1
|
Boğa Kuru B, Makav M, Kuru M, Aras ŞY, Karadağ Sarı E, Bulut M, Alwazeer D, Bektaşoğlu F, Ölmez M, Kırmızıbayrak T, LeBaron TW. Effects of Hydrogen-Rich Water on Growth, Redox Homeostasis and Hormonal, Histological and Immune Systems in Rats Exposed to High Cage Density Stress. Vet Med Sci 2025; 11:e70305. [PMID: 40104881 PMCID: PMC11920740 DOI: 10.1002/vms3.70305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/15/2025] [Accepted: 03/07/2025] [Indexed: 03/20/2025] Open
Abstract
OBJECTIVES This study investigated the impact of drinking hydrogen-rich water (HRW) on growth performance, organ weights, thiol/disulphide homeostasis, oxidative status and some hormonal, histopathological and immunohistochemical changes in rats fed in a restricted housing environment. METHODS The eight groups (each group [male/female] eight rats) comprised two control, two hydrogen, two stress and two stress + hydrogen. All animals were given feed and water ad libitum for 3 months. Control and HRW group rats were calculated according to weight and housed according to the Guide's housing condition. The stress group and stress + HRW group were housed in half the area of the Guide's housing condition according to their weight. The animal's weekly body weights were measured throughout the study. The animals were sacrificed in accordance with ethical rules. Then, biochemical analyses were performed on thyroid-stimulating hormone (TSH), free triiodothyronine (FT3), free thyroxine (FT4), cortisol, parathyroid hormone (PTH) and calcium (Ca2+), total thiol (TT), native thiol (NT), disulphide, disulphide/TT × 100, disulphide/NT × 100 and NT/TT × 100, malondialdehyde (MDA) and glutathione (GSH). Haematoxylin staining for histopathological and SOD-2 immunoreactivity was also assessed. RESULTS Results showed that live weight gain was higher in the HRW groups than in the stress group. Oxidant status in biochemical analyses decreased in the stress + HRW group compared to the stress group. TSH decreased in the stress group. FT4, cortisol and Ca2+ increased in the stress group. CONCLUSIONS The stress-related physiological parameters were reduced in the HRW + stress group compared to the stress group. HRW could be suggested when the organism is found in stressful conditions.
Collapse
Affiliation(s)
- Buket Boğa Kuru
- Department of Animal Breeding and Husbandry, Faculty of Veterinary Medicine, Kafkas University, Kars, Türkiye
| | - Mustafa Makav
- Department of Physiology, Faculty of Veterinary Medicine, Kafkas University, Kars, Türkiye
| | - Mushap Kuru
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Kafkas University, Kars, Türkiye
| | - Şükran Yediel Aras
- Department of Midwifery, Faculty of Health Sciences, Kafkas University, Kars, Türkiye
| | - Ebru Karadağ Sarı
- Department of Histology-Embryology, Faculty of Veterinary Medicine, Kafkas University, Kars, Türkiye
| | - Menekşe Bulut
- Department of Food Engineering, Faculty of Engineering, Iğdır University, Iğdır, Türkiye
| | - Duried Alwazeer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Iğdır University, Iğdır, Türkiye
| | - Fikret Bektaşoğlu
- Department of Animal Breeding and Husbandry, Faculty of Veterinary Medicine, Kafkas University, Kars, Türkiye
| | - Mükremin Ölmez
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Kafkas University, Kars, Türkiye
| | - Turgut Kırmızıbayrak
- Department of Animal Breeding and Husbandry, Faculty of Veterinary Medicine, Kafkas University, Kars, Türkiye
| | - Tyler W LeBaron
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, Utah, USA
- Molecular Hydrogen Institute, Enoch, Utah, USA
| |
Collapse
|
2
|
Hu R, Yang X, He J, Wu S. Oxidative Stress and Autophagy: Unraveling the Hidden Threat to Boars' Fertility. Antioxidants (Basel) 2024; 14:2. [PMID: 39857336 PMCID: PMC11761863 DOI: 10.3390/antiox14010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/11/2024] [Accepted: 12/21/2024] [Indexed: 01/27/2025] Open
Abstract
This review systematically examines the influence of oxidative stress on the reproductive function of male livestock, with a particular focus on the modulation of autophagy. Spermatogenesis, a highly precise biological process, is vulnerable to a range of internal and external factors, among which oxidative stress notably disrupts autophagic processes within the testes. This disruption results in diminished sperm quality, impaired testosterone synthesis, and compromised integrity of the blood-testis barrier. Furthermore, this review elucidates the molecular mechanisms by which oxidative stress-induced autophagy dysfunction impairs spermatogenesis and mitochondrial function, consequently reducing sperm motility. These findings aim to provide a theoretical foundation and serve as a reference for improving reproductive performance and sperm quality in livestock.
Collapse
Affiliation(s)
- Ruizhi Hu
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, China
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xizi Yang
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jianhua He
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Shusong Wu
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
3
|
Ahmed H, Ijaz MU, Riaz M, Ullah F, Samir H, Shuaib M, Swelum AA. Taxifolin: A flavonoid in the freezing medium augments post-thaw semen quality and in vivo fertility potential of buffalo bull spermatozoa. Cryobiology 2024; 117:104980. [PMID: 39426473 DOI: 10.1016/j.cryobiol.2024.104980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
This comprehensive study was carried out to investigate the effects of taxifolin in the freezing medium on post-thaw semen quality, and fertility potential of buffalo bull spermatozoa. Taxifolin was also evaluated for radical scavenging activity through DPPH (2, 2-diphenyl-1-picrylhydrazyl), and Nitric oxide (NO) inhibition (%) during in vitro conditions. Collected semen samples from four buffalo bulls were initially evaluated (consistency, volume, motility, and concentrations); the accepted samples were pooled, and diluted in extenders containing different doses of taxifolin (0 μM [control], 2 μM, 5 μM, 10 μM, and 20 μM). Diluted semen was gradually cooled (2 h, 4 °C), equilibrated (4 h, 4 °C), and then frozen in liquid nitrogen (-196 °C). Data analysis revealed that taxifolin supplementation (10 μM) displayed the highest DPPH-scavenging ability, and NO inhibition compared to the control (% DPPH, 67.31 vs. 13.50; and % NO, 78.25 vs. 21.25) respectively. Moreover, taxifolin supplementation (10 μM) significantly (P < 0.05) improved progressive motility (%), average path velocity (μm/sec), straight-line velocity (μm/sec), and seminal plasma glutathione peroxidase (μM), and superoxide dismutase (U/mL) of buffalo bull spermatozoa than control. Sperm plasma membrane integrity, mitochondrial transmembrane potential, acrosome integrity (%) and seminal plasma adenosine triphosphate (nmol/million), and total antioxidant capacity (μM/L) were enhanced significantly with taxifolin (10 and 20 μM) supplementing group. Lastly, taxifolin supplementation significantly improved the fertility rate (%, 69.09 vs. 40.38) compared to the control. Further studies to assess mechanisms by which taxifolin improves semen quality and fertility of buffalo spermatozoa are warranted.
