1
|
Sharifian Gh M, Norouzi F, Sorci M, Zaidi TS, Pier GB, Achimovich A, Ongwae GM, Liang B, Ryan M, Lemke M, Belfort G, Gadjeva M, Gahlmann A, Pires MM, Venter H, Harris TE, Laurie GW. Lacritin cleavage-potentiated targeting of iron - respiratory reciprocity promotes bacterial death. J Biol Chem 2025; 301:108455. [PMID: 40154612 DOI: 10.1016/j.jbc.2025.108455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/15/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025] Open
Abstract
Discovering new bacterial signaling pathways offers unique antibiotic strategies. With current antibiotic classes targeting cell wall synthesis, depolarizing the inner membrane, altering the bacterial metabolome or inhibiting replication or transcription pathways, manipulation of transporters to limit bacterial respiration and thereby pathogenesis has been a decades-long quest. Here we report an inhibitor of multiple bacterial transporters. The inhibitor is the bactericidal N-104 endogenous cleavage fragment of the prosecretory mitogen lacritin. Lacritin is now known to be widely distributed in plasma, cerebral spinal fluid, tears, and saliva. With the bactericidal mechanism determined to be nonlytic by surface plasmon resonance as confirmed by lack of SYTOX Orange entry, we performed an unbiased resistance screen of 3884 Escherichia coli gene knockout strains revealing a complex N-104 polypharmacology. Validation in the virulent Pseudomonas aeruginosa strain PA14-one of three WHO Priority 1: Critical list species-focused on an approach that sequentially couples three transporters and downstream transcription to lethally suppress respiration. By targeting the outer membrane YaiW, cationic N-104 translocates into the periplasm where it ligates inner membrane transporters FeoB and PotH, respectively, to suppress both ferrous iron and polyamine uptake. With FeoB favoring an anaerobic environment, N-104 promotes the expression of genes regulating anaerobic respiration while largely suppressing those involved in aerobic respiration-a strategy counterproductive under aerobic conditions. This mechanism is innate to the surface of the eye and is enhanced by synergistic coupling with tear thrombin fragment GKY20 as tested on antibiotic-resistant clinical isolates.
Collapse
Affiliation(s)
| | - Fatemeh Norouzi
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Mirco Sorci
- Howard P. Isermann Department of Chemical and Biological Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Tanweer S Zaidi
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gerald B Pier
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alecia Achimovich
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - George M Ongwae
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Binyong Liang
- Department of Physiology, University of Virginia, Charlottesville, Virginia, USA
| | - Margaret Ryan
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Michael Lemke
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Georges Belfort
- Howard P. Isermann Department of Chemical and Biological Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Mihaela Gadjeva
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andreas Gahlmann
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Marcos M Pires
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, USA
| | - Henrietta Venter
- Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Gordon W Laurie
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA; Department of Ophthalmology, University of Virginia, Charlottesville, Virginia, USA.
| |
Collapse
|
2
|
Jiang J, Okuda S, Itoh H, Okamoto K, Nakanishi H, Suzuki M, Lu P, Nagata K. Structure-Guided Discovery of a Potent Inhibitor of the Ferric Citrate Binding Protein FecB in Vibrio Bacteria. Angew Chem Int Ed Engl 2024; 63:e202411688. [PMID: 39304960 DOI: 10.1002/anie.202411688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/22/2024]
Abstract
Infections caused by Gram-negative bacteria present a significant risk to human health worldwide. Novel strategies are needed to deal with the challenge caused by drug-resistant bacteria. Here, we report a new approach to combat infections by targeting iron-binding proteins to suppress bacterial growth. We investigated the function of the conserved periplasmic binding protein FecB from Vibrio alginolyticus. FecB was known to play a crucial role in the bacterial growth and to relate with biofilm formation. We then solved the crystal structures and elucidated the binding mechanism of FecB with ferric ion chelated by citrate. The results indicated that FecB binds weakly to one citrate molecule and strongly to the Fe3+-(citrate)2 complex. Based on these results, a structure-based virtual screening approach was conducted against FecB to identify small molecules that block ferric citrate uptake. Further evaluations in vivo and in vitro demonstrated that salvianolic acid C significantly suppressed bacterial growth, indicating that targeting bacterial nutrient absorption is a promising strategy for identifying potential antibacterial drugs.
Collapse
Affiliation(s)
- Jinyan Jiang
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Suguru Okuda
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hideaki Itoh
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Ken Okamoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hiromi Nakanishi
- Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Peng Lu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, 828, Zhongxing Road, Xitang Town, Jiashan County, Jiaxing City, Zhejiang Province, 314100, China
| | - Koji Nagata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Research Center for Food Safety, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
3
|
Sharifian Gh. M, Norouzi F, Sorci M, Zaid TS, Pier GB, Achimovich A, Ongwae GM, Liang B, Ryan M, Lemke M, Belfort G, Gadjeva M, Gahlmann A, Pires MM, Venter H, Harris TE, Laurie GW. Targeting Iron - Respiratory Reciprocity Promotes Bacterial Death. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582947. [PMID: 38464199 PMCID: PMC10925246 DOI: 10.1101/2024.03.01.582947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Discovering new bacterial signaling pathways offers unique antibiotic strategies. Here, through an unbiased resistance screen of 3,884 gene knockout strains, we uncovered a previously unknown non-lytic bactericidal mechanism that sequentially couples three transporters and downstream transcription to lethally suppress respiration of the highly virulent P. aeruginosa strain PA14 - one of three species on the WHO's 'Priority 1: Critical' list. By targeting outer membrane YaiW, cationic lacritin peptide 'N-104' translocates into the periplasm where it ligates outer loops 4 and 2 of the inner membrane transporters FeoB and PotH, respectively, to suppress both ferrous iron and polyamine uptake. This broadly shuts down transcription of many biofilm-associated genes, including ferrous iron-dependent TauD and ExbB1. The mechanism is innate to the surface of the eye and is enhanced by synergistic coupling with thrombin peptide GKY20. This is the first example of an inhibitor of multiple bacterial transporters.
