1
|
Benner O, Cast TP, Minamide LS, Lenninger Z, Bamburg JR, Chanda S. Multiple N-linked glycosylation sites critically modulate the synaptic abundance of neuroligin isoforms. J Biol Chem 2023; 299:105361. [PMID: 37865312 PMCID: PMC10679506 DOI: 10.1016/j.jbc.2023.105361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023] Open
Abstract
In recent years, elegant glycomic and glycoproteomic approaches have revealed an intricate glycosylation profile of mammalian brain with enormous spatial and temporal diversities. Nevertheless, at a cellular level, it is unclear how these post-translational modifications affect various proteins to influence crucial neuronal properties. Here, we have investigated the impact of N-linked glycosylation on neuroligins (NLGNs), a class of cell-adhesion molecules that play instructive roles in synapse organization. We found that endogenous NLGN proteins are differentially glycosylated across several regions of murine brain in a sex-independent but isoform-dependent manner. In both rodent primary neurons derived from brain sections and human neurons differentiated from stem cells, all NLGN variants were highly enriched with multiple N-glycan subtypes, which cumulatively ensured their efficient trafficking to the cell surface. Removal of these N-glycosylation residues only had a moderate effect on NLGNs' stability or expression levels but particularly enhanced their retention at the endoplasmic reticulum. As a result, the glycosylation-deficient NLGNs exhibited considerable impairments in their dendritic distribution and postsynaptic accumulation, which in turn, virtually eliminated their ability to recruit presynaptic terminals and significantly reduced NLGN overexpression-induced assemblies of both glutamatergic and GABAergic synapse structures. Therefore, our results highlight an essential mechanistic contribution of N-linked glycosylations in facilitating the appropriate secretory transport of a major synaptic cell-adhesion molecule and promoting its cellular function in neurons.
Collapse
Affiliation(s)
- Orion Benner
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, USA
| | - Thomas P Cast
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, USA
| | - Laurie S Minamide
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, USA
| | - Zephyr Lenninger
- Molecular, Cellular & Integrated Neurosciences, Colorado State University, Fort Collins, Colorado, USA
| | - James R Bamburg
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, USA; Molecular, Cellular & Integrated Neurosciences, Colorado State University, Fort Collins, Colorado, USA; Cell & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Soham Chanda
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, USA; Molecular, Cellular & Integrated Neurosciences, Colorado State University, Fort Collins, Colorado, USA; Cell & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA.
| |
Collapse
|
2
|
Chen J, Zeng X, Zhang W, Li G, Zhong H, Xu C, Li X, Lin T. Fucosyltransferase 9 promotes neuronal differentiation and functional recovery after spinal cord injury by suppressing the activation of Notch signaling. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1571-1581. [PMID: 37674364 PMCID: PMC10577474 DOI: 10.3724/abbs.2023138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/14/2023] [Indexed: 09/08/2023] Open
Abstract
Individuals with spinal cord injury (SCI) suffer from permanent disabilities such as severe motor, sensory and autonomic dysfunction. Neural stem cell transplantation has proven to be a potential strategy to promote regeneration of the spinal cord, since NSCs can produce neurotrophic growth factors and differentiate into mature neurons to reconstruct the injured site. However, it is necessary to optimize the differentiation of NSCs before transplantation to achieve a better regenerative outcome. Inhibition of Notch signaling leads to a transition from NSCs to neurons, while the underlying mechanism remains inadequately understood. Our results demonstrate that overexpression of fucosyltransferase 9 (Fut9), which is upregulated by Wnt4, promotes neuronal differentiation by suppressing the activation of Notch signaling through disruption of furin-like enzyme activity during S1 cleavage. In an in vivo study, Fut9-modified NSCs efficiently differentiates into neurons to promote functional and histological recovery after SCI. Our research provides insight into the mechanisms of Notch signaling and a potential treatment strategy for SCI.
Collapse
Affiliation(s)
- Jiewen Chen
- Department of Spine SurgeryThe First Affiliated HospitalSun Yat-sen UniversityGuangzhou510080China
| | - Xiaolin Zeng
- Department of Spine SurgeryThe First Affiliated HospitalSun Yat-sen UniversityGuangzhou510080China
| | - Wenwu Zhang
- Department of Spine SurgeryThe First Affiliated HospitalSun Yat-sen UniversityGuangzhou510080China
| | - Gang Li
- Department of Spine SurgeryThe First Affiliated HospitalSun Yat-sen UniversityGuangzhou510080China
| | - Haoming Zhong
- Department of Orthopedics and TraumatologyZhujiang HospitalSouthern Medical UniversityGuangzhou510280China
| | - Chengzhong Xu
- Department of Orthopedics and TraumatologyZhujiang HospitalSouthern Medical UniversityGuangzhou510280China
| | - Xiang Li
- Department of Spine SurgeryThe First Affiliated HospitalSun Yat-sen UniversityGuangzhou510080China
| | - Tao Lin
- Department of Orthopedics and TraumatologyZhujiang HospitalSouthern Medical UniversityGuangzhou510280China
| |
Collapse
|
3
|
Costa J, Hayes C, Lisacek F. Protein glycosylation and glycoinformatics for novel biomarker discovery in neurodegenerative diseases. Ageing Res Rev 2023; 89:101991. [PMID: 37348818 DOI: 10.1016/j.arr.2023.101991] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/25/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023]
Abstract
Glycosylation is a common post-translational modification of brain proteins including cell surface adhesion molecules, synaptic proteins, receptors and channels, as well as intracellular proteins, with implications in brain development and functions. Using advanced state-of-the-art glycomics and glycoproteomics technologies in conjunction with glycoinformatics resources, characteristic glycosylation profiles in brain tissues are increasingly reported in the literature and growing evidence shows deregulation of glycosylation in central nervous system disorders, including aging associated neurodegenerative diseases. Glycan signatures characteristic of brain tissue are also frequently described in cerebrospinal fluid due to its enrichment in brain-derived molecules. A detailed structural analysis of brain and cerebrospinal fluid glycans collected in publications in healthy and neurodegenerative conditions was undertaken and data was compiled to create a browsable dedicated set in the GlyConnect database of glycoproteins (https://glyconnect.expasy.org/brain). The shared molecular composition of cerebrospinal fluid with brain enhances the likelihood of novel glycobiomarker discovery for neurodegeneration, which may aid in unveiling disease mechanisms, therefore, providing with novel therapeutic targets as well as diagnostic and progression monitoring tools.