Collapse
Affiliation(s)
- Hussain Ahmed
- Department of Zoology, University of Buner, Khyber Pakhtunkhwa (KP), Pakistan; Centre of Animal Sciences and Fisheries, University of Swat, KP, Pakistan.
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Mehreen Riaz
- Centre of Animal Sciences and Fisheries, University of Swat, KP, Pakistan
| | - Farhad Ullah
- Department of Zoology, Islamia College, Peshawar, KP, Pakistan
| | - Haney Samir
- Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, Japan; Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Muhammad Shuaib
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
4
|
Zhang W, Liu Y, Liao Y, Zhu C, Zou Z. GPX4, ferroptosis, and diseases. Biomed Pharmacother 2024; 174:116512. [PMID: 38574617 DOI: 10.1016/j.biopha.2024.116512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/03/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024] Open
Abstract
GPX4 (Glutathione peroxidase 4) serves as a crucial intracellular regulatory factor, participating in various physiological processes and playing a significant role in maintaining the redox homeostasis within the body. Ferroptosis, a form of iron-dependent non-apoptotic cell death, has gained considerable attention in recent years due to its involvement in multiple pathological processes. GPX4 is closely associated with ferroptosis and functions as the primary inhibitor of this process. Together, GPX4 and ferroptosis contribute to the pathophysiology of several diseases, including sepsis, nervous system diseases, ischemia reperfusion injury, cardiovascular diseases, and cancer. This review comprehensively explores the regulatory roles and impacts of GPX4 and ferroptosis in the development and progression of these diseases, with the aim of providing insights for identifying potential therapeutic strategies in the future.
Collapse
Affiliation(s)
- Wangzheqi Zhang
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Yang Liu
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Yan Liao
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China
| | - Chenglong Zhu
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| | - Zui Zou
- School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| |
Collapse
|
5
|
Gao X, Li G, Pan X, Xia J, Yan D, Xu Y, Ruan X, He H, Wei Y, Zhai J. Environmental and occupational exposure to cadmium associated with male reproductive health risk: a systematic review and meta-analysis based on epidemiological evidence. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7491-7517. [PMID: 37584848 DOI: 10.1007/s10653-023-01719-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023]
Abstract
There is an abundance of epidemiological evidence and animal experiments concerning the correlation between cadmium exposure and adverse male reproductive health outcomes. However, the evidence remains inconclusive. We conducted a literature search from PubMed, Embase, and Web of Science over the past 3 decades. Pooled r and 95% confidence intervals (CIs) were derived from Cd levels of the type of biological materials and different outcome indicators to address the large heterogeneity of existing literature. Cd was negatively correlated with semen parameters (r = - 0.122, 95% CI - 0.151 to - 0.092) and positively correlated with sera sex hormones (r = 0.104, 95% CI 0.060 to 0.147). Among them, Cd in three different biological materials (blood, semen, and urine) was negatively correlated with semen parameters, while among sex hormones, only blood and urine were statistically positively correlated. In subgroup analysis, blood Cd was negatively correlated with semen density, sperm motility, sperm morphology, and sperm count. Semen Cd was negatively correlated with semen concentration. As for serum sex hormones, blood Cd had no statistical significance with three hormones, while semen Cd was negatively correlated with testosterone. In summary, cadmium exposure might be associated with the risk of a decline in sperm quality and abnormal levels of sex hormones.
Collapse
Affiliation(s)
- Xin Gao
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Guangying Li
- Department of Public Affairs Administration, School of Health Management, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Xingchen Pan
- School of the First Clinical Medicine, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Jiajia Xia
- Department of Public Affairs Administration, School of Health Management, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Di Yan
- Department of Public Affairs Administration, School of Health Management, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Yang Xu
- School of the First Clinical Medicine, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Xiang Ruan
- School of the First Clinical Medicine, Anhui Medical University, Meishan Rd 81, Heifei, 230032, China
| | - Huan He
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Yu Wei
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China
| | - Jinxia Zhai
- Department of Occupational and Environmental Health, School of Public Health, Anhui Medical University, Meishan Rd 81, Hefei, 230032, China.
| |
Collapse
|
6
|
Caamaño JN, Santiago-Moreno J, Martínez-Pastor F, Tamargo C, Salman A, Fernández Á, Merino MJ, Lacalle E, Toledano-Díaz A, Hidalgo CO. Use of the flavonoid taxifolin for sperm cryopreservation from the threatened Bermeya goat breed. Theriogenology 2023; 206:18-27. [PMID: 37172535 DOI: 10.1016/j.theriogenology.2023.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Taxifolin is a plant flavonoid effective as an antioxidant. This study aimed to assess the effect of adding taxifolin to the semen extender during the cooling period before freezing on the overall post-thawing sperm variables of Bermeya goats. In the first experiment, a dose-response experiment was performed with four experimental groups: Control, 10, 50, and 100 μg/ml of taxifolin using semen from 8 Bermeya males. In the second experiment, semen from 7 Bermeya bucks was collected and extended at 20 °C using a Tris-citric acid-glucose medium supplemented with different concentrations of taxifolin and glutathione (GSH): control, 5 μM taxifolin, 1 mM GSH, and both antioxidants. In both experiments, two straws per buck were thawed in a water bath (37 °C, 30 s), pooled, and incubated at 38 °C. Motility (CASA) was assessed at 0, 2, and 5 h, and sperm physiology was assessed at 0 and 5 h by flow cytometry (viability, intact acrosome membrane, mitochondria membrane potential, capacitation, intracellular reactive oxygen species -ROS-, mitochondrial superoxide, and chromatin status). In experiment 2, an artificial insemination trial (AI) was included with 29 goats for testing the taxifolin 5-μM treatment on fertility. Data were analyzed with the R statistical environment using linear mixed-effects models. In experiment 1 and compared to the control, T10 increased progressive motility (P < 0.001) but taxifolin decreased total and progressive motility at higher concentrations (P < 0.001), both post-thawing and after the incubation. Viability decreased post-thawing in the three concentrations (P < 0.001). Cytoplasmic ROS decreased at 0 and 5 h at T10 (P = 0.049), and all doses decreased mitochondrial superoxide post-thawing (P = 0.024). In experiment 2, 5 μM taxifolin or 1 mM GSH (alone or combined) increased total and progressive motility vs. the control (P < 0.01), and taxifolin increased kinematic parameters such as VCL, ALH, and DNC (P < 0.05). Viability was not affected by taxifolin in this experiment. Both antioxidants did not significantly affect other sperm physiology parameters. The incubation significantly affected all the parameters (P < 0.004), overall decreasing sperm quality. Fertility after artificial insemination with doses supplemented with 5 μM taxifolin was 76.9% (10/13), not significantly different from the control group (69.2%, 9/13). In conclusion, taxifolin showed a lack of toxicity in the low micromolar range and could benefit goat semen cryopreservation.