Collapse
Affiliation(s)
| | - Fatemeh Norouzi
- Department of Cell Biology, University of Virginia, Charlottesville VA, USA
| | - Mirco Sorci
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy NY, USA
| | - Tanweer S Zaid
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston MA
| | - Gerald B. Pier
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston MA
| | - Alecia Achimovich
- Department of Chemistry, University of Virginia, Charlottesville VA, USA
| | - George M. Ongwae
- Department of Chemistry, University of Virginia, Charlottesville VA, USA
| | - Binyong Liang
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville VA, USA
| | - Margaret Ryan
- Department of Cell Biology, University of Virginia, Charlottesville VA, USA
| | - Michael Lemke
- Department of Pharmacology, University of Virginia, Charlottesville VA, USA
| | - Georges Belfort
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy NY, USA
| | - Mihaela Gadjeva
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston MA
| | - Andreas Gahlmann
- Department of Chemistry, University of Virginia, Charlottesville VA, USA
| | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville VA, USA
| | - Henrietta Venter
- Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Thurl E. Harris
- Department of Pharmacology, University of Virginia, Charlottesville VA, USA
| | - Gordon W. Laurie
- Department of Cell Biology, University of Virginia, Charlottesville VA, USA
- Department of Ophthalmology, University of Virginia, Charlottesville VA, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville VA, USA
- Contact author: Gordon Laurie
| |
Collapse
|
4
|
Zhu L, Li W, Liu Y, Li J, Xu L, Gu L, Chen C, Cao Y, He Q. Metaproteomics analysis of anaerobic digestion of food waste by the addition of calcium peroxide and magnetite. Appl Environ Microbiol 2024; 90:e0145123. [PMID: 38224621 PMCID: PMC10880661 DOI: 10.1128/aem.01451-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/11/2023] [Indexed: 01/17/2024] Open
Abstract
Adding trace calcium peroxide and magnetite into a semi-continuous digester is a new method to effectively improve the anaerobic digestion of food waste. However, the microbial mechanism in this system has not been fully explored. Metaproteomics further revealed that the most active and significantly regulated genus u_p_Chloroflexi had formed a good cooperative relationship with Methanomicrobiales and Methanothrix in the system. u_p_Chloroflexi decomposed more organic compounds into CO2, acetate, amino acids, and other substances by alternating between short aerobic-anaerobic respiration. It perceived and adapted to the surrounding environment by producing biofilm, extracellular enzymes, and accelerating substrate transport, formed a respiratory barrier, and enhanced iron transport capacity by using highly expressed cytochrome C. The methanogens formed reactive oxygen species scavengers and reduced iron transport to prevent oxidative damage. This study provides new insight for improving the efficiency of anaerobic digestion of food waste and identifying key microorganisms and their regulated functional proteins in the calcium peroxide-magnetite digestion system.IMPORTANCEPrevious study has found that the combination of calcium peroxide and magnetite has a good promoting effect on the anaerobic digestion process of food waste. Through multiple omics approaches, information such as microbial population structure and changes in metabolites can be further analyzed. This study can help researchers gain a deeper understanding of the digestion pathway of food waste under the combined action of calcium peroxide and magnetite, further elucidate the impact mechanisms of calcium peroxide and magnetite at the microbial level, and provide theoretical guidance to improve the efficiency and stability of anaerobic digestion of food waste, as well as reduce operational costs. This research contributes to improving energy recovery efficiency, promoting sustainable management and development of food waste, and is of great significance to environmental protection.
Collapse
Affiliation(s)
- Lirong Zhu
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, Chongqing, China
| | - Wen Li
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, Chongqing, China
| | - Yongli Liu
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, Chongqing, China
| | - Jinze Li
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, Chongqing, China
| | - Linji Xu
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, Chongqing, China
| | - Li Gu
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, Chongqing, China
| | - Cong Chen
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, Chongqing, China
| | - Yang Cao
- Jiangsu Jiangnan Water Co., Ltd, Jiangyin, Jiangsu, China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, Chongqing, China
| |
Collapse
|
5
|
Lu P, Jiang J, Liu C, Okuda S, Itoh H, Okamoto K, Suzuki M, Nagata K. Molecular mechanism of Fe 3+ binding inhibition to Vibrio metschnikovii ferric ion-binding protein, FbpA, by rosmarinic acid and its hydrolysate, danshensu. Protein Sci 2024; 33:e4881. [PMID: 38143427 PMCID: PMC10804667 DOI: 10.1002/pro.4881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
Global warming has increased the growth of pathogenic Vibrio bacteria, which can cause foodborne illnesses and death. Vibrio bacteria require iron for growth and survival. They utilize a ferric ion-binding protein (FbpA) to bind and transport Fe3+ into the cell. FbpA from Vibrio metschnikovii (Vm) is a potential target for inhibiting its growth. Rosmarinic acid (RA) can block the binding of VmFbpA to Fe3+ ; however, the molecular mechanism of Fe3+ binding and RA inhibition to VmFbpA is unclear. In this study, we used x-ray crystallography to determine the Fe3+ -binding mode of VmFbpA and the mechanism of RA inhibition. The structures revealed that in the Fe3+ bound form, Fe3+ was coordinated to VmFbpA by two Tyr residues, two HCO3 - ions, and two water molecules in a six-coordinated geometry. In contrast, in the inhibitor bound form, RA was initially bound to VmFbpA following gel filtration purification, but it was hydrolyzed to danshensu (DSS), which occupied the binding site as shown in an electron density map and reverse phase chromatography (RPC) analysis. Both RA and DSS exhibited a stronger binding affinity to VmFbpA, higher Fe3+ reduction capacity, and more potent bacteriostatic effect on V. metschnikovii compared with caffeic acid (CA), another hydrolysis product of RA. These results provide insight into the mechanism of iron acquisition by V. metschnikovii and inhibition by RA and DSS. Our findings offer clues on the development of effective strategies to prevent Vibrio infections.
Collapse
Affiliation(s)
- Peng Lu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life ScienceThe University of TokyoTokyoJapan
| | - Jinyan Jiang
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life ScienceThe University of TokyoTokyoJapan
| | - Chang Liu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life ScienceThe University of TokyoTokyoJapan
| | - Suguru Okuda
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life ScienceThe University of TokyoTokyoJapan
| | - Hideaki Itoh
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life ScienceThe University of TokyoTokyoJapan
| | - Ken Okamoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life ScienceThe University of TokyoTokyoJapan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life ScienceThe University of TokyoTokyoJapan
| | - Koji Nagata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life ScienceThe University of TokyoTokyoJapan
- Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life ScienceThe University of TokyoTokyoJapan
- Research Center for Food Safety, Graduate School of Agricultural and Life ScienceThe University of TokyoTokyoJapan
| |
Collapse
|
6
|
Polland L, Rydén H, Su Y, Paulsson M. In vivo gene expression profile of Haemophilus influenzae during human pneumonia. Microbiol Spectr 2023; 11:e0163923. [PMID: 37707456 PMCID: PMC10581191 DOI: 10.1128/spectrum.01639-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/12/2023] [Indexed: 09/15/2023] Open
Abstract
Haemophilus influenzae is a major cause of community-acquired pneumonia. While studied extensively in various laboratory models, less is known about the cell function while inside the human lung. We present the first analysis of the global gene expression of H. influenzae while the bacteria are in the lung during pneumonia (in vivo conditions) and contrast it with bacterial isolates that have been cultured under standard laboratory conditions (in vitro conditions). Patients with pneumonia were recruited from emergency departments and intensive care units during 2018-2020 (n = 102). Lower respiratory samples were collected for bacterial culture and RNA extraction. Patient samples with H. influenzae (n = 8) and colonies from bacterial cultures (n = 6) underwent RNA sequencing. The reads were then pseudo-aligned to core and pan genomes created from 15 reference strains. While bacteria cultured in vitro clustered tightly by principal component analysis of core genome (n = 1067) gene expression, bacteria in the patient samples had more diverse transcriptomic signatures and did not group with their lab-cultured counterparts. In total, 328 core genes were significantly differentially expressed between in vitro and in vivo conditions. The most highly upregulated genes in vivo included tbpA and fbpA, which are involved in the acquisition of iron from transferrin, and the stress response gene msrAB. The biosynthesis of nucleotides/purines and molybdopterin-scavenging processes were also significantly enriched in vivo. In contrast, major metabolic pathways and iron-sequestering genes were downregulated under this condition. In conclusion, extensive transcriptomic differences were found between bacteria while in the human lung and bacteria that were cultured in vitro. IMPORTANCE The human-specific pathogen Haemophilus influenzae is generally not well suited for studying in animal models, and most laboratory models are unlikely to approximate the diverse environments encountered by bacteria in the human airways accurately. Thus, we have examined the global gene expression of H. influenzae during pneumonia. Extensive differences in the global gene expression profiles were found in H. influenzae while in the human lung compared to bacteria that were grown in the laboratory. In contrast, the gene expression profiles of isolates collected from different patients were found to cluster together when grown under the same laboratory conditions. Interesting observations were made of how H. influenzae acquires and uses iron and molybdate, endures oxidative stress, and regulates central metabolism while in the lung. Our results indicate important processes during infection and can guide future research on genes and pathways that are relevant in the pathogenesis of H. influenzae pneumonia.
