1
|
Zhou Y, Ye F, Zhang L, Kang Q, Luo Y, Jiang N, Lou L, Mao Y, Wang L, Jin F. The role of DNA damage response in human embryonic stem cells exposed to atmospheric oxygen tension: Implications for embryo development and differentiation. Reprod Toxicol 2024; 128:108648. [PMID: 38909692 DOI: 10.1016/j.reprotox.2024.108648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/26/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Previous retrospective cohort studies have found that, compared with oxygen tension in the uterus and fallopian tubes (2 %-8 %), exposure of pre-implantation embryos to atmospheric oxygen tension (AtmO2, 20 %) during assisted reproductive technology(ART) can affect embryo quality, pregnancy outcomes and offspring health. However, current research on the effects and mechanisms of AtmO2 on the development of embryos and offspring is mainly limited to animal experiments. Human embryonic stem cells (hESCs) play a special and irreplaceable role in the study of early human embryonic development. In this study, we used hESCs as a model to elucidate the possible effects and mechanisms of AtmO2 exposure on human embryonic development. We found that exposure to AtmO2 can reduce cell viability, produce oxidative stress, increase DNA damage, initiate DNA repair, activate autophagy, and increase cell apoptosis. We also noticed that approximately 50 % of hESCs survived, adapted and proliferated through high expression of self-renewal and pluripotency regulatory factors, and affected embryoid body differentiation. These data indicate that hESCs experience oxidative stress, accumulation of DNA damage, and activate DNA damage response under the selective pressure of AtmO2.Some hESCs undergo cell death, whereas other hESCs adapt and proliferate through increased expression of self-renewal genes. The current findings provide in vitro evidence that exposure to AtmO2 during the early preimplantation stage negatively affects hESCs.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fenglei Ye
- Department of Obstetrics, Maternal and Child Health Hospital, Lishui, China
| | - Linyun Zhang
- Department of Obstetrics and Gynecology, Hangzhou TCM Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Quanmin Kang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yujia Luo
- Department of NICU, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Nan Jiang
- Department of Reproductive Endocrinology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lijun Lou
- Department of Reproductive Endocrinology, Affiliated Dongyang Hospital, Wenzhou Medical University, Jinhua, China
| | - Yuchan Mao
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liya Wang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fan Jin
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Swaidan NT, Soliman NH, Aboughalia AT, Darwish T, Almeshal RO, Al-Khulaifi AA, Taha RZ, Alanany R, Hussein AY, Salloum-Asfar S, Abdulla SA, Abdallah AM, Emara MM. CCN3, POSTN, and PTHLH as potential key regulators of genomic integrity and cellular survival in iPSCs. Front Mol Biosci 2024; 11:1342011. [PMID: 38375508 PMCID: PMC10875024 DOI: 10.3389/fmolb.2024.1342011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/11/2024] [Indexed: 02/21/2024] Open
Abstract
Reprogramming human somatic cells into a pluripotent state, achieved through the activation of well-defined transcriptional factors known as OSKM factors, offers significant potential for regenerative medicine. While OSKM factors are a robust reprogramming method, efficiency remains a challenge, with only a fraction of cells undergoing successful reprogramming. To address this, we explored genes related to genomic integrity and cellular survival, focusing on iPSCs (A53T-PD1) that displayed enhanced colony stability. Our investigation had revealed three candidate genes CCN3, POSTN, and PTHLH that exhibited differential expression levels and potential roles in iPSC stability. Subsequent analyses identified various protein interactions for these candidate genes. POSTN, significantly upregulated in A53T-PD1 iPSC line, showed interactions with extracellular matrix components and potential involvement in Wnt signaling. CCN3, also highly upregulated, demonstrated interactions with TP53, CDKN1A, and factors related to apoptosis and proliferation. PTHLH, while upregulated, exhibited interactions with CDK2 and genes involved in cell cycle regulation. RT-qPCR validation confirmed elevated CCN3 and PTHLH expression in A53T-PD1 iPSCs, aligning with RNA-seq findings. These genes' roles in preserving pluripotency and cellular stability require further exploration. In conclusion, we identified CCN3, POSTN, and PTHLH as potential contributors to genomic integrity and pluripotency maintenance in iPSCs. Their roles in DNA repair, apoptosis evasion, and signaling pathways could offer valuable insights for enhancing reprogramming efficiency and sustaining pluripotency. Further investigations are essential to unravel the mechanisms underlying their actions.
Collapse
Affiliation(s)
- Nuha T. Swaidan
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Nada H. Soliman
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ahmed T. Aboughalia
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Toqa Darwish
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ruba O. Almeshal
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Azhar A. Al-Khulaifi
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Rowaida Z. Taha
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Rania Alanany
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | | | - Salam Salloum-Asfar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Sara A. Abdulla
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Abdallah M. Abdallah
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Mohamed M. Emara
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
3
|
Schimmel J, van Wezel MD, van Schendel R, Tijsterman M. Chromosomal breaks at the origin of small tandem DNA duplications. Bioessays 2023; 45:e2200168. [PMID: 36385254 DOI: 10.1002/bies.202200168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022]
Abstract
Small tandem DNA duplications in the range of 15 to 300 base-pairs play an important role in the aetiology of human disease and contribute to genome diversity. Here, we discuss different proposed mechanisms for their occurrence and argue that this type of structural variation mainly results from mutagenic repair of chromosomal breaks. This hypothesis is supported by both bioinformatical analysis of insertions occurring in the genome of different species and disease alleles, as well as by CRISPR/Cas9-based experimental data from different model systems. Recent work points to fill-in synthesis at double-stranded DNA breaks with complementary sequences, regulated by end-joining mechanisms, to account for small tandem duplications. We will review the prevalence of small tandem duplications in the population, and we will speculate on the potential sources of DNA damage that could give rise to this mutational signature. With the development of novel algorithms to analyse sequencing data, small tandem duplications are now more frequently detected in the human genome and identified as oncogenic gain-of-function mutations. Understanding their origin could lead to optimized treatment regimens to prevent therapy-induced activation of oncogenes and might expose novel vulnerabilities in cancer.
Collapse
Affiliation(s)
- Joost Schimmel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marloes D van Wezel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Robin van Schendel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
4
|
Wang J, Wang T, Li Y, Fan Z, Lv Z, Liu L, Li X, Li B. Comparative genomic analysis of Lacticaseibacillus paracasei SMN-LBK from koumiss. Front Microbiol 2022; 13:1042117. [DOI: 10.3389/fmicb.2022.1042117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Lacticaseibacillus paracasei SMN-LBK, which was isolated in Xinjiang, has been shown to be a probiotic strain and used as the auxiliary starter for dairy fermentation. Comparative genomic analysis was performed to investigate the metabolic preference and ethanol tolerance mechanisms of L. paracasei SMN-LBK. The results of comparative genomics showed that L. paracasei strains had high conservation and genetic diversity. SMN-LBK encoded various genes related to carbohydrate and amino acid metabolism pathways, which endow this strain with good fermentation potential. In addition, 6 CRISPR sequences and 8 cas proteins were found in SMN-LBK, and these could play vital roles in the immune system. Furthermore, a unique cluster of potential secondary metabolism genes related to bacteriocins was detected in the genome of SMN-LBK, and this could be important for the preservation of fermented foods. Multiple genes related to alcohol tolerance were also identified. In conclusion, our study explained the traits that were previously demonstrated for SMN-LBK as phenotypes and provided a theoretical basis for the application of SMN-LBK in the food industry.
Collapse
|
5
|
DNA Damage Response Differentially Affects BoHV-1 Gene Transcription in Cell Type-Dependent Manners. Biomedicines 2022; 10:biomedicines10092282. [PMID: 36140380 PMCID: PMC9496131 DOI: 10.3390/biomedicines10092282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Bovine herpesvirus 1 (BoHV-1), an important pathogen of cattle, is also a promising oncolytic virus. Recent studies have demonstrated that the virus infection induces DNA damage and DNA damage response (DDR), potentially accounting for virus infection-induced cell death and oncolytic effects. However, whether the global DDR network affects BoHV-1 productive infection remains to be elucidated. In this study, we show that global DDR induced by ultraviolet (UV) irradiation prior to BoHV-1 infection differentially affected transcription of immediate early (IE) genes, such as infected cell protein 0 (bICP0) and bICP22, in a cell-type-dependent manner. In addition, UV-induced DDR may affect the stabilization of viral protein levels, such as glycoprotein C (gC) and gD, because the variation in mRNA levels of gC and gD as a consequence of UV treatment were not in line with the variation in individual protein levels. The virus productive infection also affects UV-primed DDR signaling, as demonstrated by the alteration of phosphorylated histone H2AX (γH2AX) protein levels and γH2AX formation following virus infection. Taken together, for the first time, we evidenced the interplay between UV-primed global DDR and BoHV-1 productive infection. UV-primed global DDR differentially modulates the transcription of virus genes and stabilization of virus protein. Vice versa, the virus infection may affect UV-primed DDR signaling.
Collapse
|
6
|
Altgilbers S, Klein S, Dierks C, Weigend S, Kues WA. Cultivation and characterization of primordial germ cells from blue layer hybrids (Araucana crossbreeds) and generation of germline chimeric chickens. Sci Rep 2021; 11:12923. [PMID: 34155221 PMCID: PMC8217269 DOI: 10.1038/s41598-021-91490-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/21/2021] [Indexed: 11/29/2022] Open
Abstract
The chicken (Gallus gallus) is one of the most common and widespread domestic species, with an estimated total population of 25 billion birds worldwide. The vast majority of chickens in agriculture originate from hybrid breeding programs and is concentrated on few commercially used high performance lines, whereas numerous local and indigenous breeds are at risk to become extinct. To preserve the genomic resources of rare and endangered chicken breeds innovative methods are necessary. Here, we established a solid workflow for the derivation and biobanking of chicken primordial germ cells (PGCs) from blue layer hybrids. To achieve this, embryos of a cross of heterozygous blue egg layers were sampled to obtain blood derived and gonadal male as well as female PGCs of different genotypes (homozygous, heterozygous and nullizygous blue-allele bearing). The total efficiency of established PGC lines was 45% (47/104) within an average of 49 days until they reached sufficient numbers of cells for cryopreservation. The stem-cell character of the cultivated PGCs was confirmed by SSEA-1 immunostaining, and RT-PCR amplification of the pluripotency- and PGC-specific genes cPOUV, cNANOG, cDAZL and CVH. The Sleeping Beauty transposon system allowed to generate a stable integration of a Venus fluorophore reporter into the chicken genome. Finally, we demonstrated that, after re-transfer into chicken embryos, Venus-positive PGCs migrated and colonized the forming gonads. Semen samples of 13 raised cell chimeric roosters were analyzed by flow cytometry for the efficiency of germline colonization by the transferred PGCs carrying the Venus reporter and their proper differentiation into vital spermatids. Thus, we provide a proof-of-concept study for the potential use of PGCs for the cryobanking of rare breeds or rare alleles.