Collapse
Affiliation(s)
- Júlia Costa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal.
| | - Catherine Hayes
- Proteome Informatics Group, Swiss Institute of Bioinformatics, CH-1227 Geneva, Switzerland
| | - Frédérique Lisacek
- Proteome Informatics Group, Swiss Institute of Bioinformatics, CH-1227 Geneva, Switzerland; Computer Science Department, University of Geneva, CH-1227 Geneva, Switzerland; Section of Biology, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
4
|
Bradberry MM, Peters-Clarke TM, Shishkova E, Chapman ER, Coon JJ. N-glycoproteomics of brain synapses and synaptic vesicles. Cell Rep 2023; 42:112368. [PMID: 37036808 PMCID: PMC10560701 DOI: 10.1016/j.celrep.2023.112368] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/13/2023] [Accepted: 03/23/2023] [Indexed: 04/11/2023] Open
Abstract
At mammalian neuronal synapses, synaptic vesicle (SV) glycoproteins are essential for robust neurotransmission. Asparagine (N)-linked glycosylation is required for delivery of the major SV glycoproteins synaptophysin and SV2A to SVs. Despite this key role for N-glycosylation, the molecular compositions of SV N-glycans are largely unknown. In this study, we combined organelle isolation techniques and high-resolution mass spectrometry to characterize N-glycosylation at synapses and SVs from mouse brain. Detecting over 2,500 unique glycopeptides, we found that SVs harbor a distinct population of oligomannose and highly fucosylated N-glycans. Using complementary fluorescence methods, we identify at least one highly fucosylated N-glycan enriched in SVs compared with synaptosomes. High fucosylation was characteristic of SV proteins, plasma membrane proteins, and cell adhesion molecules with key roles in synaptic function and development. Our results define the N-glycoproteome of a specialized neuronal organelle and inform timely questions in the glycobiology of synaptic pruning and neuroinflammation.
Collapse
Affiliation(s)
- Mazdak M Bradberry
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA; Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA.
| | - Trenton M Peters-Clarke
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
| | - Evgenia Shishkova
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA
| | - Edwin R Chapman
- Howard Hughes Medical Institute and Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; National Center for Quantitative Biology of Complex Systems, Madison, WI 53706, USA; Morgridge Institute for Research, Madison, WI 53715, USA
| |
Collapse
|
5
|
Mocci E, Goto T, Chen J, Ament S, Traub RJ, Dorsey SG. Early and Late Transcriptional Changes in Blood, Neural, and Colon Tissues in Rat Models of Stress-Induced and Comorbid Pain Hypersensitivity Reveal Regulatory Roles in Neurological Disease. FRONTIERS IN PAIN RESEARCH 2022; 3:886042. [PMID: 35655748 PMCID: PMC9152010 DOI: 10.3389/fpain.2022.886042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/07/2022] [Indexed: 11/18/2022] Open
Abstract
Background Irritable bowel syndrome (IBS) and temporomandibular disorder (TMD) are two chronic pain conditions that frequently overlap in the same individual, more commonly in women. Stress is a significant risk factor, exacerbating or triggering one or both conditions. However, the mechanisms underlying IBS–TMD co-morbidity are mostly unknown. Aim To detect both specific and common stress-induced visceral hypersensitivity (SIH) and comorbid TMD–IBS pain hypersensitivity (CPH) genetic signatures over time. Method Twenty-four female rats were randomly assigned to one of three experimental groups: naïve, SIH, and CPH (orofacial pain plus stress). RNA was extracted from blood, colon, spinal cord, and dorsal root ganglion 1 or 7 weeks after the stress paradigm. We combined differential gene expression and co-expression network analyses to define both SIH and CPH expression profiles across tissues and time. Results The transcriptomic profile in blood and colon showed increased expression of genes enriched in inflammatory and neurological biological processes in CPH compared to SIH rats, both at 1 and 7 weeks after stress. In lumbosacral spinal tissue, both SIH and CPH rats compared to naïve revealed decreased expression of genes related to synaptic activity and increased expression of genes enriched in “angiogenesis,” “Neurotrophin,” and “PI3K-Akt” pathways. Compared to SIH, CPH rats showed increased expression of angiogenesis-related genes 1 week after exposure to stress, while 7 weeks post-stress the expression of these genes was higher in SIH rats. In dorsal root ganglia (DRG), CPH rats showed decreased expression of immune response genes at week 1 and inhibition of nerve myelination genes at 7 weeks compared to naïve. For all tissues, we observed higher expression of genes involved in ATP production in SIH compared to CPH at 1 week and this was reversed 7 weeks after the induction of stress. Conclusion Our study highlights an increased inflammatory response in CPH compared to SIH rats in the blood and colon. DRG and spinal transcriptomic profiles of both CPH and SIH rats showed inhibition of synaptic activity along with activation of angiogenesis. Targeting these biological processes may lead to a more profound understanding of the mechanisms underlying IBS–TMD comorbidities and new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Evelina Mocci
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, University of Maryland Baltimore, Baltimore, MD, United States
- Institute for Genome Sciences, University of Maryland School of Medicine, University of Maryland Baltimore, Baltimore, MD, United States
| | - Taichi Goto
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, University of Maryland Baltimore, Baltimore, MD, United States
| | - Jie Chen
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, University of Maryland Baltimore, Baltimore, MD, United States
| | - Seth Ament
- Institute for Genome Sciences, University of Maryland School of Medicine, University of Maryland Baltimore, Baltimore, MD, United States
| | - Richard J. Traub
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, University of Maryland Baltimore, Baltimore, MD, United States
- Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, United States
| | - Susan G. Dorsey
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, University of Maryland Baltimore, Baltimore, MD, United States
- Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, United States
- *Correspondence: Susan G. Dorsey
| |
Collapse
|
6
|
Williams SE, Noel M, Lehoux S, Cetinbas M, Xavier RJ, Sadreyev RI, Scolnick EM, Smoller JW, Cummings RD, Mealer RG. Mammalian brain glycoproteins exhibit diminished glycan complexity compared to other tissues. Nat Commun 2022; 13:275. [PMID: 35022400 PMCID: PMC8755730 DOI: 10.1038/s41467-021-27781-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 12/08/2021] [Indexed: 01/14/2023] Open
Abstract
Glycosylation is essential to brain development and function, but prior studies have often been limited to a single analytical technique and excluded region- and sex-specific analyses. Here, using several methodologies, we analyze Asn-linked and Ser/Thr/Tyr-linked protein glycosylation between brain regions and sexes in mice. Brain N-glycans are less complex in sequence and variety compared to other tissues, consisting predominantly of high-mannose and fucosylated/bisected structures. Most brain O-glycans are unbranched, sialylated O-GalNAc and O-mannose structures. A consistent pattern is observed between regions, and sex differences are minimal compared to those in plasma. Brain glycans correlate with RNA expression of their synthetic enzymes, and analysis of glycosylation genes in humans show a global downregulation in the brain compared to other tissues. We hypothesize that this restricted repertoire of protein glycans arises from their tight regulation in the brain. These results provide a roadmap for future studies of glycosylation in neurodevelopment and disease.
