1
|
Chen Y, Lu S, Shan S, Wu W, He X, Farag MA, Chen W, Zhao C. New insights into phytochemicals via protein glycosylation focused on aging and diabetes. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156673. [PMID: 40220419 DOI: 10.1016/j.phymed.2025.156673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/29/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Protein glycosylation as a common post-translational modification that has significant impacts on protein folding, enzymatic activity, and interfering with receptor functioning. In recent years, with the rapid development of glycopeptide enrichment and analysis technology and the deepening of glycosylation research, glycosylation has gradually become a sign of disease occurrence and development. Multiple investigations suggest that protein glycosylation affect the advances of diabetes and aging. PURPOSE AND METHODS This review was focused on the action mechanisms of glycosylated proteins production, permanent abnormalities in extracellular matrix component function, inflammatory and reactive oxygen species production, as well as the glycosylated characterizations of diabetes and aging. Further, advances in glycosylation analysis and detection methods are presented for the first time, highlighting for needed future developments. All literatures were gathered from PubMed and Google Scholar. RESULTS Herein, we review how protein glycosylation impacts the progression of diabetes and aging. Specifically, we focus on various types of glycosylation, including N-linked glycosylation, O-linked glycosylation, C-glycosylation, S-glycosylation, and glycophosphatidylinositol (GPI) anchors. N-linked glycosylation and O-linked glycosylation are commonly observed glycosylation forms, wherein O-GlcNAcylation plays a significant role in diabetes, while N-glycan could serve as biomarkers for identifying inflammation and aging. CONCLUSIONS Protein glycosylation produces a vastly larger number of core glycan structures through utilizing at least 173 glycosyltransferases and repeated common scaffolds. Single protein may contain multiple glycosylation sites, and the structure and occupancy of glycan at each site may be different, resulting in the macro heterogeneity of protein glycosylation. This review will contribute to how protein glycosylation impacts the life progress of cells and its association with diseases.
Collapse
Affiliation(s)
- Yihan Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Suyue Lu
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuo Shan
- University of Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain
| | - Weihao Wu
- College of Food Engineering, Zhangzhou Institute of Technology, Zhangzhou 363000, China
| | - Xinxin He
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Weichao Chen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
2
|
Oh S, Cao W, Song M. Twin Scholarships of Glycomedicine and Precision Medicine in Times of Single-Cell Multiomics. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:319-323. [PMID: 38841897 DOI: 10.1089/omi.2024.0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Systems biology and multiomics research expand the prospects of planetary health innovations. In this context, this mini-review unpacks the twin scholarships of glycomedicine and precision medicine in the current era of single-cell multiomics. A significant growth in glycan research has been observed over the past decade, unveiling and establishing co- and post-translational modifications as dynamic indicators of both pathological and physiological conditions. Systems biology technologies have enabled large-scale and high-throughput glycoprofiling and access to data-intensive biological repositories for global research. These advancements have established glycans as a pivotal third code of life, alongside nucleic acids and amino acids. However, challenges persist, particularly in the simultaneous analysis of the glycome and transcriptome in single cells owing to technical limitations. In addition, holistic views of the complex molecular interactions between glycomics and other omics types remain elusive. We underscore and call for a paradigm shift toward the exploration of integrative glycan platforms and analysis methods for single-cell multiomics research and precision medicine biomarker discovery. The integration of multiple datasets from various single-cell omics levels represents a crucial application of systems biology in understanding complex cellular processes and is essential for advancing the twin scholarships of glycomedicine and precision medicine.
Collapse
Affiliation(s)
- Seungyoul Oh
- Centre for Precision Health, Edith Cowan University, Perth, Australia
| | - Weijie Cao
- Centre for Precision Health, Edith Cowan University, Perth, Australia
| | - Manshu Song
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| |
Collapse
|
3
|
Pongracz T, Mayboroda OA, Wuhrer M. The Human Blood N-Glycome: Unraveling Disease Glycosylation Patterns. JACS AU 2024; 4:1696-1708. [PMID: 38818049 PMCID: PMC11134357 DOI: 10.1021/jacsau.4c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 06/01/2024]
Abstract
Most of the proteins in the circulation are N-glycosylated, shaping together the total blood N-glycome (TBNG). Glycosylation is known to affect protein function, stability, and clearance. The TBNG is influenced by genetic, environmental, and metabolic factors, in part epigenetically imprinted, and responds to a variety of bioactive signals including cytokines and hormones. Accordingly, physiological and pathological events are reflected in distinct TBNG signatures. Here, we assess the specificity of the emerging disease-associated TBNG signatures with respect to a number of key glycosylation motifs including antennarity, linkage-specific sialylation, fucosylation, as well as expression of complex, hybrid-type and oligomannosidic N-glycans, and show perplexing complexity of the glycomic dimension of the studied diseases. Perspectives are given regarding the protein- and site-specific analysis of N-glycosylation, and the dissection of underlying regulatory layers and functional roles of blood protein N-glycosylation.
Collapse
Affiliation(s)
- Tamas Pongracz
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
| | - Oleg A. Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333ZA Leiden, The Netherlands
| |
Collapse
|
4
|
Imae R, Manya H, Tsumoto H, Umezawa K, Miura Y, Endo T. Changes in the amount of nucleotide sugars in aged mouse tissues. Glycobiology 2024; 34:cwae032. [PMID: 38598324 DOI: 10.1093/glycob/cwae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/12/2024] Open
Abstract
Aging affects tissue glycan profiles, which may alter cellular functions and increase the risk of age-related diseases. Glycans are biosynthesized by glycosyltransferases using the corresponding nucleotide sugar, and the availability of nucleotide sugars affects glycosylation efficiency. However, the effects of aging on nucleotide sugar profiles and contents are yet to be elucidated. Therefore, this study aimed to investigate the effects of aging on nucleotide sugars using a new LC-MS/MS method. Specifically, the new method was used to determine the nucleotide sugar contents of various tissues (brain, liver, heart, skeletal muscle, kidney, lung, and colon) of male C57BL/6NCr mice (7- or 26-month-old). Characteristic age-associated nucleotide sugar changes were observed in each tissue sample. Particularly, there was a significant decrease in UDP-glucuronic acid content in the kidney of aged mice and a decrease in the contents of several nucleotide sugars, including UDP-N-acetylgalactosamine, in the brain of aged mice. Additionally, there were variations in nucleotide sugar profiles among the tissues examined regardless of the age. The kidneys had the highest concentration of UDP-glucuronic acid among the seven tissues. In contrast, the skeletal muscle had the lowest concentration of total nucleotide sugars among the tissues; however, CMP-N-acetylneuraminic acid and CDP-ribitol were relatively enriched. Conclusively, these findings may contribute to the understanding of the roles of glycans in tissue aging.
Collapse
Affiliation(s)
- Rieko Imae
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Hiroshi Manya
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Hiroki Tsumoto
- Proteome Research, Research Team for Mechanism of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Keitaro Umezawa
- Proteome Research, Research Team for Mechanism of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Yuri Miura
- Proteome Research, Research Team for Mechanism of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Tamao Endo
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| |
Collapse
|
5
|
Hussnaetter KP, Palm P, Pich A, Franzreb M, Rapp E, Elling L. Strategies for Automated Enzymatic Glycan Synthesis (AEGS). Biotechnol Adv 2023; 67:108208. [PMID: 37437855 DOI: 10.1016/j.biotechadv.2023.108208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
Glycans are the most abundant biopolymers on earth and are constituents of glycoproteins, glycolipids, and proteoglycans with multiple biological functions. The availability of different complex glycan structures is of major interest in biotechnology and basic research of biological systems. High complexity, establishment of general and ubiquitous synthesis techniques, as well as sophisticated analytics, are major challenges in the development of glycan synthesis strategies. Enzymatic glycan synthesis with Leloir-glycosyltransferases is an attractive alternative to chemical synthesis as it can achieve quantitative regio- and stereoselective glycosylation in a single step. Various strategies for synthesis of a wide variety of different glycan structures has already be established and will exemplarily be discussed in the scope of this review. However, the application of enzymatic glycan synthesis in an automated system has high demands on the equipment, techniques, and methods. Different automation approaches have already been shown. However, while these techniques have been applied for several glycans, only a few strategies are able to conserve the full potential of enzymatic glycan synthesis during the process - economical and enzyme technological recycling of enzymes is still rare. In this review, we show the major challenges towards Automated Enzymatic Glycan Synthesis (AEGS). First, we discuss examples for immobilization of glycans or glycosyltransferases as an important prerequisite for the embedment and implementation in an enzyme reactor. Next, improvement of bioreactors towards automation will be described. Finally, analysis and monitoring of the synthesis process are discussed. Furthermore, automation processes and cycle design are highlighted. Accordingly, the transition of recent approaches towards a universal automated glycan synthesis platform will be projected. To this end, this review aims to describe essential key features for AEGS, evaluate the current state-of-the-art and give thought- encouraging impulses towards future full automated enzymatic glycan synthesis.
