1
|
Lu WP, Liu YD, Zhang ZF, Liu J, Ye JW, Wang SY, Lin XY, Lai YR, Li J, Liu SY, Yuan JH, Zhu XT. m 6A-modified MIR670HG suppresses tumor liver metastasis through enhancing Kupffer cell phagocytosis. Cell Mol Life Sci 2025; 82:185. [PMID: 40293529 PMCID: PMC12037464 DOI: 10.1007/s00018-025-05700-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/31/2025] [Accepted: 04/05/2025] [Indexed: 04/30/2025]
Abstract
Liver metastases are frequently observed in various malignancies, including hepatocellular carcinoma, colorectal cancer, pancreatic cancer, and melanoma. As hepatic resident macrophages, Kupffer cells play a crucial role in resisting liver metastasis by phagocytosing and clearing invading tumor cells. However, the molecular mechanisms regulating Kupffer cell phagocytosis and liver metastasis remain largely unknown. Here, we demonstrate that the MIR670 host gene (MIR670HG) significantly suppresses tumor liver metastasis by enhancing phagocytosis of various tumor cells by Kupffer cells. CD24 was identified as a downstream target and critical mediator of MIR670HG in promoting Kupffer cell phagocytosis and inhibiting tumor liver metastasis. Further investigations revealed that MIR670HG interacts with the m6A reader FXR1 and DNA 5-methylcytosine dioxygenase TET1 in an m6A modification-dependent manner. These interactions reduce the binding of TET1 to CD24 promoter, leading to increased DNA methylation at CD24 promoter and transcriptional suppression of CD24. Mutation of the m6A modification site abolishes the ability of MIR670HG to suppress CD24, promote Kupffer cell phagocytosis, and inhibit liver metastasis. In clinical tissue samples, MIR670HG expression negatively correlated with CD24 and liver metastasis. These findings suggest that m6A-modified MIR670HG promotes phagocytosis of tumor cells by Kupffer cells and suppresses liver metastasis by epigenetically downregulating CD24.
Collapse
Affiliation(s)
- Wan-Peng Lu
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Yong-da Liu
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Zhi-Fa Zhang
- Department of Neurosurgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jia Liu
- Department of Hematology, Affiliated Hospital of Hebei University, Baoding, China
| | - Jing-Wen Ye
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Si-Yun Wang
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Xing-Yi Lin
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Yi-Ran Lai
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Jie Li
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Sui-Yi Liu
- Department of Medical Engineering, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China.
| | - Ji-Hang Yuan
- Department of Medical Genetics, Naval Medical University, Shanghai, China.
| | - Xiao-Ting Zhu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Quan L, Uyeda A, Manabe I, Muramatsu R. Astrocytic heterogeneous nuclear ribonucleoprotein U is involved in scar formation after spinal cord injury. J Neuroinflammation 2025; 22:28. [PMID: 39891176 PMCID: PMC11786496 DOI: 10.1186/s12974-025-03351-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/20/2025] [Indexed: 02/03/2025] Open
Abstract
Astrocytes have a beneficial role in tissue repair after central nervous system (CNS) injury. Although astrocyte proliferation is activated in response to injury, the intracellular mechanisms of astrocyte proliferation during acute phase of injury are not fully clarified. In this study, by functionally screening the highly expressed genes in the pathological state of spinal astrocytes, heterogeneous nuclear ribonucleoprotein U (Hnrnpu) is identified as a potential endogenous molecule that regulates astrocyte proliferation and the following scar formation. Inhibition of Hnrnpu in astrocytes impairs the formation of astrocytic glial scar, motor function recovery, and neuronal regeneration after spinal cord injury (SCI) in mice. In human astrocytes, HNRNPU knockdown downregulates the genes related to the astrocyte functions in scar formation and neuronal regeneration. These findings uncover that modulation of endogenous astrocytic function would be a promising therapeutic avenue to restore neurological function after CNS injury.
Collapse
Affiliation(s)
- Lili Quan
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
| | - Akiko Uyeda
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
| | - Ichiro Manabe
- Department of Systems Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Rieko Muramatsu
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan.
| |
Collapse
|
3
|
Sasaki Y, Murakami H, Kuroda Y, Enomoto Y, Naruto T, Nagara S, Koyama T, Matsunami K, Sakashita T, Kaneko H, Morimoto K, Imamura A, Kurosawa K. Severe pharyngeal stenosis and laryngomalacia in an individual of HNRNPU-related neurodevelopmental disorder associated with a novel nonsense variant. Congenit Anom (Kyoto) 2025; 65:e70006. [PMID: 39965881 DOI: 10.1111/cga.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/27/2024] [Accepted: 02/03/2025] [Indexed: 02/20/2025]
Abstract
Heterozygous loss-of-function variants in heterogeneous nuclear ribonucleoprotein U (HNRNPU) cause early-onset developmental and epileptic encephalopathy with multiple congenital anomalies. Limited clinical information is currently available on HNRNPU-related neurodevelopmental disorder. The patient was a 1-year-old Japanese girl with developmental delay, hypotonia, early-onset epilepsy, respiratory distress, and distinctive facial features, including ptosis, epicanthus, a prominent nasal bridge, a wide nasal floor, a cleft soft palate, and micrognathia. Respiratory distress was caused by pharyngeal stenosis and laryngomalacia, which gradually worsened, necessitating a scheduled tracheostomy at 1 year and 7 months of age. We performed whole-exome sequencing and identified a novel de novo nonsense variant in HNRNPU. We herein describe the first case of HNRNPU-related neurodevelopmental disorder with severe airway anomalies and a novel nonsense variant, thereby expanding the phenotypic spectrum.
Collapse
Affiliation(s)
- Yusuke Sasaki
- Department of Pediatrics, Gifu Prefectural General Medical Center, Gifu, Japan
| | - Hiroaki Murakami
- Department of Pediatrics, Gifu Prefectural General Medical Center, Gifu, Japan
- Department of Medical Genetics, Gifu Prefectural General Medical Center, Gifu, Japan
| | - Yukiko Kuroda
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yumi Enomoto
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Takuya Naruto
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Syunsuke Nagara
- Department of Pediatrics, Japanese Red Cross Takayama Hospital, Gifu, Japan
| | - Toshinari Koyama
- Department of Neonatology, Gifu Prefectural General Medical Center, Gifu, Japan
| | - Kunihiro Matsunami
- Department of Pediatrics, Gifu Prefectural General Medical Center, Gifu, Japan
| | - Tatsuya Sakashita
- Department of Pediatrics, Gifu Prefectural General Medical Center, Gifu, Japan
- Department of Medical Genetics, Gifu Prefectural General Medical Center, Gifu, Japan
| | - Hideo Kaneko
- Department of Medical Genetics, Gifu Prefectural General Medical Center, Gifu, Japan
| | - Kyoko Morimoto
- Department of Otorhinolaryngology, Aichi Children's Health and Medical Center, Aichi, Japan
| | - Atsushi Imamura
- Department of Pediatrics, Gifu Prefectural General Medical Center, Gifu, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| |
Collapse
|
4
|
Roesmann F, Sertznig H, Klaassen K, Wilhelm A, Heininger D, Heß S, Elsner C, Marschalek R, Santiago ML, Esser S, Sutter K, Dittmer U, Widera M. The interferon-regulated host factor hnRNPA0 modulates HIV-1 production by interference with LTR activity, mRNA trafficking, and programmed ribosomal frameshifting. J Virol 2024; 98:e0053424. [PMID: 38899932 PMCID: PMC11265465 DOI: 10.1128/jvi.00534-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The interplay between host factors and viral components impacts viral replication efficiency profoundly. Members of the cellular heterogeneous nuclear ribonucleoprotein family (hnRNPs) have been extensively studied as HIV-1 host dependency factors, but whether they play a role in innate immunity is currently unknown. This study aimed to identify hnRNPA0 as a type I interferon (IFN)-repressed host factor in HIV-1-infected cells. Knockdown of hnRNPA0, a situation that mirrors conditions under IFN stimulation, increased LTR activity, export of unspliced HIV-1 mRNA, viral particle production, and thus, increased infectivity. Conversely, hnRNPA0 overexpression primarily reduced plasmid-driven and integrated HIV-1 long terminal repeat (LTR) activity, significantly decreasing total viral mRNA and protein levels. In addition, high levels of hnRNPA0 significantly reduced the HIV-1 programmed ribosomal frameshifting efficiency, resulting in a shift in the HIV-1 p55/p15 ratio. The HIV-1 alternative splice site usage remained largely unaffected by altered hnRNPA0 levels suggesting that the synergistic inhibition of the LTR activity and viral mRNA transcription, as well as impaired ribosomal frameshifting efficiency, are critical factors for efficient HIV-1 replication regulated by hnRNPA0. The pleiotropic dose-dependent effects under high or low hnRNPA0 levels were further confirmed in HIV-1-infected Jurkat cells. Finally, our study revealed that hnRNPA0 levels in PBMCs were lower in therapy-naive HIV-1-infected individuals compared to healthy controls. Our findings highlight a significant role for hnRNPA0 in HIV-1 replication and suggest that its IFN-I-regulated expression levels are critical for viral fitness allowing replication in an antiviral environment.IMPORTANCERNA-binding proteins, in particular, heterogeneous nuclear ribonucleoproteins (hnRNPs), have been extensively studied. Some act as host dependency factors for HIV-1 since they are involved in multiple cellular gene expression processes. Our study revealed hnRNPA0 as an IFN-regulated host factor, that is differently expressed after IFN-I treatment in HIV-1 target cells and lower expressed in therapy-naïve HIV-1-infected individuals. Our findings demonstrate the significant pleiotropic role of hnRNPA0 in viral replication: In high concentrations, hnRNPA0 limits viral replication by negatively regulating Tat-LTR transcription, retaining unspliced mRNA in the nucleus, and significantly impairing programmed ribosomal frameshifting. Low hnRNPA0 levels as observed in IFN-treated THP-1 cells, particularly facilitate HIV LTR activity and unspliced mRNA export, suggesting a role in innate immunity in favor of HIV replication. Understanding the mode of action between hnRNPA0 and HIV-1 gene expression might help to identify novel therapeutically strategies against HIV-1 and other viruses.