Collapse
Affiliation(s)
- Linnea Polland
- Infection Medicine, Department of Clinical Sciences Lund, Medical Faculty, Lund University, Lund, Sweden
- Clinical Microbiology, Office for Medical Services, Region Skåne, Lund, Sweden
| | - Hanna Rydén
- Clinical Microbiology, Office for Medical Services, Region Skåne, Lund, Sweden
- Experimental Infection Medicine, Department of Translational Medicine, Medical Faculty, Lund, Sweden
| | - Yi Su
- Infection Medicine, Department of Clinical Sciences Lund, Medical Faculty, Lund University, Lund, Sweden
| | - Magnus Paulsson
- Infection Medicine, Department of Clinical Sciences Lund, Medical Faculty, Lund University, Lund, Sweden
- Clinical Microbiology, Office for Medical Services, Region Skåne, Lund, Sweden
| |
Collapse
|
7
|
Steunou AS, Vigouroux A, Aumont‐Nicaise M, Plancqueel S, Boussac A, Ouchane S, Moréra S. New insights into the mechanism of iron transport through the bacterial Ftr system present in pathogens. FEBS J 2022; 289:6286-6307. [DOI: 10.1111/febs.16476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/11/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Anne Soisig Steunou
- Université Paris‐Saclay, CEA CNRS Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette France
| | - Armelle Vigouroux
- Université Paris‐Saclay, CEA CNRS Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette France
| | - Magali Aumont‐Nicaise
- Université Paris‐Saclay, CEA CNRS Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette France
| | - Stéphane Plancqueel
- Université Paris‐Saclay, CEA CNRS Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette France
| | - Alain Boussac
- Université Paris‐Saclay, CEA CNRS Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette France
| | - Soufian Ouchane
- Université Paris‐Saclay, CEA CNRS Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette France
| | - Solange Moréra
- Université Paris‐Saclay, CEA CNRS Institute for Integrative Biology of the Cell (I2BC) Gif‐sur‐Yvette France
| |
Collapse
|
8
|
Iron Reduction in Dermacentor andersoni Tick Cells Inhibits Anaplasma marginale Replication. Int J Mol Sci 2022; 23:ijms23073941. [PMID: 35409307 PMCID: PMC8999750 DOI: 10.3390/ijms23073941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Anaplasma spp. are obligate intracellular, tick-borne, bacterial pathogens that cause bovine and human anaplasmosis. We lack tools to prevent these diseases in part due to major knowledge gaps in our fundamental understanding of the tick-pathogen interface, including the requirement for and molecules involved in iron transport during tick colonization. We determine that iron is required for the pathogen Anaplasma marginale, which causes bovine anaplasmosis, to replicate in Dermacentor andersoni tick cells. Using bioinformatics and protein modeling, we identified three orthologs of the Gram-negative siderophore-independent iron uptake system, FbpABC. Am069, the A. marginale ortholog of FbpA, lacks predicted iron-binding residues according to the NCBI conserved domain database. However, according to protein modeling, the best structural orthologs of Am069 are iron transport proteins from Cyanobacteria and Campylobacterjejuni. We then determined that all three A. marginale genes are modestly differentially expressed in response to altered host cell iron levels, despite the lack of a Ferric uptake regulator or operon structure. This work is foundational for building a mechanistic understanding of iron uptake, which could lead to interventions to prevent bovine and human anaplasmosis.
Collapse
|
9
|
Lu P, Sui M, Zhang M, Wang M, Kamiya T, Okamoto K, Itoh H, Okuda S, Suzuki M, Asakura T, Fujiwara T, Nagata K. Rosmarinic Acid and Sodium Citrate Have a Synergistic Bacteriostatic Effect against Vibrio Species by Inhibiting Iron Uptake. Int J Mol Sci 2021; 22:13010. [PMID: 34884815 PMCID: PMC8657459 DOI: 10.3390/ijms222313010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND New strategies are needed to combat multidrug-resistant bacteria. The restriction of iron uptake by bacteria is a promising way to inhibit their growth. We aimed to suppress the growth of Vibrio bacterial species by inhibiting their ferric ion-binding protein (FbpA) using food components. METHODS Twenty spices were selected for the screening of FbpA inhibitors. The candidate was applied to antibacterial tests, and the mechanism was further studied. RESULTS An active compound, rosmarinic acid (RA), was screened out. RA binds competitively and more tightly than Fe3+ to VmFbpA, the FbpA from V. metschnikovii, with apparent KD values of 8 μM vs. 17 μM. Moreover, RA can inhibit the growth of V. metschnikovii to one-third of the control at 1000 μM. Interestingly, sodium citrate (SC) enhances the growth inhibition effect of RA, although SC only does not inhibit the growth. The combination of RA/SC completely inhibits the growth of not only V. metschnikovii at 100/100 μM but also the vibriosis-causative pathogens V. vulnificus and V. parahaemolyticus, at 100/100 and 1000/100 μM, respectively. However, RA/SC does not affect the growth of Escherichia coli. CONCLUSIONS RA/SC is a potential bacteriostatic agent against Vibrio species while causing little damage to indigenous gastrointestinal bacteria.
Collapse
Affiliation(s)
- Peng Lu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (M.S.); (M.Z.); (M.W.); (T.K.); (K.O.); (H.I.); (S.O.); (M.S.); (T.A.); (T.F.)
| | - Miaomiao Sui
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (M.S.); (M.Z.); (M.W.); (T.K.); (K.O.); (H.I.); (S.O.); (M.S.); (T.A.); (T.F.)
| | - Mimin Zhang
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (M.S.); (M.Z.); (M.W.); (T.K.); (K.O.); (H.I.); (S.O.); (M.S.); (T.A.); (T.F.)
| | - Mengyao Wang
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (M.S.); (M.Z.); (M.W.); (T.K.); (K.O.); (H.I.); (S.O.); (M.S.); (T.A.); (T.F.)
| | - Takehiro Kamiya
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (M.S.); (M.Z.); (M.W.); (T.K.); (K.O.); (H.I.); (S.O.); (M.S.); (T.A.); (T.F.)
| | - Ken Okamoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (M.S.); (M.Z.); (M.W.); (T.K.); (K.O.); (H.I.); (S.O.); (M.S.); (T.A.); (T.F.)
| | - Hideaki Itoh
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (M.S.); (M.Z.); (M.W.); (T.K.); (K.O.); (H.I.); (S.O.); (M.S.); (T.A.); (T.F.)
| | - Suguru Okuda
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (M.S.); (M.Z.); (M.W.); (T.K.); (K.O.); (H.I.); (S.O.); (M.S.); (T.A.); (T.F.)
| | - Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (M.S.); (M.Z.); (M.W.); (T.K.); (K.O.); (H.I.); (S.O.); (M.S.); (T.A.); (T.F.)
| | - Tomiko Asakura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (M.S.); (M.Z.); (M.W.); (T.K.); (K.O.); (H.I.); (S.O.); (M.S.); (T.A.); (T.F.)
| | - Toru Fujiwara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (M.S.); (M.Z.); (M.W.); (T.K.); (K.O.); (H.I.); (S.O.); (M.S.); (T.A.); (T.F.)
| | - Koji Nagata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (M.S.); (M.Z.); (M.W.); (T.K.); (K.O.); (H.I.); (S.O.); (M.S.); (T.A.); (T.F.)
- Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
10
|
Butler A, Harder T, Ostrowski AD, Carrano CJ. Photoactive siderophores: Structure, function and biology. J Inorg Biochem 2021; 221:111457. [PMID: 34010741 DOI: 10.1016/j.jinorgbio.2021.111457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/30/2021] [Accepted: 04/03/2021] [Indexed: 12/17/2022]
Abstract
It is well known that bacteria and fungi have evolved sophisticated systems for acquiring the abundant but biologically inaccessible trace element iron. These systems are based on high affinity Fe(III)-specific binding compounds called siderophores which function to acquire, transport, and process this essential metal ion. Many hundreds of siderophores are now known and their numbers continue to grow. Extensive studies of their isolation, structure, transport, and molecular genetics have been undertaken in the last three decades and have been comprehensively reviewed many times. In this review we focus on a unique subset of siderophores that has only been recognized in the last 20 years, namely those whose iron complexes display photoactivity. This photoactivity, which typically results in the photooxidation of the siderophore ligand with concomitant reduction of Fe(III) to Fe(II), seemingly upsets the siderophore paradigm of forming and transporting only extremely stable Fe(III) complexes into microbial cells. Here we review their structure, synthesis, photochemistry, photoproduct coordination chemistry and explore the potential biological and ecological consequences of this photoactivity.
Collapse
Affiliation(s)
- Alison Butler
- Department of Chemistry and Biochemistry University of California, Santa Barbara, CA 93106 United States
| | - Tilmann Harder
- Department of Biology and Chemistry, University of Bremen, and Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Germany
| | | | - Carl J Carrano
- Department of Chemistry and Biochemistry, San Diego State University, United States.
| |
Collapse
|
11
|
Steunou AS, Bourbon M, Babot M, Durand A, Liotenberg S, Yamaichi Y, Ouchane S. Increasing the copper sensitivity of microorganisms by restricting iron supply, a strategy for bio-management practices. Microb Biotechnol 2020; 13:1530-1545. [PMID: 32558275 PMCID: PMC7415376 DOI: 10.1111/1751-7915.13590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/28/2022] Open
Abstract
Pollution by copper (Cu2+ ) extensively used as antimicrobial in agriculture and farming represents a threat to the environment and human health. Finding ways to make microorganisms sensitive to lower metal concentrations could help decreasing the use of Cu2 + in agriculture. In this respect, we showed that limiting iron (Fe) uptake makes bacteria much more susceptible to Cu2 + or Cd2+ poisoning. Using efflux mutants of the purple bacterium Rubrivivax gelatinosus, we showed that Cu+ and Cd2+ resistance relies on the expression of the Fur-regulated FbpABC and Ftr iron transporters. To support this conclusion, inactivation of these Fe-importers in the Cu+ or Cd2+ -ATPase efflux mutants gave rise to hypersensitivity towards these ions. Moreover, in metal overloaded cells the expression of FbpA, the periplasmic iron-binding component of the ferric ion transport FbpABC system was induced, suggesting that cells perceived an 'iron-starvation' situation and responded to it by inducing Fe-importers. In this context, the Fe-Sod activity increased in response to Fe homoeostasis dysregulation. Similar results were obtained for Vibrio cholerae and Escherichia coli, suggesting that perturbation of Fe-homoeostasis by metal excess appeared as an adaptive response commonly used by a variety of bacteria. The presented data support a model in which metal excess induces Fe-uptake to support [4Fe-4S] synthesis and thereby induce ROS detoxification system.
Collapse
Affiliation(s)
- Anne Soisig Steunou
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris‐Saclay91198Gif‐sur‐YvetteFrance
| | - Marie‐Line Bourbon
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris‐Saclay91198Gif‐sur‐YvetteFrance
| | - Marion Babot
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris‐Saclay91198Gif‐sur‐YvetteFrance
| | - Anne Durand
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris‐Saclay91198Gif‐sur‐YvetteFrance
| | - Sylviane Liotenberg
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris‐Saclay91198Gif‐sur‐YvetteFrance
| | - Yoshiharu Yamaichi
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris‐Saclay91198Gif‐sur‐YvetteFrance
| | - Soufian Ouchane
- Institute for Integrative Biology of the Cell (I2BC)CEACNRSUniversité Paris‐Saclay91198Gif‐sur‐YvetteFrance
| |
Collapse
|
12
|
Bacterial ABC transporters of iron containing compounds. Res Microbiol 2019; 170:345-357. [DOI: 10.1016/j.resmic.2019.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/15/2019] [Accepted: 10/15/2019] [Indexed: 11/20/2022]
|
13
|
Bulbul G, Liu G, Vithalapur NR, Atilgan C, Sayers Z, Pourmand N. Employment of Iron-Binding Protein from Haemophilus influenzae in Functional Nanopipettes for Iron Monitoring. ACS Chem Neurosci 2019; 10:1970-1977. [PMID: 30346707 DOI: 10.1021/acschemneuro.8b00263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Because of the serious neurologic consequences of iron deficiency and iron excess in the brain, interest in the iron status of the central nervous system has increased significantly in the past decade. While iron plays an important role in many physiological processes, its accumulation may lead to diseases such as Huntington's, Parkinson's, and Alzheimer's. Therefore, it is important to develop methodologies that can monitor the presence of iron in a selective and sensitive manner. In this paper, we first showed the synthesis and characterization of the iron-binding protein (FBP) from Haemophilus influenzae, specific for ferrous ions. Subsequently, we employed this protein in our nanopipette platform and utilized it in functionalized nanoprobes to monitor the presence of ferrous ions. A suite of characterization techniques: absorbance spectroscopy, dynamic light scattering, and small-angle X-ray scattering were used for FBP. The functionalized Fe-nanoprobe calibrated in ferrous chloride enabled detection from 0.05 to 10 μM, and the specificity of the modified iron probe was evaluated by using various metal ion solutions.
Collapse
Affiliation(s)
- Gonca Bulbul
- Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, California 95064, United States
| | - Goksin Liu
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, 34956 Istanbul, Turkey
| | - Namrata Rao Vithalapur
- Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, California 95064, United States
| | - Canan Atilgan
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, 34956 Istanbul, Turkey
| | - Zehra Sayers
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, 34956 Istanbul, Turkey
| | - Nader Pourmand
- Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, California 95064, United States
| |
Collapse
|
14
|
Crespo-Rivas JC, Navarro-Gómez P, Alias-Villegas C, Shi J, Zhen T, Niu Y, Cuéllar V, Moreno J, Cubo T, Vinardell JM, Ruiz-Sainz JE, Acosta-Jurado S, Soto MJ. Sinorhizobium fredii HH103 RirA Is Required for Oxidative Stress Resistance and Efficient Symbiosis with Soybean. Int J Mol Sci 2019; 20:E787. [PMID: 30759803 PMCID: PMC6386902 DOI: 10.3390/ijms20030787] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/07/2019] [Accepted: 02/09/2019] [Indexed: 11/28/2022] Open
Abstract
Members of Rhizobiaceae contain a homologue of the iron-responsive regulatory protein RirA. In different bacteria, RirA acts as a repressor of iron uptake systems under iron-replete conditions and contributes to ameliorate cell damage during oxidative stress. In Rhizobium leguminosarum and Sinorhizobium meliloti, mutations in rirA do not impair symbiotic nitrogen fixation. In this study, a rirA mutant of broad host range S. fredii HH103 has been constructed (SVQ780) and its free-living and symbiotic phenotypes evaluated. No production of siderophores could be detected in either the wild-type or SVQ780. The rirA mutant exhibited a growth advantage under iron-deficient conditions and hypersensitivity to hydrogen peroxide in iron-rich medium. Transcription of rirA in HH103 is subject to autoregulation and inactivation of the gene upregulates fbpA, a gene putatively involved in iron transport. The S. fredii rirA mutant was able to nodulate soybean plants, but symbiotic nitrogen fixation was impaired. Nodules induced by the mutant were poorly infected compared to those induced by the wild-type. Genetic complementation reversed the mutant's hypersensitivity to H₂O₂, expression of fbpA, and symbiotic deficiency in soybean plants. This is the first report that demonstrates a role for RirA in the Rhizobium-legume symbiosis.