Collapse
Affiliation(s)
- Stefanie Altgilbers
- Department of Biotechnology, Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535, Neustadt, Germany
| | - Sabine Klein
- Department of Biotechnology, Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535, Neustadt, Germany
| | - Claudia Dierks
- Department of Genetic Ressources, Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535, Neustadt, Germany
| | - Steffen Weigend
- Department of Genetic Ressources, Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535, Neustadt, Germany
| | - Wilfried A Kues
- Department of Biotechnology, Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535, Neustadt, Germany.
| |
Collapse
|
7
|
Rosner A, Armengaud J, Ballarin L, Barnay-Verdier S, Cima F, Coelho AV, Domart-Coulon I, Drobne D, Genevière AM, Jemec Kokalj A, Kotlarska E, Lyons DM, Mass T, Paz G, Pazdro K, Perić L, Ramšak A, Rakers S, Rinkevich B, Spagnuolo A, Sugni M, Cambier S. Stem cells of aquatic invertebrates as an advanced tool for assessing ecotoxicological impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144565. [PMID: 33736145 DOI: 10.1016/j.scitotenv.2020.144565] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Environmental stressors are assessed through methods that quantify their impacts on a wide range of metrics including species density, growth rates, reproduction, behaviour and physiology, as on host-pathogen interactions and immunocompetence. Environmental stress may induce additional sublethal effects, like mutations and epigenetic signatures affecting offspring via germline mediated transgenerational inheritance, shaping phenotypic plasticity, increasing disease susceptibility, tissue pathologies, changes in social behaviour and biological invasions. The growing diversity of pollutants released into aquatic environments requires the development of a reliable, standardised and 3R (replacement, reduction and refinement of animals in research) compliant in vitro toolbox. The tools have to be in line with REACH regulation 1907/2006/EC, aiming to improve strategies for potential ecotoxicological risks assessment and monitoring of chemicals threatening human health and aquatic environments. Aquatic invertebrates' adult stem cells (ASCs) are numerous and can be pluripotent, as illustrated by high regeneration ability documented in many of these taxa. This is of further importance as in many aquatic invertebrate taxa, ASCs are able to differentiate into germ cells. Here we propose that ASCs from key aquatic invertebrates may be harnessed for applicable and standardised new tests in ecotoxicology. As part of this approach, a battery of modern techniques and endpoints are proposed to be tested for their ability to correctly identify environmental stresses posed by emerging contaminants in aquatic environments. Consequently, we briefly describe the current status of the available toxicity testing and biota-based monitoring strategies in aquatic environmental ecotoxicology and highlight some of the associated open issues such as replicability, consistency and reliability in the outcomes, for understanding and assessing the impacts of various chemicals on organisms and on the entire aquatic environment. Following this, we describe the benefits of aquatic invertebrate ASC-based tools for better addressing ecotoxicological questions, along with the current obstacles and possible overhaul approaches.
Collapse
Affiliation(s)
- Amalia Rosner
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Tel Shikmona, Haifa 3108001, Israel.
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-30200 Bagnols-sur-Cèze, France.
| | - Loriano Ballarin
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35121 Padova, Italy.
| | - Stéphanie Barnay-Verdier
- Sorbonne Université; CNRS, INSERM, Université Côte d'Azur, Institute for Research on Cancer and Aging Nice, F-06107 Nice, France.
| | - Francesca Cima
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35121 Padova, Italy.
| | - Ana Varela Coelho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Isabelle Domart-Coulon
- Muséum National d'Histoire Naturelle, CNRS, Microorganism Communication and Adaptation Molecules MCAM, Paris F-75005, France.
| | - Damjana Drobne
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111,D, 1000 Ljubljana, Slovenia.
| | - Anne-Marie Genevière
- Sorbonne Université, CNRS, Integrative Biology of Marine Organisms, BIOM, F-6650 Banyuls-sur-mer, France.
| | - Anita Jemec Kokalj
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111,D, 1000 Ljubljana, Slovenia.
| | - Ewa Kotlarska
- Institute of Oceanology of the Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland.
| | - Daniel Mark Lyons
- Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, HR-52210 Rovinj, Croatia.
| | - Tali Mass
- Marine Biology Department, Leon H. Charney School of Marine Sciences, 199 Aba Khoushy Ave, University of Haifa, 3498838, Israel.
| | - Guy Paz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Tel Shikmona, Haifa 3108001, Israel.
| | - Ksenia Pazdro
- Institute of Oceanology of the Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Lorena Perić
- Rudjer Boskovic Institute, Laboratory for Aquaculture and Pathology of Aquaculture Organisms, Bijenička cesta 54, HR-10000 Zagreb, Croatia.
| | - Andreja Ramšak
- National Institute of Biology, Marine Biology Station, Fornače 41, 6330 Piran, Slovenia.
| | | | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Tel Shikmona, Haifa 3108001, Israel.
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria 2, 20133 Milano, Italy.
| | - Sébastien Cambier
- Luxembourg Institute of Science and Technology, 5, avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
8
|
Thomy J, Sanchez F, Gut M, Cruz F, Alioto T, Piganeau G, Grimsley N, Yau S. Combining Nanopore and Illumina Sequencing Permits Detailed Analysis of Insertion Mutations and Structural Variations Produced by PEG-Mediated Transformation in Ostreococcus tauri. Cells 2021; 10:cells10030664. [PMID: 33802698 PMCID: PMC8002553 DOI: 10.3390/cells10030664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022] Open
Abstract
Ostreococcus tauri is a simple unicellular green alga representing an ecologically important group of phytoplankton in oceans worldwide. Modern molecular techniques must be developed in order to understand the mechanisms that permit adaptation of microalgae to their environment. We present for the first time in O. tauri a detailed characterization of individual genomic integration events of foreign DNA of plasmid origin after PEG-mediated transformation. Vector integration occurred randomly at a single locus in the genome and mainly as a single copy. Thus, we confirmed the utility of this technique for insertional mutagenesis. While the mechanism of double-stranded DNA repair in the O. tauri model remains to be elucidated, we clearly demonstrate by genome resequencing that the integration of the vector leads to frequent structural variations (deletions/insertions and duplications) and some chromosomal rearrangements in the genome at the insertion loci. Furthermore, we often observed variations in the vector sequence itself. From these observations, we speculate that a nonhomologous end-joining-like mechanism is employed during random insertion events, as described in plants and other freshwater algal models. PEG-mediated transformation is therefore a promising molecular biology tool, not only for functional genomic studies, but also for biotechnological research in this ecologically important marine alga.
Collapse
Affiliation(s)
- Julie Thomy
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France; (J.T.); (F.S.); (G.P.)
| | - Frederic Sanchez
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France; (J.T.); (F.S.); (G.P.)
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain; (M.G.); (F.C.); (T.A.)
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Fernando Cruz
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain; (M.G.); (F.C.); (T.A.)
| | - Tyler Alioto
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain; (M.G.); (F.C.); (T.A.)
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Gwenael Piganeau
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France; (J.T.); (F.S.); (G.P.)
| | - Nigel Grimsley
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France; (J.T.); (F.S.); (G.P.)
- Correspondence: (N.G.); (S.Y.)
| | - Sheree Yau
- Sorbonne Université, CNRS, UMR 7232 Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650 Banyuls-sur-Mer, France; (J.T.); (F.S.); (G.P.)
- Correspondence: (N.G.); (S.Y.)
| |
Collapse
|
9
|
Liao X, Zou T, Chen M, Song Y, Yang C, Qiu B, Chen ZF, Tsang SY, Qi Z, Cai Z. Contamination profiles and health impact of benzothiazole and its derivatives in PM 2.5 in typical Chinese cities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142617. [PMID: 33045602 DOI: 10.1016/j.scitotenv.2020.142617] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Although benzothiazole and its derivatives (BTHs) are considered emerging contaminants in diverse environments and organisms, little information is available about their contamination profiles and health impact in ambient particles. In this study, an optimized method of ultrasound-assisted extraction coupled with the selected reaction monitoring (SRM) mode of GC-EI-MS/MS was applied to characterize and analyze PM2.5-bound BTHs from three cities of China (Guangzhou, Shanghai, and Taiyuan) during the winter of 2018. The total BTH concentration (ΣBTHs) in PM2.5 samples from the three cities decreased in the order of Guangzhou > Shanghai > Taiyuan, independently of the PM2.5 concentration. Despite the large variation in concentration of ΣBTHs in PM2.5, 2-hydroxybenzothiazole (OTH) was always the predominant compound among the PM2.5-bound BTHs and accounted for 50-80% of total BTHs in the three regions. Results from human exposure assessment and toxicity screening indicated that the outdoor exposure risk of PM2.5-bound BTHs in toddlers was much higher than in adults, especially for OTH. The developmental and reproduction toxicity of OTH was further explored in vivo and in vitro. Exposure of mouse embryonic stem cells (mESCs) to OTH for 48 h significantly increased the intracellular reactive oxygen species (ROS) and induced DNA damage and apoptosis via the functionally activating p53 expression. In addition, the growth and development of zebrafish embryos were found to be severely affected after OTH treatment. An overall metabolomics study was conducted on the exposed zebrafish larvae. The results indicated that exposure to OTH inhibited the phenylalanine hydroxylation reaction, which further increased the accumulation of toxic phenylpyruvate and acetylphenylalanine in zebrafish. These findings provide important insights into the contamination profiles of PM2.5-bound BTHs and emphasize the health risk of OTH.
Collapse
Affiliation(s)
- Xiaoliang Liao
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Ting Zou
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Min Chen
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Chun Yang
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Bojun Qiu
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhi-Feng Chen
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Suk Ying Tsang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zenghua Qi
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Zongwei Cai
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
10
|
Patterson-Fortin J, D'Andrea AD. Exploiting the Microhomology-Mediated End-Joining Pathway in Cancer Therapy. Cancer Res 2020; 80:4593-4600. [PMID: 32651257 PMCID: PMC7641946 DOI: 10.1158/0008-5472.can-20-1672] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/13/2020] [Accepted: 07/07/2020] [Indexed: 01/16/2023]
Abstract
Repair of DNA double-strand breaks (DSB) is performed by two major pathways, homology-dependent repair and classical nonhomologous end-joining. Recent studies have identified a third pathway, microhomology-mediated end-joining (MMEJ). MMEJ has similarities to homology-dependent repair, in that repair is initiated with end resection, leading to single-stranded 3' ends, which require microhomology upstream and downstream of the DSB. Importantly, the MMEJ pathway is commonly upregulated in cancers, especially in homologous recombination-deficient cancers, which display a distinctive mutational signature. Here, we review the molecular process of MMEJ as well as new targets and approaches exploiting the MMEJ pathway in cancer therapy.
Collapse
Affiliation(s)
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
11
|
Koifman G, Aloni-Grinstein R, Rotter V. p53 balances between tissue hierarchy and anarchy. J Mol Cell Biol 2020; 11:553-563. [PMID: 30925590 PMCID: PMC6735948 DOI: 10.1093/jmcb/mjz022] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/17/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023] Open
Abstract
Normal tissues are organized in a hierarchical model, whereas at the apex of these hierarchies reside stem cells (SCs) capable of self-renewal and of producing differentiated cellular progenies, leading to normal development and homeostasis. Alike, tumors are organized in a hierarchical manner, with cancer SCs residing at the apex, contributing to the development and nourishment of tumors. p53, the well-known ‘guardian of the genome’, possesses various roles in embryonic development as well as in adult SC life and serves as the ‘guardian of tissue hierarchy’. Moreover, p53 serves as a barrier for dedifferentiation and reprogramming by constraining the cells to a somatic state and preventing their conversion to SCs. On the contrary, the mutant forms of p53 that lost their tumor suppressor activity and gain oncogenic functions serve as ‘inducers of tissue anarchy’ and promote cancer development. In this review, we discuss these two sides of the p53 token that sentence a tissue either to an ordered hierarchy and life or to anarchy and death. A better understanding of these processes may open new horizons for the development of new cancer therapies.
Collapse
Affiliation(s)
- Gabriela Koifman
- Department of Molecular Cell Biology, the Weizmann Institute of Science, Rehovot, Israel
| | - Ronit Aloni-Grinstein
- Department of Molecular Cell Biology, the Weizmann Institute of Science, Rehovot, Israel.,Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness Ziona, Israel
| | - Varda Rotter
- Department of Molecular Cell Biology, the Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
12
|
Stage-Specific Effects of Ionizing Radiation during Early Development. Int J Mol Sci 2020; 21:ijms21113975. [PMID: 32492918 PMCID: PMC7312565 DOI: 10.3390/ijms21113975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 02/07/2023] Open
Abstract
Early embryonic cells are sensitive to genotoxic stressors such as ionizing radiation. However, sensitivity to these stressors varies depending on the embryonic stage. Recently, the sensitivity and response to ionizing radiation were found to differ during the preimplantation period. The cellular and molecular mechanisms underlying the change during this period are beginning to be elucidated. In this review, we focus on the changes in radio-sensitivity and responses to ionizing radiation during the early developmental stages of the preimplantation (before gastrulation) period in mammals, Xenopus, and fish. Furthermore, we discuss the underlying cellular and molecular mechanisms and the similarities and differences between species.
