato
- Department of Bioinformatics and Genomics, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa City 920-8640, Japan; (T.K.); (T.S.); (K.H.); (A.T.)
| | - Kazuyoshi Hosomichi
- Department of Bioinformatics and Genomics, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa City 920-8640, Japan; (T.K.); (T.S.); (K.H.); (A.T.)
| | - Hirohito Tsuboi
- Institute of Medical, Pharmaceutical and Health Sciences, Kakuma Campus, Kanazawa University, Kanazawa City 920-1192, Japan;
| | - Thao Thi Thu Nguyen
- Department of Epidemiology, Faculty of Public Health, Haiphong University of Medicine and Pharmacy, Hai Phong 180000, Vietnam;
| | - Yukari Shimizu
- Department of Nursing, Faculty of Health Sciences, Komatsu University, Komatsu City 923-0961, Japan;
| | - Yasuhiro Kambayashi
- Department of Public Health, Faculty of Veterinary Medicine, Okayama University of Science, Imabari 794-8555, Japan;
| | - Masaharu Nakamura
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa City 920-8640, Japan; (A.H.); (H.T.); (K.S.); (F.S.); (M.N.); (C.T.); (H.N.); (T.H.); (A.S.); (H.N.)
| | - Chie Takazawa
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa City 920-8640, Japan; (A.H.); (H.T.); (K.S.); (F.S.); (M.N.); (C.T.); (H.N.); (T.H.); (A.S.); (H.N.)
| | - Haruki Nakamura
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa City 920-8640, Japan; (A.H.); (H.T.); (K.S.); (F.S.); (M.N.); (C.T.); (H.N.); (T.H.); (A.S.); (H.N.)
| | - Toshio Hamagishi
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa City 920-8640, Japan; (A.H.); (H.T.); (K.S.); (F.S.); (M.N.); (C.T.); (H.N.); (T.H.); (A.S.); (H.N.)
| | - Aki Shibata
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa City 920-8640, Japan; (A.H.); (H.T.); (K.S.); (F.S.); (M.N.); (C.T.); (H.N.); (T.H.); (A.S.); (H.N.)
| | - Tadashi Konoshita
- Third Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Tsuruga 914-0055, Japan;
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa City 920-8640, Japan; (T.K.); (T.S.); (K.H.); (A.T.)
| | - Hiroyuki Nakamura
- Department of Hygiene and Public Health, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa City 920-8640, Japan; (A.H.); (H.T.); (K.S.); (F.S.); (M.N.); (C.T.); (H.N.); (T.H.); (A.S.); (H.N.)
| |
Collapse
|
7
|
Inhibition of ChREBP ubiquitination via the ROS/Akt-dependent downregulation of Smurf2 contributes to lysophosphatidic acid-induced fibrosis in renal mesangial cells. J Biomed Sci 2022; 29:31. [PMID: 35538534 PMCID: PMC9092836 DOI: 10.1186/s12929-022-00814-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/29/2022] [Indexed: 12/20/2022] Open
Abstract
Background Mesangial cell fibrosis, a typical symptom of diabetic nephropathy (DN), is a major contributor to glomerulosclerosis. We previously reported that the pharmacological blockade of lysophosphatidic acid (LPA) signaling improves DN. Although LPA signaling is implicated in diabetic renal fibrosis, the underlying molecular mechanisms remain unclear. Here, the role of carbohydrate-responsive element-binding protein (ChREBP) in LPA-induced renal fibrosis and the underlying mechanisms were investigated. Methods Eight-week-old wild-type and db/db mice were intraperitoneally injected with the vehicle or an LPAR1/3 antagonist, ki16425 (10 mg/kg), for 8 weeks on a daily basis, following which the mice were sacrificed and renal protein expression was analyzed. SV40 MES13 cells were treated with LPA in the presence or absence of ki16425, and the expression of ChREBP and fibrotic factors, including fibronectin, TGF-β, and IL-1β, was examined. The role of ChREBP in the LPA-induced fibrotic response was investigated by ChREBP overexpression or knockdown. The involvement of Smad ubiquitination regulatory factor-2 (Smurf2), an E3 ligase, in LPA-induced expression of ChREBP and fibrotic factors was investigated by Smurf2 overexpression or knockdown. To identify signaling molecules regulating Smurf2 expression by LPA, pharmacological inhibitors such as A6370 (Akt1/2 kinase inhibitor) and Ly 294002 (PI3K inhibitor) were used. Results The renal expression of ChREBP increased in diabetic db/db mice, and was reduced following treatment with the ki16425. Treatment with LPA induced the expression of ChREBP and fibrotic factors, including fibronectin, TGF-β, and IL-1β, in SV40 MES13 cells, which were positively correlated. The LPA-induced expression of fibrotic factors increased or decreased following ChREBP overexpression and knockdown, respectively. The production of reactive oxygen species (ROS) mediated the LPA-induced expression of ChREBP and fibrotic factors, and LPA decreased Smurf2 expression via Traf4-mediated ubiquitination. The LPA-induced expression of ubiquitinated-ChREBP increased or decreased following Smurf2 overexpression and knockdown, respectively. Additionally, Smurf2 knockdown significantly increased the expression of ChREBP and fibrotic factors. The pharmacological inhibition of Akt signaling suppressed the LPA-induced alterations in the expression of ChREBP and Smurf2. Conclusion Collectively, the results demonstrated that the ROS/Akt-dependent downregulation of Smurf2 and the subsequent increase in ChREBP expression might be one of the mechanisms by which LPA induces mesangial cell fibrosis in DN. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00814-1.
Collapse
|
8
|
González LM, Robles NR, Mota-Zamorano S, Arévalo-Lorido JC, Valdivielso JM, López-Gómez J, Gervasini G. Tag-SNPs in Phospholipase-Related Genes Modify the Susceptibility to Nephrosclerosis and its Associated Cardiovascular Risk. Front Pharmacol 2022; 13:817020. [PMID: 35586043 PMCID: PMC9108153 DOI: 10.3389/fphar.2022.817020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Nephrosclerosis patients have a high cardiovascular (CV) risk that is very often of more concern than the renal disease itself. We aimed to determine whether variants in phospholipase-related genes, associated with atherosclerosis and CV outcomes in the general population, could constitute biomarkers of nephrosclerosis and/or its associated CV risk. We screened 1,209 nephrosclerosis patients and controls for 86 tag-SNPs that were identified in the SCARB1, PLA2G4A, and PLA2G7 gene loci. Regression models were utilized to evaluate their effect on several clinical parameters. Most notably, rs10846744 and rs838880 in SCARB1 showed significant odds ratios (OR) of 0.66 (0.51-0.87), p = 0.003 and 1.48 (1.11-1.96), p = 0.007 for nephrosclerosis risk. PLA2G4A and PLA2G7 harboured several SNPs associated with atherosclerosis measurements in the patients, namely common carotid intima media thickness (ccIMT), presence of plaques, number of plaques detected and 2-years ccIMT progression (significant p-values ranging from 0.0004 to 0.047). Eight SNPs in PLA2G4A were independent risk factors for CV events in nephrosclerosis patients. Their addition to a ROC model containing classic risk factors significantly improved its predictive power from AUC = 69.1% (61.4-76.9) to AUC = 79.1% (73.1-85.1%), p = 0.047. Finally, PLA2G4A rs932476AA and rs6683619AA genotypes were associated with lower CV event-free survival after controlling for confounding variables [49.59 (47.97-51.21) vs. 51.81 (49.93-51.78) months, p = 0.041 and 46.46 (41.00-51.92) vs. 51.17 (50.25-52.08) months, p = 0.022, respectively]. Variability in phospholipase-related genes play a relevant role in nephrosclerosis and associated atherosclerosis measurements and CV events.