Collapse
Affiliation(s)
- Kai Philip Hussnaetter
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, D-52074 Aachen, Germany
| | - Philip Palm
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, D-52074 Aachen, Germany
| | - Andrij Pich
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry and DWI Leibniz-Institute for Interactive Materials e.V., RWTH Aachen University, Forckenbeckstr. 50, 52074 Aachen, Germany
| | - Matthias Franzreb
- Karlsruher Institute of Technology (KIT), Institute of Functional Interfaces, Hermann v. Helmholtz, Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Erdmann Rapp
- glyXera GmbH, Brenneckestrasse 20 * ZENIT, 39120 Magdeburg, Germany; Max Planck Institute for Dynamics of Complex Technical System, Bioprocess Engineering, Sandtorstrasse 1, 39106 Magdeburg, Germany
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, D-52074 Aachen, Germany.
| |
Collapse
|
6
|
Park JYC, King A, Björk V, English BW, Fedintsev A, Ewald CY. Strategic outline of interventions targeting extracellular matrix for promoting healthy longevity. Am J Physiol Cell Physiol 2023; 325:C90-C128. [PMID: 37154490 DOI: 10.1152/ajpcell.00060.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
The extracellular matrix (ECM), composed of interlinked proteins outside of cells, is an important component of the human body that helps maintain tissue architecture and cellular homeostasis. As people age, the ECM undergoes changes that can lead to age-related morbidity and mortality. Despite its importance, ECM aging remains understudied in the field of geroscience. In this review, we discuss the core concepts of ECM integrity, outline the age-related challenges and subsequent pathologies and diseases, summarize diagnostic methods detecting a faulty ECM, and provide strategies targeting ECM homeostasis. To conceptualize this, we built a technology research tree to hierarchically visualize possible research sequences for studying ECM aging. This strategic framework will hopefully facilitate the development of future research on interventions to restore ECM integrity, which could potentially lead to the development of new drugs or therapeutic interventions promoting health during aging.
Collapse
Affiliation(s)
- Ji Young Cecilia Park
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| | - Aaron King
- Foresight Institute, San Francisco, California, United States
| | | | - Bradley W English
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | | | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
7
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
8
|
Wang D, Zhao Z, Xue X, Shi J, Shi W. Glycans in spent embryo culture medium are related to the implantation ability of blastocysts. Heliyon 2023; 9:e16255. [PMID: 37229168 PMCID: PMC10205493 DOI: 10.1016/j.heliyon.2023.e16255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 04/26/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Research question Does glycan profile in spent blastocyst culture medium have the potential to be used as a biomarker to predict implantation outcome. Design A nested case-control study was conducted in Northwest women's and children's Hospital, Xi'an, China. The patients underwent fresh IVF/ICSI cycles with single blastocyst transfer were included. Total 78 cases were included and separated into groups according to success (n = 39) and failure (n = 39) implantation outcomes. The glycosylation patterns in spent blastocyst culture medium were detected by lectin microarray containing 37 lectins using pooled samples and confirmed by reversed lectin microarray using individual sample. Results Binding signals of 10 lectins were found to be different between samples from successful and failed implantation. And 8 of them were confirmed that glycans binding to lectin NPA, UEA-I, MAL-I, LCA and GNA were significantly increased while DBA and BPL were decreased in the successful implantation compared to failed implantation. The glycan binding to lectin PHA-E + L had no difference between two groups. No significant differences in the glycan profile were found in spent culture medium of embryos with different morphological grades except the glycan binding to UEA-I between blastocysts of Poor and blastocysts of Medium. Conclusion Detection of glycan profile in spent culture medium may lead to a novel non-invasive assessment assay of embryo viability. In addition, these results may be helpful to further understanding molecular mechanisms in embryo implantation.
Collapse
Affiliation(s)
- Dongyang Wang
- Translational Medicine Center, Northwest Women and Children’s Hospital, No.1616 Yanxiang Road, Xi’an, Shaanxi, 710061, People’s Republic of China
- Assisted Reproduction Center, Northwest Women and Children’s Hospital, No.73 Houzaimen, Xi’an, Shaanxi, 710003, People’s Republic of China
| | - Zhenghao Zhao
- Assisted Reproduction Center, Northwest Women and Children’s Hospital, No.73 Houzaimen, Xi’an, Shaanxi, 710003, People’s Republic of China
| | - Xia Xue
- Assisted Reproduction Center, Northwest Women and Children’s Hospital, No.73 Houzaimen, Xi’an, Shaanxi, 710003, People’s Republic of China
| | - Juanzi Shi
- Translational Medicine Center, Northwest Women and Children’s Hospital, No.1616 Yanxiang Road, Xi’an, Shaanxi, 710061, People’s Republic of China
- Assisted Reproduction Center, Northwest Women and Children’s Hospital, No.73 Houzaimen, Xi’an, Shaanxi, 710003, People’s Republic of China
| | - Wenhao Shi
- Translational Medicine Center, Northwest Women and Children’s Hospital, No.1616 Yanxiang Road, Xi’an, Shaanxi, 710061, People’s Republic of China
- Assisted Reproduction Center, Northwest Women and Children’s Hospital, No.73 Houzaimen, Xi’an, Shaanxi, 710003, People’s Republic of China
| |
Collapse
|
9
|
Integrating age, BMI, and serum N-glycans detected by MALDI mass spectrometry to classify suspicious mammogram findings as benign lesions or breast cancer. Sci Rep 2022; 12:20801. [PMID: 36460712 PMCID: PMC9718781 DOI: 10.1038/s41598-022-25401-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
While mammograms are the standard tool for breast cancer screening, there remains challenges for mammography to effectively distinguish benign lesions from breast cancers, leading to many unnecessary biopsy procedures. A blood-based biomarker could provide a minimally invasive supplemental assay to increase the specificity of breast cancer screening. Serum N-glycosylation alterations have associations with many cancers and several of the clinical characteristics of breast cancer. The current study utilized a high-throughput mass spectrometry workflow to identify serum N-glycans with differences in intensities between patients that had a benign lesion from patients with breast cancer. The overall N-glycan profiles of the two patient groups had no differences, but there were several individual N-glycans with significant differences in intensities between patients with benign lesions and ductal carcinoma in situ (DCIS). Many N-glycans had strong associations with age and/or body mass index, but there were several of these associations that differed between the patients with benign lesions and breast cancer. Accordingly, the samples were stratified by the patient's age and body mass index, and N-glycans with significant differences between these subsets were identified. For women aged 50-74 with a body mass index of 18.5-24.9, a model including the intensities of two N-glycans, 1850.666 m/z and 2163.743 m/z, age, and BMI were able to clearly distinguish the breast cancer patients from the patients with benign lesions with an AUROC of 0.899 and an optimal cutoff with 82% sensitivity and 84% specificity. This study indicates that serum N-glycan profiling is a promising approach for providing clarity for breast cancer screening, especially within the subset of healthy weight women in the age group recommended for mammograms.
Collapse
|
10
|
Palmer RD. Three Tiers to biological escape velocity: The quest to outwit aging. Aging Med (Milton) 2022; 5:281-286. [PMID: 36606268 PMCID: PMC9805293 DOI: 10.1002/agm2.12231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/14/2022] [Accepted: 11/20/2022] [Indexed: 12/14/2022] Open
Abstract
As longevity companies emerge with new products and the fields of anti-aging research develop new cutting-edge therapies, three distinct classes of longevity methodologies emerge. This discussion finds that there are three clear classes (Tiers) of longevity systems that are currently under development, and all three will be paramount to achieve biological escape velocity (where tissues can be repaired faster than aging can damage them). These classes are referred to as Tier 1, Tier 2, and Tier 3 treatments and are described in detail below. These three Tiers are required for easy identification for pharmaceutical companies and research companies to determine the type of therapy they may choose to deliver being noninvasive, invasive, time consuming, or simple end user products. Specific targets and goals need to be defined clearly from an early perspective in the development of these technologies for future precision medicines. This allows consumers of future anti-aging technologies to consider which Tier a particular therapy may be, delivering a more informed choice.
Collapse
Affiliation(s)
- Raymond D. Palmer
- Full Spectrum BiologicsSouth PerthWestern AustraliaAustralia
- School of Aging, Science of AgingSouth PerthWestern AustraliaAustralia
| |
Collapse
|
11
|
Azzoni L, Giron LB, Vadrevu S, Zhao L, Lalley-Chareczko L, Hiserodt E, Fair M, Lynn K, Trooskin S, Mounzer K, Abdel-Mohsen M, Montaner LJ. Methadone use is associated with increased levels of sCD14, immune activation, and inflammation during suppressed HIV infection. J Leukoc Biol 2022; 112:733-744. [PMID: 35916053 DOI: 10.1002/jlb.4a1221-678rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 11/10/2022] Open
Abstract
Opioid use has negative effects on immune responses and may impair immune reconstitution in persons living with HIV (PLWH) infection undergoing antiretroviral treatment (ART). The effects of treatment with μ opioid receptor (MOR) agonists (e.g., methadone, MET) and antagonists (e.g., naltrexone, NTX) on immune reconstitution and immune activation in ART-suppressed PLWH have not been assessed in-depth. We studied the effects of methadone or naltrexone on measures of immune reconstitution and immune activation in a cross-sectional community cohort of 30 HIV-infected individuals receiving suppressive ART and medications for opioid use disorder (MOUD) (12 MET, 8 NTX and 10 controls). Plasma markers of inflammation and immune activation were measured using ELISA, Luminex, or Simoa. Plasma IgG glycosylation was assessed using capillary electrophoresis. Cell subsets and activation were studied using whole blood flow cytometry. Individuals in the MET group, but no in the NTX group, had higher plasma levels of inflammation and immune activation markers than controls. These markers include soluble CD14 (an independent predictor of morbidity and mortality during HIV infection), proinflammatory cytokines, and proinflammatory IgG glycans. This effect was independent of time on treatment. Our results indicate that methadone-based MOUD regimens may sustain immune activation and inflammation in ART-treated HIV-infected individuals. Our pilot study provides the foundation and rationale for future longitudinal functional studies of the impact of MOUD regimens on immune reconstitution and residual activation after ART-mediated suppression.