Collapse
Affiliation(s)
- Juan Carlos Crespo-Rivas
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain.
| | - Pilar Navarro-Gómez
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain.
| | - Cynthia Alias-Villegas
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain.
| | - Jie Shi
- Daqing Branch of Heilongjiang Academy of Sciences, Daqing 163000, China.
| | - Tao Zhen
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150001, China.
| | - Yanbo Niu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150001, China.
| | - Virginia Cuéllar
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, c/ Profesor Albareda 1, 18008 Granada, Spain.
| | - Javier Moreno
- Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain.
| | - Teresa Cubo
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain.
| | - José María Vinardell
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain.
| | - José Enrique Ruiz-Sainz
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain.
| | - Sebastián Acosta-Jurado
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain.
| | - María José Soto
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, c/ Profesor Albareda 1, 18008 Granada, Spain.
| |
Collapse
|
15
|
Lu P, Moriwaki Y, Zhang M, Katayama Y, Lu Y, Okamoto K, Terada T, Shimizu K, Wang M, Kamiya T, Fujiwara T, Asakura T, Suzuki M, Yoshimura E, Nagata K. Functional characterisation of two ferric-ion coordination modes of TtFbpA, the periplasmic subunit of an ABC-type iron transporter from Thermus thermophilus HB8. Metallomics 2019; 11:2078-2088. [DOI: 10.1039/c9mt00245f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ferric ion binding protein A of Thermus thermophilus HB8 (TtFbpA) is the periplasmic subunit of an ABC-type iron transporter.
Collapse
|
16
|
Abdizadeh H, Atilgan AR, Atilgan C, Dedeoglu B. Computational approaches for deciphering the equilibrium and kinetic properties of iron transport proteins. Metallomics 2018; 9:1513-1533. [PMID: 28967944 DOI: 10.1039/c7mt00216e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
With the advances in three-dimensional structure determination techniques, high quality structures of the iron transport proteins transferrin and the bacterial ferric binding protein (FbpA) have been deposited in the past decade. These are proteins of relatively large size, and developments in hardware and software have only recently made it possible to study their dynamics using standard computational resources. We review computational techniques towards understanding the equilibrium and kinetic properties of iron transport proteins under different environmental conditions. At the level of detail that requires quantum chemical treatments, the octahedral geometry around iron has been scrutinized and it has been established that the iron coordinating tyrosines are in an unusual deprotonated state. At the atomistic level, both the N-lobe and the full bilobal structure of transferrin have been studied under varying conditions of pH, ionic strength and binding of other metal ions by molecular dynamics (MD) simulations. These studies have allowed questions to be answered, among others, on the function of second shell residues in iron release, the role of synergistic anions in preparing the active site for iron binding, and the differences between the kinetics of the N- and the C-lobe. MD simulations on FbpA have led to the detailed observation of the binding kinetics of phosphate to the apo form, and to the conformational preferences of the holo form under conditions mimicking the environmental niches provided by the periplasmic space. To study the dynamics of these proteins with their receptors, one must resort to coarse-grained methodologies, since these systems are prohibitively large for atomistic simulations. A study of the complex of human transferrin (hTf) with its pathogenic receptor by such methods has revealed a potential mechanistic explanation for the defense mechanism that arises in evolutionary warfare. Meanwhile, the motions in the transferrin receptor bound hTf have been shown to disfavor apo hTf dissociation, explaining why the two proteins remain in complex during the recycling process from the endosome to the cell surface. Open problems and possible technological applications related to metal ion binding-release in iron transport proteins that may be handled by hybrid use of quantum mechanical, MD and coarse-grained approaches are discussed.
Collapse
Affiliation(s)
- H Abdizadeh
- Faculty of Engineering and Natural Sciences, Sabancı University, Orhanlı 34956, Tuzla, Istanbul, Turkey.
| | | | | | | |
Collapse
|
17
|
Lisiecki P. Transferrin and Lactoferrin – Human Iron Sources for Enterococci. Pol J Microbiol 2017; 66:419-425. [DOI: 10.5604/01.3001.0010.6495] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To overcome limitations in iron acquisition, enterococci have evolved a number of mechanisms to scavenge iron from the host iron-binding proteins – transferrin (TR) and lactoferrin (LF). The aim of this study was to demonstrate the mechanisms by which enterococci utilize human TR and LF bound iron. The study included two strains of Enterococcus faecalis grown in iron-deficient and iron-excess media respectively. The binding activity of both proteins was monitored using proteins labelled with 125I. The uptake of iron by enterococci was determined using 59Fe labelled proteins. Reduction of iron bound to TR and LF was assayed with ferrozine. The proteolytic cleavage of TR and LF was visualized by SDS-polyacrylamide gel electrophoresis. The siderophore activity was measured with chrome azurol S. The study revealed that enterococci use several ways to acquire iron from TR and LF, such as iron chelating siderophores, iron reduction – facilitated iron release, protein degradation – promoted iron release, and receptor mediated capture of the iron-host protein complexes. The broad spectrum of iron acquisition mechanisms used by enterococci may play a significant role in the colonization of the human body and the resulting pathogenicity.
Collapse
Affiliation(s)
- Paweł Lisiecki
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Chair of Biology and Biotechnology, Medical University of Łódź, Poland
| |
Collapse
|
18
|
Roset MS, Alefantis TG, DelVecchio VG, Briones G. Iron-dependent reconfiguration of the proteome underlies the intracellular lifestyle of Brucella abortus. Sci Rep 2017; 7:10637. [PMID: 28878308 PMCID: PMC5587712 DOI: 10.1038/s41598-017-11283-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 08/21/2017] [Indexed: 12/24/2022] Open
Abstract
Brucella ssp. is a facultative intracellular pathogen that causes brucellosis, a worldwide zoonosis that affects a wide range of mammals including humans. A critical step for the establishment of a successful Brucella infection is its ability to survive within macrophages. To further understand the mechanisms that Brucella utilizes to adapt to an intracellular lifestyle, a differential proteomic study was performed for the identification of intracellular modulated proteins. Our results demonstrated that at 48 hours post-infection Brucella adjusts its metabolism in order to survive intracellularly by modulating central carbon metabolism. Remarkably, low iron concentration is likely the dominant trigger for reprogramming the protein expression profile. Up-regulation of proteins dedicated to reduce the concentration of reactive oxygen species, protein chaperones that prevent misfolding of proteins, and proteases that degrade toxic protein aggregates, suggest that Brucella protects itself from damage likely due to oxidative burst. This proteomic analysis of B. abortus provides novel insights into the mechanisms utilized by Brucella to establish an intracellular persistent infection and will aid in the development of new control strategies and novel targets for antimicrobial therapy.
Collapse
Affiliation(s)
- M S Roset
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de General San Martín, IIB-INTECH-CONICET, San Martín 1650, Buenos Aires, Argentina.
| | - T G Alefantis
- Vital Probes Inc., 1820 N. E.27th Drive, Wilton Manors, Florida, USA.,Sanofi Pasteur, 1 Discovery Drive, Swiftwater, PA, USA
| | - V G DelVecchio
- Vital Probes Inc., 1820 N. E.27th Drive, Wilton Manors, Florida, USA
| | - G Briones
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de General San Martín, IIB-INTECH-CONICET, San Martín 1650, Buenos Aires, Argentina.
| |
Collapse
|
19
|
Abstract
Iron is an essential micronutrient for both microbes and humans alike. For well over half a century we have known that this element, in particular, plays a pivotal role in health and disease and, most especially, in shaping host-pathogen interactions. Intracellular iron concentrations serve as a critical signal in regulating the expression not only of high-affinity iron acquisition systems in bacteria, but also of toxins and other noted virulence factors produced by some major human pathogens. While we now are aware of many strategies that the host has devised to sequester iron from invading microbes, there are as many if not more sophisticated mechanisms by which successful pathogens overcome nutritional immunity imposed by the host. This review discusses some of the essential components of iron sequestration and scavenging mechanisms of the host, as well as representative Gram-negative and Gram-positive pathogens, and highlights recent advances in the field. Last, we address how the iron acquisition strategies of pathogenic bacteria may be exploited for the development of novel prophylactics or antimicrobials.