Collapse
Affiliation(s)
- Luz M. González
- Department of Medical and Surgical Therapeutics, Medical School, Institute of Molecular Pathology Biomarkers, University of Extremadura, Badajoz, Spain
| | - Nicolás R. Robles
- Service of Nephrology, Badajoz University Hospital, Badajoz, Spain
- RICORS2040 Renal Research Network, Madrid, Spain
| | - Sonia Mota-Zamorano
- Department of Medical and Surgical Therapeutics, Medical School, Institute of Molecular Pathology Biomarkers, University of Extremadura, Badajoz, Spain
- RICORS2040 Renal Research Network, Madrid, Spain
| | | | - José Manuel Valdivielso
- RICORS2040 Renal Research Network, Madrid, Spain
- Vascular and Renal Translational Research Group, UDETMA, IRBLleida, Lleida, Spain
| | - Juan López-Gómez
- Service of Clinical Analyses, Badajoz University Hospital, Badajoz, Spain
| | - Guillermo Gervasini
- Department of Medical and Surgical Therapeutics, Medical School, Institute of Molecular Pathology Biomarkers, University of Extremadura, Badajoz, Spain
- RICORS2040 Renal Research Network, Madrid, Spain
| |
Collapse
|
9
|
Liu H, Li Q, Wei X, Ma J, Long K, Ouyang X, Liu N, Li Y, He L, Dai L, Cai X. Elevated serum cholesterol levels are associated with proteinuria over 0.5 g/day in premenopausal women with systemic lupus erythematosus. Int J Immunopathol Pharmacol 2022; 36:3946320221101287. [PMID: 35593459 PMCID: PMC9130808 DOI: 10.1177/03946320221101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background: Systemic lupus erythematosus (SLE) commonly occurs in
premenopausal women and is associated with elevated estrogen levels. Patients
with SLE may have abnormal serum triglyceride (TG) levels, and lipid reportedly
promotes kidney damage in patients with nephrosis. Since estrogen regulates
lipid levels, we investigated the serum lipid levels of premenopausal women with
SLE and their relationship with proteinuria. Methods: This
cross-sectional study included 123 premenopausal women with SLE (SLE group), who
were classified into 24-h urine protein exceeding 0.5 g (24 h-UPRO > 0.5 g,
n = 22) and 24 h-UPRO ≤ 0.5 g (n = 101)
subgroups, and 100 similarly aged healthy women (control group). Clinical
characteristics and biomarker levels were compared between these groups. The
associated factors of proteinuria over 0.5 g/day were evaluated using
multivariate logistic regression. A receiver operating characteristic (ROC)
curve was plotted to assess the cholesterol (CH) cut-off associated with
increased development of proteinuria over 0.5 g/day. Results: The
SLE group had significantly higher serum TG levels than that of control group.
24 h-UPRO were significantly correlated with serum creatinine, CH, TG, and uric
acid levels. Serum CH level was the greatest associated factor for proteinuria
over 0.5 g/day. The area under the ROC curve was 0.843, with a CH cut-off of
4.58 mmol/L. Patients with serum CH above 4.58 mmol/L had a higher proportion of
type IV LN, but with no statistical difference. Conclusions: In
premenopausal SLE patients, serum TG levels were higher than in healthy women,
and serum CH levels were the primary associated factor for proteinuria over
0.5 g/day. Proteinura over 0.5 g/day may occur in women with SLE with serum CH
levels >4.58 mmol/L. CH levels may be useful for predicting proteinuria.
Collapse
Affiliation(s)
- Haijun Liu
- Department of Rheumatology, 477093Panyu Central Hospital, Guangzhou, China
| | - Qianhua Li
- Department of Rheumatology, Sun Yat-Sen Memorial Hospital, 56713Sun Yat-Sen University, Guangzhou, China
| | - Xiuning Wei
- Department of Rheumatology, Sun Yat-Sen Memorial Hospital, 56713Sun Yat-Sen University, Guangzhou, China
| | - Jianda Ma
- Department of Rheumatology, Sun Yat-Sen Memorial Hospital, 56713Sun Yat-Sen University, Guangzhou, China
| | - KangXia Long
- Department of Rheumatology, 477093Panyu Central Hospital, Guangzhou, China
| | - Xia Ouyang
- Department of Rheumatology, 477093Panyu Central Hospital, Guangzhou, China
| | - Nemin Liu
- Department of Rheumatology, 477093Panyu Central Hospital, Guangzhou, China
| | - Yongsheng Li
- Lab Center, Guangdong Cord Blood Bank, Guangzhou, China.,Guangzhou Municipality Tianhe Nuoya Bio-engineering Co., Ltd, Guangzhou, China
| | - Liping He
- Department of Rheumatology, 477093Panyu Central Hospital, Guangzhou, China
| | - Lie Dai
- Department of Rheumatology, Sun Yat-Sen Memorial Hospital, 56713Sun Yat-Sen University, Guangzhou, China
| | - Xiaoyan Cai
- Department of Rheumatology, School of Medicine, South China University of Technology, 74668Guangzhou First People's Hospital, Guangzhou, China
| |
Collapse
|
10
|
Li Q, Lan T, He S, Chen W, Li X, Zhang W, Liu Y, Zhang Q, Chen X, Han Y, Su Z, Zhu D, Guo H. A network pharmacology-based approach to explore the active ingredients and molecular mechanism of Lei-gong-gen formula granule on a spontaneously hypertensive rat model. Chin Med 2021; 16:99. [PMID: 34627325 PMCID: PMC8501634 DOI: 10.1186/s13020-021-00507-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 09/17/2021] [Indexed: 12/28/2022] Open
Abstract
Background Lei-gong-gen formula granule (LFG) is a folk prescription derived from Zhuang nationality, the largest ethnic minority among 56 nationalities in China. It consists of three herbs, namely Eclipta prostrata (L.) L., Smilax glabra Roxb, and Centella asiatica (L.) Urb. It has been widely used as health protection tea for hundreds of years to prevent hypertension in Guangxi Zhuang Autonomous Region. The purpose of this study is to validate the antihypertensive effect of LFG on the spontaneously hypertensive rat (SHR) model, and to further identify the effective components and anti-hypertension mechanism of LFG. Methods The effects of LFG on blood pressure, body weight, and heart rate were investigated in vivo using the SHR model. The levels of NO, ANG II, and ET-1 in the serum were measured, and pathological changes in the heart were examined by H&E staining. The main active components of LFG, their corresponding targets, and hypertension associated pathways were discerned through network pharmacology analysis based on the Traditional Chinese Medicine Systems Pharmacology (TCMSP), Traditional Chinese Medicine Integrated Database (TCMID), and the Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine (BATMAN-TCM). Then the predicted results were further verified by molecular biology experiments such as RT-qPCR and western blot. Additionally, the potential active compounds were predicted by molecular docking technology, and the chemical constituents of LFG were analyzed and identified by UPLC-QTOF/MS technology. Finally, an in vitro assay was performed to investigate the protective effects of potential active compounds against hydrogen peroxide (H2O2) induced oxidative damage in human umbilical vein endothelial cells (HUVEC). Results LFG could effectively reduce blood pressure and increase serum NO content in SHR model. Histological results showed that LFG could ameliorate pathological changes such as cardiac hypertrophy and interstitial inflammation. From network pharmacology analysis, 53 candidate active compounds of LFG were collected, which linked to 765 potential targets, and 828 hypertension associated targets were retrieved, from which 12 overlapped targets both related to candidate active compounds from LFG and hypertension were screened and used as the potential targets of LFG on antihypertensive effect. The molecular biology experiments of the 12 overlapped targets showed that LFG could upregulate the mRNA and protein expressions of NOS3 and proto-oncogene tyrosine-protein kinase SRC (SRC) in the thoracic aorta. Pathway enrichment analysis showed that the PI3K-AKT signaling pathway was closely related to the expression of NOS3 and SRC. Moreover, western blot results showed that LFG significantly increased the protein expression levels of PI3K and phosphorylated AKT in SHR model, suggesting that LFG may active the PI3K-AKT signaling pathway to decrease hypertension. Molecular docking study further supported that p-hydroxybenzoic acid, cedar acid, shikimic acid, salicylic acid, nicotinic acid, linalool, and histidine can be well binding with NOS3, SRC, PI3K, and AKT. UPLC-QTOF/MS analysis confirmed that p-hydroxybenzoic acid, shikimic acid, salicylic acid, and nicotinic acid existed in LFG. Pre-treatment of HUVEC with nicotinic acid could alleviate the effect on cell viability induced by H2O2 and increase the NO level in cell supernatants. Conclusions LFG can reduce the blood pressure in SHR model, which might be attributed to increasing the NO level in serum for promoting vasodilation via upregulating SRC expression level and activating the PI3K-AKT-NOS3 signaling pathway. Nicotinic acid might be the potential compound for LFG antihypertensive effect. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00507-1.