Collapse
Affiliation(s)
- Sarah E Williams
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maxence Noel
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sylvain Lehoux
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Murat Cetinbas
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ramnik J Xavier
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward M Scolnick
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT, Cambridge, MA, USA
| | - Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT, Cambridge, MA, USA
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Robert G Mealer
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT, Cambridge, MA, USA.
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Mealer RG, Williams SE, Daly MJ, Scolnick EM, Cummings RD, Smoller JW. Glycobiology and schizophrenia: a biological hypothesis emerging from genomic research. Mol Psychiatry 2020; 25:3129-3139. [PMID: 32377000 PMCID: PMC8081046 DOI: 10.1038/s41380-020-0753-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/09/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
Abstract
Advances in genomics are opening new windows into the biology of schizophrenia. Though common variants individually have small effects on disease risk, GWAS provide a powerful opportunity to explore pathways and mechanisms contributing to pathophysiology. Here, we highlight an underappreciated biological theme emerging from GWAS: the role of glycosylation in schizophrenia. The strongest coding variant in schizophrenia GWAS is a missense mutation in the manganese transporter SLC39A8, which is associated with altered glycosylation patterns in humans. Furthermore, variants near several genes encoding glycosylation enzymes are unambiguously associated with schizophrenia: FUT9, MAN2A1, TMTC1, GALNT10, and B3GAT1. Here, we summarize the known biological functions, target substrates, and expression patterns of these enzymes as a primer for future studies. We also highlight a subset of schizophrenia-associated proteins critically modified by glycosylation including glutamate receptors, voltage-gated calcium channels, the dopamine D2 receptor, and complement glycoproteins. We hypothesize that common genetic variants alter brain glycosylation and play a fundamental role in the development of schizophrenia. Leveraging these findings will advance our mechanistic understanding of disease and may provide novel avenues for treatment development.
Collapse
Affiliation(s)
- Robert G. Mealer
- Massachusetts General Hospital, Department of Psychiatry.,The Stanley Center for Psychiatric Research at Broad Institute.,Department of Surgery, Beth Israel Deaconess Medical Center. Harvard Medical School, Boston MA.,Corresponding Author: Robert Gene Mealer, M.D., Ph.D., Richard B. Simches Research Center, 185 Cambridge St, 6th Floor, Boston, MA 02114, Tel: +1 (617) 724-9076,
| | - Sarah E. Williams
- Massachusetts General Hospital, Department of Psychiatry.,Department of Surgery, Beth Israel Deaconess Medical Center. Harvard Medical School, Boston MA
| | - Mark J. Daly
- Massachusetts General Hospital, Department of Psychiatry.,The Stanley Center for Psychiatric Research at Broad Institute
| | - Edward M. Scolnick
- Massachusetts General Hospital, Department of Psychiatry.,The Stanley Center for Psychiatric Research at Broad Institute
| | - Richard D. Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center. Harvard Medical School, Boston MA
| | - Jordan W. Smoller
- Massachusetts General Hospital, Department of Psychiatry.,The Stanley Center for Psychiatric Research at Broad Institute
| |
Collapse
|
8
|
Blanas A, Zaal A, van der Haar Àvila I, Kempers M, Kruijssen L, de Kok M, Popovic MA, van der Horst JC, J. van Vliet S. FUT9-Driven Programming of Colon Cancer Cells towards a Stem Cell-Like State. Cancers (Basel) 2020; 12:cancers12092580. [PMID: 32927726 PMCID: PMC7565653 DOI: 10.3390/cancers12092580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/20/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) are located in dedicated niches, where they remain inert to chemotherapeutic drugs and drive metastasis. Although plasticity in the CSC pool is well appreciated, the molecular mechanisms implicated in the regulation of cancer stemness are still elusive. Here, we define a fucosylation-dependent reprogramming of colon cancer cells towards a stem cell-like phenotype and function. De novo transcriptional activation of Fut9 in the murine colon adenocarcinoma cell line, MC38, followed by RNA seq-based regulon analysis, revealed major gene regulatory networks related to stemness. Lewisx, Sox2, ALDH and CD44 expression, tumorsphere formation, resistance to 5-FU treatment and in vivo tumor growth were increased in FUT9-expressing MC38 cells compared to the control cells. Likewise, human CRC cell lines highly expressing FUT9 displayed phenotypic features of CSCs, which were significantly impaired upon FUT9 knock-out. Finally, in primary CRC FUT9+ tumor cells pathways related to cancer stemness were enriched, providing a clinically meaningful annotation of the complicity of FUT9 in stemness regulation and may open new avenues for therapeutic intervention.
Collapse
|
9
|
Osimanjiang W, Roballo KCS, Houck BD, Ito M, Antonopoulos A, Dell A, Haslam SM, Bushman JS. Analysis of N- and O-Linked Glycosylation: Differential Glycosylation after Rat Spinal Cord Injury. J Neurotrauma 2020; 37:1954-1962. [PMID: 32316850 DOI: 10.1089/neu.2019.6974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Glycosylation is a fundamental cellular process that has a dramatic impact on the functionality of glycoconjugates such as proteins or lipids and mediates many different biological interactions including cell migration, cellular signaling, and synaptic interactions in the nervous system. In spinal cord injury (SCI), all of these cellular processes are altered, but the potential contributions of glycosylation changes to these alterations has not been thoroughly investigated. We studied the glycosylation of injured spinal cord tissue from rats that received a contusion SCI. The N- and O-linked glycosylation was assessed at 3 and 14 days post-injury (DPI), and compared with uninjured control and time-matched sham spinal tissue. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and tandem MS (MS/MS) were performed to analyze carbohydrate structures. Results revealed diverse and abundant glycosylation in all groups, with some carbohydrate structures differentially produced in SCI animals compared with uninjured controls and shams. One such change occurred in the abundance of the Sda structure, Neu5Ac-α-(2,3)-[GalNAc-β-(1,4)-]Gal-β-(1,4)-GlcNAc, which was increased in SCI samples compared with shams and non-injured controls. Immunohistochemistry (IHC) and western blot were performed on SCI and sham samples using the CT1 antibody, which recognizes the terminal trisaccharide of Sda with high specificity. Both of these metrics confirmed elevated Sda structure in SCI tissue, where IHC further showed that Sda is expressed mainly by microglia. The results of these studies suggest that SCI causes a significant alteration in N- and O-linked glycosylation.