Collapse
Affiliation(s)
- Fabian Roesmann
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt, Germany
| | - Helene Sertznig
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Katleen Klaassen
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt, Germany
| | - Alexander Wilhelm
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt, Germany
| | - Delia Heininger
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt, Germany
| | - Stefanie Heß
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt, Germany
| | - Carina Elsner
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology, Goethe-University, Frankfurt am Main, Hessen, Germany
| | - Mario L. Santiago
- Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Stefan Esser
- Institute for the Research on HIV and AIDS-associated Diseases University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Department of Dermatology, HPSTD Outpatient Clinic, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Kathrin Sutter
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Institute for the Research on HIV and AIDS-associated Diseases University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Institute for the Research on HIV and AIDS-associated Diseases University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Marek Widera
- Goethe University Frankfurt, University Hospital, Institute for Medical Virology, Frankfurt, Germany
| |
Collapse
|
5
|
Zhang D, Li L, Li M, Cao X. Biological functions and clinic significance of SAF‑A (Review). Biomed Rep 2024; 20:88. [PMID: 38665420 PMCID: PMC11040223 DOI: 10.3892/br.2024.1776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
As one member of the heterogeneous ribonucleoprotein (hnRNP) family, scaffold attachment factor A (SAF-A) or hnRNP U, is an abundant nuclear protein. With RNA and DNA binding activities, SAF-A has multiple functions. The present review focused on the biological structure and different roles of SAF-A and SAF-A-related diseases. It was found that SAF-A maintains the higher-order chromatin organization via RNA and DNA, and regulates transcription at the initiation and elongation stages. In addition to regulating pre-mRNA splicing, mRNA transportation and stabilization, SAF-A participates in double-strand breaks and mitosis repair. Therefore, the aberrant expression and mutation of SAF-A results in tumors and impaired neurodevelopment. Moreover, SAF-A may play a role in the anti-virus system. In conclusion, due to its essential biological functions, SAF-A may be a valuable clinical prediction factor or therapeutic target. Since the role of SAF-A in tumors and viral infections may be controversial, more animal experiments and clinical assays are needed.
Collapse
Affiliation(s)
- Daiquan Zhang
- Department of Traditional Chinese Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Li Li
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Mengni Li
- Department of Pediatrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Xinmei Cao
- Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
6
|
Xu K, Xia P, Gongye X, Zhang X, Ma S, Chen Z, Zhang H, Liu J, Liu Y, Guo Y, Yao Y, Gao M, Chen Y, Zhang Z, Yuan Y. A novel lncRNA RP11-386G11.10 reprograms lipid metabolism to promote hepatocellular carcinoma progression. Mol Metab 2022; 63:101540. [PMID: 35798238 PMCID: PMC9287641 DOI: 10.1016/j.molmet.2022.101540] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/11/2022] [Accepted: 06/27/2022] [Indexed: 12/01/2022] Open
Abstract
Objective Emerging studies suggest that long non-coding RNAs (lncRNAs) play crucial roles in hepatocellular carcinoma (HCC). A rapidly increasing number of studies have shown that metabolic changes including lipid metabolic reprogramming play a significant role in the progression of HCC. But it remains to be elucidated how lncRNAs affect tumor cell metabolism. Methods Through analysis and screening of The Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC) dataset, we found a novel lncRNA RP11-386G11.10 was overexpressed, related to prognosis, conserved and non-protein-coding in HCC and related to poor prognosis. Then, CCK-8, colony formation, Transwell invasion, wound healing assays were performed and nude mouse subcutaneous tumour formation and lung metastasis models were established to explore the effect of RP11-386G11.10 on HCC tumour growth and metastasis. Chromatography-mass spectrometry (GC-MS) and Nile red staining detected the effect of RP11-386G11.10 on lipid metabolism in HCC. Mechanistically, we clarified the RP11-386G11.10/miR-345-3p/HNRNPU signalling pathway through dual luciferase reporter, RNA immunoprecipitation (RIP) and chromatin immunoprecipitation (ChIP) assays and identified ZBTB7A as a transcription factor of RP11-386G11.10. Results RP11-386G11.10 was overexpressed in HCC and positively correlated with tumour size, TNM stage, and poor prognosis in HCC patients. RP11-386G11.10 promoted the proliferation and metastasis of HCC cells in vitro and in vivo. Mechanistically, RP11-386G11.10 acted as a competing endogenous RNA (ceRNA) for miR-345-3p to regulate the expression of HNRNPU and its downstream lipogenic enzymes, leading to lipid accumulation in HCC cells and promoting their growth and metastasis. In addition, we identified ZBTB7A as a transcription factor of RP11-386G11.10. Moreover, HNRNPU promoted the expression of ZBTB7A in HCC cells, thereby increasing the transcriptional activity of RP11-386G11.10, and forming a positive feedback loop, ultimately leading continuous lipid accumulation, growth and metastasis in HCC cells. Conclusions Our results indicated that the lncRNA RP11-386G11.10 was a novel oncogenic lncRNA that was strongly correlated with the poor prognosis of HCC. The ZBTB7A-RP11-386G11.10-HNRNPU positive feedback loop promoted the progression of HCC by regulating lipid anabolism. RP11-386G11.10 may become a new diagnostic and prognostic biomarker and therapy target for HCC. LncRNA RP11-386G11.10 was up-regulated in HCC. Overexpression of lncRNA RP11-386G11.10 promoted the proliferation, metastasis of HCC cells in vivo and in vitro. We confirmed that regulation of HNRNPU expression by RP11-286H15.1 resulted in lipid accumulation in HCC cells. HNRNPU forms a ZBTB7A- RP11-386G11.10 -HNRNPU positive feedback loop by promoting mRNA stability of ZBTB7A.
Collapse
|
7
|
Wang H, Liu H, Zhao X, Chen X. Heterogeneous nuclear ribonucleoprotein U-actin complex derived from extracellular vesicles facilitates proliferation and migration of human coronary artery endothelial cells by promoting RNA polymerase II transcription. Bioengineered 2022; 13:11469-11486. [PMID: 35535400 PMCID: PMC9276035 DOI: 10.1080/21655979.2022.2066754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Coronary artery disease (CAD) represents a fatal public threat. The involvement of extracellular vesicles (EVs) in CAD has been documented. This study explored the regulation of embryonic stem cells (ESCs)-derived EVs-hnRNPU-actin complex in human coronary artery endothelial cell (HCAEC) growth. Firstly, in vitro HCAEC hypoxia models were established. EVs were extracted from ESCs by ultracentrifugation. HCAECs were treated with EVs and si-VEGF for 24 h under hypoxia, followed by assessment of cell proliferation, apoptosis, migration, and tube formation. Uptake of EVs by HCAECs was testified. Additionally, hnRNPU, VEGF, and RNA Pol II levels were determined using Western blotting and CHIP assays. Interaction between hnRNPU and actin was evaluated by Co-immunoprecipitation assay. HCAEC viability and proliferation were lowered, apoptosis was enhanced, wound fusion was decreased, and the number of tubular capillary structures was reduced under hypoxia, whereas ESC-EVs treatment counteracted these effects. Moreover, EVs transferred hnRNPU into HCAECs. EVs-hnRNPU-actin complex increased RNA Pol II level on the VEGF gene promoter and promoted VEGF expression in HCAECs. Inhibition of hnRNPU or VEGF both annulled the promotion of EVs on HCAEC growth. Collectively, ESC-EVs-hnRNPU-actin increased RNA Pol II phosphorylation and VEGF expression, thus promoting HCAEC growth.