Collapse
Affiliation(s)
- Qiaofeng Li
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.,Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, School of preclinical medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Taijin Lan
- School of preclinical medicine, Guangxi University of Chinese Medicine, 179 Mingxiu Dong Road, Nanning, 530001, China
| | - Songhua He
- Guangxi Institute for Food and Drug Control, 9 Qinghu Road, Nanning, 530021, China
| | - Weiwei Chen
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China.,International Joint Laboratory on Regeneration of Bone and Soft Tissues, Guangxi Medical University, Guangxi, 530021, China
| | - Xiaolan Li
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.,Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, School of preclinical medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Weiquan Zhang
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.,Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, School of preclinical medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Ying Liu
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, School of preclinical medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China.,College of Pharmacy, Guangxi University of Chinese Medicine, 179 Mingxiu Dong Road, Nanning, 530001, China
| | - Qiuping Zhang
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, School of preclinical medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China.,The First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, China
| | - Xin Chen
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.,Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, School of preclinical medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yaoyao Han
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.,Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, School of preclinical medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhiheng Su
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.
| | - Dan Zhu
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China.
| | - Hongwei Guo
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & College of Pharmacy, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, China. .,Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, School of preclinical medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China. .,Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
11
|
Pei K, Gui T, Li C, Zhang Q, Feng H, Li Y, Wu J, Gai Z. Recent Progress on Lipid Intake and Chronic Kidney Disease. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3680397. [PMID: 32382547 PMCID: PMC7196967 DOI: 10.1155/2020/3680397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 12/16/2022]
Abstract
The incidence of chronic kidney disease (CKD) is associated with major abnormalities in circulating lipoproteins and renal lipid metabolism. This article elaborates on the mechanisms of CKD and lipid uptake abnormalities. The viewpoint we supported is that lipid abnormalities directly cause CKD, resulting in forming a vicious cycle. On the theoretical and experiment fronts, this inference has been verified by elaborately elucidating the role of lipid intake and accumulation as well as their influences on CKD. Taken together, these findings suggest that further understanding of lipid metabolism in CKD may lead to novel therapeutic approaches.
Collapse
Affiliation(s)
- Ke Pei
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ting Gui
- Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chao Li
- Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qian Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Huichao Feng
- Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yunlun Li
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Jibiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhibo Gai
- Key Laboratory of Traditional Chinese Medicine for Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, 8006 Zurich, Switzerland
| |
Collapse
|
12
|
Kim M, Basharat A, Santosh R, Mehdi SF, Razvi Z, Yoo SK, Lowell B, Kumar A, Brima W, Danoff A, Dankner R, Bergman M, Pavlov VA, Yang H, Roth J. Reuniting overnutrition and undernutrition, macronutrients, and micronutrients. Diabetes Metab Res Rev 2019; 35:e3072. [PMID: 30171821 DOI: 10.1002/dmrr.3072] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/20/2018] [Accepted: 08/26/2018] [Indexed: 12/15/2022]
Abstract
Over-nutrition and its late consequences are a dominant theme in medicine today. In addition to the health hazards brought on by over-nutrition, the medical community has recently accumulated a roster of health benefits with obesity, grouped under "obesity paradox." Throughout the world and throughout history until the 20th century, under-nutrition was a dominant evolutionary force. Under-nutrition brings with it a mix of benefits and detriments that are opposite to and continuous with those of over-nutrition. This continuum yields J-shaped or U-shaped curves relating body mass index to mortality. The overweight have an elevated risk of dying in middle age of degenerative diseases while the underweight are at increased risk of premature death from infectious conditions. Micronutrient deficiencies, major concerns of nutritional science in the 20th century, are being neglected. This "hidden hunger" is now surprisingly prevalent in all weight groups, even among the overweight. Because micronutrient replacement is safe, inexpensive, and predictably effective, it is now an exceptionally attractive target for therapy across the spectrum of weight and age. Nutrition-related conditions worthy of special attention from caregivers include excess vitamin A, excess vitamin D, and deficiency of magnesium.
Collapse
Affiliation(s)
- Miji Kim
- Laboratory of Diabetes and Diabetes-Related Disorders, The Feinstein Institute for Medical Research, Northwell Health, New York, USA
| | - Anam Basharat
- Laboratory of Diabetes and Diabetes-Related Disorders, The Feinstein Institute for Medical Research, Northwell Health, New York, USA
| | - Ramchandani Santosh
- Laboratory of Diabetes and Diabetes-Related Disorders, The Feinstein Institute for Medical Research, Northwell Health, New York, USA
| | - Syed F Mehdi
- Laboratory of Diabetes and Diabetes-Related Disorders, The Feinstein Institute for Medical Research, Northwell Health, New York, USA
| | - Zanali Razvi
- Laboratory of Diabetes and Diabetes-Related Disorders, The Feinstein Institute for Medical Research, Northwell Health, New York, USA
| | - Sun K Yoo
- Laboratory of Diabetes and Diabetes-Related Disorders, The Feinstein Institute for Medical Research, Northwell Health, New York, USA
| | - Barbara Lowell
- Laboratory of Diabetes and Diabetes-Related Disorders, The Feinstein Institute for Medical Research, Northwell Health, New York, USA
| | - Amrat Kumar
- Laboratory of Diabetes and Diabetes-Related Disorders, The Feinstein Institute for Medical Research, Northwell Health, New York, USA
| | - Wunnie Brima
- Laboratory of Diabetes and Diabetes-Related Disorders, The Feinstein Institute for Medical Research, Northwell Health, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, USA
| | - Ann Danoff
- Department of Medicine, Cpl. Michael J Crescenz Veterans Administration Medical Center, Philadelphia, PA, USA
| | - Rachel Dankner
- Department of Epidemiology and Preventive Medicine, School of Public Health, The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michael Bergman
- Department of Medicine, Division of Endocrinology, NYU School of Medicine, New York, NY, USA
| | - Valentin A Pavlov
- Laboratory of Diabetes and Diabetes-Related Disorders, The Feinstein Institute for Medical Research, Northwell Health, New York, USA
- Center for Biomedical Science and Center for Bioelectric Medicine, The Feinstein Institute for Medical Research, Northwell Health, New York, USA
| | - Huan Yang
- Laboratory of Diabetes and Diabetes-Related Disorders, The Feinstein Institute for Medical Research, Northwell Health, New York, USA
- Center for Biomedical Science and Center for Bioelectric Medicine, The Feinstein Institute for Medical Research, Northwell Health, New York, USA
| | - Jesse Roth
- Laboratory of Diabetes and Diabetes-Related Disorders, The Feinstein Institute for Medical Research, Northwell Health, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, USA
- Center for Biomedical Science and Center for Bioelectric Medicine, The Feinstein Institute for Medical Research, Northwell Health, New York, USA
| |
Collapse
|
13
|
Amiri M, Yousefnia S, Seyed Forootan F, Peymani M, Ghaedi K, Nasr Esfahani MH. Diverse roles of fatty acid binding proteins (FABPs) in development and pathogenesis of cancers. Gene 2018; 676:171-183. [PMID: 30021130 DOI: 10.1016/j.gene.2018.07.035] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/04/2018] [Accepted: 07/12/2018] [Indexed: 12/27/2022]
Abstract
One of the most importantly involved pathways in cancer development is fatty-acid signaling pathway. Synthesized lipids as energetic sources are consumed by cancer cells for proliferation, growth, survival, invasion and angiogenesis. Fatty acids as signaling compounds regulate metabolic and transcriptional networks, survival pathways and inflammatory responses. Aggregation of fatty acids with fatty acid binding proteins (FABPs) facilitates their transportation to different cell organelles. FABPs, a group of lipid binding proteins modulate fatty acid metabolism, cell growth and proliferation and cancer development. They may be used as tumor marker in some cancers. FABPs are expressed in most malignancies such as prostate, breast, liver, bladder and lung cancer which are associated with the incidence, proliferation, metastasis, invasion of tumors. This review introduces several isoforms of FABPs (FABP1-12) and summarizes their function and their possible roles in cancer development through some proposed mechanisms.