Collapse
Affiliation(s)
- J N Caamaño
- Department of Animal Selection and Reproduction, Regional Service for Agrifood Research and Development (SERIDA), Gijón, Asturias, Spain.
| | | | - F Martínez-Pastor
- INDEGSAL, Universidad de León, León, Spain; Molecular Biology (Cell Biology), Universidad de León, León, Spain
| | - C Tamargo
- Department of Animal Selection and Reproduction, Regional Service for Agrifood Research and Development (SERIDA), Gijón, Asturias, Spain
| | - A Salman
- INDEGSAL, Universidad de León, León, Spain
| | - Á Fernández
- Department of Animal Selection and Reproduction, Regional Service for Agrifood Research and Development (SERIDA), Gijón, Asturias, Spain
| | - M J Merino
- Department of Animal Selection and Reproduction, Regional Service for Agrifood Research and Development (SERIDA), Gijón, Asturias, Spain
| | - E Lacalle
- INDEGSAL, Universidad de León, León, Spain
| | | | - C O Hidalgo
- Department of Animal Selection and Reproduction, Regional Service for Agrifood Research and Development (SERIDA), Gijón, Asturias, Spain
| |
Collapse
|
7
|
An X, Li Q, Chen N, Li T, Wang H, Su M, Shi H, Ma Y. Effects of Pgam1-mediated glycolysis pathway in Sertoli cells on Spermatogonial stem cells based on transcriptomics and energy metabolomics. Front Vet Sci 2022; 9:992877. [PMID: 36213420 PMCID: PMC9540473 DOI: 10.3389/fvets.2022.992877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Spermatogenesis is a complex process involving a variety of intercellular interactions and precise regulation of gene expression. Spermatogenesis is sustained by a foundational Spermatogonial stem cells (SSCs) and in mammalian testis. Sertoli cells (SCs) are the major component of SSC niche. Sertoli cells provide structural support and supply energy substrate for developing germ cells. Phosphoglycerate mutase 1 (Pgam1) is a key enzyme in the glycolytic metabolism and our previous work showed that Pgam1 is expressed in SCs. In the present study, hypothesized that Pgam1-depedent glycolysis in SCs plays a functional role in regulating SSCs fate decisions. A co-culture system of murine SCs and primary spermatogonia was constructed to investigate the effects of Pgam1 knockdown or overexpression on SSCs proliferation and differentiation. Transcriptome results indicated that overexpression and knockdown of Pgam1 in SCs resulted in up-regulation of 458 genes (117 down-regulated, 341 up-regulated) and down-regulation of 409 genes (110 down-regulated, 299 up-regulated), respectively. Further analysis of these DEGs revealed that GDNF, FGF2 and other genes that serve key roles in SSCs niche maintenance were regulated by Pgam1. The metabolome results showed that a total of 11 and 16 differential metabolites were identified in the Pgam1 gene overexpression and knockdown respectively. Further screening of these metabolites indicated that Sertoli cell derived glutamate, glutamine, threonine, leucine, alanine, lysine, serine, succinate, fumarate, phosphoenolpyruvate, ATP, ADP, and AMP have potential roles in regulating SSCs proliferation and differentiation. In summary, this study established a SCs-SSCs co-culture system and identified a list of genes and small metabolic molecules that affect the proliferation and differentiation of SSCs. This study provides additional insights into the regulatory mechanisms underlying interactions between SCs and SSCs during mammalian spermatogenesis.
Collapse
Affiliation(s)
- Xuejiao An
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Qiao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Nana Chen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Taotao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Huihui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Manchun Su
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Huibin Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, China
- *Correspondence: Youji Ma
| |
Collapse
|
8
|
Peña FJ, O'Flaherty C, Ortiz Rodríguez JM, Martín Cano FE, Gaitskell-Phillips G, Gil MC, Ortega Ferrusola C. The Stallion Spermatozoa: A Valuable Model to Help Understand the Interplay Between Metabolism and Redox (De)regulation in Sperm Cells. Antioxid Redox Signal 2022; 37:521-537. [PMID: 35180830 DOI: 10.1089/ars.2021.0092] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Significance: Proper functionality of the spermatozoa depends on the tight regulation of their redox status; at the same time these cells are highly energy demanding and in the energetic metabolism, principally in the electron transport chain in the mitochondria, reactive oxygen species are continuously produced, in addition to that observed in the Krebs cycle and during the β-oxidation of fatty acids. Recent Advances: In addition, in glycolysis, elimination of phosphate groups from glyceraldehyde 3-phosphate and dihydroxyacetone phosphate results in the byproducts glyoxal (G) and methylglyoxal (MG); these products are 2-oxoaldehydes. The presence of adjacent carbonyl groups makes them strong electrophiles that react with nucleophiles in proteins, lipids, and DNA, forming advanced glycation end products. Critical Issues: This mechanism is behind subfertility in diabetic patients; in the animal breeding industry, commercial extenders for stallion semen contain a supraphysiological concentration of glucose that promotes MG production, constituting a potential model of interest. Future Directions: Increasing our knowledge of sperm metabolism and its interactions with redox regulation may improve current sperm technologies in use, and shall provide new clues to understanding infertility in males. Moreover, stallion spermatozoa due to its accessibility, intense metabolism, and suitability for proteomics/metabolomic studies may constitute a suitable model for studying regulation of metabolism and interactions between metabolism and redox homeostasis. Antioxid. Redox Signal. 37, 521-537.
Collapse
Affiliation(s)
- Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Cristian O'Flaherty
- Urology Division, Department of Surgery, Faculty of Medicine, McGill University, Montréal, Quebec, Canada.,Department of Pharmacology and Therapeutics and Faculty of Medicine, McGill University, Montréal, Quebec, Canada.,Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montréal, Quebec, Canada
| | - José M Ortiz Rodríguez
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Francisco E Martín Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Gemma Gaitskell-Phillips
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - María C Gil
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Cristina Ortega Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| |
Collapse
|
9
|
GPX4: old lessons, new features. Biochem Soc Trans 2022; 50:1205-1213. [PMID: 35758268 DOI: 10.1042/bst20220682] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 01/20/2023]
Abstract
GPX4 is a selenocysteine-containing protein that plays an essential role in repairing peroxidised phospholipids. Its role in organismal homeostasis has been known for decades, and it has been reported to play a pivotal role in cell survival and mammalian embryonic development. In recent years, GPX4 has been associated with a cell death modality dubbed ferroptosis. The framing of this molecular pathway of cell death was essential for understanding the conditions that determine GPX4 dependency and ultimately to the process of lipid peroxidation. Since its discovery, ferroptosis has been gaining momentum as a promising target for yet-incurable diseases, including cancer and neurodegeneration. Given the current interest, in the present review, we provide newcomers in the field with an overview of the biology of GPX4 and cover some of its most recent discoveries.