Collapse
|
13
|
Miller JM, Mardhekar NM, Pretorius D, Krishnamurthy P, Rajasekaran NS, Zhang J, Kannappan R. DNA damage-free iPS cells exhibit potential to yield competent cardiomyocytes. Am J Physiol Heart Circ Physiol 2020; 318:H801-H815. [PMID: 32057252 DOI: 10.1152/ajpheart.00658.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
DNA damage accrued in induced pluripotent stem cell (iPSC)-derived cardiomyocytes during in vitro culture practices lessens their therapeutic potential. We determined whether DNA-damage-free iPSCs (DdF-iPSCs) can be selected using stabilization of p53, a transcription factor that promotes apoptosis in DNA-damaged cells, and differentiated them into functionally competent DdF cardiomyocytes (DdF-CMs). p53 was activated using Nutlin-3a in iPSCs to selectively kill the DNA-damaged cells, and the stable DdF cells were cultured further and differentiated into CMs. Both DdF-iPSCs and DdF-CMs were then characterized. We observed a significant decrease in the expression of reactive oxygen species and DNA damage in DdF-iPSCs compared with control (Ctrl) iPSCs. Next-generation RNA sequencing and Ingenuity Pathway Analysis revealed improved molecular, cellular, and physiological functions in DdF-iPSCs. The differentiated DdF-CMs had a compact beating frequency between 40 and 60 beats/min accompanied by increased cell surface area. Additionally, DdF-CMs were able to retain the improved molecular, cellular, and physiological functions after differentiation from iPSCs, and, interestingly, cardiac development network was prominent compared with Ctrl-CMs. Enhanced expression of various ion channel transcripts in DdF-CMs implies DdF-CMs are of ventricular CMs and mature compared with their counterparts. Our results indicated that DdF-iPSCs could be selected through p53 stabilization using a small-molecule inhibitor and differentiated into ventricular DdF-CMs with fine-tuned molecular signatures. These iPSC-derived DdF-CMs show immense clinical potential in repairing injured myocardium.NEW & NOTEWORTHY Culture-stress-induced DNA damage in stem cells lessens their performance. A robust small-molecule-based approach, by stabilizing/activating p53, to select functionally competent DNA-damage-free cells from a heterogeneous population of cells is demonstrated. This protocol can be adopted by clinics to select DNA-damage-free cells before transplanting them to the host myocardium. The intact DNA-damage-free cells exhibited with fine-tuned molecular signatures and improved cellular functions. DNA-damage-free cardiomyocytes compared with control expressed superior cardiomyocyte functional properties, including, but not limited to, enhanced ion channel signatures. These DNA-intact cells would better engraft, survive, and, importantly, improve the cardiac function of the injured myocardium.
Collapse
Affiliation(s)
- Jessica M Miller
- Department of Biomedical Engineering, School of Engineering, School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Nikhil M Mardhekar
- Department of Biomedical Engineering, School of Engineering, School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Danielle Pretorius
- Department of Biomedical Engineering, School of Engineering, School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, School of Engineering, School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Namakkal Soorappan Rajasekaran
- Department of Biomedical Engineering, School of Engineering, School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama.,Division of Molecular & Cellular Pathology, Department of Pathology, School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Engineering, School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Ramaswamy Kannappan
- Department of Biomedical Engineering, School of Engineering, School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
14
|
Liu G, David BT, Trawczynski M, Fessler RG. Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and Applications. Stem Cell Rev Rep 2020; 16:3-32. [PMID: 31760627 PMCID: PMC6987053 DOI: 10.1007/s12015-019-09935-x] [Citation(s) in RCA: 296] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past 20 years, and particularly in the last decade, significant developmental milestones have driven basic, translational, and clinical advances in the field of stem cell and regenerative medicine. In this article, we provide a systemic overview of the major recent discoveries in this exciting and rapidly developing field. We begin by discussing experimental advances in the generation and differentiation of pluripotent stem cells (PSCs), next moving to the maintenance of stem cells in different culture types, and finishing with a discussion of three-dimensional (3D) cell technology and future stem cell applications. Specifically, we highlight the following crucial domains: 1) sources of pluripotent cells; 2) next-generation in vivo direct reprogramming technology; 3) cell types derived from PSCs and the influence of genetic memory; 4) induction of pluripotency with genomic modifications; 5) construction of vectors with reprogramming factor combinations; 6) enhancing pluripotency with small molecules and genetic signaling pathways; 7) induction of cell reprogramming by RNA signaling; 8) induction and enhancement of pluripotency with chemicals; 9) maintenance of pluripotency and genomic stability in induced pluripotent stem cells (iPSCs); 10) feeder-free and xenon-free culture environments; 11) biomaterial applications in stem cell biology; 12) three-dimensional (3D) cell technology; 13) 3D bioprinting; 14) downstream stem cell applications; and 15) current ethical issues in stem cell and regenerative medicine. This review, encompassing the fundamental concepts of regenerative medicine, is intended to provide a comprehensive portrait of important progress in stem cell research and development. Innovative technologies and real-world applications are emphasized for readers interested in the exciting, promising, and challenging field of stem cells and those seeking guidance in planning future research direction.
Collapse
Affiliation(s)
- Gele Liu
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA.
| | - Brian T David
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA
| | - Matthew Trawczynski
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA
| | - Richard G Fessler
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA
| |
Collapse
|
15
|
Chiu WC, Fang PT, Lee YC, Wang YY, Su YH, Hu SCS, Chen YK, Tsui YT, Kao YH, Huang MY, Yuan SSF. DNA Repair Protein Rad51 Induces Tumor Growth and Metastasis in Esophageal Squamous Cell Carcinoma via a p38/Akt-Dependent Pathway. Ann Surg Oncol 2019; 27:2090-2101. [PMID: 31749080 DOI: 10.1245/s10434-019-08043-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Rad51 is a protein which plays a vital role in DNA double-strand break repair and maintenance of telomeres. However, the underlying mechanism for its action in esophageal squamous cell carcinoma (ESCC) remains unclear. PATIENTS AND METHODS Eighty-seven patients with ESCC were enrolled in this study. Expression of Rad51 in ESCC was determined by immunohistochemistry and correlated with clinicopathological variables by Chi square test. The role of Rad51 in patient survival was determined by Kaplan-Meier estimates. The effects of Rad51 knockdown and overexpression on esophageal cancer growth, migration, and invasion were examined using TE8, CE81T, and KYSE70 cells. The mechanisms involved were also analyzed. Nude mice models were used for assessment of tumor growth. RESULTS Rad51 staining was predominantly observed in ESCC patients. ESCC patients with high Rad51 expression had significantly decreased survival (P < 0.001) combined with increased tumor size (P = 0.034) and lymph node metastasis (P = 0.039). Rad51 overexpression promoted, while its knockdown attenuated, esophageal cancer cell viability through cell cycle entry and migration/invasion via epithelial-mesenchymal transition. Moreover, Rad51 overexpression increased colony formation in vitro and tumor growth in vivo. In addition, high Rad51 expression increased cancer progression through the p38/Akt/Snail signaling pathway. CONCLUSIONS This study indicates a new biological role for Rad51 in ESCC progression. Rad51 may serve as a potential prognostic biomarker and therapeutic target for ESCC patients.
Collapse
Affiliation(s)
- Wen-Chin Chiu
- Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pen-Tzu Fang
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Chen Lee
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Yun Wang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Han Su
- Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Stephen Chu-Sung Hu
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuk-Kwan Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Oral Pathology and Maxillofacial Radiology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Oral and Maxillofacial Imaging Center, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Tong Tsui
- Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ying-Hsien Kao
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
| | - Ming-Yii Huang
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Shyng-Shiou F Yuan
- Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan. .,Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu, Taiwan. .,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
16
|
Chen YF, Liang YX, Yang JA, Yuan DZ, Li J, Zheng SS, Wan YP, Wang B, Han ZD, Zhong WD. Upregulation of Holliday junction recognition protein predicts poor prognosis and biochemical recurrence in patients with prostate cancer. Oncol Lett 2019; 18:6697-6703. [PMID: 31814851 PMCID: PMC6888104 DOI: 10.3892/ol.2019.11061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/26/2019] [Indexed: 12/16/2022] Open
Abstract
Abnormal expression of Holliday junction recognition protein (HJURP) in several types of tumor cells plays a vital role in the formation and progression of tumors. Few studies have investigated the role of HJURP in prostate cancer (PCa). The aim of this study was to analyze the expression levels of HJURP in PCa and to establish the association with clinicopathological data. Reverse transcription quantitative polymerase chain reaction and immunohistochemical analysis were used to detect the expression levels of HJURP in benign and PCa prostate tissues. The Taylor dataset was statistically analyzed to determine if HJURP expression levels were associated with PCa clinicopathological data. HJURP was overexpressed in PCa tissues compared with benign prostate tissues. Statistical analysis of the Taylor dataset indicated that upregulation of HJURP was significantly associated with positive prostate-specific antigen (PSA) levels (P=0.004), high Gleason score (P=0.005), advanced pathological stage (P=0.007), metastasis (P<0.001) and PSA failure (P<0.001). Higher HJURP mRNA expression levels were significantly associated with shorter biochemical recurrence (BCR)-free survival (P<0.001). To the best of our knowledge, this study is the first report of HJURP upregulation in PCa tissues. Upregulation of HJURP may predict BCR-free survival and HJURP may be an oncogene that impacts the prognosis of patients with PCa.
Collapse
Affiliation(s)
- Yan-Fei Chen
- Department of Urology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Yu-Xiang Liang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Jian-An Yang
- Department of Urology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Dao-Zhang Yuan
- Department of Urology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Jing Li
- Department of Urology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Shun-Sheng Zheng
- Department of Urology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Yue-Ping Wan
- Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Bin Wang
- Department of Urology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Zhao-Dong Han
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Wei-De Zhong
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China.,Department of Urology, The Second Affiliated Hospital, South China University of Technology, Guangzhou, Guangdong 510180, P.R. China
| |
Collapse
|
17
|
TRIM66 reads unmodified H3R2K4 and H3K56ac to respond to DNA damage in embryonic stem cells. Nat Commun 2019; 10:4273. [PMID: 31537782 PMCID: PMC6753139 DOI: 10.1038/s41467-019-12126-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 08/20/2019] [Indexed: 12/19/2022] Open
Abstract
Recognition of specific chromatin modifications by distinct structural domains within “reader” proteins plays a critical role in the maintenance of genomic stability. However, the specific mechanisms involved in this process remain unclear. Here we report that the PHD-Bromo tandem domain of tripartite motif-containing 66 (TRIM66) recognizes the unmodified H3R2-H3K4 and acetylated H3K56. The aberrant deletion of Trim66 results in severe DNA damage and genomic instability in embryonic stem cells (ESCs). Moreover, we find that the recognition of histone modification by TRIM66 is critical for DNA damage repair (DDR) in ESCs. TRIM66 recruits Sirt6 to deacetylate H3K56ac, negatively regulating the level of H3K56ac and facilitating the initiation of DDR. Importantly, Trim66-deficient blastocysts also exhibit higher levels of H3K56ac and DNA damage. Collectively, the present findings indicate the vital role of TRIM66 in DDR in ESCs, establishing the relationship between histone readers and maintenance of genomic stability. TRIM66 protein has an N-terminal tripartite motif and a C-terminal PHD Bromodomain. Here the authors show the specific histone modification recognition of TRIM66-PHD-Bromodomain through crystallography and biochemistry assay, and further reveal that TRIM66 recognition of certain histone modification is important for DNA damage repair in ESCs.
Collapse
|
18
|
Stevens AS, Wouters A, Ploem JP, Pirotte N, Van Roten A, Willems M, Hellings N, Franken C, Koppen G, Artois T, Plusquin M, Smeets K. Planarians Customize Their Stem Cell Responses Following Genotoxic Stress as a Function of Exposure Time and Regenerative State. Toxicol Sci 2019; 162:251-263. [PMID: 29145667 DOI: 10.1093/toxsci/kfx247] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aiming to in vivo characterize the responses of pluripotent stem cells and regenerative tissues to carcinogenic stress, we employed the highly regenerative organism Schmidtea mediterranea. Its broad regenerative capacities are attributable to a large pool of pluripotent stem cells, which are considered key players in the lower vulnerability toward chemically induced carcinogenesis observed in regenerative organisms. Schmidtea mediterranea is, therefore, an ideal model to study pluripotent stem cell responses with stem cells residing in their natural environment. Including microenvironmental alterations is important, as the surrounding niche influences the onset of oncogenic events. Both short- (3 days) and long-term (17 days) exposures to the genotoxic carcinogen methyl methanesulfonate (50 µM) were evaluated during homeostasis and animal regeneration, two situations that render altered cellular niches. In both cases, MMS-induced DNA damage was observed, which provoked a decrease in proliferation on the short term. The outcome of DNA damage responses following long-term exposure differed between homeostatic and regenerating animals. During regeneration, DNA repair systems were more easily activated than in animals in homeostasis, where apoptosis was an important outcome. Knockdown experiments confirmed the importance of DNA repair systems during carcinogenic exposure in regenerating animals as knockdown of rad51 induced a stem cell-depleted phenotype, after regeneration was completed.