Collapse
Affiliation(s)
- Wupu Osimanjiang
- School of Pharmacy, University of Wyoming, Laramie, Wyoming, USA
| | | | - Brenda D Houck
- School of Pharmacy, University of Wyoming, Laramie, Wyoming, USA
| | - Mai Ito
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Anne Dell
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Jared S Bushman
- School of Pharmacy, University of Wyoming, Laramie, Wyoming, USA
| |
Collapse
|
10
|
Mikolajczyk K, Kaczmarek R, Czerwinski M. How glycosylation affects glycosylation: the role of N-glycans in glycosyltransferase activity. Glycobiology 2020; 30:941-969. [PMID: 32363402 DOI: 10.1093/glycob/cwaa041] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022] Open
Abstract
N-glycosylation is one of the most important posttranslational modifications of proteins. It plays important roles in the biogenesis and functions of proteins by influencing their folding, intracellular localization, stability and solubility. N-glycans are synthesized by glycosyltransferases, a complex group of ubiquitous enzymes that occur in most kingdoms of life. A growing body of evidence shows that N-glycans may influence processing and functions of glycosyltransferases, including their secretion, stability and substrate/acceptor affinity. Changes in these properties may have a profound impact on glycosyltransferase activity. Indeed, some glycosyltransferases have to be glycosylated themselves for full activity. N-glycans and glycosyltransferases play roles in the pathogenesis of many diseases (including cancers), so studies on glycosyltransferases may contribute to the development of new therapy methods and novel glycoengineered enzymes with improved properties. In this review, we focus on the role of N-glycosylation in the activity of glycosyltransferases and attempt to summarize all available data about this phenomenon.
Collapse
Affiliation(s)
- Krzysztof Mikolajczyk
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| | - Radoslaw Kaczmarek
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| | - Marcin Czerwinski
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| |
Collapse
|
11
|
A Comprehensive Genome-Wide and Phenome-Wide Examination of BMI and Obesity in a Northern Nevadan Cohort. G3-GENES GENOMES GENETICS 2020; 10:645-664. [PMID: 31888951 PMCID: PMC7003082 DOI: 10.1534/g3.119.400910] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The aggregation of Electronic Health Records (EHR) and personalized genetics leads to powerful discoveries relevant to population health. Here we perform genome-wide association studies (GWAS) and accompanying phenome-wide association studies (PheWAS) to validate phenotype-genotype associations of BMI, and to a greater extent, severe Class 2 obesity, using comprehensive diagnostic and clinical data from the EHR database of our cohort. Three GWASs of 500,000 variants on the Illumina platform of 6,645 Healthy Nevada participants identified several published and novel variants that affect BMI and obesity. Each GWAS was followed with two independent PheWASs to examine associations between extensive phenotypes (incidence of diagnoses, condition, or disease), significant SNPs, BMI, and incidence of extreme obesity. The first GWAS examines associations with BMI in a cohort with no type 2 diabetics, focusing exclusively on BMI. The second GWAS examines associations with BMI in a cohort that includes type 2 diabetics. In the second GWAS, type 2 diabetes is a comorbidity, and thus becomes a covariate in the statistical model. The intersection of significant variants of these two studies is surprising. The third GWAS is a case vs. control study, with cases defined as extremely obese (Class 2 or 3 obesity), and controls defined as participants with BMI between 18.5 and 25. This last GWAS identifies strong associations with extreme obesity, including established variants in the FTO and NEGR1 genes, as well as loci not yet linked to obesity. The PheWASs validate published associations between BMI and extreme obesity and incidence of specific diagnoses and conditions, yet also highlight novel links. This study emphasizes the importance of our extensive longitudinal EHR database to validate known associations and identify putative novel links with BMI and obesity.
Collapse
|
12
|
Lavin KM, Sealfon SC, McDonald MLN, Roberts BM, Wilk K, Nair VD, Ge Y, Lakshman Kumar P, Windham ST, Bamman MM. Skeletal muscle transcriptional networks linked to type I myofiber grouping in Parkinson's disease. J Appl Physiol (1985) 2020; 128:229-240. [PMID: 31829804 PMCID: PMC7052589 DOI: 10.1152/japplphysiol.00702.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/20/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder impacting cognition, movement, and quality of life in >10 million individuals worldwide. We recently characterized and quantified a skeletal muscle pathology in PD represented by exaggerated type I myofiber grouping presumed to result from denervation-reinnervation processes. Our previous findings indicated that impaired neuromuscular junction integrity may be involved in type I grouping, which is associated with excessive motor unit activation during weight-bearing tasks. In this study, we performed transcriptional profiling to test the hypothesis that type I grouping severity would link to distinct gene expression networks. We generated transcriptome-wide poly(A) RNA-Seq data from skeletal muscle of individuals with PD [n = 12 (9 men, 3 women); 67 ± 2 yr], age- and sex-matched older adults (n = 12; 68 ± 2 yr), and sex-matched young adults (n = 12; 30 ± 1 yr). Differentially expressed genes were evaluated across cohorts. Weighted gene correlation network analysis (WGCNA) was performed to identify gene networks most correlated with indicators of abnormal type I grouping. Among coexpression networks mapping to phenotypes pathologically increased in PD muscle, one network was highly significantly correlated to type I myofiber group size and another to percentage of type I myofibers found in groups. Annotation of coexpressed networks revealed that type I grouping is associated with altered expression of genes involved in neural development, postsynaptic signaling, cell cycle regulation and cell survival, protein and energy metabolism, inflammation/immunity, and posttranscriptional regulation (microRNAs). These transcriptomic findings suggest that skeletal muscle may play an active role in signaling to promote myofiber survival, reinnervation, and remodeling, perhaps to an extreme in PD.NEW & NOTEWORTHY Despite our awareness of the impact of Parkinson's disease (PD) on motor function for over two centuries, limited attention has focused on skeletal muscle. We previously identified type I myofiber grouping, a novel indicator of muscle dysfunction in PD, presumably a result of heightened rates of denervation/reinnervation. Using transcriptional profiling to identify networks associated with this phenotype, we provide insight into potential mechanistic roles of skeletal muscle in signaling to promote its survival in PD.