Collapse
|
10
|
Liu Z, Wang H, Larsen M, Gunewardana S, Cendali FI, Reisz JA, Akiyama H, Behringer RR, Ma Q, Hammoud SS, Kumar TR. The solute carrier family 7 member 11 (SLC7A11) is regulated by LH/androgen and required for cystine/glutathione homeostasis in mouse Sertoli cells. Mol Cell Endocrinol 2022; 549:111641. [PMID: 35398053 DOI: 10.1016/j.mce.2022.111641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/30/2022] [Accepted: 04/02/2022] [Indexed: 01/19/2023]
Abstract
Luteinizing hormone (LH) stimulates testosterone production from Leydig cells. Both LH and testosterone play important roles in spermatogenesis and male fertility. To identify LH - and testosterone - responsive transporter genes that play key roles in spermatogenesis, we performed large-scale gene expression analyses on testes obtained from adult control and Lhb knockout mice. We found a significant reduction in cystine/glutamate transporter encoding Slc7a11 mRNA in testes of Lhb null mice. We observed that Slc7a11/SLC7A11 expression was initiated pre-pubertally and developmentally regulated in mouse testis. Immunolocalization studies confirmed that SLC7A11 was mostly expressed in Sertoli cells in testes of control and germ cell-deficient mice. Western blot analyses indicated that SLC7A11 was significantly reduced in testes of mutant mice lacking either LH or androgen receptor selectively in Sertoli cells. Genetic and pharmacological rescue of Lhb knockout mice restored the testicular expression of Slc7a11 comparable to that observed in controls. Additionally, Slc7a11 mRNA was significantly suppressed upon Sertoli cell/testicular damage induced in mice by cadmium treatment. Knockdown of Slc7a11 in vitro in TM4 Sertoli cells or treatment of mice with sulfasalazine, a SLC7A11 inhibitor caused a significant reduction in intracellular cysteine and glutathione levels but glutamate content remained unchanged as determined by metabolomic analysis. Knockdown of Slc7a11 resulted in compensatory upregulation of other glutamate transporters belonging to the Slc1a family presumably to maintain intracellular glutamate levels. Collectively, our studies identified that SLC7A11 is an LH/testosterone-regulated transporter that is required for cysteine/glutathione but not glutamate homeostasis in mouse Sertoli cells.
Collapse
Affiliation(s)
- Zhenghui Liu
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Huizen Wang
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Mark Larsen
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Sumedha Gunewardana
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Francesca I Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Haruhiko Akiyama
- Department of Orthopedic Surgery, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Richard R Behringer
- Department of Molecular Genetics, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Qianyi Ma
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - S Sue Hammoud
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - T Rajendra Kumar
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
11
|
Huang C, Yang C, Pang D, Li C, Gong H, Cao X, He X, Chen X, Mu B, Cui Y, Liu W, Luo Q, Cheng A, Jia L, Chen M, Xiao B, Chen Z. Animal models of male subfertility targeted on LanCL1-regulated spermatogenic redox homeostasis. Lab Anim (NY) 2022; 51:133-145. [PMID: 35469022 DOI: 10.1038/s41684-022-00961-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 03/23/2022] [Indexed: 02/08/2023]
Abstract
Oxidative stress in spermatozoa is a major contributor to male subfertility, which makes it an informed choice to generate animal models of male subfertility with targeted modifications of the antioxidant systems. However, the critical male germ cell-specific antioxidant mechanisms have not been well defined yet. Here we identify LanCL1 as a major male germ cell-specific antioxidant gene, reduced expression of which is related to human male infertility. Mice deficient in LanCL1 display spermatozoal oxidative damage and impaired male fertility. Histopathological studies reveal that LanCL1-mediated antioxidant response is required for mouse testicular homeostasis, from the initiation of spermatogenesis to the maintenance of viability and functionality of male germ cells. Conversely, a mouse model expressing LanCL1 transgene is protected against high-fat-diet/obesity-induced oxidative damage and subfertility. We further show that germ cell-expressed LanCL1, in response to spermatogenic reactive oxygen species, is regulated by transcription factor specific protein 1 (SP1) during spermatogenesis. This study demonstrates a critical role for the SP1-LanCL1 axis in regulating testicular homeostasis and male fertility mediated by redox balance, and provides evidence that LanCL1 genetically modified mice have attractive applications as animal models of male subfertility.
Collapse
Affiliation(s)
- Chao Huang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Chengcheng Yang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Dejiang Pang
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Chao Li
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Huan Gong
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Xiyue Cao
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Xia He
- Clinical Laboratory of the People's Hospital of Ya'an, Ya'an, P. R. China
| | - Xueyao Chen
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Bin Mu
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Yiyuan Cui
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Wentao Liu
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Qihui Luo
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Anchun Cheng
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Lanlan Jia
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China
| | - Mina Chen
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China.
| | - Bo Xiao
- Department of Biology, Southern University of Science and Technology, Shenzhen, P. R. China.
| | - Zhengli Chen
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P. R. China.
| |
Collapse
|
12
|
Blythe MJ, Kocer A, Rubio-Roldan A, Giles T, Abakir A, Ialy-Radio C, Wheldon LM, Bereshchenko O, Bruscoli S, Kondrashov A, Drevet JR, Emes RD, Johnson AD, McCarrey JR, Gackowski D, Olinski R, Cocquet J, Garcia-Perez JL, Ruzov A. LINE-1 transcription in round spermatids is associated with accretion of 5-carboxylcytosine in their open reading frames. Commun Biol 2021; 4:691. [PMID: 34099857 PMCID: PMC8184969 DOI: 10.1038/s42003-021-02217-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/14/2021] [Indexed: 12/12/2022] Open
Abstract
Chromatin of male and female gametes undergoes a number of reprogramming events during the transition from germ cell to embryonic developmental programs. Although the rearrangement of DNA methylation patterns occurring in the zygote has been extensively characterized, little is known about the dynamics of DNA modifications during spermatid maturation. Here, we demonstrate that the dynamics of 5-carboxylcytosine (5caC) correlate with active transcription of LINE-1 retroelements during murine spermiogenesis. We show that the open reading frames of active and evolutionary young LINE-1s are 5caC-enriched in round spermatids and 5caC is eliminated from LINE-1s and spermiogenesis-specific genes during spermatid maturation, being simultaneously retained at promoters and introns of developmental genes. Our results reveal an association of 5caC with activity of LINE-1 retrotransposons suggesting a potential direct role for this DNA modification in fine regulation of their transcription.