Collapse
Affiliation(s)
- An-Sofie Stevens
- Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Annelies Wouters
- Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Jan-Pieter Ploem
- Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Nicky Pirotte
- Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Andromeda Van Roten
- Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Maxime Willems
- Laboratory of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Ghent University, 9000 Ghent, Belgium.,Laboratory of Environmental Toxicology & Aquatic Ecology, Ghent University, 9000 Ghent, Belgium
| | - Niels Hellings
- Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium
| | - Carmen Franken
- Environmental Risk and Health Unit, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Gudrun Koppen
- Environmental Risk and Health Unit, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Tom Artois
- Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Michelle Plusquin
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Karen Smeets
- Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| |
Collapse
|
19
|
Butin-Israeli V, Bui TM, Wiesolek HL, Mascarenhas L, Lee JJ, Mehl LC, Knutson KR, Adam SA, Goldman RD, Beyder A, Wiesmuller L, Hanauer SB, Sumagin R. Neutrophil-induced genomic instability impedes resolution of inflammation and wound healing. J Clin Invest 2019; 129:712-726. [PMID: 30640176 DOI: 10.1172/jci122085] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 11/20/2018] [Indexed: 12/12/2022] Open
Abstract
Neutrophil (PMN) infiltration of the intestinal mucosa is a hallmark of tissue injury associated with inflammatory bowel diseases (IBDs). The pathological effects of PMNs are largely attributed to the release of soluble mediators and reactive oxygen species (ROS). We identified what we believe is a new, ROS-independent mechanism whereby activated tissue-infiltrating PMNs release microparticles armed with proinflammatory microRNAs (miR-23a and miR-155). Using IBD clinical samples, and in vitro and in vivo injury models, we show that PMN-derived miR-23a and miR-155 promote accumulation of double-strand breaks (DSBs) by inducing lamin B1-dependent replication fork collapse and inhibition of homologous recombination (HR) by targeting HR-regulator RAD51. DSB accumulation in injured epithelium led to impaired colonic healing and genomic instability. Targeted inhibition of miR-23a and miR-155 in cultured intestinal epithelial cells and in acutely injured mucosa decreased the detrimental effects of PMNs and enhanced tissue healing responses, suggesting that this approach can be used in therapies aimed at resolution of inflammation, in wound healing, and potentially to prevent neoplasia.
Collapse
Affiliation(s)
- Veronika Butin-Israeli
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Triet M Bui
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Hannah L Wiesolek
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lorraine Mascarenhas
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Joseph J Lee
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lindsey C Mehl
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kaitlyn R Knutson
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Stephen A Adam
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Robert D Goldman
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Arthur Beyder
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Lisa Wiesmuller
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | | | - Ronen Sumagin
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
20
|
Aramburú Junior JS, Eilers Treichel TL, Lemos Pinto Filho ST, Gehrke SA, Machado AK, Cadoná FC, Mânica da Cruz IB, Pippi NL. DNA damage in dental pulp mesenchymal stem cells: An in vitro study. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2018; 9:293-299. [PMID: 30713606 PMCID: PMC6346493 DOI: 10.30466/vrf.2018.33083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/07/2017] [Indexed: 12/21/2022]
Abstract
The aim of this study was to evaluate the potential use of a DNA comet assay, DNA fragmentation fluorimetric assay and reactive oxygen species levels as potential biomarkers of genome conditions of dental pulp stem cells (DPSCs) isolated from dog canine teeth. Mesenchymal stem cells were isolated from the dental pulp collected from dog teeth. The results obtained suggest the ideal moment for clinical application of cellular therapy for this type of cell. The cell culture was maintained with Dulbecco’s modified Eagle’s medium supplemented with 10.00% fetal bovine serum for eight passages. During each passage, cell proliferation, oxidative stress and level of DNA fragmentation were assessed by3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium (MTT) assay, testing 2,7 dichlorodihydro-fluorescein-diacetate and PicoGreen®, respectively. There were important differences among the first three DPSC passages compared to passages 4–8 and a large number of nuclei with some levels of DNA damage (30.00 to 40.00% in initial DPSC passages and > 50.00% in late passages), indicating in vitro DPSC genomic fragility. Within the limitations of this study, the results suggest these relatively simple and inexpensive approaches - comet and DNA fragmentation assays - could help sort stem cells with less DNA damage for use in research or therapies.
Collapse
Affiliation(s)
- Jaime Sardá Aramburú Junior
- Graduate Program in Veterinary Medicine, Federal University of Santa Maria, Santa Maria, Brazil.,Biotecnos Research Center, Santa Maria, Rio Grande do Sul, Brazil; Catholic University of Uruguay, Montevideo, Uruguay
| | | | | | - Sergio Alexandre Gehrke
- Biotecnos Research Center, Santa Maria, Rio Grande do Sul, Brazil; Catholic University of Uruguay, Montevideo, Uruguay
| | | | | | | | - Ney Luis Pippi
- Graduate Program in Veterinary Medicine, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
21
|
Bellio C, DiGloria C, Foster R, James K, Konstantinopoulos PA, Growdon WB, Rueda BR. PARP Inhibition Induces Enrichment of DNA Repair-Proficient CD133 and CD117 Positive Ovarian Cancer Stem Cells. Mol Cancer Res 2018; 17:431-445. [PMID: 30401718 DOI: 10.1158/1541-7786.mcr-18-0594] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/24/2018] [Accepted: 10/18/2018] [Indexed: 11/16/2022]
Abstract
PARP inhibitors (PARPi) are FDA-approved monotherapy agents for the treatment of recurrent ovarian cancer in patients with and without a BRCA mutation. Despite promising response rates, not all patients derive benefit, and the majority develop resistance. PARPi treatment in vitro and in vivo induced an enrichment of CD133+ and CD117+ ovarian cancer stem cells (CSC). This effect was not affected by BRCA mutation status. In the CSC fractions, PARPi induced cell-cycle arrest in G2-M with a consequent accumulation of γH2AX, RAD51, and uniquely DMC1 foci. DNA damage and repair monitoring assays demonstrated that CSCs display more efficient DNA repair due, in part, to activation of embryonic repair mechanisms which involved the RAD51 homologue, DMC1 recombinase. Preserved and induced homologous repair (HR) could be a mechanism of an inherent resistance of CSCs to the synthetic lethality of PARPi that likely promotes disease recurrence. IMPLICATIONS: Treatment with PARPi fails to significantly affect ovarian cancer CSC populations, likely contributing to recurrent disease. Ovarian cancer CSCs stabilize genomic integrity after PARPi treatment, due to a more efficient inherent DNA repair capacity. PARPi-induced DMC1 recombinase and HR proficiency provide CSCs the opportunity to repair DNA damage more efficiently.Visual Overview: http://mcr.aacrjournals.org/content/molcanres/17/2/431/F1.large.jpg.
Collapse
Affiliation(s)
- Chiara Bellio
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Celeste DiGloria
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Rosemary Foster
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts
| | - Kaitlyn James
- Deborah Kelly Center for Outcomes Research, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Whitfield B Growdon
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts
| | - Bo R Rueda
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts. .,Harvard Medical School, Boston, Massachusetts.,Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
22
|
Petkova R, Zhelev N, Pankov R, Chakarov S. Individual capacity for repair of DNA damage and potential uses of stem cell lines for clinical applications: a matter of (genomic) integrity. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1520611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- Rumena Petkova
- Faculty of Medicine, Sofia University ‘St. Kliment Ohridski’, Sofia, Bulgaria
| | - Nikolai Zhelev
- CMCBR, School of Science, Engineering & Technology, Abertay University, Dundee, UK
| | - Roumen Pankov
- Department of Biochemistry, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, Sofia, Bulgaria
| | - Stoyan Chakarov
- Department of Biochemistry, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, Sofia, Bulgaria
| |
Collapse
|
23
|
Pennisi R, Albanesi J, Ascenzi P, Nervi C, di Masi A. Are DNA damage response kinases a target for the differentiation treatment of acute myeloid leukemia? IUBMB Life 2018; 70:1057-1066. [PMID: 30296357 DOI: 10.1002/iub.1918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/04/2018] [Indexed: 12/13/2022]
Abstract
Acute myeloid leukemia (AML) is a genetically heterogeneous malignancy characterized by the expansion of hematopoietic stem/progenitor cells (HPCs) blocked at different stages of maturation/differentiation. The poor outcome of AMLs necessitates therapeutic improvement. In AML, genes encoding for myeloid transcription factors, signaling receptors regulating cell proliferation, and epigenetic modifiers can be mutated by somatically acquired genetic mutations or altered by chromosomal translocations. These mutations modify chromatin organization at genes sites regulating HPCs proliferation, terminal differentiation, and DNA repair, contributing to the development and progression of the disease. The reversibility of the epigenetic modifications by drug treatment makes epigenetic changes attractive targets for AML therapeutic intervention. Recent findings underline increased DNA damage and abnormalities in the DNA damage response (DDR) as a critical feature of AML blasts. The DDR preserves cell integrity and must be tightly coordinated with DNA methylation and chromatin remodeling to ensure the accessibility to the DNA of transcription factors and repair enzymes. A crucial role in these events is played by the ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related protein (ATR) kinases, which are hyperactive in AML. Based on these findings, we hypothesize the inhibition of DNA damage kinases as an alternative or complementary strategy for the differentiation treatment of AML as it leads to a reduced ability to repair the DNA damage, and to the inhibition of specific epigenetic modifiers whose function is altered in leukemic cells. © 2018 IUBMB Life, 70(11):1057-1066, 2018.
Collapse
Affiliation(s)
- Rosa Pennisi
- Department of Sciences, Roma Tre University, Roma, Italy
| | | | - Paolo Ascenzi
- Department of Sciences, Roma Tre University, Roma, Italy
| | - Clara Nervi
- Department of Medico-Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Latina, Italy
| | | |
Collapse
|
24
|
The ubiquitin ligase UBR5 suppresses proteostasis collapse in pluripotent stem cells from Huntington's disease patients. Nat Commun 2018; 9:2886. [PMID: 30038412 PMCID: PMC6056416 DOI: 10.1038/s41467-018-05320-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 06/29/2018] [Indexed: 01/12/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) undergo unlimited self-renewal while maintaining their potential to differentiate into post-mitotic cells with an intact proteome. As such, iPSCs suppress the aggregation of polyQ-expanded huntingtin (HTT), the mutant protein underlying Huntington’s disease (HD). Here we show that proteasome activity determines HTT levels, preventing polyQ-expanded aggregation in iPSCs from HD patients (HD-iPSCs). iPSCs exhibit high levels of UBR5, a ubiquitin ligase required for proteasomal degradation of both normal and mutant HTT. Conversely, loss of UBR5 increases HTT levels and triggers polyQ-expanded aggregation in HD-iPSCs. Moreover, UBR5 knockdown hastens polyQ-expanded aggregation and neurotoxicity in invertebrate models. Notably, UBR5 overexpression induces polyubiquitination and degradation of mutant HTT, reducing polyQ-expanded aggregates in HD-cell models. Besides HTT levels, intrinsic enhanced UBR5 expression determines global proteostasis of iPSCs preventing the aggregation of misfolded proteins ensued from normal metabolism. Thus, our findings indicate UBR5 as a modulator of super-vigilant proteostasis of iPSCs. Induced pluripotent stem cells (iPSCs) suppress the aggregation of Huntington’s disease (HD) polyQ-expanded huntingtin (HTT). Here the authors show that proteasome activity determines the levels of mutant HTT in HD-iPSCs and find that UBR5 is a modulator of super-vigilant proteostasis of iPSCs.