Collapse
Affiliation(s)
- Han Wang
- Department of Cardiovascular, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Hengdao Liu
- Department of Cardiovascular, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xi Zhao
- Department of Cardiovascular, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiaowei Chen
- Department of Cardiovascular, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
8
|
A Monoclonal Anti-HMGB1 Antibody Attenuates Neurodegeneration in an Experimental Animal Model of Glaucoma. Int J Mol Sci 2022; 23:ijms23084107. [PMID: 35456925 PMCID: PMC9028318 DOI: 10.3390/ijms23084107] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
Neuroinflammation is a crucial process for the loss of retinal ganglion cells (RGC), a major characteristic of glaucoma. High expression of high-mobility group box protein 1 (HMGB1) plays a detrimental role in inflammatory processes and is elevated in the retinas of glaucoma patients. Therefore, this study aimed to investigate the effects of the intravitreal injection of an anti-HMGB1 monoclonal antibody (anti-HMGB1 Ab) in an experimental animal model of glaucoma. Two groups of Spraque Dawley rats received episcleral vein occlusion to chronically elevate intraocular pressure (IOP): (1) the IgG group, intravitreal injection of an unspecific IgG as a control, n = 5, and (2) the HMGB1 group, intravitreal injection of an anti-HMGB1 Ab, n = 6. IOP, retinal nerve fiber layer thickness (RNFLT), and the retinal flash response were monitored longitudinally. Post-mortem examinations included immunohistochemistry, microarray, and mass spectrometric analysis. RNFLT was significantly increased in the HMGB1 group compared with the IgG group (p < 0.001). RGC density showed improved neuronal cell survival in the retina in HMGB1 compared with the IgG group (p < 0.01). Mass spectrometric proteomic analysis of retinal tissue showed an increased abundance of RNA metabolism-associated heterogeneous nuclear ribonucleoproteins (hnRNPs), such as hnRNP U, D, and H2, in animals injected with the anti-HMGB1 Ab, indicating that the application of the antibody may cause increased gene expression. Microarray analysis showed a significantly decreased expression of C-X-C motif chemokine ligand 8 (CXCL8, p < 0.05) and connective tissue growth factor (CTGF, p < 0.01) in the HMGB1 group. Thus, these data suggest that intravitreal injection of anti-HMGB1 Ab reduced HMGB1-dependent inflammatory signaling and mediated RGC neuroprotection.
Collapse
|
9
|
Liang Y, Fan Y, Liu Y, Fan H. HNRNPU promotes the progression of hepatocellular carcinoma by enhancing CDK2 transcription. Exp Cell Res 2021; 409:112898. [PMID: 34737140 DOI: 10.1016/j.yexcr.2021.112898] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/29/2021] [Accepted: 10/25/2021] [Indexed: 02/08/2023]
Abstract
The nuclear matrix-associated protein Heterogeneous Nuclear Ribonucleoprotein U (HNRNPU), also known as SAF-A, is known to maintain active chromatin structure in mouse hepatocytes. However, the functional roles and molecular mechanisms of HNRNPU in the development of hepatocellular carcinoma (HCC) remain largely unknown. Herein, we found that HNRNPU was upregulated in HCC, and the proliferation of HCC cells was inhibited in vitro and in vivo upon HNRNPU knockdown. Moreover, the upregulation of HNRNPU was correlated with poor prognosis in HCC. Mechanistically, HNRNPU bound to the CDK2 gene locus, a key factor in cell cycle regulation, where it was enriched with H3K27 acetylation (H3K27ac), H3K9 acetylation (H3K9ac), and H3K4 mono-methylation (H3K4me1). Furthermore, HNRNPU knockdown reduced the levels of H3K27ac and H3K9ac at the binding site, where the levels of H3K27 tri-methylation (H3K27me3) were increased, eventually leading to the downregulation of CDK2. Collectively, our results provide a new mechanism whereby HNRNPU promotes HCC development by enhancing the transcription of CDK2.
Collapse
Affiliation(s)
- Yi Liang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yao Fan
- Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Yu Liu
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hui Fan
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
10
|
Wen Y, Ma X, Wang X, Wang F, Dong J, Wu Y, Lv C, Liu K, Zhang Y, Zhang Z, Yuan S. hnRNPU in Sertoli cells cooperates with WT1 and is essential for testicular development by modulating transcriptional factors Sox8/9. Am J Cancer Res 2021; 11:10030-10046. [PMID: 34815802 PMCID: PMC8581416 DOI: 10.7150/thno.66819] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/12/2021] [Indexed: 12/25/2022] Open
Abstract
Background: Sertoli cells are essential regulators of testicular fate in the differentiating gonad; however, its role and underlying molecular mechanism of regulating testicular development in prepubertal testes are poorly understood. Although several critical regulatory factors of Sertoli cell development and function have been identified, identifying extrinsic factors that regulate gonocyte proliferation and migration processes during neonatal testis development remains largely unknown. Methods: We used the Sertoli cell-specific conditional knockout strategy (Cre/Loxp) in mice and molecular biological analyses (Luciferase assay, ChIP-qPCR, RNA-Seq, etc.) in vitro and in vivo to study the physiological roles of hnRNPU in Sertoli cells on regulating testicular development in prepubertal testes. Results: We identified a co-transcription factor, hnRNPU, which is highly expressed in mouse and human Sertoli cells and required for neonatal Sertoli cell and pre-pubertal testicular development. Conditional knockout of hnRNPU in murine Sertoli cells leads to severe testicular atrophy and male sterility, characterized by rapid depletion of both Sertoli cells and germ cells and failure of spermatogonia proliferation and migration during pre-pubertal testicular development. At molecular levels, we found that hnRNPU interacts with two Sertoli cell markers WT1 and SOX9, and enhances the expression of two transcriptional factors, Sox8 and Sox9, in Sertoli cells by directly binding to their promoter regions. Further RNA-Seq and bioinformatics analyses revealed the transcriptome-wide of key genes essential for Sertoli cell and germ cell fate control, such as biological adhesion, proliferation and migration, were deregulated in Sertoli cell-specific hnRNPU mutant testes. Conclusion: Our findings demonstrate an essential role of hnRNPU in Sertoli cells for prepubertal testicular development and testis microenvironment maintenance and define a new insight for our understanding of male infertility therapy.
Collapse
|
11
|
Du Y, Ma X, Wang D, Wang Y, Zhang T, Bai L, Liu Y, Chen S. Identification of heterogeneous nuclear ribonucleoprotein as a candidate biomarker for diagnosis and prognosis of hepatocellular carcinoma. J Gastrointest Oncol 2021; 12:2361-2376. [PMID: 34790398 DOI: 10.21037/jgo-21-468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/02/2021] [Indexed: 12/09/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most common type of liver cancer with a high mortality rate. However, spliceosomal genes are still lacking in the diagnosis and prognosis of HCC. Methods Identification of differentially expressed genes (DEGs) was performed using the limma package in R software. Modules highly related to HCC were obtained by weighted gene co-expression network analysis (WGCNA), and the module genes were analyzed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. The biomarker for diagnosing HCC was determined by receiver operating characteristic (ROC) curve analysis, and the effect of the biomarker in the diagnosis of HCC was evaluated by performing five-fold cross-validation with logistic regression. HCC specimens from preoperatively treated patients were tested for biomarker by real-time quantitative polymerase chain reaction (RT-qPCR). Kaplan-Meier analysis was used to assess the relationship between biomarker and patient survival. The role of biomarker was evaluated using ESTIMATE analysis in the tumor microenvironment. Results In this study, 389 DEGs were screened out from three Gene Expression Omnibus (GEO) datasets. We also found that the turquoise module of 123 genes from The Cancer Genome Atlas (TCGA) data was the key module with the highest correlation with HCC traits. Then, 123 genes were analyzed using the KEGG enrichment pathway, and eight genes were found to be most significantly related to the spliceosome pathway. We selected 8 genes and 389 DEGs shared genes, and finally got the only gene, heterogeneous nuclear ribonucleoprotein (hnRNPU). The high expression of hnRNPU was associated with poor prognosis of HCC, and hnRNPU was a biomarker for diagnosing HCC. In the tissues of patients with excellent HCC treatment hnRNPU messenger RNA (mRNA) was lower than in the tissues of patients with poor HCC treatment. High expression of hnRNPU was significantly increased in HCC patients with low stromal (P<0.05), low immune (P<0.05), and low estimation scores (P<0.05), and with high tumor purity (P<0.05) and high malignant progression (P<0.05) of the HCC. Conclusions The hnRNPU gene identified in this study may become a new biomarker for the diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- Youli Du
- Department of Interventional Medicine, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, China
| | - Xiaoou Ma
- Department of Interventional Medicine, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, China
| | - Dongxu Wang
- CT Room of the Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, China
| | - Yuguang Wang
- CT Room of the Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, China
| | - Tianyu Zhang
- CT Room of the Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, China
| | - Lianjie Bai
- The Ultrasound Department of the Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, China
| | - Yunlong Liu
- Department of Oncology, the Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, China
| | - Shaosen Chen
- Department of Oncology, the Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, China
| |
Collapse
|
12
|
Zhang B, Wang HY, Zhao DX, Wang DX, Zeng Q, Xi JF, Nan X, He LJ, Zhou JN, Pei XT, Yue W. The splicing regulatory factor hnRNPU is a novel transcriptional target of c-Myc in hepatocellular carcinoma. FEBS Lett 2021; 595:68-84. [PMID: 33040326 DOI: 10.1002/1873-3468.13943] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/21/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common liver cancer with high mortality. Here, we found that hnRNPU is overexpressed in HCC tissues and is correlated with the poor prognosis of HCC patients. Besides, hnRNPU is of high significance in regulating the proliferation, apoptosis, self-renewal, and tumorigenic potential of HCC cells. Mechanismly, c-Myc regulates hnRNPU expression at the transcriptional level, and meanwhile, hnRNPU stabilizes the mRNA of c-MYC. We found that the hnRNPU and c-Myc regulatory loop exerts a synergistic effect on the proliferation and self-renewal of HCC, and promotes the HCC progression. Taken together, hnRNPU functions as a novel transcriptional target of c-Myc and promotes HCC progression, which may become a promising target for the treatment of c-Myc-driven HCC.