Collapse
Affiliation(s)
- Kaleen M Lavin
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Stuart C Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
- Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Merry-Lynn N McDonald
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Brandon M Roberts
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Katarzyna Wilk
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
- Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Venugopalan D Nair
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
- Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Yongchao Ge
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
- Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Preeti Lakshman Kumar
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Samuel T Windham
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Marcas M Bamman
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
13
|
Theis T, Johal AS, Kabat M, Basak S, Schachner M. Enhanced Neuronal Survival and Neurite Outgrowth Triggered by Novel Small Organic Compounds Mimicking the LewisX Glycan. Mol Neurobiol 2018; 55:8203-8215. [PMID: 29520715 PMCID: PMC6314473 DOI: 10.1007/s12035-018-0953-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 02/05/2018] [Indexed: 02/05/2023]
Abstract
Glycosylation fine-tunes signal transduction of adhesion molecules during neural development and supports synaptic plasticity and repair after injury in the adult nervous system. One abundantly expressed neural glycan is LewisX (LeX). Although it is known that its expression starts at the formation of the neural tube during the second embryonic week in the mouse and peaks during the first postnatal week, its functional relevance is only rudimentarily understood. To gain better insights into the functions of this glycan, we identified small organic compounds that mimic structurally and functionally this glycan glycosidically linked to several neural adhesion molecules. Mimetic compounds were identified by competitive enzyme-linked immunosorbent assay (ELISA) using the LeX-specific monoclonal antibodies L5 and SSEA-1 for screening a library of small organic molecules. In this assay, antibody binding to substrate-coated LeX glycomimetic peptide is measured in the presence of compounds, allowing identification of molecules that inhibit antibody binding and thereby mimic LeX. Gossypol, orlistat, ursolic acid, folic acid, and tosufloxacin inhibited antibody binding in a concentration-dependent manner. With the aim to functionally characterize the molecular consequences of the compounds' actions, we here present evidence that, at nM concentrations, the mimetic compounds enhance neurite outgrowth and promote neuronal survival of cultured mouse cerebellar granule cells via, notably, distinct signal transduction pathways. These findings raise hopes that these LeX mimetics will be powerful tools for further studying the functions of LeX and its effects in acute and chronic nervous system disease models. It is worth mentioning in this context that the LeX compounds investigated in the present study have been clinically approved for different therapies.
Collapse
Affiliation(s)
- Thomas Theis
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08554, USA
| | - Anmol Singh Johal
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08554, USA
| | - Maciej Kabat
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08554, USA
| | - Sayantani Basak
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08554, USA
- Developmental Sciences-Safety Assessment, Genentech, 1 DNA Way, South San Francisco, CA, 94080-4990, USA
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08554, USA.
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, China.
| |
Collapse
|
14
|
Everest-Dass AV, Moh ESX, Ashwood C, Shathili AMM, Packer NH. Human disease glycomics: technology advances enabling protein glycosylation analysis - part 2. Expert Rev Proteomics 2018. [PMID: 29521143 DOI: 10.1080/14789450.2018.1448710] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The changes in glycan structures have been attributed to disease states for several decades. The surface glycosylation pattern is a signature of physiological state of a cell. In this review we provide a link between observed substructural glycan changes and a range of diseases. Areas covered: We highlight biologically relevant glycan substructure expression in cancer, inflammation, neuronal diseases and diabetes. Furthermore, the alterations in antibody glycosylation in a disease context are described. Expert commentary: Advances in technologies, as described in Part 1 of this review have now enabled the characterization of specific glycan structural markers of a range of disease states. The requirement of including glycomics in cross-disciplinary omics studies, such as genomics, proteomics, epigenomics, transcriptomics and metabolomics towards a systems glycobiology approach to understanding disease mechanisms and management are highlighted.
Collapse
Affiliation(s)
- Arun V Everest-Dass
- a Faculty of Science and Engineering, Biomolecular Discovery and Design Research Centre , Macquarie University , Sydney , Australia.,b ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia.,c Institute for Glycomics , Griffith University , Gold Coast , Australia
| | - Edward S X Moh
- a Faculty of Science and Engineering, Biomolecular Discovery and Design Research Centre , Macquarie University , Sydney , Australia.,b ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia
| | - Christopher Ashwood
- a Faculty of Science and Engineering, Biomolecular Discovery and Design Research Centre , Macquarie University , Sydney , Australia.,b ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia
| | - Abdulrahman M M Shathili
- a Faculty of Science and Engineering, Biomolecular Discovery and Design Research Centre , Macquarie University , Sydney , Australia.,b ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia
| | - Nicolle H Packer
- a Faculty of Science and Engineering, Biomolecular Discovery and Design Research Centre , Macquarie University , Sydney , Australia.,b ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia.,c Institute for Glycomics , Griffith University , Gold Coast , Australia
| |
Collapse
|
15
|
Auslander N, Cunningham CE, Toosi BM, McEwen EJ, Yizhak K, Vizeacoumar FS, Parameswaran S, Gonen N, Freywald T, Bhanumathy KK, Freywald A, Vizeacoumar FJ, Ruppin E. An integrated computational and experimental study uncovers FUT9 as a metabolic driver of colorectal cancer. Mol Syst Biol 2017; 13:956. [PMID: 29196508 PMCID: PMC5740504 DOI: 10.15252/msb.20177739] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Metabolic alterations play an important role in cancer and yet, few metabolic cancer driver genes are known. Here we perform a combined genomic and metabolic modeling analysis searching for metabolic drivers of colorectal cancer. Our analysis predicts FUT9, which catalyzes the biosynthesis of Ley glycolipids, as a driver of advanced-stage colon cancer. Experimental testing reveals FUT9's complex dual role; while its knockdown enhances proliferation and migration in monolayers, it suppresses colon cancer cells expansion in tumorspheres and inhibits tumor development in a mouse xenograft models. These results suggest that FUT9's inhibition may attenuate tumor-initiating cells (TICs) that are known to dominate tumorspheres and early tumor growth, but promote bulk tumor cells. In agreement, we find that FUT9 silencing decreases the expression of the colorectal cancer TIC marker CD44 and the level of the OCT4 transcription factor, which is known to support cancer stemness. Beyond its current application, this work presents a novel genomic and metabolic modeling computational approach that can facilitate the systematic discovery of metabolic driver genes in other types of cancer.