Collapse
Affiliation(s)
- Martin J Blythe
- Deep Seq, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Ayhan Kocer
- GReD Laboratory, CNRS UMR 6293 - INSERM U1103 - Clermont Université, Aubière, France
| | - Alejandro Rubio-Roldan
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain
| | - Tom Giles
- Digital Research Service, Sutton Bonington Campus, University of Nottingham, Sutton Bonington, Leicestershire, UK
| | - Abdulkadir Abakir
- School of Medicine, University of Nottingham, University Park, Nottingham, UK
| | - Côme Ialy-Radio
- INSERM U1016, Institut Cochin - CNRS UMR8104 - Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Lee M Wheldon
- Medical Molecular Sciences, University of Nottingham, University Park, Nottingham, UK
| | - Oxana Bereshchenko
- Department of Medicine, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Stefano Bruscoli
- Department of Medicine, Section of Pharmacology, University of Perugia, Perugia, Italy
| | | | - Joël R Drevet
- GReD Laboratory, CNRS UMR 6293 - INSERM U1103 - Clermont Université, Aubière, France
| | - Richard D Emes
- Digital Research Service, Sutton Bonington Campus, University of Nottingham, Sutton Bonington, Leicestershire, UK. .,School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Sutton Bonington, Leicestershire, UK.
| | - Andrew D Johnson
- School of Life Sciences, University of Nottingham, University Park, Nottingham, UK
| | | | - Daniel Gackowski
- Department of Clinical Biochemistry, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Ryszard Olinski
- Department of Clinical Biochemistry, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Julie Cocquet
- INSERM U1016, Institut Cochin - CNRS UMR8104 - Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jose L Garcia-Perez
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain.,MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Alexey Ruzov
- School of Medicine, University of Nottingham, University Park, Nottingham, UK.
| |
Collapse
|
13
|
Antioxidant-Based Therapies in Male Infertility: Do We Have Sufficient Evidence Supporting Their Effectiveness? Antioxidants (Basel) 2021; 10:antiox10020220. [PMID: 33540782 PMCID: PMC7912982 DOI: 10.3390/antiox10020220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/19/2022] Open
Abstract
Under physiological conditions, reactive oxygen species (ROS) play pivotal roles in various processes of human spermatozoa. Indeed, semen requires the intervention of ROS to accomplish different stages of its maturation. However, ROS overproduction is a well-documented phenomenon occurring in the semen of infertile males, potentially causing permanent oxidative damages to a vast number of biological molecules (proteins, nucleic acids, polyunsaturated fatty acids of biological membrane lipids), negatively affecting the functionality and vitality of spermatozoa. ROS overproduction may concomitantly occur to the excess generation of reactive nitrogen species (RNS), leading to oxidative/nitrosative stress and frequently encountered in various human pathologies. Under different conditions of male infertility, very frequently accompanied by morpho-functional anomalies in the sperm analysis, several studies have provided evidence for clear biochemical signs of damages to biomolecules caused by oxidative/nitrosative stress. In the last decades, various studies aimed to verify whether antioxidant-based therapies may be beneficial to treat male infertility have been carried out. This review analyzed the results of the studies published during the last ten years on the administration of low-molecular-weight antioxidants to treat male infertility in order to establish whether there is a sufficient number of data to justify antioxidant administration to infertile males. An analysis of the literature showed that only 30 clinical studies tested the effects of the administration of low-molecular-weight antioxidants (administered as a single antioxidant or as a combination of different antioxidants with the addition of vitamins and/or micronutrients) to infertile males. Of these studies, only 33.3% included pregnancy and/or live birth rates as an outcome measure to determine the effects of the therapy. Of these studies, only 4 were case–control studies, and only 2 of them found improvement of the pregnancy rate in the group of antioxidant-treated patients. Additionally, of the 30 studies considered in this review, only 43.3% were case–control studies, 66.7% enrolled a number of patients higher than 40, and 40% carried out the administration of a single antioxidant. Therefore, it appears that further studies are needed to clearly define the usefulness of antioxidant-based therapies to treat male infertility.
Collapse
|
14
|
Weber A, Argenti LE, de Souza APB, Santi L, Beys-da-Silva WO, Yates JR, Bustamante-Filho IC. Ready for the journey: a comparative proteome profiling of porcine cauda epididymal fluid and spermatozoa. Cell Tissue Res 2019; 379:389-405. [DOI: 10.1007/s00441-019-03080-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/24/2019] [Indexed: 11/30/2022]
|
15
|
Arando A, Delgado JV, Fernández-Prior A, León JM, Bermúdez-Oria A, Nogales S, Pérez-Marín CC. Effect of different olive oil-derived antioxidants (hydroxytyrosol and 3,4-dihydroxyphenylglycol) on the quality of frozen-thawed ram sperm. Cryobiology 2019; 86:33-39. [PMID: 30611732 DOI: 10.1016/j.cryobiol.2019.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/29/2018] [Accepted: 01/02/2019] [Indexed: 12/31/2022]
Abstract
The aim of the present study was to evaluate the effect of the addition of different concentrations of two olive oil-derived antioxidants, hydroxytyrosol (3,4-dihydroxyphenylethanol, HT) and 3,4-dihydroxyphenylglycol (DHPG), on ovine semen during the freezing-thawing process. Sperm was collected, pooled and diluted with commercial extenders and then divided into aliquots supplemented with different concentrations (10 μg/ml, 30 μg/ml, 50 μg/ml and 70 μg/ml) of HT, DHPG and a mixture (MIX) of both antioxidants. A control group, without antioxidant, was also prepared. Sperm motility, viability, acrosome integrity, mitochondrial membrane potential and lipid peroxidation (LPO) were assessed. The results showed that frozen-thawed ram spermatozoa exhibited lower values for motility, membrane integrity, acrosome and mitochondrial membrane potential than fresh samples (P ≤ 0.01). However, when antioxidants were added, thawed spermatozoa exhibited relatively low LPO, recording values similar to fresh spermatozoa; by contrast, the control group of frozen-thawed spermatozoa without antioxidants exhibited significantly higher LPO (P ≤ 0.01). The addition of a HT+DHPG mixture (MIX) had a negative impact on sperm membrane and acrosome integrity, suggesting that a pure antioxidant supplementation has the potential to offer superior results. In conclusion, HT and DHPG exhibited a positive effect on the frozen-thawed spermatozoa inasmuch as they reduced the LPO. These olive oil-derived antioxidants have the potential to improve frozen-thawed sperm quality, although further studies should be carried out to analyse the antioxidant effect at different times after thawing.
Collapse
Affiliation(s)
- A Arando
- Department of Genetics, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, 14014, Spain
| | - J V Delgado
- Department of Genetics, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, 14014, Spain
| | - A Fernández-Prior
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, 41013, Spain
| | - J M León
- Centro Agropecuario Provincial de la Diputación de Cordoba, Cordoba, 14014, Spain
| | - A Bermúdez-Oria
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, 41013, Spain
| | - S Nogales
- Department of Genetics, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, 14014, Spain
| | - C C Pérez-Marín
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, 14014, Spain.
| |
Collapse
|
16
|
Duca Y, Calogero AE, Cannarella R, Condorelli RA, La Vignera S. Current and emerging medical therapeutic agents for idiopathic male infertility. Expert Opin Pharmacother 2018; 20:55-67. [DOI: 10.1080/14656566.2018.1543405] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ylenia Duca
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Aldo E. Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rosita A. Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
17
|
Rampon C, Volovitch M, Joliot A, Vriz S. Hydrogen Peroxide and Redox Regulation of Developments. Antioxidants (Basel) 2018; 7:E159. [PMID: 30404180 PMCID: PMC6262372 DOI: 10.3390/antiox7110159] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 01/16/2023] Open
Abstract
Reactive oxygen species (ROS), which were originally classified as exclusively deleterious compounds, have gained increasing interest in the recent years given their action as bona fide signalling molecules. The main target of ROS action is the reversible oxidation of cysteines, leading to the formation of disulfide bonds, which modulate protein conformation and activity. ROS, endowed with signalling properties, are mainly produced by NADPH oxidases (NOXs) at the plasma membrane, but their action also involves a complex machinery of multiple redox-sensitive protein families that differ in their subcellular localization and their activity. Given that the levels and distribution of ROS are highly dynamic, in part due to their limited stability, the development of various fluorescent ROS sensors, some of which are quantitative (ratiometric), represents a clear breakthrough in the field and have been adapted to both ex vivo and in vivo applications. The physiological implication of ROS signalling will be presented mainly in the frame of morphogenetic processes, embryogenesis, regeneration, and stem cell differentiation. Gain and loss of function, as well as pharmacological strategies, have demonstrated the wide but specific requirement of ROS signalling at multiple stages of these processes and its intricate relationship with other well-known signalling pathways.