Collapse
Affiliation(s)
- Livio Azzoni
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Leila B Giron
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Surya Vadrevu
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Ling Zhao
- Perelman School of Medicine - University of PA, Philadelphia, Pennsylvania, USA
| | | | - Emily Hiserodt
- Philadelphia FIGHT Community Health Centers, Philadelphia, Pennsylvania, USA
| | - Matthew Fair
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Kenneth Lynn
- Perelman School of Medicine - University of PA, Philadelphia, Pennsylvania, USA
| | - Stacey Trooskin
- Philadelphia FIGHT Community Health Centers, Philadelphia, Pennsylvania, USA
| | - Karam Mounzer
- Philadelphia FIGHT Community Health Centers, Philadelphia, Pennsylvania, USA
| | - Mohamed Abdel-Mohsen
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Luis J Montaner
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Palmer RD. Aging clocks & mortality timers, methylation, glycomic, telomeric and more. A window to measuring biological age. Aging Med (Milton) 2022; 5:120-125. [PMID: 35783114 PMCID: PMC9245174 DOI: 10.1002/agm2.12197] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 11/11/2022] Open
Abstract
As humans age multiple forms of biological decay ensue, and many aspects of human biology can be measured to determine how far biological machinery has drifted from homeostasis. Research has led to aging clocks being developed that claim to predict biological age as opposed to chronological age. Aging could be regarded as a measured loss of homeostatic biological equilibrium that augments biological decay in fully developed tissues. Measuring aspects of how far various elements of biology have drifted from a youthful state may allow us to make determinations on a subject's health but also make informed predictions on their biological age. As we see across human physiology, many facets that maintain human health taper off such as nicotinamide adenine dinucleotide, glutathione, catalase, super oxide dismutase, and more. Extracellular vesicle density also tapers off during age combined with epigenetic drift, telomere attrition, and stem cell exhaustion, whilst genomic instability and biological insults from environment and lifestyle factors increase. Measuring these types of biomarkers with aging clocks may allow subjects to understand their own health more accurately and enable subjects to better focus on their efforts in the pursuit of longevity and, in addition, allow healthcare practitioners to deliver better health advice.
Collapse
Affiliation(s)
- Raymond D. Palmer
- Full Spectrum BiologicsSouth PerthWestern AustraliaAustralia
- School of AgingScience of AgingSouth PerthWestern AustraliaAustralia
| |
Collapse
|
13
|
Giron LB, Abdel-Mohsen M. Viral and Host Biomarkers of HIV Remission Post Treatment Interruption. Curr HIV/AIDS Rep 2022; 19:217-233. [PMID: 35438384 DOI: 10.1007/s11904-022-00607-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2022] [Indexed: 01/19/2023]
Abstract
PURPOSE OF REVIEW HIV rebound/remission after antiretroviral therapy (ART) interruption is likely influenced by (a) the size of the inducible replication-competent HIV reservoir and (b) factors in the host environment that influence immunological pressures on this reservoir. Identifying viral and/or host biomarkers of HIV rebound after ART cessation may improve the safety of treatment interruptions and our understanding of how the viral-host interplay results in post-treatment control. Here we review the predictive and functional significance of recently suggested viral and host biomarkers of time to viral rebound and post-treatment control following ART interruption. RECENT FINDINGS There are currently no validated viral or host biomarkers of viral rebound; however, several biomarkers have been recently suggested. A combination of viral and host factors will likely be needed to predict viral rebound and to better understand the mechanisms contributing to post-treatment control of HIV, critical steps to developing a cure for HIV infection.
Collapse
|
14
|
Li H, Wang X, Huang X, He Y, Zhang Y, Hao C, Zeng P, Zhang M, Gao Y, Yang D, Shan M, Dou H, Li X, Chang X, Tian Z, Zhang L. Circulating Glycan Monosaccharide Composite-Based Biomarker Diagnoses Colorectal Cancer at Early Stages and Predicts Prognosis. Front Oncol 2022; 12:852044. [PMID: 35574422 PMCID: PMC9099097 DOI: 10.3389/fonc.2022.852044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/06/2022] [Indexed: 12/29/2022] Open
Abstract
Introduction Early diagnosis could lead to a cure of colorectal cancer (CRC). Since CRC is related to aging and lifestyles, we tested if the environmental information-enriched monosaccharide composite (MC) of circulating glycans could serve as an early diagnostic biomarker for CRC. Meanwhile, we evaluated its role in predicting prognosis. Methods HPAEC-PAD was used to quantify glycan monosaccharide compositions from a total of 467 serum samples including CRC patients, colorectal adenoma (CRA) patients and healthy individuals. Two diagnostic model was constructed by logistic regression analysis. The diagnostic performance of the two models was verified in the retrospective validation group and the prospective validation group. The prognostic performance of the model was assessed by survival analysis. Results The concentrations of monosaccharides in serum were significantly higher in CRA and CRC patients than in healthy individuals. Two diagnostic models were constructed: MC1 was used to distinguish between healthy individuals and CRC; MC2 was used to distinguish between healthy individuals and CRA. Area under receptor operating characteristic curve (AUC) of MC2 and MC1 was 0.8025 and 0.9403 respectively. However, the AUC of CEA between healthy individuals and CRC was 0.7384. Moreover, in early stage of CRC (without lymph node metastasis), the positive rates of CEA and MC1 were 28% and 80%, respectively. The follow-up data showed that the increased MC1 value was associated with poor survival in patients with CRC (p=0.0010, HR=5.30). Discussion The MC1 model is superior to CEA in the diagnosis of CRC, especially in the early diagnosis. MC1 can be used for predicting prognosis of CRC patients, and elevated MC1 values indicate poor survival.
Collapse
Affiliation(s)
- Haoran Li
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Systems Biology & Medicine Center for Complex Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xueling Wang
- Systems Biology & Medicine Center for Complex Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Center for Clinical Research, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaodan Huang
- Systems Biology & Medicine Center for Complex Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanli He
- Systems Biology & Medicine Center for Complex Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yiran Zhang
- Systems Biology & Medicine Center for Complex Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
- Shandong Institute of Orthopedics and Traumatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cui Hao
- Systems Biology & Medicine Center for Complex Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Pengjiao Zeng
- Systems Biology & Medicine Center for Complex Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meng Zhang
- Systems Biology & Medicine Center for Complex Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanyun Gao
- Systems Biology & Medicine Center for Complex Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Dandan Yang
- Systems Biology & Medicine Center for Complex Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ming Shan
- Systems Biology & Medicine Center for Complex Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Huaiqian Dou
- Systems Biology & Medicine Center for Complex Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoyu Li
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaotian Chang
- Center for Clinical Research, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Lijuan Zhang, ; Xiaotian Chang, ; Zibin Tian,
| | - Zibin Tian
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Lijuan Zhang, ; Xiaotian Chang, ; Zibin Tian,
| | - Lijuan Zhang
- Systems Biology & Medicine Center for Complex Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Lijuan Zhang, ; Xiaotian Chang, ; Zibin Tian,
| |
Collapse
|
15
|
Zhou D, Long C, Shao Y, Li F, Sun W, Zheng Z, Wang X, Huang Y, Pan F, Chen G, Guo Y, Huang Y. Integrated Metabolomics and Proteomics Analysis of Urine in a Mouse Model of Posttraumatic Stress Disorder. Front Neurosci 2022; 16:828382. [PMID: 35360173 PMCID: PMC8963102 DOI: 10.3389/fnins.2022.828382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/23/2022] [Indexed: 11/23/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is a serious stress disorder that occurs in individuals who have experienced major traumatic events. The underlying pathological mechanisms of PTSD are complex, and the related predisposing factors are still not fully understood. In this study, label-free quantitative proteomics and untargeted metabolomics were used to comprehensively characterize changes in a PTSD mice model. Differential expression analysis showed that 12 metabolites and 27 proteins were significantly differentially expressed between the two groups. Bioinformatics analysis revealed that the differentiated proteins were mostly enriched in: small molecule binding, transporter activity, extracellular region, extracellular space, endopeptidase activity, zymogen activation, hydrolase activity, proteolysis, peptidase activity, sodium channel regulator activity. The differentially expressed metabolites were mainly enriched in Pyrimidine metabolism, D-Glutamine and D-glutamate metabolism, Alanine, aspartate and glutamate metabolism, Arginine biosynthesis, Glutathione metabolism, Arginine, and proline metabolism. These results expand the existing understanding of the molecular basis of the pathogenesis and progression of PTSD, and also suggest a new direction for potential therapeutic targets of PTSD. Therefore, the combination of urine proteomics and metabolomics explores a new approach for the study of the underlying pathological mechanisms of PTSD.
Collapse
Affiliation(s)
- Daxue Zhou
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Chengyan Long
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Yan Shao
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Fei Li
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Wei Sun
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Zihan Zheng
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Xiaoyang Wang
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Yiwei Huang
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Feng Pan
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Gang Chen
- Biomedical Analysis Center, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Chongqing Key Laboratory of Cytomics, Chongqing, China
- *Correspondence: Gang Chen,
| | - Yanlei Guo
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Yanlei Guo,
| | - Yi Huang
- Biomedical Analysis Center, Army Medical University, Chongqing, China
- Yi Huang,
| |
Collapse
|
16
|
Kim H, Yang H, Ednie AR, Bennett ES. Simulation Modeling of Reduced Glycosylation Effects on Potassium Channels of Mouse Cardiomyocytes. Front Physiol 2022; 13:816651. [PMID: 35309072 PMCID: PMC8931503 DOI: 10.3389/fphys.2022.816651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is the third most common cause of heart failure and the primary reason for heart transplantation; upward of 70% of DCM cases are considered idiopathic. Our in-vitro experiments showed that reduced hybrid/complex N-glycosylation in mouse cardiomyocytes is linked with DCM. Further, we observed direct effects of reduced N-glycosylation on Kv gating. However, it is difficult to rigorously determine the effects of glycosylation on Kv activity, because there are multiple Kv isoforms in cardiomyocytes contributing to the cardiac excitation. Due to complex functions of Kv isoforms, only the sum of K+ currents (IKsum) can be recorded experimentally and decomposed later using exponential fitting to estimate component currents, such as IKto, IKslow, and IKss. However, such estimation cannot adequately describe glycosylation effects and Kv mechanisms. Here, we propose a framework of simulation modeling of Kv kinetics in mouse ventricular myocytes and model calibration using the in-vitro data under normal and reduced glycosylation conditions through ablation of the Mgat1 gene (i.e., Mgat1KO). Calibrated models facilitate the prediction of Kv characteristics at different voltages that are not directly observed in the in-vitro experiments. A model calibration procedure is developed based on the genetic algorithm. Experimental results show that, in the Mgat1KO group, both IKto and IKslow densities are shown to be significantly reduced and the rate of IKslow inactivation is much slower. The proposed approach has strong potential to couple simulation models with experimental data for gaining a better understanding of glycosylation effects on Kv kinetics.