Collapse
Affiliation(s)
- Mina Amiri
- Department of Modern Biology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran
| | - Saghar Yousefnia
- Division of Cellular and Molecular Biology, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Farzad Seyed Forootan
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran; Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran.
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran; Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Kamran Ghaedi
- Division of Cellular and Molecular Biology, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran; Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Mohammad Hossein Nasr Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
14
|
|
15
|
Abdul-Wahed A, Guilmeau S, Postic C. Sweet Sixteenth for ChREBP: Established Roles and Future Goals. Cell Metab 2017; 26:324-341. [PMID: 28768172 DOI: 10.1016/j.cmet.2017.07.004] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 06/01/2017] [Accepted: 07/12/2017] [Indexed: 12/25/2022]
Abstract
With the identification of ChREBP in 2001, our interest in understanding the molecular control of carbohydrate sensing has surged. While ChREBP was initially studied as a master regulator of lipogenesis in liver and fat tissue, it is now clear that ChREBP functions as a central metabolic coordinator in a variety of cell types in response to environmental and hormonal signals, with wide implications in health and disease. Celebrating its sweet sixteenth birthday, we review here the current knowledge about the function and regulation of ChREBP throughout usual and less explored tissues, to recapitulate ChREBP's role as a whole-body glucose sensor.
Collapse
Affiliation(s)
- Aya Abdul-Wahed
- Inserm, U1016, Institut Cochin, 75014 Paris, France; CNRS UMR 8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Sandra Guilmeau
- Inserm, U1016, Institut Cochin, 75014 Paris, France; CNRS UMR 8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Catherine Postic
- Inserm, U1016, Institut Cochin, 75014 Paris, France; CNRS UMR 8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France.
| |
Collapse
|
16
|
Muroya Y, Ito O. Effect of clofibrate on fatty acid metabolism in the kidney of puromycin-induced nephrotic rats. Clin Exp Nephrol 2016; 20:862-870. [PMID: 26949064 DOI: 10.1007/s10157-016-1253-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 02/24/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND Proteinuria plays an essential role in the progression of tubulointerstitial damage, which causes end-stage renal disease. An increased load of fatty acids bound to albumin reabsorbed into proximal tubular epithelial cells (PTECs) contributes to tubulointerstitial damage. Fibrates, agonists of peroxisome proliferator-activated receptor α (PPARα), have renoprotective effects against proteinuria whereas the effects of these compounds on fatty acid metabolism in the kidney are still unknown. Therefore, the present study examined whether the renoprotective effects of clofibrate were associated with improvement of fatty acid metabolism in puromycin aminonucleoside (PAN)-induced nephrotic rats. METHODS Rats were allocated to the control, PAN or clofibrate-treated PAN group. Biochemical parameters, renal injury and changes in fatty acid metabolism were studied on day14. RESULTS PAN increased proteinuria, lipid accumulation in PTECs, excretions of N-acetyl-β-D-glucosaminidase (NAG) and 8-hydroxydeoxyguanosine (8OHdG) and the area of caspase 3-positive tubular cells. It decreased renal expressions of medium-chain acyl-CoA dehydrogenase (MCAD), cytochrome P450 (CYP)4A, peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and estrogen-related receptor α (ERRα) without change of the expression of PPARα. Clofibrate reduced proteinuria, lipid accumulation, NAG excretion and the area of caspase 3-positive tubular cells. However, albumin excretion was not reduced and 8OHdG excretion was increased. Clofibrate minimized changes in MCAD, CYP4A, PGC-1α and ERRα expressions with increased PPARα, very long-chain acyl-CoA dehydrogenase (VLCAD) and long-chain acyl-CoA dehydrogenase (LCAD) expressions. CONCLUSION Clofibrate is protective against renal lipotoxicity in PAN nephrosis. This study indicates that clofibrate has renoprotective effects through maintaining fatty acid metabolism in the kidney of PAN-induced nephrotic rats.
Collapse
Affiliation(s)
- Yoshikazu Muroya
- Department of General Medicine and Rehabilitation, Tohoku Medical and Pharmaceutical University School of Medicine, 1-12-1 Fukumuro, Miyagino-ku, Sendai, 983-8512, Japan.
| | - Osamu Ito
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
17
|
Baraille F, Planchais J, Dentin R, Guilmeau S, Postic C. Integration of ChREBP-Mediated Glucose Sensing into Whole Body Metabolism. Physiology (Bethesda) 2016; 30:428-37. [PMID: 26525342 DOI: 10.1152/physiol.00016.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Since glucose is the principal energy source for most cells, many organisms have evolved numerous and sophisticated mechanisms to sense glucose and respond to it appropriately. In this context, cloning of the carbohydrate responsive element binding protein has unraveled a critical molecular link between glucose metabolism and transcriptional reprogramming induced by glucose. In this review, we detail major findings that have advanced our knowledge of glucose sensing.
Collapse
Affiliation(s)
- Floriane Baraille
- Inserm U1016 Institut Cochin, Paris, France; CNRS UMR 8104, Paris, France; and Université Paris Descartes, Paris, France
| | - Julien Planchais
- Inserm U1016 Institut Cochin, Paris, France; CNRS UMR 8104, Paris, France; and Université Paris Descartes, Paris, France
| | - Renaud Dentin
- Inserm U1016 Institut Cochin, Paris, France; CNRS UMR 8104, Paris, France; and Université Paris Descartes, Paris, France
| | - Sandra Guilmeau
- Inserm U1016 Institut Cochin, Paris, France; CNRS UMR 8104, Paris, France; and Université Paris Descartes, Paris, France
| | - Catherine Postic
- Inserm U1016 Institut Cochin, Paris, France; CNRS UMR 8104, Paris, France; and Université Paris Descartes, Paris, France
| |
Collapse
|
18
|
Liu L, Li C, Fu C, Li F. Dietary Niacin Supplementation Suppressed Hepatic Lipid Accumulation in Rabbits. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 29:1748-1755. [PMID: 27004817 PMCID: PMC5088423 DOI: 10.5713/ajas.15.0824] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/03/2016] [Accepted: 03/16/2016] [Indexed: 01/07/2023]
Abstract
An experiment was conducted to investigate the effect of niacin supplementation on hepatic lipid metabolism in rabbits. Rex Rabbits (90 d, n = 32) were allocated to two equal treatment groups: Fed basal diet (control) or fed basal diet with additional 200 mg/kg niacin supplementation (niacin). The results show that niacin significantly increased the levels of plasma adiponectin, hepatic apoprotein B and hepatic leptin receptors mRNA (p<0.05), but significantly decreased the hepatic fatty acid synthase activity and adiponectin receptor 2, insulin receptor and acetyl-CoA carboxylase mRNA levels (p<0.05). Plasma insulin had a decreasing tendency in the niacin treatment group compared with control (p = 0.067). Plasma very low density lipoproteins, leptin levels and the hepatic adiponectin receptor 1 and carnitine palmitoyl transferase 1 genes expression were not significantly altered with niacin addition to the diet (p>0.05). However, niacin treatment significantly inhibited the hepatocytes lipid accumulation compared with the control group (p<0.05). In conclusion, niacin treatment can decrease hepatic fatty acids synthesis, but does not alter fatty acids oxidation and triacylglycerol export. And this whole process attenuates lipid accumulation in liver. Besides, the hormones of insulin, leptin and adiponectin are associated with the regulation of niacin in hepatic lipid metabolism in rabbits.