Collapse
Affiliation(s)
- Christine Rampon
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75231 Paris, France.
- Sorbonne Paris Cité, Univ Paris Diderot, Biology Department, 75205 Paris CEDEX 13, France.
| | - Michel Volovitch
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75231 Paris, France.
- École Normale Supérieure, Department of Biology, PSL Research University, 75005 Paris, France.
| | - Alain Joliot
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75231 Paris, France.
| | - Sophie Vriz
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75231 Paris, France.
- Sorbonne Paris Cité, Univ Paris Diderot, Biology Department, 75205 Paris CEDEX 13, France.
| |
Collapse
|
18
|
Fradejas-Villar N. Consequences of mutations and inborn errors of selenoprotein biosynthesis and functions. Free Radic Biol Med 2018; 127:206-214. [PMID: 29709707 DOI: 10.1016/j.freeradbiomed.2018.04.572] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/20/2018] [Accepted: 04/22/2018] [Indexed: 12/23/2022]
Abstract
In its 200 years of history, selenium has been defined first as a toxic element and finally as a micronutrient. Selenium is incorporated into selenoproteins as selenocysteine (Sec), the 21st proteinogenic amino acid codified by a stop codon. Specific biosynthetic factors recode UGA stop codon as Sec. The significance of selenoproteins in human health is manifested through the identification of patients with inborn errors in selenoproteins or their biosynthetic factors. Selenoprotein N-related myopathy was the first disease identified due to mutations in a selenoprotein gene. Mutations in GPX4 were linked to Sedaghatian disease, characterized by bone and brain anomalies and cardiorespiratory failure. Mutations in TXNRD2 produced familial glucocorticoid deficiency (FGD) and dilated cardiomyopathy (DCM). Genetic generalized epilepsy was associated with mutations in TXNRD1 gene. Mutations in biosynthetic factors as SEPSECS, SECISBP2 and even tRNA[Ser]Sec, have been also related to diseases. Thus, SEPSECS mutations produce a neurodegenerative disease called now pontocerebellar hypoplasia type 2D (PCH2D). SECISBP2 syndrome, caused by SECISBP2 mutations, is a multifactorial disease affecting mainly thyroid metabolism, bone, inner ear and muscle. Similar symptoms were reproduced in a patient carrying a mutation in tRNA[Ser]Sec gene, TRU-TCA1-1. This review describes human genetic disorders caused by selenoprotein deficiency. Human phenotypes will be compared with mouse models to explain the pathologic mechanisms of lack of selenoproteins.
Collapse
Affiliation(s)
- Noelia Fradejas-Villar
- Institut für Biochemie und Molekularbiologie, Rheinischen Friedrich-Wilhelms-Universität, Nussallee 11, 53115 Bonn Germany.
| |
Collapse
|
19
|
Rowe M, Skerget S, Rosenow MA, Karr TL. Identification and characterization of the zebra finch (Taeniopygia guttata) sperm proteome. J Proteomics 2018; 193:192-204. [PMID: 30366121 DOI: 10.1016/j.jprot.2018.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/09/2018] [Accepted: 10/20/2018] [Indexed: 11/30/2022]
Abstract
Spermatozoa exhibit remarkable variability in size, shape, and performance. Our understanding of the molecular basis of this variation, however, is limited, especially in avian taxa. The zebra finch (Taeniopygia guttata) is a model organism in the study of avian sperm biology and sperm competition. Using LC-MS based proteomics, we identify and describe 494 proteins of the zebra finch sperm proteome (ZfSP). Gene ontology and associated bioinformatics analyses revealed a rich repertoire of proteins essential to sperm structure and function, including proteins linked to metabolism and energetics, as well as tubulin binding and microtubule related functions. The ZfSP also contained a number of immunity and defense proteins and proteins linked to sperm motility and sperm-egg interactions. Additionally, while most proteins in the ZfSP appear to be evolutionarily constrained, a small subset of proteins are evolving rapidly. Finally, in a comparison with the sperm proteome of the domestic chicken, we found an enrichment of proteins linked to catalytic activity and cytoskeleton related processes. As the first described passerine sperm proteome, and one of only two characterized avian sperm proteomes, the ZfSP provides a significant step towards a platform for studies of the molecular basis of sperm function and evolution in birds. SIGNIFICANCE: Using highly purified spermatozoa and LC-MS proteomics, we characterise the sperm proteome of the Zebra finch; the main model species for the avian order Passeriformes, the largest and most diverse of the avian clades. As the first described passerine sperm proteome, and one of only two reported avian sperm proteomes, these results will facilitate studies of sperm biology and mechanisms of fertilisation in passerines, as well as comparative studies of sperm evolution and reproduction across birds and other vertebrates.
Collapse
Affiliation(s)
- Melissah Rowe
- Natural History Museum, University of Oslo, Oslo 0562, Norway; Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo 0316, Norway.
| | - Sheri Skerget
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | | | - Timothy L Karr
- School of Life Sciences, Arizona State University, AZ, USA.
| |
Collapse
|
20
|
Maiorino M, Conrad M, Ursini F. GPx4, Lipid Peroxidation, and Cell Death: Discoveries, Rediscoveries, and Open Issues. Antioxid Redox Signal 2018; 29:61-74. [PMID: 28462584 DOI: 10.1089/ars.2017.7115] [Citation(s) in RCA: 441] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE Iron-dependent lipid peroxidation is a complex oxidative process where phospholipid hydroperoxides (PLOOH) are produced in membranes and finally transformed into a series of decomposition products, some of which are endowed with biological activity. It is specifically prevented by glutathione peroxidase 4 (GPx4), the selenoenzyme that reduces PLOOH by glutathione (GSH). PLOOH is both a product and the major initiator of peroxidative chain reactions, as well as an activator of lipoxygenases. α-Tocopherol both specifically breaks peroxidative chain propagation and inhibits lipoxygenases. Thus, GPx4, GSH, and α-tocopherol are integrated in a concerted anti-peroxidant mechanism. Recent Advances: Ferroptosis has been recently identified as a cell death subroutine that is specifically activated by missing GPx4 activity and inhibited by iron chelation or α-tocopherol supplementation. Ferroptosis induction may underlie spontaneous human diseases, such as major neurodegeneration and neuroinflammation, causing an excessive cell death. The basic mechanism of ferroptosis, therefore, fits the features of activation of lipid peroxidation. CRITICAL ISSUES Still lacking are convincing proofs that lipoxygenases are involved in ferroptosis. Also, unknown are the molecules eventually killing cells and the mechanisms underlying the drop of the cellular anti-peroxidant capacity. FUTURE DIRECTIONS Molecular events and mechanisms of ferroptosis to be unraveled and validated on animal models are GPx4 inactivation, role of GSH concentration, increased iron availability, and membrane structure and composition. This is expected to drive drug discovery that is aimed at halting cell death in degenerative diseases or boosting it in cancer cells. Antioxid. Redox Signal. 29, 61-74.