Collapse
Affiliation(s)
- Haedong Kim
- Complex Systems Monitoring, Modeling, and Control Laboratory, The Pennsylvania State University, University Park, PA, United States
| | - Hui Yang
- Complex Systems Monitoring, Modeling, and Control Laboratory, The Pennsylvania State University, University Park, PA, United States
- *Correspondence: Hui Yang
| | - Andrew R. Ednie
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, OH, United States
| | - Eric S. Bennett
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, OH, United States
| |
Collapse
|
17
|
Glycomic and Glycoproteomic Techniques in Neurodegenerative Disorders and Neurotrauma: Towards Personalized Markers. Cells 2022; 11:cells11030581. [PMID: 35159390 PMCID: PMC8834236 DOI: 10.3390/cells11030581] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 12/16/2022] Open
Abstract
The proteome represents all the proteins expressed by a genome, a cell, a tissue, or an organism at any given time under defined physiological or pathological circumstances. Proteomic analysis has provided unparalleled opportunities for the discovery of expression patterns of proteins in a biological system, yielding precise and inclusive data about the system. Advances in the proteomics field opened the door to wider knowledge of the mechanisms underlying various post-translational modifications (PTMs) of proteins, including glycosylation. As of yet, the role of most of these PTMs remains unidentified. In this state-of-the-art review, we present a synopsis of glycosylation processes and the pathophysiological conditions that might ensue secondary to glycosylation shortcomings. The dynamics of protein glycosylation, a crucial mechanism that allows gene and pathway regulation, is described. We also explain how-at a biomolecular level-mutations in glycosylation-related genes may lead to neuropsychiatric manifestations and neurodegenerative disorders. We then analyze the shortcomings of glycoproteomic studies, putting into perspective their downfalls and the different advanced enrichment techniques that emanated to overcome some of these challenges. Furthermore, we summarize studies tackling the association between glycosylation and neuropsychiatric disorders and explore glycoproteomic changes in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington disease, multiple sclerosis, and amyotrophic lateral sclerosis. We finally conclude with the role of glycomics in the area of traumatic brain injury (TBI) and provide perspectives on the clinical application of glycoproteomics as potential diagnostic tools and their application in personalized medicine.
Collapse
|
18
|
Bertok T, Bertokova A, Jane E, Hires M, Aguedo J, Potocarova M, Lukac L, Vikartovska A, Kasak P, Borsig L, Tkac J. Identification of Whole-Serum Glycobiomarkers for Colorectal Carcinoma Using Reverse-Phase Lectin Microarray. Front Oncol 2021; 11:735338. [PMID: 34956866 PMCID: PMC8695905 DOI: 10.3389/fonc.2021.735338] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common types of cancer among men and women worldwide. Efforts are currently underway to find novel and more cancer-specific biomarkers that could be detected in a non-invasive way. The analysis of aberrant glycosylation of serum glycoproteins is a way to discover novel diagnostic and prognostic CRC biomarkers. The present study investigated a whole-serum glycome with a panel of 16 different lectins in search for age-independent and CRC-specific glycomarkers using receiver operating characteristic (ROC) curve analyses and glycan heat matrices. Glycosylation changes present in the whole serum were identified, which could lead to the discovery of novel biomarkers for CRC diagnostics. In particular, the change in the bisecting glycans (recognized by Phaseolus vulgaris erythroagglutinin) had the highest discrimination potential for CRC diagnostics in combination with human L selectin providing area under the ROC curve (AUC) of 0.989 (95% CI 0.950-1.000), specificity of 1.000, sensitivity of 0.900, and accuracy of 0.960. We also implemented novel tools for identification of lectins with strong discrimination power.
Collapse
Affiliation(s)
- Tomas Bertok
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Aniko Bertokova
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Eduard Jane
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michal Hires
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Juvissan Aguedo
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Ludovit Lukac
- University Hospital Bratislava, Bratislava, Slovakia
| | - Alica Vikartovska
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Peter Kasak
- Center for Advanced Materials, Qatar University, Doha, Qatar
| | - Lubor Borsig
- Department of Physiology, University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center, Zurich, Switzerland
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
19
|
Abstract
Evidence for the importance of zinc for all immune cells and for mounting an efficient and balanced immune response to various environmental stressors has been accumulating in recent years. This article describes the role of zinc in fundamental biological processes and summarizes our current knowledge of zinc's effect on hematopoiesis, including differentiation into immune cell subtypes. In addition, the important role of zinc during activation and function of immune cells is detailed and associated with the specific immune responses to bacteria, parasites, and viruses. The association of zinc with autoimmune reactions and cancers as diseases with increased or decreased immune responses is also discussed. This article provides a broad overview of the manifold roles that zinc, or its deficiency, plays in physiology and during various diseases. Consequently, we discuss why zinc supplementation should be considered, especially for people at risk of deficiency. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Inga Wessels
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany;
| | | | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany;
| |
Collapse
|
20
|
Analysis of Intact Glycoproteins by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Methods Mol Biol 2021. [PMID: 33907998 DOI: 10.1007/978-1-0716-1241-5_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) can be regarded as a key tool to rapidly obtain molecular mass information of intact glycoproteins in glycoproteomic studies and quality control of recombinant biopharmaceuticals. However, MALDI-TOF MS of these glycosylated compounds is a tricky task due to its low ionization efficiency and fragmentation of labile groups such as sialic acids.Here, we offer the reader a practical overview of the available methodologies for the confident analysis of intact glycoproteins with different glycosylation degree by MALDI-TOF MS. The three proposed methods fulfil the requirements of reproducibility and low extent of glycan fragmentation required to successfully analyze intact glycoproteins.
Collapse
|
21
|
Zhao Y, Wang M, Meng B, Gao Y, Xue Z, He M, Jiang Y, Dai X, Yan D, Fang X. Identification of Dysregulated Complement Activation Pathways Driven by N-Glycosylation Alterations in T2D Patients. Front Chem 2021; 9:677621. [PMID: 34178943 PMCID: PMC8226093 DOI: 10.3389/fchem.2021.677621] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/14/2021] [Indexed: 12/21/2022] Open
Abstract
Diabetes has become a major public health concern worldwide, most of which are type 2 diabetes (T2D). The diagnosis of T2D is commonly based on plasma glucose levels, and there are no reliable clinical biomarkers available for early detection. Recent advances in proteome technologies offer new opportunity for the understanding of T2D; however, the underlying proteomic characteristics of T2D have not been thoroughly investigated yet. Here, using proteomic and glycoproteomic profiling, we provided a comprehensive landscape of molecular alterations in the fasting plasma of the 24 Chinese participants, including eight T2D patients, eight prediabetic (PDB) subjects, and eight healthy control (HC) individuals. Our analyses identified a diverse set of potential biomarkers that might enhance the efficiency and accuracy based on current existing biological indicators of (pre)diabetes. Through integrative omics analysis, we showed the capability of glycoproteomics as a complement to proteomics or metabolomics, to provide additional insights into the pathogenesis of (pre)diabetes. We have newly identified systemic site-specific N-glycosylation alterations underlying T2D patients in the complement activation pathways, including decreased levels of N-glycopeptides from C1s, MASP1, and CFP proteins, and increased levels of N-glycopeptides from C2, C4, C4BPA, C4BPB, and CFH. These alterations were not observed at proteomic levels, suggesting new opportunities for the diagnosis and treatment of this disease. Our results demonstrate a great potential role of glycoproteomics in understanding (pre)diabetes and present a new direction for diabetes research which deserves more attention.
Collapse
Affiliation(s)
- Yang Zhao
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Man Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China.,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bo Meng
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Ying Gao
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Zhichao Xue
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Minjun He
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - You Jiang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Xinhua Dai
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Dan Yan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xiang Fang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| |
Collapse
|
22
|
Franzka P, Krüger L, Schurig MK, Olecka M, Hoffmann S, Blanchard V, Hübner CA. Altered Glycosylation in the Aging Heart. Front Mol Biosci 2021; 8:673044. [PMID: 34124155 PMCID: PMC8194361 DOI: 10.3389/fmolb.2021.673044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/07/2021] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular disease is one of the leading causes of death in developed countries. Because the incidence increases exponentially in the aging population, aging is a major risk factor for cardiovascular disease. Cardiac hypertrophy, fibrosis and inflammation are typical hallmarks of the aged heart. The molecular mechanisms, however, are poorly understood. Because glycosylation is one of the most common post-translational protein modifications and can affect biological properties and functions of proteins, we here provide the first analysis of the cardiac glycoproteome of mice at different ages. Western blot as well as MALDI-TOF based glycome analysis suggest that high-mannose N-glycans increase with age. In agreement, we found an age-related regulation of GMPPB, the enzyme, which facilitates the supply of the sugar-donor GDP-mannose. Glycoprotein pull-downs from heart lysates of young, middle-aged and old mice in combination with quantitative mass spectrometry bolster widespread alterations of the cardiac glycoproteome. Major hits are glycoproteins related to the extracellular matrix and Ca2+-binding proteins of the endoplasmic reticulum. We propose that changes in the heart glycoproteome likely contribute to the age-related functional decline of the cardiovascular system.