Collapse
|
20
|
Transition metals at the host-pathogen interface: how Neisseria exploit human metalloproteins for acquiring iron and zinc. Essays Biochem 2017; 61:211-223. [PMID: 28487398 DOI: 10.1042/ebc20160084] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/06/2017] [Accepted: 03/13/2017] [Indexed: 12/17/2022]
Abstract
Transition metals are essential nutrients for all organisms and important players in the host-microbe interaction. During bacterial infection, a tug-of-war between the host and microbe for nutrient metals occurs: the host innate immune system responds to the pathogen by reducing metal availability and the pathogen tries to outmaneuver this response. The outcome of this competition, which involves metal-sequestering host-defense proteins and microbial metal acquisition machinery, is an important determinant for whether infection occurs. One strategy bacterial pathogens employ to overcome metal restriction involves hijacking abundant host metalloproteins. The obligate human pathogens Neisseria meningitidis and N. gonorrhoeae express TonB-dependent transport systems that capture human metalloproteins, extract the bound metal ions, and deliver these nutrients into the bacterial cell. This review highlights structural and mechanistic investigations that provide insights into how Neisseria acquire iron from the Fe(III)-transport protein transferrin (TF), the Fe(III)-chelating host-defense protein lactoferrin (LF), and the oxygen-transport protein hemoglobin (Hb), and obtain zinc from the metal-sequestering antimicrobial protein calprotectin (CP).
Collapse
|
21
|
Sensoy O, Atilgan AR, Atilgan C. FbpA iron storage and release are governed by periplasmic microenvironments. Phys Chem Chem Phys 2017; 19:6064-6075. [DOI: 10.1039/c6cp06961d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Silica-Induced Protein (Sip) in Thermophilic Bacterium Thermus thermophilus Responds to Low Iron Availability. Appl Environ Microbiol 2016; 82:3198-3207. [PMID: 26994077 DOI: 10.1128/aem.04027-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/14/2016] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Thermus thermophilus HB8 expresses silica-induced protein (Sip) when cultured in medium containing supersaturated silicic acids. Using genomic information, Sip was identified as a Fe(3+)-binding ABC transporter. Detection of a 1-kb hybridized band in Northern analysis revealed that sip transcription is monocistronic and that sip has its own terminator and promoter. The sequence of the sip promoter showed homology with that of the σ(A)-dependent promoter, which is known as a housekeeping promoter in HB8. Considering that sip is transcribed when supersaturated silicic acids are added, the existence of a repressor is presumed. DNA microarray analysis suggested that supersaturated silicic acids and iron deficiency affect Thermus cells similarly, and enhanced sip transcription was detected under both conditions. This suggested that sip transcription was initiated by iron deficiency and that the ferric uptake regulator (Fur) controlled the transcription. Three Fur gene homologues (TTHA0255, TTHA0344, and TTHA1292) have been annotated in the HB8 genome, and electrophoretic mobility shift assays revealed that the TTHA0344 product interacts with the sip promoter region. In medium containing supersaturated silicic acids, free Fe(3+) levels were decreased due to Fe(3+) immobilization on colloidal silica. This suggests that, because Fe(3+) ions are captured by colloidal silica in geothermal water, Thermus cells are continuously exposed to the risk of iron deficiency. Considering that Sip is involved in iron acquisition, Sip production may be a strategy to survive under conditions of low iron availability in geothermal water. IMPORTANCE The thermophilic bacterium Thermus thermophilus HB8 produces silica-induced protein (Sip) in the presence of supersaturated silicic acids. Sip has homology with iron-binding ABC transporter; however, the mechanism by which Sip expression is induced by silicic acids remains unexplained. We demonstrate that Sip captures iron and its transcription is regulated by the repressor ferric uptake regulator (Fur). This implies that Sip is expressed with iron deficiency. In addition, it is suggested that negatively charged colloidal silica in supersaturated solution absorbs Fe(3+) ions and decreases iron availability. Considering that geothermal water contains ample silicic acids, it is suggested that thermophilic bacteria are always facing iron starvation. Sip production may be a strategy for surviving under conditions of low iron availability in geothermal water.
Collapse
|
23
|
Abdizadeh H, Atilgan C. Predicting long term cooperativity and specific modulators of receptor interactions in human transferrin from dynamics within a single microstate. Phys Chem Chem Phys 2016; 18:7916-26. [DOI: 10.1039/c5cp05107j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PRS identifies regions contacting rapidly evolving residues that mechanically manipulate dissociation from the pathogen in the human transferrin–bacterial receptor complex.
Collapse
Affiliation(s)
- Haleh Abdizadeh
- Faculty of Engineering and Natural Sciences
- Sabanci University
- Tuzla
- Turkey
| | - Canan Atilgan
- Faculty of Engineering and Natural Sciences
- Sabanci University
- Tuzla
- Turkey
| |
Collapse
|
24
|
Abstract
Ancient bacteria originated from metal-rich environments. Billions of years of evolution directed these tiny single cell creatures to exploit the versatile properties of metals in catalyzing chemical reactions and biological responses. The result is an entire metallome of proteins that use metal co-factors to facilitate key cellular process that range from the production of energy to the replication of DNA. Two key metals in this regard are iron and zinc, both abundant on Earth but not readily accessible in a human host. Instead, pathogenic bacteria must employ clever ways to acquire these metals. In this review we describe the many elegant ways these bacteria mine, regulate, and craft the use of two key metals (iron and zinc) to build a virulence arsenal that challenges even the most sophisticated immune response.
Collapse
Affiliation(s)
- Li Ma
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77459, USA.
| | | | | |
Collapse
|
25
|
Transferrin: Endocytosis and Cell Signaling in Parasitic Protozoa. BIOMED RESEARCH INTERNATIONAL 2015; 2015:641392. [PMID: 26090431 PMCID: PMC4450279 DOI: 10.1155/2015/641392] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/18/2014] [Indexed: 12/31/2022]
Abstract
Iron is the fourth most abundant element on Earth and the most abundant metal in the human body. This element is crucial for life because almost all organisms need iron for several biological activities. This is the case with pathogenic organisms, which are at the vanguard in the battle with the human host for iron. The latest regulates Fe concentration through several iron-containing proteins, such as transferrin. The transferrin receptor transports iron to each cell that needs it and maintains it away from pathogens. Parasites have developed several strategies to obtain iron as the expression of specific transferrin receptors localized on plasma membrane, internalized through endocytosis. Signal transduction pathways related to the activation of the receptor have functional importance in proliferation. The study of transferrin receptors and other proteins with action in the signaling networks is important because these proteins could be used as therapeutic targets due to their specificity or to differences with the human counterpart. In this work, we describe proteins that participate in signal transduction processes, especially those that involve transferrin endocytosis, and we compare these processes with those found in T. brucei, T. cruzi, Leishmania spp., and E. histolytica parasites.