Collapse
Affiliation(s)
- Biao Zhang
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| | - Hai-Yang Wang
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| | - De-Xi Zhao
- Department of Hepatobiliary Surgery, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Dong-Xing Wang
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| | - Quan Zeng
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| | - Jia-Fei Xi
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| | - Xue Nan
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| | - Li-Juan He
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| | - Jun-Nian Zhou
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
- Experimental Hematology and Biochemistry Lab, Beijing Institute of Radiation Medicine, China
| | - Xue-Tao Pei
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| | - Wen Yue
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou, China
| |
Collapse
|
13
|
Durkin A, Albaba S, Fry AE, Morton JE, Douglas A, Beleza A, Williams D, Volker-Touw CML, Lynch SA, Canham N, Clowes V, Straub V, Lachlan K, Gibbon F, El Gamal M, Varghese V, Parker MJ, Newbury-Ecob R, Turnpenny PD, Gardham A, Ghali N, Balasubramanian M. Clinical findings of 21 previously unreported probands with HNRNPU-related syndrome and comprehensive literature review. Am J Med Genet A 2020; 182:1637-1654. [PMID: 32319732 DOI: 10.1002/ajmg.a.61599] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 01/29/2023]
Abstract
With advances in genetic testing and improved access to such advances, whole exome sequencing is becoming a first-line investigation in clinical work-up of children with developmental delay/intellectual disability (ID). As a result, the need to understand the importance of genetic variants and its effect on the clinical phenotype is increasing. Here, we report on the largest cohort of patients with HNRNPU variants. These 21 patients follow on from the previous study published by Yates et al. in 2017 from our group predominantly identified from the Deciphering Developmental Disorders study that reported seven patients with HNRNPU variants. All the probands reported here have a de novo loss-of-function variant. These probands have craniofacial dysmorphic features, in the majority including widely spaced teeth, microcephaly, high arched eyebrows, and palpebral fissure abnormalities. Many of the patients in the group also have moderate to severe ID and seizures that tend to start in early childhood. This series has allowed us to define a novel neurodevelopmental syndrome, with a likely mechanism of haploinsufficiency, and expand substantially on already published literature on HNRNPU-related neurodevelopmental syndrome.
Collapse
Affiliation(s)
- Anna Durkin
- Medical School, University of Sheffield, Sheffield, UK
| | - Shadi Albaba
- Sheffield Diagnostic Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Andrew E Fry
- Institute of Medical Genetics, University Hospital of Wales, Cardiff, UK
| | - Jenny E Morton
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's Hospitals NHS Foundation Trust, Birmingham, UK
| | - Andrew Douglas
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.,Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - Ana Beleza
- Guy's and St Thomas Clinical Genetics Service, London, UK
| | - Denise Williams
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's Hospitals NHS Foundation Trust, Birmingham, UK
| | - Catharina M L Volker-Touw
- Department of Genetics, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Centre Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Sally A Lynch
- Department of Clinical Genetics, Our Lady's Children's Hospital, Crumlin, Dublin, UK
| | - Natalie Canham
- Clinical Genetics Division, Liverpool Clinical Genetics Service, Liverpool, UK
| | - Virginia Clowes
- Cambridge Clinical Genetics Service, Addenbrooke's Hospital, Cambridge, UK
| | | | - Katherine Lachlan
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - Frances Gibbon
- Department of Paediatric Neurology, Noah's Ark Children's Hospital for Wales, Heath Park, Cardiff, UK
| | - Mayy El Gamal
- Department of Paediatric Neurology, Noah's Ark Children's Hospital for Wales, Heath Park, Cardiff, UK
| | - Vinod Varghese
- Institute of Medical Genetics, University Hospital of Wales, Cardiff, UK
| | - Michael J Parker
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK
| | - Ruth Newbury-Ecob
- Bristol Clinical Genetics Service, University Hospitals of Bristol NHS Trust, Bristol, UK
| | | | - Alice Gardham
- London North West University Healthcare NHS Trust Genetics Service, Middlesex, UK
| | - Neeti Ghali
- London North West University Healthcare NHS Trust Genetics Service, Middlesex, UK
| | - Meena Balasubramanian
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK.,Academic Unit of Child Health, University of Sheffield, South Yorkshire, UK
| |
Collapse
|
14
|
Song H, Li D, Wang X, Fang E, Yang F, Hu A, Wang J, Guo Y, Liu Y, Li H, Chen Y, Huang K, Zheng L, Tong Q. HNF4A-AS1/hnRNPU/CTCF axis as a therapeutic target for aerobic glycolysis and neuroblastoma progression. J Hematol Oncol 2020; 13:24. [PMID: 32216806 PMCID: PMC7098112 DOI: 10.1186/s13045-020-00857-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Aerobic glycolysis is a hallmark of metabolic reprogramming that contributes to tumor progression. However, the mechanisms regulating expression of glycolytic genes in neuroblastoma (NB), the most common extracranial solid tumor in childhood, still remain elusive. METHODS Crucial transcriptional regulators and their downstream glycolytic genes were identified by integrative analysis of a publicly available expression profiling dataset. In vitro and in vivo assays were undertaken to explore the biological effects and underlying mechanisms of transcriptional regulators in NB cells. Survival analysis was performed by using Kaplan-Meier method and log-rank test. RESULTS Hepatocyte nuclear factor 4 alpha (HNF4A) and its derived long noncoding RNA (HNF4A-AS1) promoted aerobic glycolysis and NB progression. Gain- and loss-of-function studies indicated that HNF4A and HNF4A-AS1 facilitated the glycolysis process, glucose uptake, lactate production, and ATP levels of NB cells. Mechanistically, transcription factor HNF4A increased the expression of hexokinase 2 (HK2) and solute carrier family 2 member 1 (SLC2A1), while HNF4A-AS1 bound to heterogeneous nuclear ribonucleoprotein U (hnRNPU) to facilitate its interaction with CCCTC-binding factor (CTCF), resulting in transactivation of CTCF and transcriptional alteration of HNF4A and other genes associated with tumor progression. Administration of a small peptide blocking HNF4A-AS1-hnRNPU interaction or lentivirus-mediated short hairpin RNA targeting HNF4A-AS1 significantly suppressed aerobic glycolysis, tumorigenesis, and aggressiveness of NB cells. In clinical NB cases, high expression of HNF4A-AS1, hnRNPU, CTCF, or HNF4A was associated with poor survival of patients. CONCLUSIONS These findings suggest that therapeutic targeting of HNF4A-AS1/hnRNPU/CTCF axis inhibits aerobic glycolysis and NB progression.
Collapse
Affiliation(s)
- Huajie Song
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei Province People’s Republic of China
| | - Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei Province People’s Republic of China
| | - Xiaojing Wang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei Province People’s Republic of China
| | - Erhu Fang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei Province People’s Republic of China
| | - Feng Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei Province People’s Republic of China
| | - Anpei Hu
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei Province People’s Republic of China
| | - Jianqun Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei Province People’s Republic of China
| | - Yanhua Guo
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei Province People’s Republic of China
| | - Yang Liu
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei Province People’s Republic of China
| | - Hongjun Li
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei Province People’s Republic of China
| | - Yajun Chen
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei Province People’s Republic of China
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei Province People’s Republic of China
| | - Liduan Zheng
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei Province People’s Republic of China
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei Province People’s Republic of China
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei Province People’s Republic of China
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei Province People’s Republic of China
| |
Collapse
|
15
|
De Los Santos MC, Dragomir MP, Calin GA. The role of exosomal long non-coding RNAs in cancer drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:1178-1192. [PMID: 31867576 PMCID: PMC6924635 DOI: 10.20517/cdr.2019.74] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
One of the major challenges in oncology is drug resistance, which triggers relapse and shortens patients’ survival. In order to promote drug desensitization, cancer cells require the establishment of an ideal tumor microenvironment that accomplishes specific conditions. To achieve this objective, cellular communication is a key factor. Classically, cells were believed to restrictively communicate by ligand-receptor binding, physical cell-to-cell interactions and synapses. Nevertheless, the crosstalk between tumor cells and stroma cells has also been recently reported to be mediated through exosomes, the smallest extracellular vesicles, which transport a plethora of functionally active molecules, such as: proteins, lipids, messenger RNA, DNA, microRNA or long non-coding RNA (lncRNAs). LncRNAs are RNA molecules greater than 200 base pairs that are deregulated in cancer and other diseases. Exosomal lncRNAs are highly stable and can be found in several body fluids, being considered potential biomarkers for tumor liquid biopsy. Exosomal lncRNAs promote angiogenesis, cell proliferation and drug resistance. The role of exosomal lncRNAs in drug resistance affects the main treatment strategies in oncology: chemotherapy, targeted therapy, hormone therapy and immunotherapy. Overall, knowing the molecular mechanisms by which exosomal lncRNA induce pharmacologic resistance could improve further drug development and identify drug resistance biomarkers.