Collapse
Affiliation(s)
- Lei Liu
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Chunyan Li
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Chunyan Fu
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Fuchang Li
- Department of Animal Science, Shandong Agricultural University, Taian, Shandong 271018, China
| |
Collapse
|
19
|
Streja E, Kovesdy CP, Streja DA, Moradi H, Kalantar-Zadeh K, Kashyap ML. Niacin and Progression of CKD. Am J Kidney Dis 2015; 65:785-98. [DOI: 10.1053/j.ajkd.2014.11.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 11/19/2014] [Indexed: 12/17/2022]
|
20
|
Zhang YU, Zhou N, Wang H, Wang S, He J. Effect of Shenkang granules on the progression of chronic renal failure in 5/6 nephrectomized rats. Exp Ther Med 2015; 9:2034-2042. [PMID: 26136932 DOI: 10.3892/etm.2015.2383] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 11/16/2014] [Indexed: 12/23/2022] Open
Abstract
Shenkang granules (SKGs) are a Chinese herbal medicinal formula, consisting of rhubarb (Rheum palmatum L.), Salvia miltiorrhiza, milkvetch root [Astragalus membranaceus (Fisch.) Bunge] and safflower (Carthamus tinctorius L.). The aim of the present study was to investigate the effect of SKG on chronic renal failure (CRF) in 5/6 nephrectomized (5/6 Nx) rats. The rats were randomly divided into seven groups (n=10 per group) as follows: (i) 5/6 Nx (model group; 2.25 ml/kg/day normal saline); (ii) SKGL (low dose; 5/6 Nx treated with 2 g crude drug/kg/day SKG); (iii) SKGM (moderate dose; 5/6 Nx treated with 4 g crude drug/kg/day SKG); (iv) SKGH (high dose; 5/6 Nx treated with 8 g crude drug/kg/day SKG); (v) benazepril treatment group (5/6 Nx treated with 5 mg/kg/day benazepril); (vi) Shenkang injection (SKI) group (5/6 Nx with 13.3 ml/kg/day SKI); and (vii) sham-operated group (2.25 ml/kg/day normal saline). After 30 days, the levels of microalbumin, total protein, serum creatinine, blood urea nitrogen and serum lipid were found to be significantly decreased in the SKGL and SKGM rats, showing histological improvement compared with the untreated 5/6 Nx rats, as determined by hematoxylin and eosin, and Masson's trichrome staining. In addition, SKG was found to significantly improve the levels of glutathione peroxidase and reduce the damage caused by free radicals to the kidney tissues. Furthermore, SKG prevented the accumulation of extracellular matrix by decreasing the expression of collagen I and III and inhibiting the expression of matrix metalloproteinases-2 and -9 in the renal tissue, as determined by western blot analysis. SKG was also shown to decrease the concentrations of serum transforming growth factor-β1, as determined by ELISA, and kidney angiotensin II, as determined using a radioimmunoassay kit. In conclusion, SKG was demonstrated to ameliorate renal injury in a 5/6 Nx rat model of CRF. Thus, SKG may exert a good therapeutic effect on CRF.
Collapse
Affiliation(s)
- Y U Zhang
- School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Nan Zhou
- School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Hongying Wang
- School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Sicen Wang
- School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jianyu He
- School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
21
|
Park MJ, Kim DI, Lim SK, Choi JH, Han HJ, Yoon KC, Park SH. High glucose-induced O-GlcNAcylated carbohydrate response element-binding protein (ChREBP) mediates mesangial cell lipogenesis and fibrosis: the possible role in the development of diabetic nephropathy. J Biol Chem 2014; 289:13519-30. [PMID: 24616092 DOI: 10.1074/jbc.m113.530139] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Carbohydrate response element-binding protein (ChREBP) is a transcription factor responsible for carbohydrate metabolism in the liver. However, the role of ChREBP in diabetic nephropathy has not been elucidated. Thus, we investigated the role of ChREBP in mesangial cells in diabetic nephropathy. Treatment with 25 mM glucose (high glucose; HG) increased cellular O-GlcNAc and O-GlcNAcylated ChREBP in mesangial cells compared with normal 5.5 mM glucose. O-(2-acetamido-2-deoxy-D-glucopyranosylidene) amino N-phenylcarbamate (PUGNAc), a drug that increases O-GlcNAc, augmented the expression of ChREBP targets, whereas DON, a drug that decreases O-GlcNAc and O-GlcNAcase overexpression, mitigated the increase with HG. O-GlcNAc augmented the protein stability, transcriptional activity, and nuclear translocation of ChREBP. HG treatment also stimulated lipid accumulation and the contents of triglyceride and cholesterol in mesangial cells. In addition, HG triggered expression of hypoxia-inducible factor 1-α, vascular endothelial growth factor, and extracellular matrix components related to nephrosclerosis. The ChREBP mutant, W130A, did not exhibit HG-induced lipid accumulation and fibrotic proteins, suggesting that the Trp-130 residue in the MCR3 domain is important in the development of glomerulosclerosis. O-GlcNAcylated ChREBP was elevated in mesangium cells of streptozotocin-induced diabetic rats. In conclusion, HG increased the O-GlcNAcylated ChREBP level, which resulted in lipid accumulation and up-regulation of fibrotic proteins in mesangial cells. These effects may lead mesangial cells to an ultimately pathological state.
Collapse
Affiliation(s)
- Min-Jung Park
- From the Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, Korea
| | | | | | | | | | | | | |
Collapse
|
22
|
Merscher S, Pedigo CE, Mendez AJ. Metabolism, energetics, and lipid biology in the podocyte - cellular cholesterol-mediated glomerular injury. Front Endocrinol (Lausanne) 2014; 5:169. [PMID: 25352833 PMCID: PMC4196552 DOI: 10.3389/fendo.2014.00169] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/28/2014] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease (CKD) is associated with a high risk of death. Dyslipidemia is commonly observed in patients with CKD and is accompanied by a decrease in plasma high-density lipoprotein, and an increase in plasma triglyceride-rich lipoproteins and oxidized lipids. The observation that statins may decrease albuminuria but do not stop the progression of CKD indicates that pathways other than the cholesterol synthesis contribute to cholesterol accumulation in the kidneys of patients with CKD. Recently, it has become clear that increased lipid influx and impaired reverse cholesterol transport can promote glomerulosclerosis, and tubulointerstitial damage. Lipid-rafts are cholesterol-rich membrane domains with important functions in regulating membrane fluidity, membrane protein trafficking, and in the assembly of signaling molecules. In podocytes, which are specialized cells of the glomerulus, they contribute to the spatial organization of the slit diaphragm (SD) under physiological and pathological conditions. The discovery that podocyte-specific proteins such as podocin can bind and recruit cholesterol contributing to the formation of the SD underlines the importance of cholesterol homeostasis in podocytes and suggests cholesterol as an important regulator in the development of proteinuric kidney disease. Cellular cholesterol accumulation due to increased synthesis, influx, or decreased efflux is an emerging concept in podocyte biology. This review will focus on the role of cellular cholesterol accumulation in the pathogenesis of kidney diseases with a focus on glomerular diseases.