Collapse
Affiliation(s)
- Matilde Maiorino
- 1 Department of Molecular Medicine, University of Padova , Padova, Italy
| | - Marcus Conrad
- 2 Institute of Developmental Genetics , Helmholtz Zentrum München, Neuherberg, Germany
| | - Fulvio Ursini
- 1 Department of Molecular Medicine, University of Padova , Padova, Italy
| |
Collapse
|
21
|
Oxidative Stress, Selenium Redox Systems Including GPX/TXNRD Families. MOLECULAR AND INTEGRATIVE TOXICOLOGY 2018. [DOI: 10.1007/978-3-319-95390-8_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
|
23
|
Hamashima S, Homma T, Kobayashi S, Ishii N, Kurahashi T, Watanabe R, Kimura N, Sato H, Fujii J. Decreased reproductive performance in xCT-knockout male mice. Free Radic Res 2017; 51:851-860. [DOI: 10.1080/10715762.2017.1388504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Shinji Hamashima
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Takujiro Homma
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Sho Kobayashi
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Naoki Ishii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Toshihiro Kurahashi
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Ren Watanabe
- Laboratory of Animal Reproduction, Graduate School of Agricultural Sciences, Yamagata University, Tsuruoka, Japan
| | - Naoko Kimura
- Laboratory of Animal Reproduction, Graduate School of Agricultural Sciences, Yamagata University, Tsuruoka, Japan
| | - Hideyo Sato
- Laboratory of Biochemistry and Molecular Biology, Department of Medical Technology, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| |
Collapse
|
24
|
Rui BR, Shibuya FY, Kawaoku AJT, Losano JDA, Angrimani DSR, Dalmazzo A, Nichi M, Pereira RJG. Impact of induced levels of specific free radicals and malondialdehyde on chicken semen quality and fertility. Theriogenology 2016; 90:11-19. [PMID: 28166956 DOI: 10.1016/j.theriogenology.2016.11.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 10/31/2016] [Accepted: 11/01/2016] [Indexed: 11/29/2022]
Abstract
Over the past decades, scientists endeavored to comprehend oxidative stress in poultry spermatozoa and its relationship with fertilizing ability, lipid peroxidation (LPO), free-radical scavenging systems, and antioxidant therapy. Although considerable progress has been made, further improvement is needed in understanding how specific reactive oxygen species (ROS) and malondialdehyde (MDA, a toxic byproduct of LPO) disrupt organelles in avian spermatozoon. Hence, this study examined functional changes in chicken spermatozoa after incubation with different ROS, and their implications for the fertility. First, semen samples from 14 roosters were individually diluted and aliquoted into five equal parts: control, superoxide anion, hydrogen peroxide (H2O2), hydroxyl radicals, and MDA. After incubation with these molecules, aliquots were analyzed for motility, plasma membrane and acrosome integrity, mitochondrial activity, and LPO and DNA damage. Hydrogen peroxide was more detrimental for sperm motility than hydroxyl radicals, whereas the superoxide anion and MDA exhibited no differences compared with controls. In turn, plasma membrane and acrosome integrity, mitochondrial activity, LPO and DNA integrity rates were only affected by hydroxyl radicals. Thereafter, semen aliquots were incubated under the same conditions and used for artificial insemination. In accordance to our in vitro observations, H2O2 and hydroxyl radicals sharply reduced egg fertility, whereas superoxide anion and MDA only induced slight declines. Thus, chicken sperm function was severely impaired by H2O2 and hydroxyl radicals, but their mechanisms of action seemingly comprise different pathways. Further analysis regarding susceptibility of spermatozoon organelles to specific radicals in other poultry will help us to understand the development of interspecific differences in scavenging systems and to outline more oriented antioxidant approaches.
Collapse
Affiliation(s)
- Bruno R Rui
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Fábio Y Shibuya
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Allison J T Kawaoku
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - João D A Losano
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Daniel S R Angrimani
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Andressa Dalmazzo
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marcilio Nichi
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Ricardo J G Pereira
- Department of Animal Reproduction, College of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
25
|
Tao S, Zhang Y, Yuan C, Gao J, Wu F, Wang Z. Oxidative stress and immunotoxic effects of bisphenol A on the larvae of rare minnow Gobiocypris rarus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 124:377-385. [PMID: 26595511 DOI: 10.1016/j.ecoenv.2015.11.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 11/06/2015] [Accepted: 11/06/2015] [Indexed: 06/05/2023]
Abstract
Bisphenol A (BPA), a known endocrine disrupting chemical, is ubiquitous in the aquatic environment and can pose risk to the health of aquatic organisms. Studies on immunotoxicity of BPA in aquatic organisms are limited. In this study, rare minnow (Gobiocypris rarus) larvae were exposed to 1, 225 and 1000μg/L BPA for 7 days. Inflammatory effects of BPA exposure were assessed from the increased production of nitric oxide (NO) and reactive oxygen species (ROS), the change of iNOS mRNA and other TLRs-associated immune gene expression. Our findings provide evidences that different concentrations of BPA can induce a toxic response in fish to produce reactive free radicals which can affect the function of T lymphocytes and decrease the transcription levels of cytokine genes. The excess production of H2O2, induced oxidative stress and suppressed TLR4/NF-κB signaling, leading to immunosuppressive effects in fish larvae. The present results suggest that BPA has the potential to induce oxidative stress accompanied by immunosuppression in rare minnow larvae.