Collapse
Affiliation(s)
- Noam Auslander
- Department of Computer Science, Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, USA
| | - Chelsea E Cunningham
- Department of Pathology, Cancer Cluster, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Behzad M Toosi
- Department of Pathology, Cancer Cluster, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Emily J McEwen
- Department of Pathology, Cancer Cluster, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Keren Yizhak
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Frederick S Vizeacoumar
- Department of Pathology, Cancer Cluster, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Sreejit Parameswaran
- Department of Pathology, Cancer Cluster, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Nir Gonen
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Tanya Freywald
- Department of Pathology, Cancer Cluster, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kalpana K Bhanumathy
- Department of Pathology, Cancer Cluster, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Andrew Freywald
- Department of Pathology, Cancer Cluster, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Franco J Vizeacoumar
- Department of Pathology, Cancer Cluster, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada .,Cancer Research, Saskatchewan Cancer Agency, Saskatoon, SK, Canada
| | - Eytan Ruppin
- Department of Computer Science, Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, USA
| |
Collapse
|
16
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
17
|
Lee J, Katzenmaier EM, Kopitz J, Gebert J. Reconstitution of TGFBR2 in HCT116 colorectal cancer cells causes increased LFNG expression and enhanced N-acetyl-d-glucosamine incorporation into Notch1. Cell Signal 2016; 28:1105-13. [DOI: 10.1016/j.cellsig.2016.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 04/19/2016] [Accepted: 04/28/2016] [Indexed: 12/20/2022]
|
18
|
Landais E, Leroy C, Kleinfinger P, Brunet S, Koubi V, Pietrement C, Poli-Mérol ML, Fiquet C, Souchon PF, Beri M, Jonveaux P, Garnotel R, Gaillard D, Doco-Fenzy M. A pure familial 6q15q21 split duplication associated with obesity and transmitted with partial reduction. Am J Med Genet A 2015; 167:1275-84. [PMID: 25900228 DOI: 10.1002/ajmg.a.36995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 12/29/2014] [Indexed: 01/06/2023]
Abstract
Familial transmission of chromosome 6 duplications is rare. We report on the first observation of a maternally-inherited pure segmental 6q duplication split into two segments, 6q15q16.3 and 6q16.3q21, and associated with obesity. Obesity has previously been correlated to chromosome 6 q-arm deletion but has not yet been assessed in duplications. The aim of this study was to characterize the structure of these intrachromosomal insertional translocations by classic cytogenetic banding, array-CGH, FISH, M-banding and genotyping using microsatellites and SNP array analysis, in a mother and four offspring. The duplicated 6q segments, 9.75 Mb (dup 1) and 7.05 Mb (dup 2) in size in the mother, were inserted distally into two distinct chromosome 6q regions. They were transmitted to four offspring. A son and a daughter inherited the two unbalanced insertions and displayed, like the mother, an abnormal phenotype with facial dysmorphism, intellectual disability, and morbid obesity. Curiously, two daughters with a normal phenotype inherited only the smaller segment, 6q16.3q21. The abnormal phenotype was associated with the larger proximal 6q15q16.3 duplication. We hypothesize a mechanism for this exceptional phenomenon of recurrent reduction and transmission of the duplication during meiosis in a family. We expect the interpretation of our findings to be useful for genetic counseling and for understanding the mechanisms underlying these large segmental 6q duplications and their evolution.
Collapse
Affiliation(s)
- Emilie Landais
- CHU-Reims, HMB, Service de Génétique, France.,CHU-Reims, HMB, Plateforme Régionale de Biologie Innovante, France
| | - Camille Leroy
- CHU-Reims, HMB, Service de Génétique, France.,Université de Reims Champagne-Ardenne, UFR de médecine, France
| | | | | | - Valérie Koubi
- Service de génétique Médicale, Laboratoire de génétique moléculaire, CHU Hopital Necker enfants malades, Paris, France
| | | | - Marie-Laurence Poli-Mérol
- Université de Reims Champagne-Ardenne, UFR de médecine, France.,CHU-Reims, American Memorial Hospital, Service de Chirurgie pédiatrique, France
| | - Caroline Fiquet
- CHU-Reims, American Memorial Hospital, Service de Chirurgie pédiatrique, France.,SFR CAP Santé, Reims, EA 3801, France
| | | | - Mylène Beri
- CHU-Nancy, Laboratoire de Génétique Médicale, Nancy Université, France
| | - Philippe Jonveaux
- CHU-Nancy, Laboratoire de Génétique Médicale, Nancy Université, France
| | - Roselyne Garnotel
- CHU-Reims, Laboratoire de Biochimie Médicale et Biologie Moléculaire, CNRS UMR 6198, UFR, Médecine, France
| | - Dominique Gaillard
- CHU-Reims, HMB, Service de Génétique, France.,Université de Reims Champagne-Ardenne, UFR de médecine, France
| | - Martine Doco-Fenzy
- CHU-Reims, HMB, Service de Génétique, France.,SFR CAP Santé, Reims, EA 3801, France
| |
Collapse
|
19
|
Gonçalves M, Tillack L, de Carvalho M, Pinto S, Conradt HS, Costa J. Phosphoneurofilament heavy chain and N-glycomics from the cerebrospinal fluid in amyotrophic lateral sclerosis. Clin Chim Acta 2014; 438:342-9. [PMID: 25261856 DOI: 10.1016/j.cca.2014.09.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 08/26/2014] [Accepted: 09/10/2014] [Indexed: 01/04/2023]
Abstract
BACKGROUND Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease of the motor neuron for which no clinically validated biomarkers have been identified. METHODS We have quantified by ELISA the biomarker phosphoneurofilament heavy chain (pNFH) in the cerebrospinal fluid (CSF) of ALS patients (n=29) and age-matched control patients with other diseases (n=19) by ELISA. Furthermore, we compared protein N-glycosylation of the CSF in ALS patients and controls, by applying a glycomics approach based on liquid chromatography and mass spectrometry. RESULTS pNFH levels were significantly higher in ALS patients in comparison with controls (P<0.0001) in particular in fast progressors. The N-glycans found in the CSF were predominantly complex diantennary with sialic acid in α2,3- and α2,6-linkage, and bisecting N-acetylglucosamine-containing structures as well as peripherally fucosylated structures were found. As compared with controls the ALS group had a significant increase of a peak composed of the monosialylated diantennary glycans A2G2S(6)1 and FA2G2S(3)1 (P=0.0348). CONCLUSIONS Our results underscore the value of pNFH as a biomarker in ALS. In addition, we identified a variation of the N-glycosylation pattern in ALS, suggesting that this change should be explored in future studies as potential biomarker.
Collapse
Affiliation(s)
- Margarida Gonçalves
- Laboratory of Glycobiology, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Linda Tillack
- GlycoThera GmbH, Feodor-Lynen Strasse 35, 30625 Hannover, Germany
| | - Mamede de Carvalho
- Department Neurosciences, Hospital de Santa Maria, Lisbon, Portugal; Translational Clinical Physiology Unit, Instituto de Medicina Molecular, Institute of Physiology, Faculty of Medicine - University of Lisbon, Portugal
| | - Susana Pinto
- Department Neurosciences, Hospital de Santa Maria, Lisbon, Portugal; Translational Clinical Physiology Unit, Instituto de Medicina Molecular, Institute of Physiology, Faculty of Medicine - University of Lisbon, Portugal
| | - Harald S Conradt
- GlycoThera GmbH, Feodor-Lynen Strasse 35, 30625 Hannover, Germany
| | - Júlia Costa
- Laboratory of Glycobiology, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
20
|
Escrevente C, Grammel N, Kandzia S, Zeiser J, Tranfield EM, Conradt HS, Costa J. Sialoglycoproteins and N-glycans from secreted exosomes of ovarian carcinoma cells. PLoS One 2013; 8:e78631. [PMID: 24302979 PMCID: PMC3840218 DOI: 10.1371/journal.pone.0078631] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/14/2013] [Indexed: 12/14/2022] Open
Abstract
Exosomes consist of vesicles that are secreted by several human cells, including tumor cells and neurons, and they are found in several biological fluids. Exosomes have characteristic protein and lipid composition, however, the results concerning glycoprotein composition and glycosylation are scarce. Here, protein glycosylation of exosomes from ovarian carcinoma SKOV3 cells has been studied by lectin blotting, NP-HPLC analysis of 2-aminobenzamide labeled glycans and mass spectrometry. An abundant sialoglycoprotein was found enriched in exosomes and it was identified by peptide mass fingerprinting and immunoblot as the galectin-3-binding protein (LGALS3BP). Exosomes were found to contain predominantly complex glycans of the di-, tri-, and tetraantennary type with or without proximal fucose and also high mannose glycans. Diantennary glycans containing bisecting N-acetylglucosamine were also detected. This work provides detailed information about glycoprotein and N-glycan composition of exosomes from ovarian cancer cells, furthermore it opens novel perspectives to further explore the functional role of glycans in the biology of exosomes.