Collapse
Affiliation(s)
- Patricia Franzka
- Institute of Human Genetics, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Lynn Krüger
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin, Germany.,Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Mona K Schurig
- Institute of Human Genetics, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| | - Maja Olecka
- Hoffmann Research Group, Leibniz-Institute on Aging-Fritz-Lipmann-Institute, Jena, Germany
| | - Steve Hoffmann
- Hoffmann Research Group, Leibniz-Institute on Aging-Fritz-Lipmann-Institute, Jena, Germany
| | - Véronique Blanchard
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Berlin, Germany
| | - Christian A Hübner
- Institute of Human Genetics, University Hospital Jena, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
23
|
Paton B, Suarez M, Herrero P, Canela N. Glycosylation Biomarkers Associated with Age-Related Diseases and Current Methods for Glycan Analysis. Int J Mol Sci 2021; 22:5788. [PMID: 34071388 PMCID: PMC8198018 DOI: 10.3390/ijms22115788] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/23/2022] Open
Abstract
Ageing is a complex process which implies the accumulation of molecular, cellular and organ damage, leading to an increased vulnerability to disease. In Western societies, the increase in the elderly population, which is accompanied by ageing-associated pathologies such as cardiovascular and mental diseases, is becoming an increasing economic and social burden for governments. In order to prevent, treat and determine which subjects are more likely to develop these age-related diseases, predictive biomarkers are required. In this sense, some studies suggest that glycans have a potential role as disease biomarkers, as they modify the functions of proteins and take part in intra- and intercellular biological processes. As the glycome reflects the real-time status of these interactions, its characterisation can provide potential diagnostic and prognostic biomarkers for multifactorial diseases. This review gathers the alterations in protein glycosylation profiles that are associated with ageing and age-related diseases, such as cancer, type 2 diabetes mellitus, metabolic syndrome and several chronic inflammatory diseases. Furthermore, the review includes the available techniques for the determination and characterisation of glycans, such as liquid chromatography, electrophoresis, nuclear magnetic resonance and mass spectrometry.
Collapse
Affiliation(s)
- Beatrix Paton
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences, Joint Unit Eurecat-Universitat Rovira i Virgili, Unique Scientific and Technical Infrastructure (ICTS), 43204 Reus, Spain; (B.P.); (N.C.)
| | - Manuel Suarez
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Pol Herrero
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences, Joint Unit Eurecat-Universitat Rovira i Virgili, Unique Scientific and Technical Infrastructure (ICTS), 43204 Reus, Spain; (B.P.); (N.C.)
| | - Núria Canela
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences, Joint Unit Eurecat-Universitat Rovira i Virgili, Unique Scientific and Technical Infrastructure (ICTS), 43204 Reus, Spain; (B.P.); (N.C.)
| |
Collapse
|
24
|
Habazin S, Štambuk J, Šimunović J, Keser T, Razdorov G, Novokmet M. Mass Spectrometry-Based Methods for Immunoglobulin G N-Glycosylation Analysis. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:73-135. [PMID: 34687008 DOI: 10.1007/978-3-030-76912-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mass spectrometry and its hyphenated techniques enabled by the improvements in liquid chromatography, capillary electrophoresis, novel ionization, and fragmentation modes are truly a cornerstone of robust and reliable protein glycosylation analysis. Boost in immunoglobulin G (IgG) glycan and glycopeptide profiling demands for both applied biomedical and research applications has brought many new advances in the field in terms of technical innovations, sample preparation, improved throughput, and confidence in glycan structural characterization. This chapter summarizes mass spectrometry basics, focusing on IgG and monoclonal antibody N-glycosylation analysis on several complexity levels. Different approaches, including antibody enrichment, glycan release, labeling, and glycopeptide preparation and purification, are covered and illustrated with recent breakthroughs and examples from the literature omitting excessive theoretical frameworks. Finally, selected highly popular methodologies in IgG glycoanalytics such as liquid chromatography-mass spectrometry and matrix-assisted laser desorption ionization are discussed more thoroughly yet in simple terms making this text a practical starting point either for the beginner in the field or an experienced clinician trying to make sense out of the IgG glycomic or glycoproteomic dataset.
Collapse
Affiliation(s)
- Siniša Habazin
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia
| | - Jerko Štambuk
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia
| | | | - Toma Keser
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | | | - Mislav Novokmet
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia.
| |
Collapse
|
25
|
Dall'Olio F, Malagolini N. Immunoglobulin G Glycosylation Changes in Aging and Other Inflammatory Conditions. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:303-340. [PMID: 34687015 DOI: 10.1007/978-3-030-76912-3_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Among the multiple roles played by protein glycosylation, the fine regulation of biological interactions is one of the most important. The asparagine 297 (Asn297) of IgG heavy chains is decorated by a diantennary glycan bearing a number of galactose and sialic acid residues on the branches ranging from 0 to 2. In addition, the structure can present core-linked fucose and/or a bisecting GlcNAc. In many inflammatory and autoimmune conditions, as well as in metabolic, cardiovascular, infectious, and neoplastic diseases, the IgG Asn297-linked glycan becomes less sialylated and less galactosylated, leading to increased expression of glycans terminating with GlcNAc. These conditions alter also the presence of core-fucose and bisecting GlcNAc. Importantly, similar glycomic alterations are observed in aging. The common condition, shared by the above-mentioned pathological conditions and aging, is a low-grade, chronic, asymptomatic inflammatory state which, in the case of aging, is known as inflammaging. Glycomic alterations associated with inflammatory diseases often precede disease onset and follow remission. The aberrantly glycosylated IgG glycans associated with inflammation and aging can sustain inflammation through different mechanisms, fueling a vicious loop. These include complement activation, Fcγ receptor binding, binding to lectin receptors on antigen-presenting cells, and autoantibody reactivity. The complex molecular bases of the glycomic changes associated with inflammation and aging are still poorly understood.
Collapse
Affiliation(s)
- Fabio Dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.
| | - Nadia Malagolini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| |
Collapse
|
26
|
Abstract
Human lifespan has increased significantly in the last 200 years, emphasizing our need to age healthily. Insights into molecular mechanisms of aging might allow us to slow down its rate or even revert it. Similar to aging, glycosylation is regulated by an intricate interplay of genetic and environmental factors. The dynamics of glycopattern variation during aging has been mostly explored for plasma/serum and immunoglobulin G (IgG) N-glycome, as we describe thoroughly in this chapter. In addition, we discuss the potential functional role of agalactosylated IgG glycans in aging, through modulation of inflammation level, as proposed by the concept of inflammaging. We also comment on the potential to use the plasma/serum and IgG N-glycome as a biomarker of healthy aging and on the interventions that modulate the IgG glycopattern. Finally, we discuss the current knowledge about animal models for human plasma/serum and IgG glycosylation and mention other, less explored, instances of glycopattern changes during organismal aging and cellular senescence.
Collapse
|
27
|
Sibai M, Altuntaş E, Yıldırım B, Öztürk G, Yıldırım S, Demircan T. Microbiome and Longevity: High Abundance of Longevity-Linked Muribaculaceae in the Gut of the Long-Living Rodent Spalax leucodon. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:592-601. [PMID: 32907488 DOI: 10.1089/omi.2020.0116] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
With a world population living longer as well as marked disparities in life expectancy, understanding the determinants of longevity is one of the priority research agendas in 21st century life sciences. To this end, the blind mole-rat (Spalax leucodon), a subterranean mammalian, has emerged as an exceptional model organism due to its astonishing features such as remarkable longevity, hypoxia and hypercapnia tolerance, and cancer resistance. The microbiome has been found to be a vital parameter for cellular physiology and it is safe to assume that it has an impact on life expectancy. Although the unique characteristics of Spalax make it an ideal experimental model for longevity research, there is limited knowledge of the bacterial composition of Spalax microbiome, which limits its in-depth utilization. In this study, using 16S rRNA amplicon sequencing, we report the gut and skin bacterial structure of Spalax for the first time. The diversity between fecal and skin samples was manifested in the distant clustering, as revealed by beta diversity analysis. Importantly, the longevity-linked Muribaculaceae bacterial family was found to be the dominating bacterial taxa in Spalax fecal samples. These new findings contribute toward further development of Spalax as a model for longevity research and potential linkages between microbiome composition and longevity.
Collapse
Affiliation(s)
- Mustafa Sibai
- Graduate School of Natural and Applied Sciences, Mugla Sitki Kocman University, Mugla, Turkey
| | - Ebru Altuntaş
- Graduate School of Natural and Applied Sciences, Mugla Sitki Kocman University, Mugla, Turkey
| | - Berna Yıldırım
- Regenerative and Restorative Medicine Research Center, REMER, Istanbul Medipol University, Istanbul, Turkey
| | - Gürkan Öztürk
- Regenerative and Restorative Medicine Research Center, REMER, Istanbul Medipol University, Istanbul, Turkey.,Department of Physiology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Süleyman Yıldırım
- Regenerative and Restorative Medicine Research Center, REMER, Istanbul Medipol University, Istanbul, Turkey.,Department of Medical Microbiology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Turan Demircan
- Regenerative and Restorative Medicine Research Center, REMER, Istanbul Medipol University, Istanbul, Turkey.,Department of Medical Biology, School of Medicine, Mugla Sitki Kocman University, Mugla, Turkey
| |
Collapse
|
28
|
Ohyama Y, Nakajima K, Renfrow MB, Novak J, Takahashi K. Mass spectrometry for the identification and analysis of highly complex glycosylation of therapeutic or pathogenic proteins. Expert Rev Proteomics 2020; 17:275-296. [PMID: 32406805 DOI: 10.1080/14789450.2020.1769479] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Protein glycosylation influences characteristics such as folding, stability, protein interactions, and solubility. Therefore, glycan moieties of therapeutic proteins and proteins that are likely associated with disease pathogenesis should be analyzed in-depth, including glycan heterogeneity and modification sites. Recent advances in analytical methods and instrumentation have enabled comprehensive characterization of highly complex glycosylated proteins. AREA COVERED The following aspects should be considered when analyzing glycosylated proteins: sample preparation, chromatographic separation, mass spectrometry (MS) and fragmentation methods, and bioinformatics, such as software solutions for data analyses. Notably, analysis of glycoproteins with heavily sialylated glycans or multiple glycosylation sites requires special considerations. Here, we discuss recent methodological advances in MS that provide detailed characterization of heterogeneous glycoproteins. EXPERT OPINION As characterization of complex glycosylated proteins is still analytically challenging, the function or pathophysiological significance of these proteins is not fully understood. To reproducibly produce desired forms of therapeutic glycoproteins or to fully elucidate disease-specific patterns of protein glycosylation, a highly reproducible and robust analytical platform(s) should be established. In addition to advances in MS instrumentation, optimization of analytical and bioinformatics methods and utilization of glycoprotein/glycopeptide standards is desirable. Ultimately, we envision that an automated high-throughput MS analysis will provide additional power to clinical studies and precision medicine.