Collapse
Affiliation(s)
- Sandra Merscher
- Peggy and Harold Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miami, FL, USA
- *Correspondence: Sandra Merscher, Peggy and Harold Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, Department of Medicine, University of Miami,1580 NW 10th Ave, Batchelor Bldg, Room 628, Miami, FL 33136, USA e-mail:
| | - Christopher E. Pedigo
- Peggy and Harold Katz Family Drug Discovery Center and Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miami, FL, USA
| | - Armando J. Mendez
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Diabetes Research Institute, University of Miami, Miami, FL, USA
| |
Collapse
|
23
|
Schluesener JK, Schluesener H. Plant polyphenols in the treatment of age-associated diseases: revealing the pleiotropic effects of icariin by network analysis. Mol Nutr Food Res 2013; 58:49-60. [PMID: 24311544 DOI: 10.1002/mnfr.201300409] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 10/18/2013] [Accepted: 10/30/2013] [Indexed: 12/15/2022]
Abstract
Polyphenols are a broad class of compounds. Some are ingested in substantial quantities from nutritional sources, more are produced by medicinal plants, and some of them are taken as drugs. It is becoming clear, that a single polyphenol is impacting several cellular pathways. Thus, a network approach is becoming feasible, describing the interaction of a single polyphenol with cellular networks. Here we have selected icariin to draw a prototypic network of icariin activities. Icariin appears to be a promising drug to treat major age-related diseases, like neurodegeneration, memory and depressive disorders, chronic inflammation, diabetes, and osteoporosis. It interacts with several relevant pathways, like PDE, TGF-ß, MAPK, PPAR, NOS, IGF, Sirtuin, and others. Such networks will be useful to future comparative studies of complex effects of polyphenols.
Collapse
Affiliation(s)
- Jan Kevin Schluesener
- Division of Immunopathology of the Nervous System, Department of Neuropathology, Institute of Pathology and Neuropathology, University of Tuebingen, Tuebingen, Germany
| | | |
Collapse
|
24
|
Marino A, Tannock LR. Role of dyslipidemia in patients with chronic kidney disease. Postgrad Med 2013; 125:28-37. [PMID: 23842535 DOI: 10.3810/pgm.2013.07.2676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Anna Marino
- Division of Endocrinology and Molecular Medicine, University of Kentucky, Lexington, KY, USA
| | | |
Collapse
|
25
|
Affiliation(s)
- Cheol Whee Park
- Division of Nephrology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
26
|
High-density lipoprotein in uremic patients: metabolism, impairment, and therapy. Int Urol Nephrol 2013; 46:27-39. [PMID: 23443874 DOI: 10.1007/s11255-012-0366-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 12/12/2012] [Indexed: 01/21/2023]
Abstract
Several studies have shown that HDL has altered antioxidant and anti-inflammatory effects in chronic uremia, either by the reduction in its antioxidant enzymes or by the impairment of their activity. Systemic oxidative stress, which is highly prevalent in chronic kidney disease (CKD) patients, has been shown to decrease antioxidant and anti-inflammatory effects of HDL and even transform it into a pro-oxidant and pro-inflammatory agent. For this reason, we believe that the propensity for accelerated cardiovascular disease in CKD is facilitated by a few key features of this disease, namely, oxidative stress, inflammation, hypertension, and disorders of lipid metabolism. In a nutshell, oxidative stress and inflammation enhance atherosclerosis leading to increased cardiovascular mortality and morbidity in this population. In this detailed review, we highlight the current knowledge on HDL dysfunction and impairment in chronic kidney disease as well as the available therapy.
Collapse
|
27
|
Effects of low-dose niacin on dyslipidemia and serum phosphorus in patients with chronic kidney disease. Kidney Res Clin Pract 2012; 32:21-6. [PMID: 26889433 PMCID: PMC4716108 DOI: 10.1016/j.krcp.2012.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/31/2012] [Accepted: 11/07/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Niacin supplementation improves dyslipidemia and lowers serum phosphorus levels in patients with chronic kidney disease (CKD). We evaluated whether low-dose niacin supplementation can improve dyslipidemia, lower serum phosphorus levels, and be administered with a low frequency of adverse effects in patients with CKD. METHODS We retrospectively analyzed the clinical records of patients with CKD who had taken niacin from January 2009 to June 2011. We excluded patients with CKD stage 1 and 5. We then enrolled 31 patients with CKD who had taken niacin at a fixed dose of 500 mg/day for 6 months. We also randomly selected 30 patients with CKD who had been taking statin for 9 months as a control group. RESULTS Among the 34 patients with CKD who were prescribed niacin, five (14%) complained of adverse effects, and three (8%) discontinued niacin. The proportion of patients in the niacin group who had been taking a statin or omega-3 fatty acids was 67.7% and 48.8%, respectively. In the niacin group, high-density lipoprotein cholesterol level was significantly increased and triglyceride level was significantly decreased at 12 and 24 weeks compared with baseline levels (P<0.05). In the niacin group, phosphorous level (P<0.05) was significantly decreased, and glomerular filtration rate (GFR) was significantly increased (P<0.05) at 24 weeks compared with baseline values. CONCLUSION Low-dose niacin had a low frequency of adverse effects and also improved dyslipidemia, lowered serum phosphorus level, and increased GFR in patients with CKD. Further studies are needed to evaluate the long-term effects of low-dose niacin for renal progression of CKD.
Collapse
|
28
|
NAD+ biosynthesis ameliorates a zebrafish model of muscular dystrophy. PLoS Biol 2012; 10:e1001409. [PMID: 23109907 PMCID: PMC3479101 DOI: 10.1371/journal.pbio.1001409] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 09/06/2012] [Indexed: 01/27/2023] Open
Abstract
NAD+ improves muscle tissue structure and function in dystrophic zebrafish by increasing basement membrane organization. Muscular dystrophies are common, currently incurable diseases. A subset of dystrophies result from genetic disruptions in complexes that attach muscle fibers to their surrounding extracellular matrix microenvironment. Cell-matrix adhesions are exquisite sensors of physiological conditions and mediate responses that allow cells to adapt to changing conditions. Thus, one approach towards finding targets for future therapeutic applications is to identify cell adhesion pathways that mediate these dynamic, adaptive responses in vivo. We find that nicotinamide riboside kinase 2b-mediated NAD+ biosynthesis, which functions as a small molecule agonist of muscle fiber-extracellular matrix adhesion, corrects dystrophic phenotypes in zebrafish lacking either a primary component of the dystrophin-glycoprotein complex or integrin alpha7. Exogenous NAD+ or a vitamin precursor to NAD+ reduces muscle fiber degeneration and results in significantly faster escape responses in dystrophic embryos. Overexpression of paxillin, a cell adhesion protein downstream of NAD+ in this novel cell adhesion pathway, reduces muscle degeneration in zebrafish with intact integrin receptors but does not improve motility. Activation of this pathway significantly increases organization of laminin, a major component of the extracellular matrix basement membrane. Our results indicate that the primary protective effects of NAD+ result from changes to the basement membrane, as a wild-type basement membrane is sufficient to increase resilience of dystrophic muscle fibers to damage. The surprising result that NAD+ supplementation ameliorates dystrophy in dystrophin-glycoprotein complex– or integrin alpha7–deficient zebrafish suggests the existence of an additional laminin receptor complex that anchors muscle fibers to the basement membrane. We find that integrin alpha6 participates in this pathway, but either integrin alpha7 or the dystrophin-glycoprotein complex is required in conjunction with integrin alpha6 to reduce muscle degeneration. Taken together, these results define a novel cell adhesion pathway that may have future therapeutic relevance for a broad spectrum of muscular dystrophies. A variety of diseases, both inherited and acquired, affect muscle tissues in humans. Critical to muscle homeostasis is the anchoring of muscle fibers to their surrounding microenvironment through cell adhesion complexes that help to resist the repeated stress experienced during muscle contraction. Genetic mutations in these complexes weaken this mechanical attachment, making fibers more susceptible to damage and death. The resulting increased fiber degeneration can eventually lead to progressive muscle-wasting diseases, known collectively as muscular dystrophies. Although clinical trials are ongoing, there is presently no way to cure the loss of muscle structure and function associated with these diseases. We identified a novel cell adhesion pathway involving integrin alpha6 that promotes adhesion of muscle cells to their microenvironment. Here, we show that activation of this pathway not only significantly reduces muscle degeneration but also improves the swimming ability of dystrophic zebrafish. We explore the likely benefits and limitations of this pathway in treating symptoms of congenital muscular dystrophies. Our findings suggest that activation of this pathway (for example, by boosting levels of NAD+) has the potential to ameliorate loss of muscle structure and function in multiple muscular dystrophies.