Collapse
|
25
|
Magni M, Buscemi G, Zannini L. Cell cycle and apoptosis regulator 2 at the interface between DNA damage response and cell physiology. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 776:1-9. [DOI: 10.1016/j.mrrev.2018.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 01/06/2023]
|
26
|
Schimmel J, Kool H, van Schendel R, Tijsterman M. Mutational signatures of non-homologous and polymerase theta-mediated end-joining in embryonic stem cells. EMBO J 2017; 36:3634-3649. [PMID: 29079701 PMCID: PMC5730883 DOI: 10.15252/embj.201796948] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 09/05/2017] [Accepted: 09/29/2017] [Indexed: 12/11/2022] Open
Abstract
Cells employ potentially mutagenic DNA repair mechanisms to avoid the detrimental effects of chromosome breaks on cell survival. While classical non-homologous end-joining (cNHEJ) is largely error-free, alternative end-joining pathways have been described that are intrinsically mutagenic. Which end-joining mechanisms operate in germ and embryonic cells and thus contribute to heritable mutations found in congenital diseases is, however, still largely elusive. Here, we determined the genetic requirements for the repair of CRISPR/Cas9-induced chromosomal breaks of different configurations, and establish the mutational consequences. We find that cNHEJ and polymerase theta-mediated end-joining (TMEJ) act both parallel and redundant in mouse embryonic stem cells and account for virtually all end-joining activity. Surprisingly, mutagenic repair by polymerase theta (Pol θ, encoded by the Polq gene) is most prevalent for blunt double-strand breaks (DSBs), while cNHEJ dictates mutagenic repair of DSBs with protruding ends, in which the cNHEJ polymerases lambda and mu play minor roles. We conclude that cNHEJ-dependent repair of DSBs with protruding ends can explain de novo formation of tandem duplications in mammalian genomes.
Collapse
Affiliation(s)
- Joost Schimmel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Hanneke Kool
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Robin van Schendel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marcel Tijsterman
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
27
|
Sergeeva VA, Ershova ES, Veiko NN, Malinovskaya EM, Kalyanov AA, Kameneva LV, Stukalov SV, Dolgikh OA, Konkova MS, Ermakov AV, Veiko VP, Izhevskaya VL, Kutsev SI, Kostyuk SV. Low-Dose Ionizing Radiation Affects Mesenchymal Stem Cells via Extracellular Oxidized Cell-Free DNA: A Possible Mediator of Bystander Effect and Adaptive Response. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9515809. [PMID: 28904740 PMCID: PMC5585687 DOI: 10.1155/2017/9515809] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/17/2017] [Accepted: 05/18/2017] [Indexed: 12/26/2022]
Abstract
We have hypothesized that the adaptive response to low doses of ionizing radiation (IR) is mediated by oxidized cell-free DNA (cfDNA) fragments. Here, we summarize our experimental evidence for this model. Studies involving measurements of ROS, expression of the NOX (superoxide radical production), induction of apoptosis and DNA double-strand breaks, antiapoptotic gene expression and cell cycle inhibition confirm this hypothesis. We have demonstrated that treatment of mesenchymal stem cells (MSCs) with low doses of IR (10 cGy) leads to cell death of part of cell population and release of oxidized cfDNA. cfDNA has the ability to penetrate into the cytoplasm of other cells. Oxidized cfDNA, like low doses of IR, induces oxidative stress, ROS production, ROS-induced oxidative modifications of nuclear DNA, DNA breaks, arrest of the cell cycle, activation of DNA reparation and antioxidant response, and inhibition of apoptosis. The MSCs pretreated with low dose of irradiation or oxidized cfDNA were equally effective in induction of adaptive response to challenge further dose of radiation. Our studies suggest that oxidized cfDNA is a signaling molecule in the stress signaling that mediates radiation-induced bystander effects and that it is an important component of the development of radioadaptive responses to low doses of IR.
Collapse
Affiliation(s)
- V. A. Sergeeva
- Research Centre for Medical Genetics (RCMG), Moscow 115478, Russia
| | - E. S. Ershova
- Research Centre for Medical Genetics (RCMG), Moscow 115478, Russia
- V. A. Negovsky Research Institute of General Reanimatology, Moscow 107031, Russia
| | - N. N. Veiko
- Research Centre for Medical Genetics (RCMG), Moscow 115478, Russia
- V. A. Negovsky Research Institute of General Reanimatology, Moscow 107031, Russia
| | | | - A. A. Kalyanov
- Research Centre for Medical Genetics (RCMG), Moscow 115478, Russia
| | - L. V. Kameneva
- Research Centre for Medical Genetics (RCMG), Moscow 115478, Russia
| | - S. V. Stukalov
- Research Centre for Medical Genetics (RCMG), Moscow 115478, Russia
| | - O. A. Dolgikh
- Research Centre for Medical Genetics (RCMG), Moscow 115478, Russia
| | - M. S. Konkova
- Research Centre for Medical Genetics (RCMG), Moscow 115478, Russia
| | - A. V. Ermakov
- Research Centre for Medical Genetics (RCMG), Moscow 115478, Russia
| | - V. P. Veiko
- Bach Institute of Biochemistry and Russian Academy of Sciences, 33 Leninskii Ave., Moscow 119071, Russia
| | - V. L. Izhevskaya
- Research Centre for Medical Genetics (RCMG), Moscow 115478, Russia
| | - S. I. Kutsev
- Research Centre for Medical Genetics (RCMG), Moscow 115478, Russia
- N. I. Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - S. V. Kostyuk
- Research Centre for Medical Genetics (RCMG), Moscow 115478, Russia
| |
Collapse
|
28
|
García-Prat L, Muñoz-Cánoves P. Aging, metabolism and stem cells: Spotlight on muscle stem cells. Mol Cell Endocrinol 2017; 445:109-117. [PMID: 27531569 DOI: 10.1016/j.mce.2016.08.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/11/2016] [Indexed: 12/15/2022]
Abstract
All tissues and organs undergo a progressive regenerative decline as they age. This decline has been mainly attributed to loss of stem cell number and/or function, and both stem cell-intrinsic changes and alterations in local niches and/or systemic environment over time are known to contribute to the stem cell aging phenotype. Advancing in the molecular understanding of the deterioration of stem cell cells with aging is key for targeting the specific causes of tissue regenerative dysfunction at advanced stages of life. Here, we revise exciting recent findings on why stem cells age and the consequences on tissue regeneration, with a special focus on regeneration of skeletal muscle. We also highlight newly identified common molecular pathways affecting diverse types of aging stem cells, such as altered proteostasis, metabolism, or senescence entry, and discuss the questions raised by these findings. Finally, we comment on emerging stem cell rejuvenation strategies, principally emanating from studies on muscle stem cells, which will surely burst tissue regeneration research for future benefit of the increasing human aging population.
Collapse
Affiliation(s)
- Laura García-Prat
- Tissue Regeneration Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra; University (UPF) y CIBERNED, Barcelona, Spain
| | - Pura Muñoz-Cánoves
- Tissue Regeneration Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Cell Biology Group, Department of Experimental and Health Sciences, Pompeu Fabra; University (UPF) y CIBERNED, Barcelona, Spain; ICREA, Barcelona, Spain.
| |
Collapse
|
29
|
High-Fidelity Reprogrammed Human IPSCs Have a High Efficacy of DNA Repair and Resemble hESCs in Their MYC Transcriptional Signature. Stem Cells Int 2016; 2016:3826249. [PMID: 27688775 PMCID: PMC5023833 DOI: 10.1155/2016/3826249] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/23/2016] [Accepted: 07/14/2016] [Indexed: 01/27/2023] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) are reprogrammed from adult or progenitor somatic cells and must make substantial adaptations to ensure genomic stability in order to become "embryonic stem cell- (ESC-) like." The DNA damage response (DDR) is critical for maintenance of such genomic integrity. Herein, we determined whether cell of origin and reprogramming method influence the DDR of hiPSCs. We demonstrate that hiPSCs derived from cord blood (CB) myeloid progenitors (i.e., CB-iPSC) via an efficient high-fidelity stromal-activated (sa) method closely resembled hESCs in DNA repair gene expression signature and irradiation-induced DDR, relative to hiPSCs generated from CB or fibroblasts via standard methods. Furthermore, sa-CB-iPSCs also more closely resembled hESCs in accuracy of nonhomologous end joining (NHEJ), DNA double-strand break (DSB) repair, and C-MYC transcriptional signatures, relative to standard hiPSCs. Our data suggests that hiPSCs derived via more efficient reprogramming methods possess more hESC-like activated MYC signatures and DDR signaling. Thus, an authentic MYC molecular signature may serve as an important biomarker in characterizing the genomic integrity in hiPSCs.
Collapse
|
30
|
Halevy T, Akov S, Bohndorf M, Mlody B, Adjaye J, Benvenisty N, Goldberg M. Chromosomal Instability and Molecular Defects in Induced Pluripotent Stem Cells from Nijmegen Breakage Syndrome Patients. Cell Rep 2016; 16:2499-511. [PMID: 27545893 DOI: 10.1016/j.celrep.2016.07.071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 05/29/2016] [Accepted: 07/26/2016] [Indexed: 01/09/2023] Open
Abstract
Nijmegen breakage syndrome (NBS) results from the absence of the NBS1 protein, responsible for detection of DNA double-strand breaks (DSBs). NBS is characterized by microcephaly, growth retardation, immunodeficiency, and cancer predisposition. Here, we show successful reprogramming of NBS fibroblasts into induced pluripotent stem cells (NBS-iPSCs). Our data suggest a strong selection for karyotypically normal fibroblasts to go through the reprogramming process. NBS-iPSCs then acquire numerous chromosomal aberrations and show a delayed response to DSB induction. Furthermore, NBS-iPSCs display slower growth, mitotic inhibition, a reduced apoptotic response to stress, and abnormal cell-cycle-related gene expression. Importantly, NBS neural progenitor cells (NBS-NPCs) show downregulation of neural developmental genes, which seems to be mediated by P53. Our results demonstrate the importance of NBS1 in early human development, shed light on the molecular mechanisms underlying this severe syndrome, and further expand our knowledge of the genomic stress cells experience during the reprogramming process.
Collapse
Affiliation(s)
- Tomer Halevy
- The Azrieli Center for Stem Cells and Genetic Research, The Hebrew University, Givat-Ram, Jerusalem 91904, Israel; Department of Genetics, Institute of Life Sciences, The Hebrew University, Givat-Ram, Jerusalem 91904, Israel
| | - Shira Akov
- The Azrieli Center for Stem Cells and Genetic Research, The Hebrew University, Givat-Ram, Jerusalem 91904, Israel; Department of Genetics, Institute of Life Sciences, The Hebrew University, Givat-Ram, Jerusalem 91904, Israel
| | - Martina Bohndorf
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Barbara Mlody
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstrasse 5, 40225 Duesseldorf, Germany
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, The Hebrew University, Givat-Ram, Jerusalem 91904, Israel; Department of Genetics, Institute of Life Sciences, The Hebrew University, Givat-Ram, Jerusalem 91904, Israel.
| | - Michal Goldberg
- Department of Genetics, Institute of Life Sciences, The Hebrew University, Givat-Ram, Jerusalem 91904, Israel.
| |
Collapse
|
31
|
Lee HJ, Gutierrez‐Garcia R, Vilchez D. Embryonic stem cells: a novel paradigm to study proteostasis? FEBS J 2016; 284:391-398. [DOI: 10.1111/febs.13810] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/22/2016] [Accepted: 07/08/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Hyun Ju Lee
- Cologne Excellence Cluster for Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Germany
| | - Ricardo Gutierrez‐Garcia
- Cologne Excellence Cluster for Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Germany
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Germany
| |
Collapse
|
32
|
Mujoo K, Butler EB, Pandita RK, Hunt CR, Pandita TK. Pluripotent Stem Cells and DNA Damage Response to Ionizing Radiations. Radiat Res 2016; 186:17-26. [PMID: 27332952 PMCID: PMC4963261 DOI: 10.1667/rr14417.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pluripotent stem cells (PSCs) hold great promise in regenerative medicine, disease modeling, functional genomics, toxicological studies and cell-based therapeutics due to their unique characteristics of self-renewal and pluripotency. Novel methods for generation of pluripotent stem cells and their differentiation to the specialized cell types such as neuronal cells, myocardial cells, hepatocytes and beta cells of the pancreas and many other cells of the body are constantly being refined. Pluripotent stem cell derived differentiated cells, including neuronal cells or cardiac cells, are ideal for stem cell transplantation as autologous or allogeneic cells from healthy donors due to their minimal risk of rejection. Radiation-induced DNA damage, ultraviolet light, genotoxic stress and other intrinsic and extrinsic factors triggers a series of biochemical reactions known as DNA damage response. To maintain genomic stability and avoid transmission of mutations into progenitors cells, stem cells have robust DNA damage response signaling, a contrast to somatic cells. Stem cell transplantation may protect against radiation-induced late effects. In particular, this review focuses on differential DNA damage response between stem cells and derived differentiated cells and the possible pathways that determine such differences.