Collapse
Affiliation(s)
- Cristina Escrevente
- Laboratory of Glycobiology, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | - Erin M. Tranfield
- Electron Microscopy Facility, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Júlia Costa
- Laboratory of Glycobiology, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
- * E-mail:
| |
Collapse
|
21
|
Anttila V, Winsvold BS, Gormley P, Kurth T, Bettella F, McMahon G, Kallela M, Malik R, de Vries B, Terwindt G, Medland SE, Todt U, McArdle WL, Quaye L, Koiranen M, Ikram MA, Lehtimäki T, Stam AH, Ligthart L, Wedenoja J, Dunham I, Neale BM, Palta P, Hamalainen E, Schürks M, Rose LM, Buring JE, Ridker PM, Steinberg S, Stefansson H, Jakobsson F, Lawlor DA, Evans DM, Ring SM, Färkkilä M, Artto V, Kaunisto MA, Freilinger T, Schoenen J, Frants RR, Pelzer N, Weller CM, Zielman R, Heath AC, Madden PA, Montgomery GW, Martin NG, Borck G, Göbel H, Heinze A, Heinze-Kuhn K, Williams FM, Hartikainen AL, Pouta A, van den Ende J, Uitterlinden AG, Hofman A, Amin N, Hottenga JJ, Vink JM, Heikkilä K, Alexander M, Muller-Myhsok B, Schreiber S, Meitinger T, Wichmann HE, Aromaa A, Eriksson JG, Traynor B, Trabzuni D, Rossin E, Lage K, Jacobs SB, Gibbs JR, Birney E, Kaprio J, Penninx BW, Boomsma DI, van Duijn C, Raitakari O, Jarvelin MR, Zwart JA, Cherkas L, Strachan DP, Kubisch C, Ferrari MD, van den Maagdenberg AM, Dichgans M, Wessman M, Smith GD, Stefansson K, Daly MJ, Nyholt DR, Chasman D, Palotie A. Genome-wide meta-analysis identifies new susceptibility loci for migraine. Nat Genet 2013; 45:912-917. [PMID: 23793025 PMCID: PMC4041123 DOI: 10.1038/ng.2676] [Citation(s) in RCA: 297] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 05/30/2013] [Indexed: 12/15/2022]
Abstract
Migraine is the most common brain disorder, affecting approximately 14% of the adult population, but its molecular mechanisms are poorly understood. We report the results of a meta-analysis across 29 genome-wide association studies, including a total of 23,285 individuals with migraine (cases) and 95,425 population-matched controls. We identified 12 loci associated with migraine susceptibility (P<5×10(-8)). Five loci are new: near AJAP1 at 1p36, near TSPAN2 at 1p13, within FHL5 at 6q16, within C7orf10 at 7p14 and near MMP16 at 8q21. Three of these loci were identified in disease subgroup analyses. Brain tissue expression quantitative trait locus analysis suggests potential functional candidate genes at four loci: APOA1BP, TBC1D7, FUT9, STAT6 and ATP5B.
Collapse
Affiliation(s)
- Verneri Anttila
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Analytical and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bendik S. Winsvold
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
- Department of Neurology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Padhraig Gormley
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Tobias Kurth
- INSERM Unit 708 – Neuroepidemiology, F-33000 Bordeaux, France
- University of Bordeaux, F-33000 Bordeaux, France
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
| | | | - George McMahon
- MRC Centre for Causal Analyses in Translational Epidemiology, School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Mikko Kallela
- Department of Neurology, Helsinki University Central Hospital, Helsinki, Finland
| | - Rainer Malik
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität, Munich, Germany
| | - Boukje de Vries
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Gisela Terwindt
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Sarah E. Medland
- Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Unda Todt
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | - Wendy L. McArdle
- MRC Centre for Causal Analyses in Translational Epidemiology, School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Lydia Quaye
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Markku Koiranen
- Institute of Health Sciences, University of Oulu, Oulu, Finland
| | - M. Arfan Ikram
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Radiology Erasmus University Medical Centre, Rotterdam, The Netherlands
- Department of Neurology Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and University of Tampere School of Medicine, Tampere, Finland
| | - Anine H. Stam
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Lannie Ligthart
- Department of Biological Psychology, VU University, Amsterdam, The Netherlands
- EMGO+ Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Juho Wedenoja
- Department of Public Health, Hjelt Institute, University of Helsinki, Helsinki, Finland
| | - Ian Dunham
- European Bioinformatics Insitute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Benjamin M. Neale
- Analytical and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Priit Palta
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Eija Hamalainen
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Markus Schürks
- Department of Neurology, University Hospital Essen, Essen, Germany
| | - Lynda M Rose
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
| | - Julie E. Buring
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
| | - Paul M. Ridker
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
- Harvard Medical School, Boston, MA 02215, USA
| | | | | | - Finnbogi Jakobsson
- Department of Neurology, Landspitali University Hospital, Reykjavik, Iceland
| | - Debbie A. Lawlor
- MRC Centre for Causal Analyses in Translational Epidemiology, School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - David M. Evans
- MRC Centre for Causal Analyses in Translational Epidemiology, School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Susan M. Ring
- MRC Centre for Causal Analyses in Translational Epidemiology, School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Markus Färkkilä
- Department of Neurology, Helsinki University Central Hospital, Helsinki, Finland
| | - Ville Artto
- Department of Neurology, Helsinki University Central Hospital, Helsinki, Finland
| | - Mari A Kaunisto
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Tobias Freilinger
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Neurology, Klinikum der Universität München, Munich, Germany
| | - Jean Schoenen
- Headache Research Unit, Department of Neurology and Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-Neurosciences, Liège University, Liège, Belgium
| | - Rune R. Frants
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Nadine Pelzer
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Claudia M. Weller
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Ronald Zielman
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Andrew C. Heath
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Pamela A.F. Madden
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Nicholas G. Martin
- Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Guntram Borck
- Institute of Human Genetics, University of Ulm, Ulm, Germany
| | | | - Axel Heinze
- Kiel Pain and Headache Center, Kiel, Germany
| | | | - Frances M.K. Williams
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Anna-Liisa Hartikainen
- Department of Clinical Sciences/Obstetrics and Gynecology, University Hospital of Oulu, Oulu, Finland
| | - Anneli Pouta
- Institute of Health Sciences, University of Oulu, Oulu, Finland
- Department of Clinical Sciences/Obstetrics and Gynecology, University Hospital of Oulu, Oulu, Finland
- Department of Children, Young People and Families, National Institute for Health and Welfare, Helsinki, Finland
| | - Joyce van den Ende
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Albert Hofman
- Genetic Epidemiology Unit, Department of Clinical Genetics, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Najaf Amin