Collapse
|
29
|
Jin K, Norris K, Vaziri ND. Dysregulation of hepatic fatty acid metabolism in chronic kidney disease. Nephrol Dial Transplant 2012; 28:313-20. [PMID: 23045433 DOI: 10.1093/ndt/gfs350] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) results in hypertriglyceridemia which is largely due to impaired clearance of triglyceride-rich lipoproteins occasioned by downregulation of lipoprotein lipase and very low-density lipoprotein (LDL) receptor in the skeletal muscle and adipose tissue and of hepatic lipase and LDL receptor-related protein in the liver. However, data on the effect of CKD on fatty acid metabolism in the liver is limited and was investigated here. METHODS Male Sprague-Dawley rats were randomized to undergo 5/6 nephrectomy (CRF) or sham operation (control) and observed for 12 weeks. The animals were then euthanized and their liver tissue tested for nuclear translocation (activation) of carbohydrate-responsive element binding protein (ChREBP) and sterol-responsive element binding protein-1 (SREBP-1) which independently regulate the expression of key enzyme in fatty acid synthesis, i.e. fatty acid synthase (FAS) and acyl-CoA carboxylase (ACC) as well as nuclear Peroxisome proliferator-activated receptor alpha (PPARα) which regulates the expression of enzymes involved in fatty acid oxidation and transport, i.e. L-FABP and CPT1A. In addition, the expression of ATP synthase α, ATP synthase β, glycogen synthase and diglyceride acyltransferase 1 (DGAT1) and DGAT2 were determined. RESULTS Compared with controls, the CKD rats exhibited hypertriglyceridemia, elevated plasma and liver tissue free fatty acids, increased nuclear ChREBP and reduced nuclear SREBP-1 and PPARα, upregulation of ACC and FAS and downregulation of L-FABP, CPT1A, ATP synthase α, glycogen synthase and DGAT in the liver tissue. CONCLUSION Liver in animals with advanced CKD exhibits ChREBP-mediated upregulation of enzymes involved in fatty acid synthesis, downregulation of PPARα-regulated fatty acid oxidation system and reduction of DGAT resulting in reduced fatty acid incorporation in triglyceride.
Collapse
Affiliation(s)
- Kyubok Jin
- Division of Nephrology and Hypertension, University of California, Irvine, Irvine, CA, USA
| | | | | |
Collapse
|
30
|
Muroya Y, Ito O, Rong R, Takashima K, Ito D, Cao P, Nakamura Y, Joh K, Kohzuki M. Disorder of fatty acid metabolism in the kidney of PAN-induced nephrotic rats. Am J Physiol Renal Physiol 2012; 303:F1070-9. [PMID: 22874759 DOI: 10.1152/ajprenal.00365.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Proteinuria is considered to play an essential role in the progression of tubulointerstitial damage, which causes end-stage renal disease. Fatty acid-binding albumins are filtered through glomeruli and reabsorbed into proximal tubular epithelial cells (PTECs). However, the role of fatty acid metabolism associated with albuminuria in the development of tubulointerstitial damage remains unclear. Thus, the present study was designed to determine the changes of fatty acid metabolism in the nephrotic kidney. To induce nephrotic syndrome, Sprague-Dawley rats (SDRs) and Nagase analbuminemic rats (NARs) with inherited hypoalbuminemia were treated with a single injection of puromycin aminonucleoside (PAN). In SDRs, PAN treatment induced massive proteinuria and albuminuria and caused tubular damage, apoptosis, and lipid accumulation in PTECs. Among the enzymes of fatty acid metabolism, expressions of medium-chain acyl-CoA dehydrogenase (MCAD) and cytochrome P-450 (CYP)4A significantly decreased in PTECs of PAN-treated SDRs. Expressions of peroxisome proliferator-activated receptor (PPAR)-γ coactivator (PGC)-1α and estrogen-related receptor (ERR)α also significantly decreased, without changes in the expression of PPAR-α. In NARs, PAN treatment induced proteinuria but not albuminuria and did not cause tubular damage, apoptosis, or lipid accumulation. Expressions of MCAD, PGC-1α, or ERRα did not change in the kidney cortex of PAN-treated NARs, but the expression of CYP4A significantly decreased. These results indicate that massive albuminuria causes tubular damage and lipid accumulation with the reduction of MCAD, CYP4A, PGC-1α, and ERRα in PTECs.
Collapse
Affiliation(s)
- Yoshikazu Muroya
- Dept. of Internal Medicine and Rehabilitation Science, Tohoku Univ. Graduate School of Medicine, 1-1 Seiryo-chyo, Aoba-ku, Sendai 980-8574, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Reisman SA, Chertow GM, Hebbar S, Vaziri ND, Ward KW, Meyer CJ. Bardoxolone methyl decreases megalin and activates nrf2 in the kidney. J Am Soc Nephrol 2012; 23:1663-73. [PMID: 22859857 DOI: 10.1681/asn.2012050457] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Inflammation and oxidative stress are hallmarks and mediators of the progression of CKD. Bardoxolone methyl, a potent activator of the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant and anti-inflammatory response, increases estimated GFR and decreases BUN, serum phosphorus, and uric acid concentrations in patients with moderate to severe CKD. However, it also increases albuminuria, which is associated with inflammation and disease progression. Therefore, we investigated whether this bardoxolone methyl-induced albuminuria may result from the downregulation of megalin, a protein involved in the tubular reabsorption of albumin and lipid-bound proteins. Administration of bardoxolone methyl to cynomolgus monkeys significantly decreased the protein expression of renal tubular megalin, which inversely correlated with the urine albumin-to-creatinine ratio. Moreover, daily oral administration of bardoxolone methyl to monkeys for 1 year did not lead to any adverse effects on renal histopathologic findings but did reduce serum creatinine and BUN, as observed in patients with CKD. Finally, the bardoxolone methyl-induced decrease in megalin corresponded with pharmacologic induction of renal Nrf2 targets, including NAD(P)H:quinone oxidoreductase 1 enzyme activity and glutathione content. This result indicates that Nrf2 may have a role in megalin regulation. In conclusion, these data suggest that the increase in albuminuria that accompanies bardoxolone methyl administration may result, at least in part, from reduced expression of megalin, which seems to occur without adverse effects and with strong induction of Nrf2 targets.
Collapse
Affiliation(s)
- Scott A Reisman
- Reata Pharmaceuticals Inc., 2801 Gateway Drive, Irving, TX 75063, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- Anastazia Kei
- University of Ioannina, School of Medicine, Department of Internal Medicine,
Ioannina, Greece
| | - Moses S Elisaf
- University of Ioannina, School of Medicine, Department of Internal Medicine,
45 110 Ioannina, Greece ;
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Tubulointerstitial injury in the kidney is complex, involving a number of independent and overlapping cellular and molecular pathways, with renal interstitial fibrosis and tubular atrophy (IFTA) as the final common pathway. Furthermore, there are multiple ways to assess IFTA. RECENT FINDINGS Cells involved include tubular epithelial cells, fibroblasts, fibrocytes, myofibroblasts, monocyte/macrophages, and mast cells with complex and still incompletely characterized cell-molecular interactions. Molecular mediators involved are numerous and involve pathways such as transforming growth factor (TGF)-β, bone morphogenic protein (BMP), platelet-derived growth factor (PDGF), and hepatocyte growth factor (HGF). Recent genomic approaches have shed insight into some of these cellular and molecular pathways. Pathologic evaluation of IFTA is central in assessing the severity of chronic disease; however, there are a variety of methods used to assess IFTA. Most assessment of IFTA relies on pathologist assessment of special stains such as trichrome, Sirius Red, and collagen III immunohistochemistry. Visual pathologist assessment can be prone to intra and interobserver variability, but some methods employ computerized morphometery, without a clear consensus as to the best method. SUMMARY IFTA results from on orchestration of cell types and molecular pathways. Opinions vary on the optimal qualitative and quantitative assessment of IFTA.