Collapse
|
26
|
Abstract
Gram-positive Streptococcus species are responsible for millions of cases of meningitis, bacterial pneumonia, endocarditis, erysipelas and necrotizing fasciitis. Iron is essential for the growth and survival of Streptococcus in the host environment. Streptococcus species have developed various mechanisms to uptake iron from an environment with limited available iron. Streptococcus can directly extract iron from host iron-containing proteins such as ferritin, transferrin, lactoferrin and hemoproteins, or indirectly by relying on the employment of specialized secreted hemophores (heme chelators) and small siderophore molecules (high affinity ferric chelators). This review presents the most recent discoveries in the iron acquisition system of Streptococcus species - the transporters as well as the regulators.
Collapse
Affiliation(s)
- Ruiguang Ge
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | | |
Collapse
|
27
|
Abstract
The metal binding preferences of most metalloproteins do not match their metal requirements. Thus, metallation of an estimated 30% of metalloenzymes is aided by metal delivery systems, with ∼ 25% acquiring preassembled metal cofactors. The remaining ∼ 70% are presumed to compete for metals from buffered metal pools. Metallation is further aided by maintaining the relative concentrations of these pools as an inverse function of the stabilities of the respective metal complexes. For example, magnesium enzymes always prefer to bind zinc, and these metals dominate the metalloenzymes without metal delivery systems. Therefore, the buffered concentration of zinc is held at least a million-fold below magnesium inside most cells.
Collapse
Affiliation(s)
- Andrew W Foster
- From the Department of Chemistry and School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Deenah Osman
- From the Department of Chemistry and School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Nigel J Robinson
- From the Department of Chemistry and School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
28
|
Biville F, Brézillon C, Giorgini D, Taha MK. Pyrophosphate-mediated iron acquisition from transferrin in Neisseria meningitidis does not require TonB activity. PLoS One 2014; 9:e107612. [PMID: 25290693 PMCID: PMC4189776 DOI: 10.1371/journal.pone.0107612] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 08/14/2014] [Indexed: 11/17/2022] Open
Abstract
The ability to acquire iron from various sources has been demonstrated to be a major determinant
in the pathogenesis of Neisseria meningitidis. Outside the cells, iron is bound to
transferrin in serum, or to lactoferrin in mucosal secretions. Meningococci can extract iron from
iron-loaded human transferrin by the TbpA/TbpB outer membrane complex. Moreover, N.
meningitidis expresses the LbpA/LbpB outer membrane complex, which can extract iron from
iron-loaded human lactoferrin. Iron transport through the outer membrane requires energy provided by
the ExbB-ExbD-TonB complex. After transportation through the outer membrane, iron is bound by
periplasmic protein FbpA and is addressed to the FbpBC inner membrane transporter. Iron-complexing
compounds like citrate and pyrophosphate have been shown to support meningococcal growth ex
vivo. The use of iron pyrophosphate as an iron source by N. meningitidis
was previously described, but has not been investigated. Pyrophosphate was shown to participate in
iron transfer from transferrin to ferritin. In this report, we investigated the use of ferric
pyrophosphate as an iron source by N. meningitidis both ex vivo
and in a mouse model. We showed that pyrophosphate was able to sustain N.
meningitidis growth when desferal was used as an iron chelator. Addition of a pyrophosphate
analogue to bacterial suspension at millimolar concentrations supported N.
meningitidis survival in the mouse model. Finally, we show that pyrophosphate enabled
TonB-independent ex vivo use of iron-loaded human or bovine transferrin as an iron
source by N. meningitidis. Our data suggest that, in addition to acquiring iron
through sophisticated systems, N. meningitidis is able to use simple strategies to
acquire iron from a wide range of sources so as to sustain bacterial survival.
Collapse
Affiliation(s)
- Francis Biville
- Unité des Infections Bactériennes invasives, Département Infection et Epidémiologie, Institut Pasteur, Paris, France
| | - Christophe Brézillon
- Unité des Infections Bactériennes invasives, Département Infection et Epidémiologie, Institut Pasteur, Paris, France
| | - Dario Giorgini
- Unité des Infections Bactériennes invasives, Département Infection et Epidémiologie, Institut Pasteur, Paris, France
| | - Muhamed-Kheir Taha
- Unité des Infections Bactériennes invasives, Département Infection et Epidémiologie, Institut Pasteur, Paris, France
| |
Collapse
|
29
|
Guven G, Atilgan AR, Atilgan C. Protonation States of Remote Residues Affect Binding–Release Dynamics of the Ligand but Not the Conformation of Apo Ferric Binding Protein. J Phys Chem B 2014; 118:11677-87. [DOI: 10.1021/jp5079218] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gokce Guven
- Sabanci University, Faculty of Engineering
and Natural Sciences, Tuzla
34956 Istanbul, Turkey
| | - Ali Rana Atilgan
- Sabanci University, Faculty of Engineering
and Natural Sciences, Tuzla
34956 Istanbul, Turkey
| | - Canan Atilgan
- Sabanci University, Faculty of Engineering
and Natural Sciences, Tuzla
34956 Istanbul, Turkey
| |
Collapse
|
30
|
Banerjee S, Weerasinghe AJ, Parker Siburt CJ, Kreulen RT, Armstrong SK, Brickman TJ, Lambert LA, Crumbliss AL. Bordetella pertussis FbpA binds both unchelated iron and iron siderophore complexes. Biochemistry 2014; 53:3952-60. [PMID: 24873326 PMCID: PMC4075987 DOI: 10.1021/bi5002823] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
![]()
Bordetella pertussis is the causative
agent of whooping cough. This pathogenic bacterium can obtain the
essential nutrient iron using its native alcaligin siderophore and
by utilizing xeno-siderophores such as desferrioxamine B, ferrichrome,
and enterobactin. Previous genome-wide expression profiling identified
an iron repressible B. pertussis gene
encoding a periplasmic protein (FbpABp). A previously reported
crystal structure shows significant similarity between FbpABp and previously characterized bacterial iron binding proteins, and
established its iron-binding ability. Bordetella growth studies determined that FbpABp was required for
utilization of not only unchelated iron, but also utilization of iron
bound to both native and xeno-siderophores. In this in vitro solution study, we quantified the binding of unchelated ferric iron
to FbpABp in the presence of various anions and importantly,
we demonstrated that FbpABp binds all the ferric siderophores
tested (native and xeno) with μM affinity. In silico modeling augmented solution data. FbpABp was incapable
of iron removal from ferric xeno-siderophores in vitro. However, when FbpABp was reacted with native ferric-alcaligin,
it elicited a pronounced change in the iron coordination environment,
which may signify an early step in FbpABp-mediated iron
removal from the native siderophore. To our knowledge, this is the
first time the periplasmic component of an iron uptake system has
been shown to bind iron directly as Fe3+ and indirectly
as a ferric siderophore complex.
Collapse
Affiliation(s)
- Sambuddha Banerjee
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Chen W, Ye D, Wang H, Lin D, Huang J, Sun H, Zhong W. Binding of oxo-Cu2 clusters to ferric ion-binding protein A from Neisseria gonorrhoeae: a structural insight. Metallomics 2014; 5:1430-9. [PMID: 23884152 DOI: 10.1039/c3mt00091e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ferric ion-binding protein A (FbpA), a member of transferrin superfamily, is a periplasmic iron transporter employed by many Gram-negative pathogens. Our experiments indicated copper(ii) could bind with Neisseria gonorrhoeae FbpA (NgFbpA), and the binding constant reached up to (8.7 ± 0.2) × 10(8) M(-1)via UV-vis titration. The crystal structure of recombinant Cu-NgFbpA at 2.1 Å revealed that the oxo-Cu2 clusters (dinuclear centres) assembled in the iron binding cleft and were bound to the two adjacent tyrosine residues (Y195 and Y196) of the protein, two Cu ions coordinated with two tyrosines, Y195 and Y196, respectively, which was different from the binding model of Fe ion with FbpA, in which Y195 and Y196 coordinated together with one Fe ion. While this was similar to the binding of Zr and Hf ion clusters, Y195 and Y196 coordinated with two metal ions and the μ-oxo-bridges linking the metal ions. Structural superimposition demonstrated that oxo-Cu2-NgFbpA still keeping an open conformation, similar to the apo-form of NgFbpA. The structure presented additional information towards an understanding of the function of FbpA, and provided a detailed binding model for FbpA protein with the possible metal ions in a biological system.