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, VU University, Amsterdam, The Netherlands
| | - Jacqueline M. Vink
- Department of Biological Psychology, VU University, Amsterdam, The Netherlands
| | - Kauko Heikkilä
- Department of Public Health, Hjelt Institute, University of Helsinki, Helsinki, Finland
| | - Michael Alexander
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Bertram Muller-Myhsok
- Max Planck Institute of Psychiatry, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Stefan Schreiber
- Department of Clinical Molecular Biology, Christian Albrechts University, Kiel, Germany
- Department of Internal Medicine I, Christian Albrechts University, Kiel, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Center Munich, Neuherberg, Germany
- Institute of Human Genetics, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Heinz Erich Wichmann
- Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie, Ludwig-Maximilians-Universität München, Munich, Germany
- Institute of Epidemiology I, HelmholtzCenter Munich, Neuherberg, Germany
- Klinikum Großhadern, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Arpo Aromaa
- National Institute for Health and Welfare, Helsinki, Finland
| | - Johan G. Eriksson
- Folkhälsan Research Center, Helsinki, Finland
- National Institute for Health and Welfare, Helsinki, Finland
- Department of General Practice, Helsinki University Central Hospital, Helsinki, Finland
- Vaasa Central Hospital, Vaasa, Finland
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
| | - Bryan Traynor
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Daniah Trabzuni
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | | | | | - Elizabeth Rossin
- Analytical and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
| | - Kasper Lage
- Analytical and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital for Children, Massachusetts General Hospital, Boston, MA, USA
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
- Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Suzanne B.R. Jacobs
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - J. Raphael Gibbs
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Ewan Birney
- European Bioinformatics Insitute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Public Health, Hjelt Institute, University of Helsinki, Helsinki, Finland
- Department of Mental Health and Alcohol Research, National Institute for Health and Welfare, Helsinki, Finland
| | - Brenda W. Penninx
- EMGO+ Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
- Department of Psychiatry, University Medical Center Groningen, Groningen, The Netherlands
- Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands
| | - Dorret I. Boomsma
- Department of Biological Psychology, VU University, Amsterdam, The Netherlands
| | - Cornelia van Duijn
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Olli Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku University Hospital, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Marjo-Riitta Jarvelin
- Institute of Health Sciences, University of Oulu, Oulu, Finland
- Department of Children, Young People and Families, National Institute for Health and Welfare, Helsinki, Finland
- Department of Epidemiology and Biostatistics, School of Public Health, MRC-HPA Centre for Environment and Health, Faculty of Medicine, Imperial College, London, UK
- Biocenter Oulu, University of Oulu, Oulu, Finland
| | - John-Anker Zwart
- Department of Neurology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Lynn Cherkas
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - David P. Strachan
- Division of Population Health Sciences and Education, St George’s, University of London, London, UK
| | | | - Michel D. Ferrari
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Arn M.J.M. van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Centre, Leiden, The Netherlands
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, Klinikum der Universität München, Ludwig-Maximilians-Universität, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Maija Wessman
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - George Davey Smith
- MRC Centre for Causal Analyses in Translational Epidemiology, School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Kari Stefansson
- deCODE genetics, Reykjavik, Iceland
- School of Medicine, University of Iceland, Reykjavik, Iceland
| | - Mark J. Daly
- Analytical and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dale R. Nyholt
- Queensland Institute of Medical Research, Brisbane, Queensland, Australia
| | - Daniel Chasman
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, USA
- Harvard Medical School, Boston, MA 02215, USA
| | - Aarno Palotie
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
22
|
Wang Y, Loers G, Pan HC, Gouveia R, Zhao WJ, Shen YQ, Kleene R, Costa J, Schachner M. Antibody fragments directed against different portions of the human neural cell adhesion molecule L1 act as inhibitors or activators of L1 function. PLoS One 2012; 7:e52404. [PMID: 23272240 PMCID: PMC3525558 DOI: 10.1371/journal.pone.0052404] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 11/16/2012] [Indexed: 02/05/2023] Open
Abstract
The neural cell adhesion molecule L1 plays important roles in neuronal migration and survival, neuritogenesis and synaptogenesis. L1 has also been found in tumors of different origins, with levels of L1 expression correlating positively with the metastatic potential of tumors. To select antibodies targeting the varied functions of L1, we screened the Tomlinson library of recombinant human antibody fragments to identify antibodies binding to recombinant human L1 protein comprising the entire extracellular domain of human L1. We obtained four L1 binding single-chain variable fragment antibodies (scFvs), named I4, I6, I13, and I27 and showed by enzyme-linked immunosorbent assay (ELISA) that scFvs I4 and I6 have high affinity to the immunoglobulin-like (Ig) domains 1-4 of L1, while scFvs I13 and I27 bind strongly to the fibronectin type III homologous (Fn) domains 1-3 of L1. Application of scFvs I4 and I6 to human SK-N-SH neuroblastoma cells reduced proliferation and transmigration of these cells. Treatment of SK-N-SH cells with scFvs I13 and I27 enhanced cell proliferation and migration, neurite outgrowth, and protected against the toxic effects of H(2)O(2) by increasing the ratio of Bcl-2/Bax. In addition, scFvs I4 and I6 inhibited and scFvs I13 and I27 promoted phosphorylation of src and Erk. Our findings indicate that scFvs reacting with the immunoglobulin-like domains 1-4 inhibit L1 functions, whereas scFvs interacting with the fibronectin type III domains 1-3 trigger L1 functions of cultured neuroblastoma cells.
Collapse
Affiliation(s)
- Yan Wang
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province, People's Republic of China
| | - Gabriele Loers
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Hamburg, Germany
| | - Hong-Chao Pan
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province, People's Republic of China
| | - Ricardo Gouveia
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Wei-Jiang Zhao
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province, People's Republic of China
| | - Yan-Qin Shen
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province, People's Republic of China
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Hamburg, Germany
| | - Julia Costa
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong Province, People's Republic of China
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, United States of America
| |
Collapse
|