Collapse
Affiliation(s)
- Yukako Ohyama
- Department of Nephrology, Fujita Health University School of Medicine , Toyoake, Japan.,Department of Biomedical Molecular Sciences, Fujita Health University School of Medicine , Toyoake, Japan
| | - Kazuki Nakajima
- Center for Research Promotion and Support, Fujita Health University , Toyoake, Japan
| | - Matthew B Renfrow
- Departments of Biochemistry and Molecular Genetics and Microbiology, University of Alabama at Birmingham , Birmingham, AL, USA
| | - Jan Novak
- Departments of Biochemistry and Molecular Genetics and Microbiology, University of Alabama at Birmingham , Birmingham, AL, USA
| | - Kazuo Takahashi
- Department of Nephrology, Fujita Health University School of Medicine , Toyoake, Japan.,Department of Biomedical Molecular Sciences, Fujita Health University School of Medicine , Toyoake, Japan.,Departments of Biochemistry and Molecular Genetics and Microbiology, University of Alabama at Birmingham , Birmingham, AL, USA
| |
Collapse
|
29
|
Klarić L, Tsepilov YA, Stanton CM, Mangino M, Sikka TT, Esko T, Pakhomov E, Salo P, Deelen J, McGurnaghan SJ, Keser T, Vučković F, Ugrina I, Krištić J, Gudelj I, Štambuk J, Plomp R, Pučić-Baković M, Pavić T, Vilaj M, Trbojević-Akmačić I, Drake C, Dobrinić P, Mlinarec J, Jelušić B, Richmond A, Timofeeva M, Grishchenko AK, Dmitrieva J, Bermingham ML, Sharapov SZ, Farrington SM, Theodoratou E, Uh HW, Beekman M, Slagboom EP, Louis E, Georges M, Wuhrer M, Colhoun HM, Dunlop MG, Perola M, Fischer K, Polasek O, Campbell H, Rudan I, Wilson JF, Zoldoš V, Vitart V, Spector T, Aulchenko YS, Lauc G, Hayward C. Glycosylation of immunoglobulin G is regulated by a large network of genes pleiotropic with inflammatory diseases. SCIENCE ADVANCES 2020; 6:eaax0301. [PMID: 32128391 PMCID: PMC7030929 DOI: 10.1126/sciadv.aax0301] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 11/19/2019] [Indexed: 05/03/2023]
Abstract
Effector functions of immunoglobulin G (IgG) are regulated by the composition of a glycan moiety, thus affecting activity of the immune system. Aberrant glycosylation of IgG has been observed in many diseases, but little is understood about the underlying mechanisms. We performed a genome-wide association study of IgG N-glycosylation (N = 8090) and, using a data-driven network approach, suggested how associated loci form a functional network. We confirmed in vitro that knockdown of IKZF1 decreases the expression of fucosyltransferase FUT8, resulting in increased levels of fucosylated glycans, and suggest that RUNX1 and RUNX3, together with SMARCB1, regulate expression of glycosyltransferase MGAT3. We also show that variants affecting the expression of genes involved in the regulation of glycoenzymes colocalize with variants affecting risk for inflammatory diseases. This study provides new evidence that variation in key transcription factors coupled with regulatory variation in glycogenes modifies IgG glycosylation and has influence on inflammatory diseases.
Collapse
Affiliation(s)
- Lucija Klarić
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Yakov A. Tsepilov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Chloe M. Stanton
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
- NIHR Biomedical Research Centre at Guy’s and St Thomas’ Foundation Trust, London, UK
| | - Timo Tõnis Sikka
- Estonian Genome Center, University of Tartu, Tartu, Estonia
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Tõnu Esko
- Estonian Genome Center, University of Tartu, Tartu, Estonia
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Division of Endocrinology, Boston Children’s Hospital, Cambridge, MA, USA
| | - Eugene Pakhomov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Perttu Salo
- Genomics and Biomarkers Unit, Department of Health, National Institute for Health and Welfare (THL), Helsinki, Finland
| | - Joris Deelen
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, Netherlands
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Stuart J. McGurnaghan
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Toma Keser
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | | | - Ivo Ugrina
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- University of Split, Faculty of Science, Split, Croatia
| | | | - Ivan Gudelj
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Jerko Štambuk
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Rosina Plomp
- Leiden University Medical Centre, Leiden, Netherlands
| | | | - Tamara Pavić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Marija Vilaj
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | | | - Camilla Drake
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Paula Dobrinić
- Division of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Jelena Mlinarec
- Division of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Barbara Jelušić
- Division of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Anne Richmond
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Maria Timofeeva
- Colon Cancer Genetics Group, Cancer Research UK Edinburgh Centre and Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Alexander K. Grishchenko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Julia Dmitrieva
- Unit of Animal Genomics, WELBIO, GIGA-R and Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Mairead L. Bermingham
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Sodbo Zh. Sharapov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
| | - Susan M. Farrington
- Colon Cancer Genetics Group, Cancer Research UK Edinburgh Centre and Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Evropi Theodoratou
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Hae-Won Uh
- Leiden University Medical Centre, Leiden, Netherlands
- Department of Biostatistics and Research Support, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marian Beekman
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, Netherlands
| | - Eline P. Slagboom
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Centre, Leiden, Netherlands
| | - Edouard Louis
- CHU-Liège and Unit of Gastroenterology, GIGA-R and Faculty of Medicine, University of Liège, Liège, Belgium
| | - Michel Georges
- Unit of Animal Genomics, WELBIO, GIGA-R and Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | | | - Helen M. Colhoun
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Department of Public Health, NHS Fife, Kirkcaldy, UK
| | - Malcolm G. Dunlop
- Colon Cancer Genetics Group, Cancer Research UK Edinburgh Centre and Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Markus Perola
- Genomics and Biomarkers Unit, Department of Health, National Institute for Health and Welfare (THL), Helsinki, Finland
| | - Krista Fischer
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Ozren Polasek
- Department of Public Health, Faculty of Medicine, University of Split, Split, Croatia
- Gen-info, Zagreb, Croatia
- Psychiatric Hospital Sveti Ivan, Zagreb, Croatia
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - James F. Wilson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Vlatka Zoldoš
- Division of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Veronique Vitart
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Tim Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Yurii S. Aulchenko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
- PolyOmica, Het Vlaggeschip 61, 5237 PA 's-Hertogenbosch, Netherlands
- Kurchatov Genomics Center, Institute of Cytology & Genetics, Novosibirsk, Russia
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Caroline Hayward
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Generation Scotland, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
30
|
Sialylation and fucosylation modulate inflammasome-activating eIF2 Signaling and microbial translocation during HIV infection. Mucosal Immunol 2020; 13:753-766. [PMID: 32152415 PMCID: PMC7434596 DOI: 10.1038/s41385-020-0279-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 02/04/2023]
Abstract
An emerging paradigm suggests that gut glycosylation is a key force in maintaining the homeostatic relationship between the gut and its microbiota. Nevertheless, it is unclear how gut glycosylation contributes to the HIV-associated microbial translocation and inflammation that persist despite viral suppression and contribute to the development of several comorbidities. We examined terminal ileum, right colon, and sigmoid colon biopsies from HIV-infected virally-suppressed individuals and found that gut glycomic patterns are associated with distinct microbial compositions and differential levels of chronic inflammation and HIV persistence. In particular, high levels of the pro-inflammatory hypo-sialylated T-antigen glycans and low levels of the anti-inflammatory fucosylated glycans were associated with higher abundance of glycan-degrading microbial species (in particular, Bacteroides vulgatus), a less diverse microbiome, higher levels of inflammation, and higher levels of ileum-associated HIV DNA. These findings are linked to the activation of the inflammasome-mediating eIF2 signaling pathway. Our study thus provides the first proof-of-concept evidence that a previously unappreciated factor, gut glycosylation, is a force that may impact the vicious cycle between HIV infection, microbial translocation, and chronic inflammation.
Collapse
|
31
|
Zhang G, Cui R, Kang Y, Qi C, Ji X, Zhang T, Guo Q, Cui H, Shi G. Testosterone propionate activated the Nrf2-ARE pathway in ageing rats and ameliorated the age-related changes in liver. Sci Rep 2019; 9:18619. [PMID: 31819135 PMCID: PMC6901587 DOI: 10.1038/s41598-019-55148-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 11/25/2019] [Indexed: 12/16/2022] Open
Abstract
The present study aimed to evaluate the protective efficacy of testosterone propionate (TP) on age-related liver changes via activation of the nuclear factor erythroid 2-related factor 2-antioxidant response element (Nrf2-ARE) pathway in aged rats. Aged rats received subcutaneous injections of TP (2 mg/kg/d, 84 days). Oxidative stress parameters and the expression levels of signal transducer and activator of transcription 5b (STAT5b), Kelch-like ECH associating protein-1 (Keap1), Nrf2, haem oxygenase-1 (HO-1) and NAD(P)H: quinone oxidoreductase-1 (NQO1) in liver tissues were examined to check whether the Nrf2-ARE pathway was involved in the age-related changes in liver. Our results showed that TP supplementation alleviated liver morphology, liver function and liver fibrosis; improved oxidative stress parameters; and increased the expression of STAT5b, Nrf2, HO-1 and NQO-1 and decreased the expression of Keap1 in the liver tissues of aged rats. These results suggested that TP increased the expression of STAT5b, and then activated the Nrf2-ARE pathway and promoted antioxidant mechanisms in aged rats. These findings may provide new therapeutic uses for TP in patients with age-related liver changes.