Collapse
Affiliation(s)
- Weijing Chen
- School of Pharmacy, Second Military Medical University, Shanghai, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
32
|
Caza M, Kronstad JW. Shared and distinct mechanisms of iron acquisition by bacterial and fungal pathogens of humans. Front Cell Infect Microbiol 2013; 3:80. [PMID: 24312900 PMCID: PMC3832793 DOI: 10.3389/fcimb.2013.00080] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 10/30/2013] [Indexed: 12/12/2022] Open
Abstract
Iron is the most abundant transition metal in the human body and its bioavailability is stringently controlled. In particular, iron is tightly bound to host proteins such as transferrin to maintain homeostasis, to limit potential damage caused by iron toxicity under physiological conditions and to restrict access by pathogens. Therefore, iron acquisition during infection of a human host is a challenge that must be surmounted by every successful pathogenic microorganism. Iron is essential for bacterial and fungal physiological processes such as DNA replication, transcription, metabolism, and energy generation via respiration. Hence, pathogenic bacteria and fungi have developed sophisticated strategies to gain access to iron from host sources. Indeed, siderophore production and transport, iron acquisition from heme and host iron-containing proteins such as hemoglobin and transferrin, and reduction of ferric to ferrous iron with subsequent transport are all strategies found in bacterial and fungal pathogens of humans. This review focuses on a comparison of these strategies between bacterial and fungal pathogens in the context of virulence and the iron limitation that occurs in the human body as a mechanism of innate nutritional defense.
Collapse
Affiliation(s)
| | - James W. Kronstad
- The Michael Smith Laboratories, Department of Microbiology and Immunology, University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|
33
|
Weerasinghe AJ, Amin SA, Barker RA, Othman T, Romano AN, Parker Siburt CJ, Tisnado J, Lambert LA, Huxford T, Carrano CJ, Crumbliss AL. Borate as a synergistic anion for Marinobacter algicola ferric binding protein, FbpA: a role for boron in iron transport in marine life. J Am Chem Soc 2013; 135:14504-7. [PMID: 24028339 DOI: 10.1021/ja406609s] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Boron in the ocean is generally considered a nonbiological element due to its relatively high concentration (0.4 mM) and depth independent concentration profile. Here we report an unexpected role for boron in the iron transport system of the marine bacterium Marinobacter algicola. Proteome analysis under varying boron concentrations revealed that the periplasmic ferric binding protein (Mb-FbpA) was among the proteins whose expression was most affected, strongly implicating the involvement of boron in iron utilization. Here we show that boron facilitates Fe(3+) sequestration by Mb-FbpA at pH 8 (oceanic pH) by acting as a synergistic anion (B(OH)4(1-)). Fe(3+) sequestration does not occur at pH 6.5 where boric acid (B(OH)3; pK(a) = 8.55) is the predominant species. Borate anion is also shown to bind to apo-Mb-FbpA with mM affinity at pH 8, consistent with the biological relevance implied from boron's oceanic concentration (0.4 mM). Borate is among those synergistic anions tested which support the strongest Fe(3+) binding to Mb-FbpA, where the range of anion dependent affinity constants is log K'(eff) = 21-22. Since the pKa of boric acid (8.55) lies near the pH of ocean water, changes in oceanic pH, as a consequence of fluctuations in atmospheric CO2, may perturb iron uptake in many marine heterotrophic bacteria due to a decrease in oceanic borate anion concentration.
Collapse
Affiliation(s)
- Aruna J Weerasinghe
- Department of Chemistry, Duke University , Durham, North Carolina, 27708-0346, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
FeoA and FeoC are essential components of the Vibrio cholerae ferrous iron uptake system, and FeoC interacts with FeoB. J Bacteriol 2013; 195:4826-35. [PMID: 23955009 DOI: 10.1128/jb.00738-13] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ferrous iron transport system Feo is widely distributed among bacterial species, yet its physical structure and mechanism of iron transport are poorly understood. In Vibrio cholerae, the feo operon consists of three genes, feoABC. feoB encodes an 83-kDa protein with an amino-terminal GTPase domain and a carboxy-terminal domain predicted to be embedded in the inner membrane. While FeoB is believed to form the pore for iron transport, the roles of FeoA and FeoC are unknown. In this work, we show that FeoA and FeoC, as well as the more highly conserved FeoB, are all required for iron acquisition by V. cholerae Feo. An in-frame deletion of feoA, feoB, or feoC eliminated iron acquisition. The loss of transport activity in the feoA and feoC mutants was not due to reduced transcription of the feo operon, suggesting that these two small proteins are required for activity of the transporter. feoC was found to encode a protein that interacts with the cytoplasmic domain of FeoB, as determined using the BACTH bacterial two-hybrid system. Two conserved amino acids in FeoC were found to be necessary for the interaction with FeoB in the two-hybrid assay, and when either of these amino acids was mutated in the context of the entire feo operon, iron acquisition via Feo was reduced. No interaction of FeoA with FeoB or FeoC was detected in the BACTH two-hybrid assay.
Collapse
|
35
|
Kosman DJ. Iron metabolism in aerobes: managing ferric iron hydrolysis and ferrous iron autoxidation. Coord Chem Rev 2013; 257:210-217. [PMID: 23264695 PMCID: PMC3524981 DOI: 10.1016/j.ccr.2012.06.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Aerobes and anaerobes alike express a plethora of essential iron enzymes; in the resting state, the iron atom(s) in these proteins are in the ferrous state. For aerobes, ferric iron is the predominant environmental valence form which, given ferric iron's aqueous chemistry, occurs as 'rust', insoluble, bio-inert polymeric ferric oxide that results from the hydrolysis of [Fe(H(2)O)(6)](3+). Mobilizing this iron requires bio-ferrireduction which in turn requires managing the rapid autoxidation of the resulting Fe(II) which occurs at pH > 6. This review examines the aqueous redox chemistry of iron and the mechanisms evolved in aerobes to suppress the 'rusting out' of Fe(III) and the ROS-generating autoxidation of Fe(II) so as to make this metal ion available as the most ubiquitous prosthetic group in metallobiology.
Collapse
Affiliation(s)
- Daniel J. Kosman
- University at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| |
Collapse
|
36
|
Atilgan AR, Atilgan C. Local motifs in proteins combine to generate global functional moves. Brief Funct Genomics 2012; 11:479-88. [PMID: 22811517 DOI: 10.1093/bfgp/els027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Literature on the topological properties of folded proteins that has emerged as a field in its own right in the past decade is reviewed. Physics-based construction of coarse-grained models of proteins from knowledge of all-atom coordinates of the average structure is discussed. Once network is thus obtained with the node and link information, local motifs provide plethora of information on protein function. The hierarchical structure of the proteins manifested in the interrelations of local motifs is emphasized. Motifs are also related to modularity of the structure, and they quantify shifts in the landscapes upon conformational changes induced by, e.g. ligand binding. Redundancy emerges as a balance between local and global network descriptors and is related to the collectivity of the protein motions. Introducing weight on links followed by sequential removal of least cohesive contacts allows interactions in proteins to be represented as the superposition of essential and redundant sets. Lack of the former makes the network non-functional, while the latter ensures robust functioning under a wide range of perturbation scenarios.
Collapse
Affiliation(s)
- Ali Rana Atilgan
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey
| | | |
Collapse
|