Collapse
Affiliation(s)
- Kalpana Mujoo
- Department of Radiation Oncology, The Houston Methodist Research Institute, Weill Cornell Medical College, The Houston Methodist Hospital, 6550 Fannin Street, Houston, TX 77030
| | - E. Brian Butler
- Department of Radiation Oncology, The Houston Methodist Research Institute, Weill Cornell Medical College, The Houston Methodist Hospital, 6550 Fannin Street, Houston, TX 77030
| | - Raj K. Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Weill Cornell Medical College, The Houston Methodist Hospital, 6550 Fannin Street, Houston, TX 77030
| | - Clayton R. Hunt
- Department of Radiation Oncology, The Houston Methodist Research Institute, Weill Cornell Medical College, The Houston Methodist Hospital, 6550 Fannin Street, Houston, TX 77030
| | - Tej K. Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, Weill Cornell Medical College, The Houston Methodist Hospital, 6550 Fannin Street, Houston, TX 77030
| |
Collapse
|
33
|
Tsai RYL. Balancing self-renewal against genome preservation in stem cells: How do they manage to have the cake and eat it too? Cell Mol Life Sci 2016; 73:1803-23. [PMID: 26886024 PMCID: PMC5040593 DOI: 10.1007/s00018-016-2152-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/18/2016] [Accepted: 01/28/2016] [Indexed: 01/22/2023]
Abstract
Stem cells are endowed with the awesome power of self-renewal and multi-lineage differentiation that allows them to be major contributors to tissue homeostasis. Owing to their longevity and self-renewal capacity, they are also faced with a higher risk of genomic damage compared to differentiated cells. Damage on the genome, if not prevented or repaired properly, will threaten the survival of stem cells and culminate in organ failure, premature aging, or cancer formation. It is therefore of paramount importance that stem cells remain genomically stable throughout life. Given their unique biological and functional requirement, stem cells are thought to manage genotoxic stress somewhat differently from non-stem cells. The focus of this article is to review the current knowledge on how stem cells escape the barrage of oxidative and replicative DNA damage to stay in self-renewal. A clear statement on this subject should help us better understand tissue regeneration, aging, and cancer.
Collapse
Affiliation(s)
- Robert Y L Tsai
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, 2121 W. Holcombe Blvd, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, TX, 77843, USA.
| |
Collapse
|
34
|
Park JS, Na HJ, Pyo JH, Jeon HJ, Kim YS, Yoo MA. Requirement of ATR for maintenance of intestinal stem cells in aging Drosophila. Aging (Albany NY) 2016; 7:307-18. [PMID: 26000719 PMCID: PMC4468312 DOI: 10.18632/aging.100743] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The stem cell genomic stability forms the basis for robust tissue homeostasis, particularly in high-turnover tissues. For the genomic stability, DNA damage response (DDR) is essential. This study was focused on the role of two major DDR-related factors, ataxia telangiectasia-mutated (ATM) and ATM- and RAD3-related (ATR) kinases, in the maintenance of intestinal stem cells (ISCs) in the adult Drosophila midgut. We explored the role of ATM and ATR, utilizing immunostaining with an anti-pS/TQ antibody as an indicator of ATM/ATR activation, γ-irradiation as a DNA damage inducer, and the UAS/GAL4 system for cell type-specific knockdown of ATM, ATR, or both during adulthood. The results showed that the pS/TQ signals got stronger with age and after oxidative stress. The pS/TQ signals were found to be more dependent on ATR rather than on ATM in ISCs/enteroblasts (EBs). Furthermore, an ISC/EB-specific knockdown of ATR, ATM, or both decreased the number of ISCs and oxidative stress-induced ISC proliferation. The phenotypic changes that were caused by the ATR knockdown were more pronounced than those caused by the ATM knockdown; however, our data indicate that ATR and ATM are both needed for ISC maintenance and proliferation; ATR seems to play a bigger role than does ATM.
Collapse
Affiliation(s)
- Joung-Sun Park
- Department of Molecular Biology, Pusan National University, Busan, 609-735, Republic of Korea
| | - Hyun-Jin Na
- Department of Molecular Biology, Pusan National University, Busan, 609-735, Republic of Korea
| | - Jung-Hoon Pyo
- Department of Molecular Biology, Pusan National University, Busan, 609-735, Republic of Korea
| | - Ho-Jun Jeon
- Department of Molecular Biology, Pusan National University, Busan, 609-735, Republic of Korea
| | - Young-Shin Kim
- Department of Molecular Biology, Pusan National University, Busan, 609-735, Republic of Korea
| | - Mi-Ae Yoo
- Department of Molecular Biology, Pusan National University, Busan, 609-735, Republic of Korea
| |
Collapse
|
35
|
Wnt/β-catenin pathway regulates MGMT gene expression in cancer and inhibition of Wnt signalling prevents chemoresistance. Nat Commun 2015; 6:8904. [PMID: 26603103 PMCID: PMC4674781 DOI: 10.1038/ncomms9904] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 10/14/2015] [Indexed: 01/07/2023] Open
Abstract
The DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) is commonly overexpressed in cancers and is implicated in the development of chemoresistance. The use of drugs inhibiting MGMT has been hindered by their haematologic toxicity and inefficiency. As a different strategy to inhibit MGMT we investigated cellular regulators of MGMT expression in multiple cancers. Here we show a significant correlation between Wnt signalling and MGMT expression in cancers with different origin and confirm the findings by bioinformatic analysis and immunofluorescence. We demonstrate Wnt-dependent MGMT gene expression and cellular co-localization between active β-catenin and MGMT. Pharmacological or genetic inhibition of Wnt activity downregulates MGMT expression and restores chemosensitivity of DNA-alkylating drugs in mouse models. These findings have potential therapeutic implications for chemoresistant cancers, especially of brain tumours where the use of temozolomide is frequently used in treatment. The high expression of the DNA repair enzyme O6-methylguanine DNA methyltransferase (MGMT) often confers resistance to chemotherapy in several cancers. In this study, the authors propose the inhibition of the Wnt signalling pathway as an alternative strategy to modulate MGMT expression and sensitize tumours to chemotherapy.
Collapse
|
36
|
Mieloch AA, Suchorska WM. The concept of radiation-enhanced stem cell differentiation. Radiol Oncol 2015; 49:209-16. [PMID: 26401125 PMCID: PMC4577216 DOI: 10.1515/raon-2015-0022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/05/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Efficient stem cell differentiation is considered to be the holy grail of regenerative medicine. Pursuing the most productive method of directed differentiation has been the subject of numerous studies, resulting in the development of many effective protocols. However, the necessity for further improvement in differentiation efficiency remains. This review contains a description of molecular processes underlying the response of stem cells to ionizing radiation, indicating its potential application in differentiation procedures. In the first part, the radiation-induced damage response in various types of stem cells is described. Second, the role of the p53 protein in embryonic and adult stem cells is highlighted. Last, the hypothesis on the mitochondrial involvement in stem cell development including its response to ionizing radiation is presented. CONCLUSIONS In summary, despite the many threats of ionizing radiation concerning genomic instability, subjecting cells to the appropriate dosage of ionizing radiation may become a useful method for enhancing directed differentiation in certain stem cell types.
Collapse
Affiliation(s)
- Adam A. Mieloch
- Radiobiology Laboratory, Department of Medical Physics, The Greater Poland Cancer Centre
| | - Wiktoria M. Suchorska
- Radiobiology Laboratory, Department of Medical Physics, The Greater Poland Cancer Centre
| |
Collapse
|
37
|
Kostyuk S, Smirnova T, Kameneva L, Porokhovnik L, Speranskij A, Ershova E, Stukalov S, Izevskaya V, Veiko N. GC-Rich Extracellular DNA Induces Oxidative Stress, Double-Strand DNA Breaks, and DNA Damage Response in Human Adipose-Derived Mesenchymal Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:782123. [PMID: 26273425 PMCID: PMC4529983 DOI: 10.1155/2015/782123] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 01/14/2015] [Accepted: 01/15/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND Cell free DNA (cfDNA) circulates throughout the bloodstream of both healthy people and patients with various diseases. CfDNA is substantially enriched in its GC-content as compared with human genomic DNA. PRINCIPAL FINDINGS Exposure of haMSCs to GC-DNA induces short-term oxidative stress (determined with H2DCFH-DA) and results in both single- and double-strand DNA breaks (comet assay and γH2AX, foci). As a result in the cells significantly increases the expression of repair genes (BRCA1 (RT-PCR), PCNA (FACS)) and antiapoptotic genes (BCL2 (RT-PCR and FACS), BCL2A1, BCL2L1, BIRC3, and BIRC2 (RT-PCR)). Under the action of GC-DNA the potential of mitochondria was increased. Here we show that GC-rich extracellular DNA stimulates adipocyte differentiation of human adipose-derived mesenchymal stem cells (haMSCs). Exposure to GC-DNA leads to an increase in the level of RNAPPARG2 and LPL (RT-PCR), in the level of fatty acid binding protein FABP4 (FACS analysis) and in the level of fat (Oil Red O). CONCLUSIONS GC-rich fragments in the pool of cfDNA can potentially induce oxidative stress and DNA damage response and affect the direction of mesenchymal stem cells differentiation in human adipose-derived mesenchymal stem cells. Such a response may be one of the causes of obesity or osteoporosis.
Collapse
Affiliation(s)
- Svetlana Kostyuk
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Mosskvorechie Street 1, Moscow 115478, Russia
| | - Tatiana Smirnova
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Mosskvorechie Street 1, Moscow 115478, Russia
| | - Larisa Kameneva
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Mosskvorechie Street 1, Moscow 115478, Russia
| | - Lev Porokhovnik
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Mosskvorechie Street 1, Moscow 115478, Russia
| | - Anatolij Speranskij
- V.A. Nasonova Research Institute of Rheumatology, Russian Academy of Medical Sciences, Russia
| | - Elizaveta Ershova
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Mosskvorechie Street 1, Moscow 115478, Russia
| | - Sergey Stukalov
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Mosskvorechie Street 1, Moscow 115478, Russia
| | - Vera Izevskaya
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Mosskvorechie Street 1, Moscow 115478, Russia
| | - Natalia Veiko
- Research Centre for Medical Genetics, Russian Academy of Medical Sciences, Mosskvorechie Street 1, Moscow 115478, Russia
| |
Collapse
|
38
|
Xiong J, Todorova D, Su NY, Kim J, Lee PJ, Shen Z, Briggs SP, Xu Y. Stemness factor Sall4 is required for DNA damage response in embryonic stem cells. ACTA ACUST UNITED AC 2015; 208:513-20. [PMID: 25733712 PMCID: PMC4347641 DOI: 10.1083/jcb.201408106] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mouse embryonic stem cells (ESCs) are genetically more stable than somatic cells, thereby preventing the passage of genomic abnormalities to their derivatives including germ cells. The underlying mechanisms, however, remain largely unclear. In this paper, we show that the stemness factor Sall4 is required for activating the critical Ataxia Telangiectasia Mutated (ATM)-dependent cellular responses to DNA double-stranded breaks (DSBs) in mouse ESCs and confer their resistance to DSB-induced cytotoxicity. Sall4 is rapidly mobilized to the sites of DSBs after DNA damage. Furthermore, Sall4 interacts with Rad50 and stabilizes the Mre11-Rad50-Nbs1 complex for the efficient recruitment and activation of ATM. Sall4 also interacts with Baf60a, a member of the SWI/SNF (switch/sucrose nonfermentable) ATP-dependent chromatin-remodeling complex, which is responsible for recruiting Sall4 to the site of DNA DSB damage. Our findings provide novel mechanisms to coordinate stemness of ESCs with DNA damage response, ensuring genomic stability during the expansion of ESCs.