Collapse
Affiliation(s)
- Guoliang Zhang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, P.R. China.,Department of Human Anatomy, Hebei Medical University, Shijiazhuang, 050017, P.R. China
| | - Rui Cui
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, 050017, P.R. China
| | - Yunxiao Kang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, P.R. China
| | - Chunxiao Qi
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, 050017, P.R. China
| | - Xiaoming Ji
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, P.R. China
| | - Tianyun Zhang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, P.R. China
| | - Qiqing Guo
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, P.R. China
| | - Huixian Cui
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, 050017, P.R. China.,Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, P.R. China
| | - Geming Shi
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, P.R. China. .,Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, P.R. China. .,Hebei Key Laboratory of Forensic Medicine, Department of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, P.R. China.
| |
Collapse
|
32
|
Dotz V, Wuhrer M. N-glycome signatures in human plasma: associations with physiology and major diseases. FEBS Lett 2019; 593:2966-2976. [PMID: 31509238 DOI: 10.1002/1873-3468.13598] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/02/2019] [Indexed: 12/18/2022]
Abstract
N-glycome analysis in total plasma or serum yields information about the levels and glycosylation patterns of major plasma glycoproteins, including immunoglobulins, acute-phase proteins, and apolipoproteins. Until recently, glycomic studies in disease settings largely suffered from small cohort sizes, poor analytical resolution, and poor comparability of results owing to the diversity of analytical techniques. Here, we report on recent advances in high-throughput mass spectrometry glycomics technology that enabled elucidation of N-glycome signatures in the plasma of patients with type 2 diabetes, inflammatory bowel disease, or colorectal cancer. Use of this technology revealed both commonalities and differences among disease fingerprints. Moreover, we summarize findings on glycomic signatures associated with age, sex, and body mass index. High-throughput, high-resolution glycomics technologies, together with robust data analysis workflows, will advance clinical translation.
Collapse
Affiliation(s)
- Viktoria Dotz
- Center for Proteomics and Metabolomics, Leiden University Medical Center, the Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, the Netherlands
| |
Collapse
|
33
|
Branca JJ, Gulisano M, Nicoletti C. Intestinal epithelial barrier functions in ageing. Ageing Res Rev 2019; 54:100938. [PMID: 31369869 DOI: 10.1016/j.arr.2019.100938] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 07/19/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022]
Abstract
The intestinal epithelial barrier protects the mucosa of the gastrointestinal (GI)-tract and plays a key role in maintaining the host homeostasis. It encompasses several elements that include the intestinal epithelium and biochemical and immunological products, such as the mucus layer, antimicrobial peptides (AMPs) and secretory immunologlobulin A (sIgA). These components are interlinked with the large microbial community inhabiting the gut to form a highly sophisticated biological system that plays an important role on many aspects of human health both locally and systemically. Like any other organ and tissue, the intestinal epithelial barrier is affected by the ageing process. New insights have surfaced showing that critical functions, including intestinal stem cell regeneration and regulation of the intestinal crypt homeostasis, barrier integrity, production of regulatory cytokines, and epithelial innate immunity to pathogenic antigens change across life. Here we review the age-associated changes of the various components of the intestinal epithelial barrier and we highlight the necessity to elucidate further the mechanisms underlying these changes. Expanding our knowledge in this area is a goal of high medical relevance and it will help to define intervention strategies to ameliorate the quality of life of the ever-expanding elderly population.
Collapse
|
34
|
Relating glycoprotein structural heterogeneity to function - insights from native mass spectrometry. Curr Opin Struct Biol 2019; 58:241-248. [PMID: 31326232 PMCID: PMC7104348 DOI: 10.1016/j.sbi.2019.05.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 01/08/2023]
Abstract
Glycosylation is the most complex and prevalent protein modification that influences attributes ranging from cellular localization and signaling to half-life and proteolysis. Glycoconjugates are fundamental for cellular function and alterations in their structure are often observed in pathological states. Most biotherapeutic proteins are glycosylated, which influences drug safety and efficacy. Therefore, the ability to characterize glycoproteins is important in all areas of biomolecular and medicinal research. Here we discuss recent advances in native mass spectrometry that have significantly improved our ability to characterize heterogeneous glycoproteins and to relate glycan structure to protein function.
Collapse
|
35
|
Detrimental links between physical inactivity, metabolic risk and N-glycomic biomarkers of aging. Exp Gerontol 2019; 124:110626. [PMID: 31158451 DOI: 10.1016/j.exger.2019.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/29/2019] [Accepted: 05/30/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND N-linked enzymatic glycosylation modulates the function of proteins and contributes to development of age-related metabolic abnormalities. Whether physical activity (PA) is linked to a specific N-glycan profile and can offset detrimental links between N-glycans and metabolic risk profile has never been explored. The aim of the present study is to assess serum N-glycan profile in older women with different PA levels and metabolic risk status. MATERIALS AND METHODS Components of the metabolic syndrome (MetS) and serum N-glycans analyzed using DSA-FACE technology were assessed in 109 older community-dwelling women (65-70 yrs). Ten peaks, each representing a unique N-glycan structure were detected. Moderate-to-vigorous PA (MVPA) was assessed objectively using accelerometry. All analyses were adjusted by covariates. RESULTS Significantly elevated levels of NGA2FB (peak 2) and NA3F (peak 9) and lower level of the α(1,6)-arm monogalactosylated (NG1(6)A2F) (peak 3) were demonstrated in women with MetS compared to their healthier peers (p < 0.05). Importantly, women adhering to the PA guideline of time in MVPA had a 10% and a 12% lower level of NA3 (peak 8) and NA4 (peak 10), respectively, compared to those less active even after adjustment by MetS and covariates (p < 0.05). Interestingly, time spent in PA below the MVPA threshold was not linked to N-glycans. CONCLUSION Novel links between PA behaviors and N-glycan profile are demonstrated in older adults, regardless of metabolic risk status. This proposed effect on N-glycans requires engagement in MVPA. This supports public health efforts to promote adherence to PA guidelines in older adults across different stages of disease prevention.
Collapse
|
36
|
Penezić A, Križakova M, Miljuš G, Katrlik J, Nedić O. Diagnostic Potential of Transferrin Glycoforms-A Lectin-Based Protein Microarray Approach. Proteomics Clin Appl 2019; 13:e1800185. [PMID: 31050875 DOI: 10.1002/prca.201800185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/28/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Disease or a specific condition may cause alteration of human transferrin (hTf) glycosylation pattern. A specific analytical platform, lectin-based protein microarray, is designed and optimized for the investigation of hTf glycans, attached to the protein core in their native form. EXPERIMENTAL DESIGN hTf molecules isolated from healthy persons of different age, diabetes mellitus type 2 (T2DM) or colorectal carcinoma (CRC) patients are used for method validation. Reliability of the results is ensured by three criteria for the evaluation of hTf-lectin interactions: i) signal-to-noise ratio above 3, ii) signal intensity above 250 arbitrary units, and iii) hTf concentration ensuring high sensitivity of the assay. RESULTS Six lectins, out of fourteen tested, satisfy the criteria. hTf is spotted at concentration of 50 µg mL-L . When physiological samples (isolated hTf) are analyzed, the highest potential to differentiate between population groups expresses Aleuria aurantia (AAL), Triticum vulgaris (WGA) and Phaseolus vulgaris (PHA-E) lectins. The initial amount of hTf which can be analyzed is very low (75 pg). CONCLUSION AND CLINICAL RELEVANCE Results confirm that a very sensitive, high-throughput lectin-based protein microarray platform can be formulated to detect changes in hTf glycan structures which can be considered as biomarkers of ageing or a disease.
Collapse
Affiliation(s)
- Ana Penezić
- Institute for the Application of Nuclear Energy (INEP), Banatska 31b, 11080, Belgrade, Serbia
| | - Martina Križakova
- Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovak Republic
| | - Goran Miljuš
- Institute for the Application of Nuclear Energy (INEP), Banatska 31b, 11080, Belgrade, Serbia
| | - Jaroslav Katrlik
- Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovak Republic
| | - Olgica Nedić
- Institute for the Application of Nuclear Energy (INEP), Banatska 31b, 11080, Belgrade, Serbia
| |
Collapse
|
37
|
Reduced hybrid/complex N-glycosylation disrupts cardiac electrical signaling and calcium handling in a model of dilated cardiomyopathy. J Mol Cell Cardiol 2019; 132:13-23. [PMID: 31071333 DOI: 10.1016/j.yjmcc.2019.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/12/2019] [Accepted: 05/01/2019] [Indexed: 12/19/2022]
Abstract
Dilated cardiomyopathy (DCM) is the third most common cause of heart failure, with ~70% of DCM cases considered idiopathic. We showed recently, through genetic ablation of the MGAT1 gene, which encodes an essential glycosyltransferase (GlcNAcT1), that prevention of cardiomyocyte hybrid/complex N-glycosylation was sufficient to cause DCM that led to heart failure and early death. Our findings are consistent with increasing evidence suggesting a link between aberrant glycosylation and heart diseases of acquired and congenital etiologies. However, the mechanisms by which changes in glycosylation contribute to disease onset and progression remain largely unknown. Activity and gating of voltage-gated Na+ and K+ channels (Nav and Kv respectively) play pivotal roles in the initiation, shaping and conduction of cardiomyocyte action potentials (APs) and aberrant channel activity was shown to contribute to cardiac disease. We and others showed that glycosylation can impact Nav and Kv function; therefore, here, we investigated the effects of reduced cardiomyocyte hybrid/complex N-glycosylation on channel activity to investigate whether chronic aberrant channel function can contribute to DCM. Ventricular cardiomyocytes from MGAT1 deficient (MGAT1KO) mice display prolonged APs and pacing-induced aberrant early re-activation that can be attributed to, at least in part, a significant reduction in Kv expression and activity that worsens over time suggesting heart disease-related remodeling. MGAT1KO Nav demonstrate no change in expression or maximal conductance but show depolarizing shifts in voltage-dependent gating. Together, the changes in MGAT1KO Nav and Kv function likely contribute to observed anomalous electrocardiograms and Ca2+ handling. These findings provide insight into mechanisms by which altered glycosylation contributes to DCM through changes in Nav and Kv activity that impact conduction, Ca2+ handling and contraction. The MGAT1KO can also serve as a useful model to study the effects of aberrant electrical signaling on cardiac function and the remodeling events that can occur with heart disease progression.