Collapse
Affiliation(s)
- Shiyu Tao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Yingying Zhang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Cong Yuan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Jiancao Gao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Feili Wu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
26
|
Martin Muñoz P, Ortega Ferrusola C, Vizuete G, Plaza Dávila M, Rodriguez Martinez H, Peña FJ. Depletion of Intracellular Thiols and Increased Production of 4-Hydroxynonenal that Occur During Cryopreservation of Stallion Spermatozoa Lead to Caspase Activation, Loss of Motility, and Cell Death. Biol Reprod 2015; 93:143. [PMID: 26536905 DOI: 10.1095/biolreprod.115.132878] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/30/2015] [Indexed: 01/28/2023] Open
Abstract
Oxidative stress has been linked to sperm death and the accelerated senescence of cryopreserved spermatozoa. However, the molecular mechanisms behind this phenomenon remain poorly understood. Reactive oxygen species (ROS) are considered relevant signaling molecules for sperm function, only becoming detrimental when ROS homeostasis is lost. We hereby hypothesize that a major component of the alteration of ROS homeostasis in cryopreserved spermatozoa is the exhaustion of intrinsic antioxidant defense mechanisms. To test this hypothesis, semen from seven stallions was frozen using a standard technique. The parameters of sperm quality (motility, velocity, and membrane integrity) and markers of sperm senescence (caspase 3, 4-hydroxynonenal, and mitochondrial membrane potential) were assessed before and after cryopreservation. Changes in the intracellular thiol content were also monitored. Cryopreservation caused significant increases in senescence markers as well as dramatic depletion of intracellular thiols to less than half of the initial values (P < 0.001) postthaw. Interestingly, very high and positive correlations were observed among thiol levels with sperm functionality postthaw: total motility (r = 0.931, P < 0.001), progressive motility (r = 0.904, P < 0.001), and percentage of live spermatozoa without active caspase 3 (r = 0.996, P < 0.001). In contrast, negative correlations were detected between active caspase 3 and thiol content both in living (r = -0.896) and dead (r = -0.940) spermatozoa; additionally, 4-hydroxynonenal levels were negatively correlated with thiol levels (r = -0.856). In conclusion, sperm functionality postthaw correlates with the maintenance of adequate levels of intracellular thiols. The accelerated senescence of thawed spermatozoa is related to oxidative and electrophilic stress induced by increased production of 4-hydroxynoneal in thawed samples once intracellular thiols are depleted.
Collapse
Affiliation(s)
- Patricia Martin Muñoz
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Cristina Ortega Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Guillermo Vizuete
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Maria Plaza Dávila
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Heriberto Rodriguez Martinez
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| |
Collapse
|
27
|
Liquid storage of equine semen: Assessing the effect of d-penicillamine on longevity of ejaculated and epididymal stallion sperm. Anim Reprod Sci 2015; 159:155-62. [PMID: 26130601 DOI: 10.1016/j.anireprosci.2015.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/12/2015] [Accepted: 06/13/2015] [Indexed: 11/20/2022]
Abstract
Short-term storage of equine sperm at 5°C in an extender containing milk and/or egg yolk components is common practice in the equine breeding industry. Sperm motility, viability, DNA integrity and, consequently, fertilizing ability decline over time, partly due to reactive oxygen species (ROS) generation. We investigated whether adding the anti-oxidant d-penicillamine to a commercial milk/egg yolk extender delayed the decrease in semen quality. Semen was recovered on four consecutive days from eight 3-year old Warmblood stallions. On day 5, seven of the stallions were castrated and sperm recovered from the caudae epididymides. Ejaculated samples were split, and one portion was centrifuged and re-suspended to reduce seminal plasma content. All samples were diluted to 50millionsperm/ml and divided into two portions, one of which was supplemented with 0.5mM d-penicillamine. After 48h, 96h, 144h and 192h storage, sperm motility was assessed by computer-assisted semen analysis (CASA), viability by SYBR14/PI staining, and DNA integrity using the sperm chromatin structure assay (SCSA). d-Penicillamine had no effect on motility of ejaculated sperm (P>0.05) but reduced total and progressive motility of epididymal sperm. Sperm chromatin integrity was not influenced by storage time, seminal plasma or d-penicillamine. In short, adding d-penicillamine to a commercial semen extender was neither beneficial nor detrimental to the maintenance of quality in ejaculated semen stored at 5°C. The negative effect on motility of epididymal sperm may reflect differences in (membrane) physiology of spermatozoa that have not been exposed to seminal plasma.
Collapse
|
28
|
Ingold I, Aichler M, Yefremova E, Roveri A, Buday K, Doll S, Tasdemir A, Hoffard N, Wurst W, Walch A, Ursini F, Friedmann Angeli JP, Conrad M. Expression of a Catalytically Inactive Mutant Form of Glutathione Peroxidase 4 (Gpx4) Confers a Dominant-negative Effect in Male Fertility. J Biol Chem 2015; 290:14668-78. [PMID: 25922076 DOI: 10.1074/jbc.m115.656363] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Indexed: 01/20/2023] Open
Abstract
The selenoenzyme Gpx4 is essential for early embryogenesis and cell viability for its unique function to prevent phospholipid oxidation. Recently, the cytosolic form of Gpx4 was identified as an upstream regulator of a novel form of non-apoptotic cell death, called ferroptosis, whereas the mitochondrial isoform of Gpx4 was previously shown to be crucial for male fertility. Here, we generated and analyzed mice with a targeted mutation of the active site selenocysteine of Gpx4 (Gpx4_U46S). Mice homozygous for Gpx4_U46S died at the same embryonic stage (E7.5) as Gpx4(-/-) embryos as expected. Surprisingly, male mice heterozygous for Gpx4_U46S presented subfertility. Subfertility was manifested in a reduced number of litters from heterozygous breeding and an impairment of spermatozoa to fertilize oocytes in vitro. Morphologically, sperm isolated from heterozygous Gpx4_U46S mice revealed many structural abnormalities particularly in the spermatozoa midpiece due to improper oxidation and polymerization of sperm capsular proteins and malformation of the mitochondrial capsule surrounding and stabilizing sperm mitochondria. These findings are reminiscent of sperm isolated from selenium-deprived rodents or from mice specifically lacking mitochondrial Gpx4. Due to a strongly facilitated incorporation of Ser in the polypeptide chain as compared with selenocysteine at the UGA codon, expression of the catalytically inactive Gpx4_U46S was found to be strongly increased. Because the stability of the mitochondrial capsule of mature spermatozoa depends on the moonlighting function of Gpx4 both as an enzyme oxidizing capsular protein thiols and as a structural protein, tightly controlled expression of functional Gpx4 emerges as a key for full male fertility.
Collapse
Affiliation(s)
- Irina Ingold
- From the Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstrassse 1, 85764 Neuherberg, Germany
| | - Michaela Aichler
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Elena Yefremova
- From the Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstrassse 1, 85764 Neuherberg, Germany
| | - Antonella Roveri
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy
| | - Katalin Buday
- From the Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstrassse 1, 85764 Neuherberg, Germany
| | - Sebastian Doll
- From the Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstrassse 1, 85764 Neuherberg, Germany
| | - Adrianne Tasdemir
- From the Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstrassse 1, 85764 Neuherberg, Germany
| | - Nils Hoffard
- From the Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstrassse 1, 85764 Neuherberg, Germany
| | - Wolfgang Wurst
- From the Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstrassse 1, 85764 Neuherberg, Germany, Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE) Standort München, Schillerstrasse 44, 80336 Munich, Germany, Munich Cluster for Systems Neurology (SyNergy) Adolf-Butenandt-Institut Ludwig-Maximilians-Universität München, Schillerstrasse 44, 80336 Munich, Germany, and Technische Universität München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik c/o Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Fulvio Ursini
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy
| | - José Pedro Friedmann Angeli
- From the Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstrassse 1, 85764 Neuherberg, Germany
| | - Marcus Conrad
- From the Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstrassse 1, 85764 Neuherberg, Germany,
| |
Collapse
|
29
|
|