Collapse
Affiliation(s)
- Jianhua Xiong
- Section of Molecular Biology and Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Dilyana Todorova
- Section of Molecular Biology and Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Ning-Yuan Su
- Section of Molecular Biology and Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Jinchul Kim
- Section of Molecular Biology and Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093 Cancer Research Institute, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Pei-Jen Lee
- Section of Molecular Biology and Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Zhouxin Shen
- Section of Molecular Biology and Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Steven P Briggs
- Section of Molecular Biology and Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Yang Xu
- Section of Molecular Biology and Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
39
|
Nakashima S, Kobayashi S, Nagano H, Tomokuni A, Tomimaru Y, Asaoka T, Hama N, Wada H, Kawamoto K, Marubashi S, Eguchi H, Doki Y, Mori M. BRCA/Fanconi anemia pathway implicates chemoresistance to gemcitabine in biliary tract cancer. Cancer Sci 2015; 106:584-91. [PMID: 25736055 PMCID: PMC4452159 DOI: 10.1111/cas.12652] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/11/2015] [Accepted: 02/27/2015] [Indexed: 12/19/2022] Open
Abstract
The BRCA/Fanconi anemia (FA) pathway plays a key role in the repair of DNA double strand breaks. We focused on this pathway to clarify chemoresistance mechanisms in biliary tract cancer (BTC). We also investigated changes in the CD24+/44+ population that may be involved in chemoresistance, as this population likely includes cancer stem cells. We used three BTC cell lines to establish gemcitabine (GEM)-resistant (GR) cells and evaluated the expression of BRCA/FA pathway components, chemoresistance, and the effect of BRCA/FA pathway inhibition on the CD24+/44+ population. FANCD2 and CD24 expression were evaluated in 108 resected BTC specimens. GR cells highly expressed the BRCA/FA components. The BRCA/FA pathway was upregulated by GEM and cisplatin (CDDP) exposure. Inhibition using siRNA and RAD51 inhibitor sensitized GR cells to GEM or CDDP. The CD24+/44+ population was increased in GR and parent BTC cells treated with GEM or CDDP and highly expressed BRCA/FA genes. FANCD2 was related to CD24 expression in resected BTC specimens. Inhibition of the BRCA/FA pathway under GEM reduced the CD24+/44+ population in MzChA1-GR cells. Thus, high expression of the BRCA/FA pathway is one mechanism of chemoresistance against GEM and/or CDDP and is related to the CD24+/44+ population in BTC.
Collapse
Affiliation(s)
- Shinsuke Nakashima
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shogo Kobayashi
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan.,Department of Surgery, Osaka Medical Center for Cancer and Cardio-Vascular Diseases, Osaka, Japan
| | - Hiroaki Nagano
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Akira Tomokuni
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshito Tomimaru
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tadafumi Asaoka
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Naoki Hama
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiroshi Wada
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Koichi Kawamoto
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shigeru Marubashi
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuichiro Doki
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masaki Mori
- Department of Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
40
|
Liedtke S, Biebernick S, Radke TF, Stapelkamp D, Coenen C, Zaehres H, Fritz G, Kogler G. DNA damage response in neonatal and adult stromal cells compared with induced pluripotent stem cells. Stem Cells Transl Med 2015; 4:576-89. [PMID: 25900727 DOI: 10.5966/sctm.2014-0209] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 02/23/2015] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Comprehensive analyses comparing individual DNA damage response (DDR) of induced pluripotent stem cells (iPSCs) with neonatal stromal cells with respect to their developmental age are limited. The imperative necessity of providing developmental age-matched cell sources for meaningful toxicological drug safety assessments in replacement of animal-based testing strategies is evident. Here, DDR after radiation or treatment with N-methyl-N-nitrosurea (MNU) was determined in iPSCs compared with neonatal and bone marrow stromal cells. Neonatal and adult stromal cells showed no significant morphologically detectable cytotoxicity following treatment with 1 Gy or 1 mM MNU, whereas iPSCs revealed a much higher sensitivity. Foci analyses revealed an effective DNA repair in stromal cell types and iPSCs, as reflected by a rapid formation and disappearance of phosphorylated ATM and γH2AX foci. Furthermore, quantitative polymerase chain reaction analyses revealed the highest basic expression level of DDR and repair-associated genes in iPSCs, followed by neonatal stromal cells and adult stromal cells with the lowest expression levels. In addition, the influence of genotoxic stress prior to and during osteogenic differentiation of neonatal and adult stromal cells was analyzed applying common differentiation procedures. Experiments presented here suggest a developmental age-dependent basic expression level of genes involved in the processing of DNA damage. In addition a differentiation-dependent downregulation of repair genes was observed during osteogenesis. These results strongly support the requirement to provide adequate cell sources for toxicological in vitro drug testing strategies that match to the developmental age and differentiation status of the presumptive target cell of interest. SIGNIFICANCE The results obtained in this study advance the understanding of DNA damage processing in human neonatal stromal cells as compared with adult stromal cells and induced pluripotent stem cells (iPSCs). The data suggest developmental age-dependent differences in DNA damage repair capacity. In iPSCs (closest to embryonic stem cells), the highest expression level of DNA damage response and repair genes was found, followed by neonatal stromal cells and adult stromal cells with the lowest overall expression. In addition, a differentiation-dependent downregulation of repair capacity was observed during osteogenic differentiation in neonatal stromal cells. Notably, the impact of genotoxic stress on osteogenic differentiation depended on the time the genotoxic insult took place and, moreover, was agent-specific. These results strongly support the necessity of offering and establishing adequate cell sources for informative toxicological testing matching to the developmental age and differentiation status of the respective cell of interest.
Collapse
Affiliation(s)
- Stefanie Liedtke
- Institute for Transplantation Diagnostics and Cell Therapeutics and Institute of Toxicology, Heinrich-Heine-University Medical Center, Düsseldorf, Germany; Department Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Sophie Biebernick
- Institute for Transplantation Diagnostics and Cell Therapeutics and Institute of Toxicology, Heinrich-Heine-University Medical Center, Düsseldorf, Germany; Department Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Teja Falk Radke
- Institute for Transplantation Diagnostics and Cell Therapeutics and Institute of Toxicology, Heinrich-Heine-University Medical Center, Düsseldorf, Germany; Department Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Daniela Stapelkamp
- Institute for Transplantation Diagnostics and Cell Therapeutics and Institute of Toxicology, Heinrich-Heine-University Medical Center, Düsseldorf, Germany; Department Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Carolin Coenen
- Institute for Transplantation Diagnostics and Cell Therapeutics and Institute of Toxicology, Heinrich-Heine-University Medical Center, Düsseldorf, Germany; Department Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Holm Zaehres
- Institute for Transplantation Diagnostics and Cell Therapeutics and Institute of Toxicology, Heinrich-Heine-University Medical Center, Düsseldorf, Germany; Department Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Gerhard Fritz
- Institute for Transplantation Diagnostics and Cell Therapeutics and Institute of Toxicology, Heinrich-Heine-University Medical Center, Düsseldorf, Germany; Department Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Gesine Kogler
- Institute for Transplantation Diagnostics and Cell Therapeutics and Institute of Toxicology, Heinrich-Heine-University Medical Center, Düsseldorf, Germany; Department Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
41
|
Ernst M, Abu Dawud R, Kurtz A, Schotta G, Taher L, Fuellen G. Comparative computational analysis of pluripotency in human and mouse stem cells. Sci Rep 2015; 5:7927. [PMID: 25604210 PMCID: PMC4300513 DOI: 10.1038/srep07927] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 12/18/2014] [Indexed: 12/22/2022] Open
Abstract
Pluripotent cells can be subdivided into two distinct states, the naïve and the primed state, the latter being further advanced on the path of differentiation. There are substantial differences in the regulation of pluripotency between human and mouse, and in humans only stem cells that resemble the primed state in mouse are readily available. Reprogramming of human stem cells into a more naïve-like state is an important research focus. Here, we developed a pipeline to reanalyze transcriptomics data sets that describe both states, naïve and primed pluripotency, in human and mouse. The pipeline consists of identifying regulated start-ups/shut-downs in terms of molecular interactions, followed by functional annotation of the genes involved and aggregation of results across conditions, yielding sets of mechanisms that are consistently regulated in transitions towards similar states of pluripotency. Our results suggest that one published protocol for naïve human cells gave rise to human cells that indeed share putative mechanisms with the prototypical naïve mouse pluripotent cells, such as DNA damage response and histone acetylation. However, cellular response and differentiation-related mechanisms are similar between the naïvehuman state and the primedmouse state, so the naïvehuman state did not fully reflect the naïvemouse state.
Collapse
Affiliation(s)
- Mathias Ernst
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Raed Abu Dawud
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité, Berlin, Germany
| | - Andreas Kurtz
- 1] Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité, Berlin, Germany [2] College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Gunnar Schotta
- Ludwig Maximilians University and Munich Center for Integrated Protein Science (CiPSM), Adolf-Butenandt-Institute, Munich, Germany
| | - Leila Taher
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
42
|
Zannini L, Delia D, Buscemi G. CHK2 kinase in the DNA damage response and beyond. J Mol Cell Biol 2014; 6:442-57. [PMID: 25404613 PMCID: PMC4296918 DOI: 10.1093/jmcb/mju045] [Citation(s) in RCA: 318] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 09/17/2014] [Accepted: 09/24/2014] [Indexed: 12/21/2022] Open
Abstract
The serine/threonine kinase CHK2 is a key component of the DNA damage response. In human cells, following genotoxic stress, CHK2 is activated and phosphorylates >20 proteins to induce the appropriate cellular response, which, depending on the extent of damage, the cell type, and other factors, could be cell cycle checkpoint activation, induction of apoptosis or senescence, DNA repair, or tolerance of the damage. Recently, CHK2 has also been found to have cellular functions independent of the presence of nuclear DNA lesions. In particular, CHK2 participates in several molecular processes involved in DNA structure modification and cell cycle progression. In this review, we discuss the activity of CHK2 in response to DNA damage and in the maintenance of the biological functions in unstressed cells. These activities are also considered in relation to a possible role of CHK2 in tumorigenesis and, as a consequence, as a target of cancer therapy.
Collapse
Affiliation(s)
- Laura Zannini
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Domenico Delia
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| | - Giacomo Buscemi
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
43
|
Stem cells: the pursuit of genomic stability. Int J Mol Sci 2014; 15:20948-67. [PMID: 25405730 PMCID: PMC4264205 DOI: 10.3390/ijms151120948] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/02/2014] [Accepted: 11/04/2014] [Indexed: 12/18/2022] Open
Abstract
Stem cells harbor significant potential for regenerative medicine as well as basic and clinical translational research. Prior to harnessing their reparative nature for degenerative diseases, concerns regarding their genetic integrity and mutation acquisition need to be addressed. Here we review pluripotent and multipotent stem cell response to DNA damage including differences in DNA repair kinetics, specific repair pathways (homologous recombination vs. non-homologous end joining), and apoptotic sensitivity. We also describe DNA damage and repair strategies during reprogramming and discuss potential genotoxic agents that can reduce the inherent risk for teratoma formation and mutation accumulation. Ensuring genomic stability in stem cell lines is required to achieve the quality control standards for safe clinical application.