Collapse
Affiliation(s)
- Alton B Farris
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
34
|
The peroxisome proliferator-activated receptor-α agonist, BAY PP1, attenuates renal fibrosis in rats. Kidney Int 2011; 80:1182-97. [PMID: 21814170 DOI: 10.1038/ki.2011.254] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Recent studies have shown renoprotective effects of the peroxisome proliferator-activated receptor-α (PPAR-α), but its role in kidney fibrosis is unknown. In order to gain insight into this, we examined the effect of a novel PPAR-α agonist, BAY PP1, in two rat models of renal fibrosis: unilateral ureteral obstruction and the 5/6 nephrectomy. In healthy animals, PPAR-α was expressed in tubular but not in interstitial cells. Upon induction of fibrosis, PPAR-α was significantly downregulated, and treatment with BAY PP1 significantly restored its expression. During ureteral obstruction, treatment with BAY PP1 significantly reduced tubulointerstitial fibrosis, proliferation of interstitial fibroblasts, and TGF-β(1) expression. Treatment with a less potent PPAR-α agonist, fenofibrate, had no effects. Treatment with BAY PP1, initiated in established disease in the 5/6 nephrectomy, halted the decline of renal function and significantly ameliorated renal fibrosis. In vitro, BAY PP1 had no direct effect on renal fibroblasts but reduced collagen, fibronectin, and TGF-β(1) expression in tubular cells. Conditioned media of BAY PP1-treated tubular cells reduced fibroblast proliferation. Thus, renal fibrosis is characterized by a reduction of PPAR-α expression, and treatment with BAY PP1 restores PPAR-α expression and ameliorates renal fibrosis by modulating the cross-talk between tubular cells and fibroblasts. Hence, potent PPAR-α agonists might be useful in the treatment of renal fibrosis.
Collapse
|
35
|
Martín-del-Campo F, Batis-Ruvalcaba C, González-Espinoza L, Rojas-Campos E, Angel JR, Ruiz N, González J, Pazarín L, Cueto-Manzano AM. Dietary micronutrient intake in peritoneal dialysis patients: relationship with nutrition and inflammation status. Perit Dial Int 2011; 32:183-91. [PMID: 21804135 DOI: 10.3747/pdi.2010.00245] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To compare dietary intake of micronutrients by peritoneal dialysis (PD) patients according to their nutrition and inflammatory statuses. DESIGN This cross-sectional study evaluated 73 patients using subjective global assessment, 24-hour dietary recall, and markers of inflammation [C-reactive protein (CRP), tumor necrosis factor α, and interleukin 6]. RESULTS Half the patients had an inadequate micronutrient intake. Compared with dietary reference intakes, malnourished patients had lower intakes of iron (11 mg) and of vitamins C (45 mg) and B6 (0.8 mg). Malnourished and well-nourished patients both had lower intakes of sodium (366 mg, 524 mg respectively), potassium (1555 mg, 1963 mg), zinc (5 mg, 7 mg), calcium (645 mg, 710 mg), magnesium (161 mg, 172 mg), niacin (8 mg, 9 mg), folic acid (0.14 mg, 0.19 mg), and vitamin A (365 μg, 404 μg). Markers of inflammation were higher in malnourished than in well-nourished subjects. Compared with patients in lower quartiles, patients in the highest CRP quartile had lower intakes (p < 0.05) of sodium (241 mg vs 404 mg), calcium (453 mg vs 702 mg), vitamin B2 (0.88 mg vs 1.20 mg), and particularly vitamin A (207 μg vs 522 μg). CONCLUSIONS Among PD patients, half had inadequate dietary intakes of iron, zinc, calcium and vitamins A, B6, C, niacin, and folic acid. Lower micronutrient intakes were associated with malnutrition and inflammation. Patients with inflammation had lower intakes of sodium, calcium, and vitamins A and B2. Micronutrient intake must be investigated in various populations so as to tailor adequate supplementation.
Collapse
|
36
|
Boor P, Ostendorf T, Floege J. Renal fibrosis: novel insights into mechanisms and therapeutic targets. Nat Rev Nephrol 2010; 6:643-56. [PMID: 20838416 DOI: 10.1038/nrneph.2010.120] [Citation(s) in RCA: 481] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Renal fibrosis is the common end point of virtually all progressive kidney diseases. Renal fibrosis should not be viewed as a simple and uniform 'scar', but rather as a dynamic system that involves extracellular matrix components and many, if not all, renal and infiltrating cell types. The involved cells exhibit enormous plasticity or phenotypic variability-a fact that we are only beginning to appreciate. Only a detailed understanding of the underlying mechanisms of renal fibrosis can facilitate the development of effective treatments. In this Review, we discuss the most recent advances in renal, or more specifically, tubulointerstitial fibrosis. Novel mechanisms as well as potential treatment targets based on different cell types are described. Problems that continue to plague the field are also discussed, including specific therapeutic targeting of the kidney, the development of improved diagnostic methods to assess renal fibrosis and the shortcomings of available animal models.
Collapse
Affiliation(s)
- Peter Boor
- Department of Nephrology, RWTH University of Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | | | | |
Collapse
|
37
|
Ahmed MH. Niacin as potential treatment for dyslipidemia and hyperphosphatemia associated with chronic renal failure: the need for clinical trials. Ren Fail 2010; 32:642-6. [PMID: 20486851 DOI: 10.3109/08860221003753323] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Niacin has profound and unique effects on lipid metabolism. In addition to increasing high-density lipoprotein cholesterol, it is also known to decrease total cholesterol, low-density lipoprotein cholesterol, and triglyceride. Interestingly, the plasma concentration of lipoprotein(a) [Lp(a)], which has been suggested to play a role as an independent risk factor for coronary heart disease, is also decreased by niacin. Therefore, it is not surprising that in the literature it was given unique description as broad-spectrum lipid drug. Its impact is referred to as desirable normalization of a range of cardiovascular risk factors. However, its clinical use is limited due to harmless but unpleasant unique side effect of cutaneous flushing. Interestingly, recent experimental and clinical studies suggest the potential benefit of niacin as a treatment of dyslipidemia and high plasma phosphate associated with chronic kidney disease (CKD). Both dyslipidemia and high serum phosphate levels are shown to be associated with higher cardiovascular mortality. Furthermore, niacin administration improves renal tissue lipid metabolism, renal function and structure, hypertension, proteinuria, and histological tubulointerstitial injury. Further studies are required before the use of niacin for the treatment of both dyslipidemia and hyperphosphatemia with CKD advocated.
Collapse
Affiliation(s)
- Mohamed H Ahmed
- Chemical Pathology Department, Southampton University Hospitals NHS Trust, Southampton SO16 6YD, UK.
| |
Collapse
|
38
|
Abstract
Chronic kidney disease (CKD) is associated with development of atherosclerosis and premature death from cardiovascular disease. The predisposition of patients with CKD to atherosclerosis is driven by inflammation, oxidative stress and dyslipidemia, all of which are common features of this condition. Markers of dyslipidemia in patients with advanced CKD are impaired clearance and heightened oxidation of apolipoprotein-B-containing lipoproteins and their atherogenic remnants, and a reduction of the plasma concentration, antioxidant, and anti-inflammatory properties of high-density lipoprotein (HDL). Studies in animal models of CKD indicate that the disease promotes lipid accumulation in the artery wall and kidney, leading to atherosclerosis, glomerulosclerosis and tubulointerstitial injury. These effects seem to be mediated by an increased cellular influx of lipids, elevated cellular production and reduced cellular catabolism of fatty acids, and impaired antioxidant, anti-inflammatory and reverse lipid transport properties of HDL. Available pharmacological therapies have been largely ineffective in ameliorating oxidative stress, inflammation, HDL deficiency and/or dysfunction, and the associated atherosclerosis and cardiovascular disease in patients with end-stage renal disease. This Review aims to provide an overview of the mechanisms and consequences of CKD-induced HDL deficiency and dysfunction.
Collapse
|