Collapse
Affiliation(s)
- Mireia Cruz De Los Santos
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Mihnea P Dragomir
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.,Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 40015, Romania.,Department of Surgery, Fundeni Clinical Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest 022328, Romania
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.,Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| |
Collapse
|
16
|
Poot M. HNRNPU: Key to Neurodevelopmental Disorders such as Intellectual Delay, Epilepsy, and Autism. Mol Syndromol 2018; 9:275-278. [PMID: 30800042 DOI: 10.1159/000495204] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2018] [Indexed: 01/17/2023] Open
|
17
|
Pang S, Lv J, Wang S, Yang G, Ding X, Zhang J. Differential expression of long non-coding RNA and mRNA in children with Henoch-Schönlein purpura nephritis. Exp Ther Med 2018; 17:621-632. [PMID: 30651843 PMCID: PMC6307475 DOI: 10.3892/etm.2018.7038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 06/01/2018] [Indexed: 12/27/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) serve an essential role in regulating immunological functions. However, their impact on Henoch-Schönlein purpura nephritis (HSPN), has remained elusive. The present study determined the expression of lncRNAs and mRNAs in the peripheral blood of 6 children with HSPN and recruited 4 healthy children for comparative study. High-throughput sequencing revealed outstanding differences in lncRNA and mRNA expression, which were verified through reverse transcription-quantitative polymerase chain reaction. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were used to investigate the associated biological functions and possible mechanisms of lncRNAs and mRNAs in HSPN. A total of 820 differentially expressed lncRNAs between the two groups were identified, of which 34 were upregulated and 786 were downregulated. Simultaneously, a total of 3,557 mRNAs were also identified to be differentially expressed, of which 1,232 were upregulated and 2,325 were downregulated. The results revealed that the expression of lncRNAs including ENST00000378432, ENST00000571370, uc001kfc.1 and uc010qna.2 was decreased in HSPN patients compared with that in healthy controls. These lncRNAs were associated with the p53 signaling pathway and apoptosis-associated genes (AKT2, tumor protein 53, phosphatase and tensin homolog and FAS). Further studies of those lncRNAs will be performed to elucidate their functions in apoptosis. Complete raw data files were deposited in the Gene Expression Omnibus (GEO) at National Center for Biotechnology information under the GEO accession no. GSE102114 (www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE102114).
Collapse
Affiliation(s)
- Shuang Pang
- Department of Pediatrics, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110032, P.R. China
| | - Jing Lv
- Department of Pediatrics, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110032, P.R. China
| | - Shengzhi Wang
- Department of Pediatrics, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110032, P.R. China
| | - Guanqi Yang
- Department of Pediatrics, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110032, P.R. China
| | - Xiaohuan Ding
- Department of Pediatrics, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110032, P.R. China
| | - Jun Zhang
- Department of Pediatrics, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110032, P.R. China
| |
Collapse
|
18
|
Yau MYC, Xu L, Huang CL, Wong CM. Long Non-Coding RNAs in Obesity-Induced Cancer. Noncoding RNA 2018; 4:E19. [PMID: 30154386 PMCID: PMC6162378 DOI: 10.3390/ncrna4030019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/22/2018] [Accepted: 08/27/2018] [Indexed: 01/17/2023] Open
Abstract
Many mechanisms of obesity-induced cancers have been proposed. However, it remains unclear whether or not long non-coding RNAs (lncRNAs) play any role in obesity-induced cancers. In this article, we briefly discuss the generally accepted hypotheses explaining the mechanisms of obesity-induced cancers, summarize the latest evidence for the expression of a number of well-known cancer-associated lncRNAs in obese subjects, and propose the potential contribution of lncRNAs to obesity-induced cancers. We hope this review can serve as an inspiration to scientists to further explore the regulatory roles of lncRNAs in the development of obesity-induced cancers. Those findings will be fundamental in the development of effective therapeutics or interventions to combat this life-threatening adverse effect of obesity.
Collapse
Affiliation(s)
- Mabel Yin-Chun Yau
- School of Medical and Health Sciences, Tung Wah College, Hong Kong, China.
| | - Lu Xu
- Department of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Chien-Ling Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Chi-Ming Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
19
|
Hoja-Łukowicz D, Szwed S, Laidler P, Lityńska A. Proteomic analysis of Tn-bearing glycoproteins from different stages of melanoma cells reveals new biomarkers. Biochimie 2018; 151:14-26. [PMID: 29802864 DOI: 10.1016/j.biochi.2018.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/21/2018] [Indexed: 12/23/2022]
Abstract
Cutaneous melanoma, the most aggressive form of skin cancer, responds poorly to conventional therapy. The appearance of Tn antigen-modified proteins in cancer is correlated with metastasis and poor prognoses. The Tn determinant has been recognized as a powerful diagnostic and therapeutic target, and as an object for the development of anti-tumor vaccine strategies. This study was designed to identify Tn-carrying proteins and reveal their influence on cutaneous melanoma progression. We used a lectin-based strategy to purify Tn antigen-enriched cellular glycoproteome, the LC-MS/MS method to identify isolated glycoproteins, and the DAVID bioinformatics tool to classify the identified proteins. We identified 146 different Tn-bearing glycoproteins, 88% of which are new. The Tn-glycoproteome was generally enriched in proteins involved in the control of ribosome biogenesis, CDR-mediated mRNA stabilization, cell-cell adhesion and extracellular vesicle formation. The differential expression patterns of Tn-modified proteins for cutaneous primary and metastatic melanoma cells supported nonmetastatic and metastatic cell phenotypes, respectively. To our knowledge, this study is the first large-scale proteomic analysis of Tn-bearing proteins in human melanoma cells. The identified Tn-modified proteins are related to the biological and molecular nature of cutaneous melanoma and may be valuable biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Dorota Hoja-Łukowicz
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| | - Sabina Szwed
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| | - Piotr Laidler
- Department of Medical Biochemistry, Jagiellonian University Medical College, Kopernika 7, 31-034, Krakow, Poland.
| | - Anna Lityńska
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| |
Collapse
|
20
|
El Hajj J, Nguyen E, Liu Q, Bouyer C, Adriaenssens E, Hilal G, Ségal-Bendirdjian E. Telomerase regulation by the long non-coding RNA H19 in human acute promyelocytic leukemia cells. Mol Cancer 2018; 17:85. [PMID: 29703210 PMCID: PMC5923027 DOI: 10.1186/s12943-018-0835-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 04/16/2018] [Indexed: 01/06/2023] Open
Abstract
Background Since tumor growth requires reactivation of telomerase (hTERT), this enzyme is a challenging target for drug development. Therefore, it is of great interest to identify telomerase expression and activity regulators. Retinoids are well-known inducers of granulocytic maturation associated with hTERT repression in acute promyelocytic leukemia (APL) blasts. In a maturation-resistant APL cell line, we have previously identified a new pathway of retinoid-induced hTERT transcriptional repression independent of differentiation. Furthermore, we reported the isolation of a cell variant resistant to this repression. Those cell lines could serve as unique tools to identify new telomerase regulators. Methods Using a microarray approach we identified the long non-coding RNA, H19 as a potential candidate playing a role in telomerase regulation. Expression of H19, hTERT, and hTR were examined by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Telomerase activity was quantified by quantitative telomeric repeats amplification protocol (qTRAP). In vitro and in vivo assays were performed to investigate H19 function on telomerase expression and activity. Results We showed both in retinoid-treated cell lines and in APL patient cells an inverse relationship between the expression of H19 and the expression and activity of hTERT. Exploring the mechanistic link between H19 and hTERT regulation, we showed that H19 is able to impede telomerase function by disruption of the hTERT-hTR interaction. Conclusions This study identifies a new way of telomerase regulation through H19’s involvement and thereby reveals a new function for this long non-coding RNA that can be targeted for therapeutic purpose. Electronic supplementary material The online version of this article (10.1186/s12943-018-0835-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joëlle El Hajj
- INSERM UMR-S 1007, Cellular Homeostasis and Cancer, Paris, France.,Paris-Descartes University, Paris Sorbonne Cité, Paris, France.,Paris-Sud University, Paris-Saclay University, Orsay, France.,Cancer and Metabolism Laboratory, Faculty of Medicine, Saint-Joseph University, Beirut, Lebanon
| | - Eric Nguyen
- INSERM UMR-S 1007, Cellular Homeostasis and Cancer, Paris, France.,Paris-Descartes University, Paris Sorbonne Cité, Paris, France
| | - Qingyuan Liu
- INSERM UMR-S 1007, Cellular Homeostasis and Cancer, Paris, France.,Paris-Descartes University, Paris Sorbonne Cité, Paris, France.,Present address: Bristol-Myers Squibb (China) Investment Co. Ltd., Shanghai, 200040, People's Republic of China
| | - Claire Bouyer
- INSERM UMR-S 1007, Cellular Homeostasis and Cancer, Paris, France.,Paris-Descartes University, Paris Sorbonne Cité, Paris, France
| | | | - George Hilal
- Cancer and Metabolism Laboratory, Faculty of Medicine, Saint-Joseph University, Beirut, Lebanon
| | - Evelyne Ségal-Bendirdjian
- INSERM UMR-S 1007, Cellular Homeostasis and Cancer, Paris, France. .,Paris-Descartes University, Paris Sorbonne Cité, Paris, France. .,Paris-Sud University, Paris-Saclay University, Orsay, France. .,INSERM UMR-S 1007, Paris-Descartes University, 45 rue des Saints-Pères, 75006, Paris, France.