Collapse
|
44
|
The Trp53-Trp53inp1-Tnfrsf10b pathway regulates the radiation response of mouse spermatogonial stem cells. Stem Cell Reports 2014; 3:676-89. [PMID: 25358794 PMCID: PMC4223695 DOI: 10.1016/j.stemcr.2014.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 08/05/2014] [Accepted: 08/06/2014] [Indexed: 12/22/2022] Open
Abstract
Germ cells are thought to exhibit a unique DNA damage response that differs from that of somatic stem cells, and previous studies suggested that Trp53 is not involved in the survival of spermatogonial stem cells (SSCs) after irradiation. Here, we report a critical role for the Trp53-Trp53inp1-Tnfrsf10b pathway during radiation-induced SSC apoptosis. Spermatogonial transplantation revealed that Trp53 deficiency increased the survival of SSCs after irradiation. Although Bbc3, a member of the intrinsic apoptotic pathway, was implicated in apoptosis of germ and somatic stem cells, Bbc3 depletion inhibited apoptosis in committed spermatogonia, but not in SSCs. In contrast, inhibition of Tnfrsf10b, an extrinsic apoptosis regulator, rescued SSCs. Tnfrsf10b, whose deficiency protected SSCs, was upregulated by Trp53inp1 upon irradiation. These results suggest that the Trp53-Trp53inp1-Tnfrsf10b pathway responds to genotoxic damage in SSCs and that stem and progenitor cells exhibit distinct DNA damage responses in self-renewing tissue. Trp53 induces radiation-induced apoptosis of spermatogonial stem cells (SSCs) Bbc3 induces radiation-induced apoptosis of spermatogonial progenitors Tnfsf10 is induced in spermatogonia and the SSC microenvironment Trp53inp1 upregulates Tnfrsf10b and induces SSC apoptosis upon irradiation
Collapse
|
45
|
Characterization of DNA repair deficient strains of Chlamydomonas reinhardtii generated by insertional mutagenesis. PLoS One 2014; 9:e105482. [PMID: 25144319 PMCID: PMC4140758 DOI: 10.1371/journal.pone.0105482] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/23/2014] [Indexed: 12/15/2022] Open
Abstract
While the mechanisms governing DNA damage response and repair are fundamentally conserved, cross-kingdom comparisons indicate that they differ in many aspects due to differences in life-styles and developmental strategies. In photosynthetic organisms these differences have not been fully explored because gene-discovery approaches are mainly based on homology searches with known DDR/DNA repair proteins. Here we performed a forward genetic screen in the green algae Chlamydomonas reinhardtii to identify genes deficient in DDR/DNA repair. We isolated five insertional mutants that were sensitive to various genotoxic insults and two of them exhibited altered efficiency of transgene integration. To identify genomic regions disrupted in these mutants, we established a novel adaptor-ligation strategy for the efficient recovery of the insertion flanking sites. Four mutants harbored deletions that involved known DNA repair factors, DNA Pol zeta, DNA Pol theta, SAE2/COM1, and two neighbouring genes encoding ERCC1 and RAD17. Deletion in the last mutant spanned two Chlamydomonas-specific genes with unknown function, demonstrating the utility of this approach for discovering novel factors involved in genome maintenance.
Collapse
|
46
|
Skvortsov S, Debbage P, Lukas P, Skvortsova I. Crosstalk between DNA repair and cancer stem cell (CSC) associated intracellular pathways. Semin Cancer Biol 2014; 31:36-42. [PMID: 24954010 DOI: 10.1016/j.semcancer.2014.06.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/09/2014] [Indexed: 01/08/2023]
Abstract
DNA damaging agents (ionizing radiation and chemotherapeutics) are considered as most effective in cancer treatment. However, there is a subpopulation of carcinoma cells within the tumour demonstrating resistance to DNA damaging treatment approaches. It is suggested that limited tumour response to this kind of therapy can be associated with specific molecular properties of carcinoma stem cells (CSCs) representing the most refractory cell subpopulation. This review article presents novel data about molecular features of CSCs underlying DNA damage response and related intracellular signalling.
Collapse
Affiliation(s)
- Sergej Skvortsov
- Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, Innsbruck, Austria.
| | - Paul Debbage
- Department of Anatomy, Histology and Embryology, Innsbruck Medical University, Innsbruck, Austria
| | - Peter Lukas
- Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, Innsbruck, Austria
| | - Ira Skvortsova
- Department of Therapeutic Radiology and Oncology, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
47
|
Takimoto N, Wang L, Itahashi M, Ogawa T, Segawa R, Hara S, Murakami T, Suzuki K, Shibutani M. Maternal single injection of N-methyl-N-nitrosourea to cause microcephaly in offspring induces transient aberration of hippocampal neurogenesis in mice. Toxicol Lett 2014; 226:20-7. [DOI: 10.1016/j.toxlet.2014.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 10/25/2022]
|
48
|
Storm MP, Kumpfmueller B, Bone HK, Buchholz M, Sanchez Ripoll Y, Chaudhuri JB, Niwa H, Tosh D, Welham MJ. Zscan4 is regulated by PI3-kinase and DNA-damaging agents and directly interacts with the transcriptional repressors LSD1 and CtBP2 in mouse embryonic stem cells. PLoS One 2014; 9:e89821. [PMID: 24594919 PMCID: PMC3940611 DOI: 10.1371/journal.pone.0089821] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 01/23/2014] [Indexed: 12/20/2022] Open
Abstract
The Zscan4 family of genes, encoding SCAN-domain and zinc finger-containing proteins, has been implicated in the control of early mammalian embryogenesis as well as the regulation of pluripotency and maintenance of genome integrity in mouse embryonic stem cells. However, many features of this enigmatic family of genes are poorly understood. Here we show that undifferentiated mouse embryonic stem cell (ESC) lines simultaneously express multiple members of the Zscan4 gene family, with Zscan4c, Zscan4f and Zscan4-ps2 consistently being the most abundant. Despite this, between only 0.1 and 0.7% of undifferentiated mouse pluripotent stem cells express Zscan4 protein at a given time, consistent with a very restricted pattern of Zscan4 transcripts reported previously. Herein we demonstrate that Zscan4 expression is regulated by the p110α catalytic isoform of phosphoinositide 3-kinases and is induced following exposure to a sub-class of DNA-damage-inducing agents, including Zeocin and Cisplatin. Furthermore, we observe that Zscan4 protein expression peaks during the G2 phase of the cell cycle, suggesting that it may play a critical role at this checkpoint. Studies with GAL4-fusion proteins suggest a role for Zscan4 in transcriptional regulation, further supported by the fact that protein interaction analyses demonstrate that Zscan4 interacts with both LSD1 and CtBP2 in ESC nuclei. This study advances and extends our understanding of Zscan4 expression, regulation and mechanism of action. Based on our data we propose that Zscan4 may regulate gene transcription in mouse ES cells through interaction with LSD1 and CtBP2.
Collapse
Affiliation(s)
- Michael P. Storm
- Centre for Regenerative Medicine and Departments of Pharmacy & Pharmacology, University of Bath, Bath, United Kingdom
| | - Benjamin Kumpfmueller
- Centre for Regenerative Medicine and Departments of Pharmacy & Pharmacology, University of Bath, Bath, United Kingdom
- Department of Chemical Engineering, University of Bath, Bath, United Kingdom
| | - Heather K. Bone
- Centre for Regenerative Medicine and Departments of Pharmacy & Pharmacology, University of Bath, Bath, United Kingdom
| | - Michael Buchholz
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Yolanda Sanchez Ripoll
- Centre for Regenerative Medicine and Departments of Pharmacy & Pharmacology, University of Bath, Bath, United Kingdom
| | - Julian B. Chaudhuri
- Department of Chemical Engineering, University of Bath, Bath, United Kingdom
| | - Hitoshi Niwa
- RIKEN Centre for Developmental Biology, Kobe, Hyogo, Japan
| | - David Tosh
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Melanie J. Welham
- Centre for Regenerative Medicine and Departments of Pharmacy & Pharmacology, University of Bath, Bath, United Kingdom
- * E-mail:
| |
Collapse
|
49
|
Manda K, Kavanagh JN, Buttler D, Prise KM, Hildebrandt G. Low dose effects of ionizing radiation on normal tissue stem cells. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 761:6-14. [PMID: 24566131 DOI: 10.1016/j.mrrev.2014.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 02/03/2014] [Accepted: 02/13/2014] [Indexed: 12/18/2022]
Abstract
In recent years, there has been growing evidence for the involvement of stem cells in cancer initiation. As a result of their long life span, stem cells may have an increased propensity to accumulate genetic damage relative to differentiated cells. Therefore, stem cells of normal tissues may be important targets for radiation-induced carcinogenesis. Knowledge of the effects of ionizing radiation (IR) on normal stem cells and on the processes involved in carcinogenesis is very limited. The influence of high doses of IR (>5Gy) on proliferation, cell cycle and induction of senescence has been demonstrated in stem cells. There have been limited studies of the effects of moderate (0.5-5Gy) and low doses (<0.5Gy) of IR on stem cells however, the effect of low dose IR (LD-IR) on normal stem cells as possible targets for radiation-induced carcinogenesis has not been studied in any depth. There may also be important parallels between stem cell responses and those of cancer stem cells, which may highlight potential key common mechanisms of their response and radiosensitivity. This review will provide an overview of the current knowledge of radiation-induced effects on normal stem cells, with particular focus on low and moderate doses of IR.
Collapse
Affiliation(s)
- Katrin Manda
- Department of Radiotherapy and Radiation Oncology, University of Rostock, Suedring 75, 18059 Rostock, Germany.
| | - Joy N Kavanagh
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.
| | - Dajana Buttler
- Department of Radiotherapy and Radiation Oncology, University of Rostock, Suedring 75, 18059 Rostock, Germany.
| | - Kevin M Prise
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.
| | - Guido Hildebrandt
- Department of Radiotherapy and Radiation Oncology, University of Rostock, Suedring 75, 18059 Rostock, Germany.
| |
Collapse
|
50
|
Sandulache VC, Chen Y, Lee J, Rubinstein A, Ramirez MS, Skinner HD, Walker CM, Williams MD, Tailor R, Court LE, Bankson JA, Lai SY. Evaluation of hyperpolarized [1-¹³C]-pyruvate by magnetic resonance to detect ionizing radiation effects in real time. PLoS One 2014; 9:e87031. [PMID: 24475215 PMCID: PMC3903593 DOI: 10.1371/journal.pone.0087031] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/18/2013] [Indexed: 11/20/2022] Open
Abstract
Ionizing radiation (IR) cytotoxicity is primarily mediated through reactive oxygen species (ROS). Since tumor cells neutralize ROS by utilizing reducing equivalents, we hypothesized that measurements of reducing potential using real-time hyperpolarized (HP) magnetic resonance spectroscopy (MRS) and spectroscopic imaging (MRSI) can serve as a surrogate marker of IR induced ROS. This hypothesis was tested in a pre-clinical model of anaplastic thyroid carcinoma (ATC), an aggressive head and neck malignancy. Human ATC cell lines were utilized to test IR effects on ROS and reducing potential in vitro and [1-13C] pyruvate HP-MRS/MRSI imaging of ATC orthotopic xenografts was used to study in vivo effects of IR. IR increased ATC intra-cellular ROS levels resulting in a corresponding decrease in reducing equivalent levels. Exogenous manipulation of cellular ROS and reducing equivalent levels altered ATC radiosensitivity in a predictable manner. Irradiation of ATC xenografts resulted in an acute drop in reducing potential measured using HP-MRS, reflecting the shunting of reducing equivalents towards ROS neutralization. Residual tumor tissue post irradiation demonstrated heterogeneous viability. We have adapted HP-MRS/MRSI to non-invasively measure IR mediated changes in tumor reducing potential in real time. Continued development of this technology could facilitate the development of an adaptive clinical algorithm based on real-time adjustments in IR dose and dose mapping.
Collapse
Affiliation(s)
- Vlad C. Sandulache
- Bobby R. Alford Department of Otolaryngology, Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Head and Neck Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Yunyun Chen
- Department of Head and Neck Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Jaehyuk Lee
- Department of Imaging Physics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Ashley Rubinstein
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Marc S. Ramirez
- Department of Imaging Physics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Heath D. Skinner
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Christopher M. Walker
- Department of Imaging Physics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Michelle D. Williams
- Department of Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Ramesh Tailor
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Laurence E. Court
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - James A. Bankson
- Department of Imaging Physics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Stephen Y. Lai
- Department of Head and Neck Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|