| |
Collapse
|
21
|
Jiao W, Chen Y, Song H, Li D, Mei H, Yang F, Fang E, Wang X, Huang K, Zheng L, Tong Q. HPSE enhancer RNA promotes cancer progression through driving chromatin looping and regulating hnRNPU/p300/EGR1/HPSE axis. Oncogene 2018; 37:2728-2745. [PMID: 29511351 DOI: 10.1038/s41388-018-0128-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/08/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022]
Abstract
Recent studies reveal the emerging functions of enhancer RNAs (eRNAs) in gene expression. However, the roles of eRNAs in regulating the expression of heparanase (HPSE), an established endo-β-D-glucuronidase essential for cancer invasion and metastasis, still remain elusive. Herein, through comprehensive analysis of publically available FANTOM5 expression atlas and chromatin interaction dataset, we identified a super enhancer and its derived eRNA facilitating the HPSE expression (HPSE eRNA) in cancers. Gain-of-function and loss-of-function experiments indicated that HPSE eRNA facilitated the in vitro and in vivo tumorigenesis and aggressiveness of cancer cells. Mechanistically, as a p300-regulated nuclear noncoding RNA, HPSE eRNA bond to heterogeneous nuclear ribonucleoprotein U (hnRNPU) to facilitate its interaction with p300 and their enrichment on super enhancer, resulting in chromatin looping between super enhancer and HPSE promoter, p300-mediated transactivation of transcription factor early growth response 1 (EGR1), and subsequent elevation of HPSE expression. In addition, rescue studies in HPSE overexpressing or silencing cancer cells indicated that HPSE eRNA exerted oncogenic properties via driving HPSE expression. In clinical cancer tissues, HPSE eRNA was highly expressed and positively correlated with HPSE levels, and served as an independent prognostic factor for poor outcome of cancer patients. Therefore, these findings indicate that as a novel noncoding RNA, HPSE eRNA promotes cancer progression through driving chromatin looping and regulating hnRNPU/p300/EGR1/HPSE axis.
Collapse
Affiliation(s)
- Wanju Jiao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yajun Chen
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huajie Song
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hong Mei
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feng Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Erhu Fang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaojing Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
22
|
The Role of Long Non-Coding RNAs in Hepatocarcinogenesis. Int J Mol Sci 2018; 19:ijms19030682. [PMID: 29495592 PMCID: PMC5877543 DOI: 10.3390/ijms19030682] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 02/23/2018] [Accepted: 02/24/2018] [Indexed: 02/07/2023] Open
Abstract
Whole-transcriptome analyses have revealed that a large proportion of the human genome is transcribed in non-protein-coding transcripts, designated as long non-coding RNAs (lncRNAs). Rather than being “transcriptional noise”, increasing evidence indicates that lncRNAs are key players in the regulation of many biological processes, including transcription, post-translational modification and inhibition and chromatin remodeling. Indeed, lncRNAs are widely dysregulated in human cancers, including hepatocellular carcinoma (HCC). Functional studies are beginning to provide insights into the role of oncogenic and tumor suppressive lncRNAs in the regulation of cell proliferation and motility, as well as oncogenic and metastatic potential in HCC. A better understanding of the molecular mechanisms and the complex network of interactions in which lncRNAs are involved could reveal novel diagnostic and prognostic biomarkers. Crucially, it may provide novel therapeutic opportunities to add to the currently limited number of therapeutic options for HCC patients. In this review, we summarize the current status of the field, with a focus on the best characterized dysregulated lncRNAs in HCC.
Collapse
|
23
|
Han D, Gao X, Wang M, Qiao Y, Xu Y, Yang J, Dong N, He J, Sun Q, Lv G, Xu C, Tao J, Ma N. Long noncoding RNA H19 indicates a poor prognosis of colorectal cancer and promotes tumor growth by recruiting and binding to eIF4A3. Oncotarget 2017; 7:22159-73. [PMID: 26989025 PMCID: PMC5008352 DOI: 10.18632/oncotarget.8063] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/23/2016] [Indexed: 02/06/2023] Open
Abstract
The overall biological role and clinical significance of long non-coding RNA H19 in colorectal cancer (CRC) remain largely unknown. Here, we firstly report that the lncRNA H19 recruits eIF4A3 and promotes the CRC cell proliferation. We observed higher expression of H19 was significantly correlated with tumor differentiation and advanced TNM stage in a cohort of 83 CRC patients. Multivariate analyses revealed that expression of H19 served as an independent predictor for overall survival and disease-free survival. Further experiments revealed that overexpression of H19 promoted the proliferation of CRC cells, while depletion of H19 inhibited cell viability and induced growth arrest. Moreover, expression profile data showed that H19 upregulated a series of cell-cycle genes. Using bioinformatics prediction and RNA immunoprecipitation assays, we identified eIF4A3 as an RNA-binding protein that binds to H19. We confirmed that combining eIF4A3 with H19 obstructed the recruitment of eIF4A3 to the cell-cycle gene mRNA. Our results suggest that H19, as a growth regulator, could serve as a candidate prognostic biomarker and target for new therapies in human CRC.
Collapse
Affiliation(s)
- Dong Han
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Meng Wang
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Qiao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Ya Xu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Jing Yang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Nazhen Dong
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Jun He
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Qian Sun
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Guixiang Lv
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Changqing Xu
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Ji Tao
- Department of Gastrointestinal Medical Oncology, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Ning Ma
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Heilongjiang Academy of Medical Sciences, Harbin, China
| |
Collapse
|
24
|
The role of interactions of long non-coding RNAs and heterogeneous nuclear ribonucleoproteins in regulating cellular functions. Biochem J 2017; 474:2925-2935. [PMID: 28801479 PMCID: PMC5553131 DOI: 10.1042/bcj20170280] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/21/2017] [Accepted: 06/26/2017] [Indexed: 12/30/2022]
Abstract
Long non-coding RNAs (lncRNAs) are emerging as critical regulators of various biological processes and human diseases. The mechanisms of action involve their interactions with proteins, RNA and genomic DNA. Most lncRNAs display strong nuclear localization. Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a large family of RNA-binding proteins that are important for multiple aspects of nucleic acid metabolism. hnRNPs are also predominantly expressed in the nucleus. This review discusses the interactions of lncRNAs and hnRNPs in regulating gene expression at transcriptional and post-transcriptional levels or by changing genomic structure, highlighting their involvements in glucose and lipid metabolism, immune response, DNA damage response, and other cellular functions. Toward the end, several techniques that are used to identify lncRNA binding partners are summarized. There are still many questions that need to be answered in this relatively new research area, which might provide novel targets to control the biological outputs of cells in response to different stimuli.
Collapse
|
25
|
Long noncoding RNA HEIH promotes melanoma cell proliferation, migration and invasion via inhibition of miR-200b/a/429. Biosci Rep 2017; 37:BSR20170682. [PMID: 28487474 PMCID: PMC5479024 DOI: 10.1042/bsr20170682] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/05/2017] [Accepted: 05/09/2017] [Indexed: 12/21/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are frequently dysregulated and have important roles in many diseases, particularly cancers. lncRNA-HEIH was first identified in hepatocellular carcinoma (HCC). The expression, clinical significance and roles of lncRNA-HEIH in melanoma are still unknown. In the present study, we found that lncRNA-HEIH is highly expressed in melanoma tissues and cell lines, associated with advanced clinical stages, and predicts poor outcomes in melanoma patients. Functional assays showed that ectopic expression of lncRNA-HEIH promotes melanoma cell proliferation, migration and invasion. Knockdown of lncRNA-HEIH inhibits melanoma cell proliferation, migration and invasion. Mechanistically, we revealed that lncRNA-HEIH directly binds to miR-200b/a/429 promoter and represses miR-200b/a/429 transcription. The expression of miR-200b is inversely associated with lncRNA-HEIH in melanoma tissues. Furthermore, overexpression of miR-200b/a/429 abrogates melanoma cell proliferation, migration and invasion enhanced by lncRNA-HEIH. In conclusion, we identified lncRNA-HEIH as a key oncogene in melanoma via transcriptional inhibition of miR-200b/a/429. Our data suggested that lncRNA-HEIH may serve as a promising prognostic biomarker and therapeutic target for melanoma.
Collapse
|
26
|
Wang J, Li X, Wang L, Li J, Zhao Y, Bou G, Li Y, Jiao G, Shen X, Wei R, Liu S, Xie B, Lei L, Li W, Zhou Q, Liu Z. A novel long intergenic noncoding RNA indispensable for the cleavage of mouse two-cell embryos. EMBO Rep 2016; 17:1452-1470. [PMID: 27496889 DOI: 10.15252/embr.201642051] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 07/07/2016] [Indexed: 01/30/2023] Open
Abstract
Endogenous retroviruses (ERVs) are transcriptionally active in cleavage stage embryos, yet their functions are unknown. ERV sequences are present in the majority of long intergenic noncoding RNAs (lincRNAs) in mouse and humans, playing key roles in many cellular processes and diseases. Here, we identify LincGET as a nuclear lincRNA that is GLN-, MERVL-, and ERVK-associated and essential for mouse embryonic development beyond the two-cell stage. LincGET is expressed in late two- to four-cell mouse embryos. Its depletion leads to developmental arrest at the late G2 phase of the two-cell stage and to MAPK signaling pathway inhibition. LincGET forms an RNA-protein complex with hnRNP U, FUBP1, and ILF2, promoting the cis-regulatory activity of long terminal repeats (LTRs) in GLN, MERVL, and ERVK (GLKLTRs), and inhibiting RNA alternative splicing, partially by downregulating hnRNP U, FUBP1, and ILF2 protein levels. Hnrnpu or Ilf2 mRNA injection at the pronuclear stage also decreases the preimplantation developmental rate, and Fubp1 mRNA injection at the pronuclear stage causes a block at the two-cell stage. Thus, as the first functional ERV-associated lincRNA, LincGET provides clues for ERV functions in cleavage stage embryonic development.
Collapse
Affiliation(s)
- Jiaqiang Wang
- College of Life Science, Northeast Agricultural University, Harbin, China State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xin Li
- College of Life Science, Northeast Agricultural University, Harbin, China State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Leyun Wang
- College of Life Science, Northeast Agricultural University, Harbin, China State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jingyu Li
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Yanhua Zhao
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Gerelchimeg Bou
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Yufei Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Guanyi Jiao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xinghui Shen
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Renyue Wei
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Shichao Liu
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Bingteng Xie
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Lei Lei
- Department of Histology and Embryology, Harbin Medical University, Harbin, China
| | - Wei Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qi Zhou
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
27
|
Geuens T, Bouhy D, Timmerman V. The hnRNP family: insights into their role in health and disease. Hum Genet 2016; 135:851-67. [PMID: 27215579 PMCID: PMC4947485 DOI: 10.1007/s00439-016-1683-5] [Citation(s) in RCA: 727] [Impact Index Per Article: 80.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/09/2016] [Indexed: 12/14/2022]
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) represent a large family of RNA-binding proteins (RBPs) that contribute to multiple aspects of nucleic acid metabolism including alternative splicing, mRNA stabilization, and transcriptional and translational regulation. Many hnRNPs share general features, but differ in domain composition and functional properties. This review will discuss the current knowledge about the different hnRNP family members, focusing on their structural and functional divergence. Additionally, we will highlight their involvement in neurodegenerative diseases and cancer, and the potential to develop RNA-based therapies.
Collapse
Affiliation(s)
- Thomas Geuens
- Peripheral Neuropathy Group, VIB Molecular Genetics Department, University of Antwerp-CDE, Parking P4, Building V, Room 1.30, Universiteitsplein 1, 2610, Antwerp, Belgium
- Neurogenetics Laboratory, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Delphine Bouhy
- Peripheral Neuropathy Group, VIB Molecular Genetics Department, University of Antwerp-CDE, Parking P4, Building V, Room 1.30, Universiteitsplein 1, 2610, Antwerp, Belgium
- Neurogenetics Laboratory, Institute Born Bunge, University of Antwerp, Antwerp, Belgium
| | - Vincent Timmerman
- Peripheral Neuropathy Group, VIB Molecular Genetics Department, University of Antwerp-CDE, Parking P4, Building V, Room 1.30, Universiteitsplein 1, 2610, Antwerp, Belgium.
- Neurogenetics Laboratory, Institute Born Bunge, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
28
|
Pinter SF. A Tale of Two Cities: How Xist and its partners localize to and silence the bicompartmental X. Semin Cell Dev Biol 2016; 56:19-34. [PMID: 27072488 DOI: 10.1016/j.semcdb.2016.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/30/2016] [Accepted: 03/30/2016] [Indexed: 10/22/2022]
Abstract
Sex chromosomal dosage compensation in mammals takes the form of X chromosome inactivation (XCI), driven by the non-coding RNA Xist. In contrast to dosage compensation systems of flies and worms, mammalian XCI has to restrict its function to the Xist-producing X chromosome, while leaving autosomes and active X untouched. The mechanisms behind the long-range yet cis-specific localization and silencing activities of Xist have long been enigmatic, but genomics, proteomics, super-resolution microscopy, and innovative genetic approaches have produced significant new insights in recent years. In this review, I summarize and integrate these findings with a particular focus on the redundant yet mutually reinforcing pathways that enable long-term transcriptional repression throughout the soma. This includes an exploration of concurrent epigenetic changes acting in parallel within two distinct compartments of the inactive X. I also examine how Polycomb repressive complexes 1 and 2 and macroH2A may bridge XCI establishment and maintenance. XCI is a remarkable phenomenon that operates across multiple scales, combining changes in nuclear architecture, chromosome topology, chromatin compaction, and nucleosome/nucleotide-level epigenetic cues. Learning how these pathways act in concert likely holds the answer to the riddle posed by Cattanach's and other autosomal translocations: What makes the X especially receptive to XCI?
Collapse
Affiliation(s)
- Stefan F Pinter
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT 06030-6403, USA.
| |
Collapse
|
29
|
Wang S, Wu X, Liu Y, Yuan J, Yang F, Huang J, Meng Q, Zhou C, Liu F, Ma J, Sun S, Zheng J, Wang F. Long noncoding RNA H19 inhibits the proliferation of fetal liver cells and the Wnt signaling pathway. FEBS Lett 2016; 590:559-70. [PMID: 26801864 DOI: 10.1002/1873-3468.12078] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 01/16/2016] [Accepted: 01/18/2016] [Indexed: 01/31/2023]
Abstract
In this study, we found that H19 is the most strongly differentially expressed long noncoding RNA (lncRNA) during liver development. H19 may inhibit the proliferation of fetal liver cells by blocking the interaction between heterogeneous nuclear ribonucleoprotein (hnRNP) U and actin, which results in gene transcriptional repression. Based on ChIP-seq analysis, we found that genes involved in the Wnt signaling pathway are enriched among hnRNP U-binding genes. Further investigation demonstrated that hnRNP U has opposing effects on cell proliferation and Wnt/β-catenin signaling pathway activity compared to H19 and that hnRNP U is very important in this process.
Collapse
Affiliation(s)
- Shaobing Wang
- Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | - Xia Wu
- Department of Infectious Diseases, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Yan Liu
- Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | - Jihang Yuan
- Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | - Fu Yang
- Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | - Jinfeng Huang
- Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | - Qingyang Meng
- Department of Infectious Diseases, The Second Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Chuanchuan Zhou
- Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | - Feng Liu
- Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | - Jinzhao Ma
- Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | - Shuhan Sun
- Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | - Jiasheng Zheng
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Fang Wang
- Department of Medical Genetics, Second Military Medical University, Shanghai, China
| |
Collapse
|
30
|
Abstract
Metastasis is the primary cause of cancer-related death all over the world. Metastasis is a process by which cancer spreads from the place at which it first arose to distant locations in the body. It is well known that several steps are necessary for this process, including cancer cell epithelial-mesenchymal transition (EMT), cell migration, resistance to anoikis, and angiogenesis. Therefore, investigating the molecular mechanism of regulating cancer metastasis progress may provide helpful insights in the development of efficient diagnosis and therapeutic strategy. Recent studies have indicated that long noncoding RNAs (lncRNAs) play important roles in cancer metastasis. lncRNAs are the nonprotein coding RNAs that have a size longer than 200 nucleotides. More and more studies have indicated that lncRNAs are involved in a broad range of biological processes and are associated with many diseases, such as cancer. The role of lncRNAs in cancer metastasis has been widely studied; however, lncRNAs are mainly involved in the EMT process on the current literature. This review focuses on the mechanisms underlying the role of lncRNAs in cancer metastasis.
Collapse
Affiliation(s)
- Juan Li
- Department of Medical Genetics, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Hui Meng
- Department of Medical Genetics, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Yun Bai
- Department of Medical Genetics, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Kai Wang
- Department of Medical Genetics, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| |
Collapse
|
31
|
Identification of important long non-coding RNAs and highly recurrent aberrant alternative splicing events in hepatocellular carcinoma through integrative analysis of multiple RNA-Seq datasets. Mol Genet Genomics 2015; 291:1035-51. [PMID: 26711644 DOI: 10.1007/s00438-015-1163-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/16/2015] [Indexed: 01/04/2023]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive and deadly cancer. The molecular pathogenesis of the disease remains poorly understood. To better understand HCC biology and explore potential biomarkers and therapeutic targets, we investigated the whole transcriptome of HCC. Considering the genetic heterogeneity of HCC, four datasets from four studies consisting of 15 pairs of HCC and adjacent normal samples were analyzed. We observed that the number of lncRNAs expressed in each HCC sample was consistently greater than the adjacent normal sample. Moreover, 15 lncRNAs were identified expressed in five to seven HCC tissues but were not detected in any adjacent normal tissue. Differential expression analysis detected 35 up- and 80 down-regulated lncRNAs in HCC samples compared with adjacent normal samples. In addition, five differentially expressed lncRNAs were predicted to play a role in oxidation and reduction process. With regard to splicing alterations, we identified nine highly recurrent differential splicing events belonging to eight genes USO1, RPS24, CCDC50, THNSL2, NUMB, FN1 (two events), SLC39A14 and NR1I3. Of them, splicing alterations of SLC39A14 and NR1I3 were reported for the association with HCC for the first time. The splicing dysregulation in HCC may be influenced by three splicing factors ESRP2, CELF2 and SRSF5 which were significantly down-regulated in HCC samples. This study revealed uncharacterized aspects of HCC transcriptome and identified important lncRNAs and splicing isoforms with the potential to serve as biomarkers and therapeutic targets for the disease.
Collapse
|
32
|
Migocka-Patrzałek M, Makowiecka A, Nowak D, Mazur AJ, Hofmann WA, Malicka-Błaszkiewicz M. β- and γ-Actins in the nucleus of human melanoma A375 cells. Histochem Cell Biol 2015; 144:417-28. [PMID: 26239425 PMCID: PMC4628621 DOI: 10.1007/s00418-015-1349-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2015] [Indexed: 11/13/2022]
Abstract
Actin is a highly conserved protein that is expressed in all eukaryotic cells and has essential functions in the cytoplasm and the nucleus. Nuclear actin is involved in transcription by all three RNA polymerases, chromatin remodelling, RNA processing, intranuclear transport, nuclear export and in maintenance of the nuclear architecture. The nuclear actin level and polymerization state are important factors regulating nuclear processes such as transcription. Our study shows that, in contrast to the cytoplasm, the majority of endogenous nuclear actin is unpolymerized in human melanoma A375 cells. Most mammalian cells express the two non-muscle β- and γ-actin isoforms that differ in only four amino acids. Despite their sequence similarity, studies analysing the cytoplasmic functions of these isoforms demonstrated that β- and γ-actins show differences in localization and function. However, little is known about the involvement of the individual actin isoforms in nuclear processes. Here, we used the human melanoma A375 cell line to analyse actin isoforms in regard to their nuclear localization. We show that both β- and γ-non-muscle actin isoforms are present in nuclei of these cells. Immunolocalization studies demonstrate that both isoforms co-localize with RNA polymerase II and hnRNP U. However, we observe differences in the ratio of cytoplasmic to nuclear actin distribution between the isoforms. We show that β-actin has a significantly higher nucleus-to-cytoplasm ratio than γ-actin.
Collapse
Affiliation(s)
- Marta Migocka-Patrzałek
- Department of Animal Developmental Biology, Institute of Experimental Biology, Faculty of Biological Sciences, University of Wroclaw, Sienkiewicza 21, 50-335, Wroclaw, Poland.
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
- Department of Physiology and Biophysics, University at Buffalo State University of New York, Buffalo, NY, USA.
| | - Aleksandra Makowiecka
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Dorota Nowak
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Antonina J Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Wilma A Hofmann
- Department of Physiology and Biophysics, University at Buffalo State University of New York, Buffalo, NY, USA
| | | |
Collapse
|
33
|
Srivastava R, Ahn SH. Modifications of RNA polymerase II CTD: Connections to the histone code and cellular function. Biotechnol Adv 2015; 33:856-72. [PMID: 26241863 DOI: 10.1016/j.biotechadv.2015.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 07/08/2015] [Accepted: 07/28/2015] [Indexed: 12/24/2022]
Abstract
At the onset of transcription, many protein machineries interpret the cellular signals that regulate gene expression. These complex signals are mostly transmitted to the indispensable primary proteins involved in transcription, RNA polymerase II (RNAPII) and histones. RNAPII and histones are so well coordinated in this cellular function that each cellular signal is precisely allocated to specific machinery depending on the stage of transcription. The carboxy-terminal domain (CTD) of RNAPII in eukaryotes undergoes extensive posttranslational modification, called the 'CTD code', that is indispensable for coupling transcription with many cellular processes, including mRNA processing. The posttranslational modification of histones, known as the 'histone code', is also critical for gene transcription through the reversible and dynamic remodeling of chromatin structure. Notably, the histone code is closely linked with the CTD code, and their combinatorial effects enable the delicate regulation of gene transcription. This review elucidates recent findings regarding the CTD modifications of RNAPII and their coordination with the histone code, providing integrative pathways for the fine-tuned regulation of gene expression and cellular function.
Collapse
Affiliation(s)
- Rakesh Srivastava
- Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Seong Hoon Ahn
- Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, Republic of Korea.
| |
Collapse
|
34
|
Sun J, Song Y, Chen X, Zhao J, Gao P, Huang X, Xu H, Wang Z. Novel long non-coding RNA RP11-119F7.4 as a potential biomarker for the development and progression of gastric cancer. Oncol Lett 2015; 10:115-120. [PMID: 26170986 DOI: 10.3892/ol.2015.3186] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 04/20/2015] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been reported to be involved in gene dysregulation in numerous different types of cancer, and have subsequently emerged as a major series of regulatory molecules that participate in a broad range of biological and pathological processes. However, the correlation between the expression levels of lncRNAs and their clinical significance in gastric cancer remains unclear. The aim of the present study was to investigate the potential correlation between lncRNA RP11-119F7.4 expression and clinicopathological characteristics in gastric cancer, and to identify whether it can serve as a potential diagnostic biomarker of the disease. Total RNA was extracted from the tissues of 96 patients with gastric cancer, in addition to matched non-tumor adjacent tissues (NATs). Following reverse transcription, lncRNA RP11-119F7.4 expression levels were determined by quantitative polymerase chain reaction and the association with patient clinicopathological characteristics was further analyzed. A receiver operating characteristic (ROC) curve was constructed to determine the diagnostic value of RP11-119F7.4. The results demonstrated that RP11-119F7.4 expression was significantly downregulated in the gastric cancer tissues compared with the matched NATs (P<0.001) and was significantly associated with the macroscopic type (P=0.041) and Lauren grade (P=0.020). The area under the ROC curve was 0.637 (P<0.001). However, no statistically significant differences were observed between RP11-119F7.4 expression and patient survival. The results of the present study indicate that lncRNA RP11-119F7.4 may be involved in carcinogenesis and may prove useful as a biomarker for diagnosis and prognostic significance in patients with gastric cancer.
Collapse
Affiliation(s)
- Jingxu Sun
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yongxi Song
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiaowan Chen
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Junhua Zhao
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Peng Gao
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xuanzhang Huang
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Huimian Xu
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
35
|
Gong C, Liu B, Yao Y, Qu S, Luo W, Tan W, Liu Q, Yao H, Zou L, Su F, Song E. Potentiated DNA Damage Response in Circulating Breast Tumor Cells Confers Resistance to Chemotherapy. J Biol Chem 2015; 290:14811-25. [PMID: 25897074 DOI: 10.1074/jbc.m115.652628] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Indexed: 12/27/2022] Open
Abstract
Circulating tumor cells (CTCs) are seeds for cancer metastasis and are predictive of poor prognosis in breast cancer patients. Whether CTCs and primary tumor cells (PTCs) respond to chemotherapy differently is not known. Here, we show that CTCs of breast cancer are more resistant to chemotherapy than PTCs because of potentiated DNA repair. Surprisingly, the chemoresistance of CTCs was recapitulated in PTCs when they were detached from the extracellular matrix. Detachment of PTCs increased the levels of reactive oxygen species and partially activated the DNA damage checkpoint, converting PTCs to a CTC-like state. Inhibition of checkpoint kinases Chk1 and Chk2 in CTCs reduces the basal checkpoint response and sensitizes CTCs to DNA damage in vitro and in mouse xenografts. Our results suggest that DNA damage checkpoint inhibitors may benefit the chemotherapy of breast cancer patients by suppressing the chemoresistance of CTCs and reducing the risk of cancer metastasis.
Collapse
Affiliation(s)
- Chang Gong
- From the Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, and
| | - Bodu Liu
- From the Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, and
| | - Yandan Yao
- From the Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, and
| | - Shaohua Qu
- From the Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, and
| | - Wei Luo
- From the Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, and
| | - Weige Tan
- From the Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, and
| | - Qiang Liu
- From the Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, and
| | - Herui Yao
- Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China and
| | - Lee Zou
- the Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129
| | | | - Erwei Song
- From the Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Breast Tumor Center, and
| |
Collapse
|
36
|
Shen C, Zhong N. Long non-coding RNAs: the epigenetic regulators involved in the pathogenesis of reproductive disorder. Am J Reprod Immunol 2014; 73:95-108. [PMID: 25220834 DOI: 10.1111/aji.12315] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 08/06/2014] [Indexed: 12/22/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are long single-stranded RNAs without translation potential. LncRNAs function in regulating epigenetic and cellular processes through various mechanisms. Nowadays, rapidly growing evidence has shown that abnormally expressed lncRNAs were involved in various inflammation-related states or diseases. Abnormal inflammation responses contribute to reproductive pathology and play vital roles in developing most disorders of the female reproductive system. In this review, we discussed the history of ncRNAs including lncRNAs, methodologies for lncRNA identification, mechanisms of lncRNA expression and regulation and mainly discussed the expression and function of lncRNAs in the female reproductive system with special focus on the inflammation and infection pathway. By analyzing the present available studies of lncRNA transcripts within the reproductive system and the current understanding of the biology of lncRNAs, we have suggested the important diagnostic and therapeutic roles of lncRNAs in the etiology of reproductive disorders.
Collapse
Affiliation(s)
- Chen Shen
- Peking University Center of Medical Genetics, Beijing, China
| | | |
Collapse
|
37
|
Tao HB, Wan YX, Deng AM, Yan HL. Long noncoding RNAs in colorectal cancer. Shijie Huaren Xiaohua Zazhi 2014; 22:901-906. [DOI: 10.11569/wcjd.v22.i7.901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are broadly defined as RNA molecules greater than 200 bp in length and lacking an open reading frame. Recent studies have demonstrated that lncRNAs are widely involved in the regulation of gene expression network at epigenetic, transcriptional and post-transcriptional levels, which may affect cell growth, proliferation, differentiation, metabolism, apoptosis and other important physiological processes. Abnormal expression of lncRNAs is closely associated with the tumor development, invasion, metastasis and prognosis. The development of colorectal cancer is a multi-factor, multi-step process, and abnormal gene expression may play an important role in this process. This review focuses on the current advances in research of lncRNAs in colorectal cancer, with an aim to provide new clues to clinical prevention, diagnosis and treatment of this malignancy.
Collapse
|