Collapse
|
38
|
Sakurai S, Inai Y, Minakata S, Manabe S, Ito Y, Ihara Y. A novel assay for detection and quantification of C-mannosyl tryptophan in normal or diabetic mice. Sci Rep 2019; 9:4675. [PMID: 30886328 PMCID: PMC6423288 DOI: 10.1038/s41598-019-41278-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 03/04/2019] [Indexed: 01/17/2023] Open
Abstract
C-Mannosyl tryptophan (C-Man-Trp) is a unique molecule in that an α-mannose is connected to the indole C2 carbon atom of a Trp residue via C-glycosidic linkage. Although serum C-Man-Trp may be a novel biomarker of renal function in humans, the biological significance of C-Man-Trp has yet to be fully investigated. In this study, a novel assay system for C-Man-Trp was established using hydrophilic-interaction liquid chromatography, followed by detecting the fluorescence intensity or mass abundance of C-Man-Trp. Using this system, we systematically assessed the amount of free monomeric C-Man-Trp in different tissues of mice. The tissue level of C-Man-Trp was high, especially in the ovaries and uterus. Other organs with high levels of C-Man-Trp included the brain, spleen, lungs, bladder, and testes. The level was low in skeletal muscle. We also investigated whether the tissue level of C-Man-Trp is affected in diabetes. In KK-Ay diabetic mice, the level of urinary C-Man-Trp excretion was increased, and the tissue levels of C-Man-Trp were decreased in the liver but increased in the kidney. These results demonstrate that C-Man-Trp is differentially distributed in numerous tissues and organs in mice, and the levels are altered by disordered carbohydrate metabolism such as diabetes.
Collapse
Affiliation(s)
- Sho Sakurai
- Department of Biochemistry, Wakayama Medical University, Wakayama, 641-0012, Japan
| | - Yoko Inai
- Department of Biochemistry, Wakayama Medical University, Wakayama, 641-0012, Japan
| | - Shiho Minakata
- Department of Biochemistry, Wakayama Medical University, Wakayama, 641-0012, Japan
| | - Shino Manabe
- RIKEN (The Institute of Physical and Chemical Research), Saitama, 351-0198, Japan
| | - Yukishige Ito
- RIKEN (The Institute of Physical and Chemical Research), Saitama, 351-0198, Japan
| | - Yoshito Ihara
- Department of Biochemistry, Wakayama Medical University, Wakayama, 641-0012, Japan.
| |
Collapse
|
39
|
Hu M, Lan Y, Lu A, Ma X, Zhang L. Glycan-based biomarkers for diagnosis of cancers and other diseases: Past, present, and future. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 162:1-24. [PMID: 30905444 DOI: 10.1016/bs.pmbts.2018.12.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Glycans are essential biomolecules in regulating human physiology and pathology ranging from signal transduction to microbial infections. Developing complex human diseases, such as cancer, diabetes, and cardiovascular diseases, are a combination of genetic and environmental factors. Genetics dominates embryonic development and the passing of genes to the next generation whereas the information in glycans reflects the impact of internal and external environmental factors, such as diseases, lifestyle, and social factors, on a person's health and disease. The reason behind this is that glycans are not directly encoded in a genetic template. Instead, they are assembled dynamically by hundreds of enzymes organized in more than 10 complex biosynthetic pathways. Any environmental changes affecting enzymatic activities or the availability of high-energy monosaccharide donors in a specific location will disturb the final structure of glycans. The glycan structure-dependent biological activities subsequently enable or disable gene expressions, which partially explain that it is difficult to pinpoint specific genetic defects to aging-associated diseases. Glycan-based biomarkers are currently used for diagnosis of diabetes, cancers, and other complex diseases. We will recapitulate the discovery of glucose, glycated proteins, glycan-, and glycoprotein-based biomarkers followed by summarizing clinically used glycan/glycoprotein-based biomarkers. The potential serum/plasma-derived N- and O-linked glycans as biomarkers will also be discussed.
Collapse
Affiliation(s)
- Minghui Hu
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China; Clinical Laboratory, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ying Lan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Alexander Lu
- Program in Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - Xuexiao Ma
- Department of Spine Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lijuan Zhang
- Systems Biology and Medicine Center for Complex Diseases, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
40
|
Zhang M, Dou H, Yang D, Shan M, Li X, Hao C, Zhang Y, Zeng P, He Y, Liu Y, Fu J, Wang W, Hu M, Li H, Tian Q, Lei S, Zhang L. Retrospective analysis of glycan-related biomarkers based on clinical laboratory data in two medical centers during the past 6 years. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 162:141-163. [PMID: 30905446 DOI: 10.1016/bs.pmbts.2019.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Most of clinically used cancer biomarkers are either specific glycan structures or glycoproteins. Although the high serum levels of the cancer biomarkers are also present in certain patients suffering noncancer diseases, systematic measurement and comparison of the serum levels of all cancer biomarkers among cancer and noncancer patients have not been reported. In this study, the serum levels of 17 glucose and glycan-related biomarkers including 10 cancer biomarkers SCCA, CA724, CA50, CA242, CA125, CA199, CA153, AFP, CEA, and PSA were retrospectively investigated based on clinical laboratory data in two medical centers during the past 6 years (2012-2018). The data included a total of 1,477,309 clinical lab test results of 17 biomarkers from healthy controls and patients suffering 64 different types of cancer and noncancer diseases. We found that the median serum levels of CA724, CEA, CA153, SCCA, and CA125 were highest not in cancer patients but in patients suffering gout, lung fibrosis, nephrotic syndrome, uremia, and cirrhosis, respectively. Consistently, the classical ovarian cancer biomarker CA125 had better overall sensitivity and specificity as biomarker for cirrhosis (67% and 92%, respectively) than that for ovarian cancer (41% and 97%, respectively). Furthermore, the information shown as heatmap or waterfall built on the -Log10p values of the 17 glycan-related biomarkers in different clinically defined diseases suggested that all glycan-related biomarkers had cancer-, aging-, and disease-relevant characteristics and cancers were systems disease. The detailed presentation of the data for each of the 17 biomarkers will be deliberated in chapters 6-23 in this book series.
Collapse
Affiliation(s)
- Meng Zhang
- Systems Biology and Medicine Center for Complex Diseases, Ocean University of China, Qingdao, China.
| | - Huaiqian Dou
- Systems Biology and Medicine Center for Complex Diseases, Ocean University of China, Qingdao, China
| | - Dandan Yang
- Systems Biology and Medicine Center for Complex Diseases, Ocean University of China, Qingdao, China
| | - Ming Shan
- Systems Biology and Medicine Center for Complex Diseases, Ocean University of China, Qingdao, China
| | - Xiulian Li
- Systems Biology and Medicine Center for Complex Diseases, Ocean University of China, Qingdao, China
| | - Cui Hao
- Systems Biology and Medicine Center for Complex Diseases, Ocean University of China, Qingdao, China
| | - Yiran Zhang
- Systems Biology and Medicine Center for Complex Diseases, Ocean University of China, Qingdao, China
| | - Pengjiao Zeng
- Systems Biology and Medicine Center for Complex Diseases, Ocean University of China, Qingdao, China
| | - Yanli He
- Systems Biology and Medicine Center for Complex Diseases, Ocean University of China, Qingdao, China
| | - Yong Liu
- Systems Biology and Medicine Center for Complex Diseases, Ocean University of China, Qingdao, China
| | - Jing Fu
- Systems Biology and Medicine Center for Complex Diseases, Ocean University of China, Qingdao, China
| | - Wei Wang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Minghui Hu
- Clinical Laboratory, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hui Li
- Clinical Laboratory, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qingwu Tian
- Clinical Laboratory, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shuhe Lei
- College of Mathematical Sciences, Ocean University of China, Qingdao, China
| | - Lijuan Zhang
- Systems Biology and Medicine Center for Complex Diseases, Ocean University of China, Qingdao, China.
| |
Collapse
|
41
|
Teo YV, Capri M, Morsiani C, Pizza G, Faria AMC, Franceschi C, Neretti N. Cell-free DNA as a biomarker of aging. Aging Cell 2019; 18:e12890. [PMID: 30575273 PMCID: PMC6351822 DOI: 10.1111/acel.12890] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/12/2018] [Accepted: 11/10/2018] [Indexed: 12/18/2022] Open
Abstract
Cell-free DNA (cfDNA) is present in the circulating plasma and other body fluids and is known to originate mainly from apoptotic cells. Here, we provide the first in vivo evidence of global and local chromatin changes in human aging by analyzing cfDNA from the blood of individuals of different age groups. Our results show that nucleosome signals inferred from cfDNA are consistent with the redistribution of heterochromatin observed in cellular senescence and aging in other model systems. In addition, we detected a relative cfDNA loss at several genomic locations, such as transcription start and termination sites, 5'UTR of L1HS retrotransposons and dimeric AluY elements with age. Our results also revealed age and deteriorating health status correlate with increased enrichment of signals from cells in different tissues. In conclusion, our results show that the sequencing of circulating cfDNA from human blood plasma can be used as a noninvasive methodology to study age-associated changes to the epigenome in vivo.
Collapse
Affiliation(s)
- Yee Voan Teo
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Miriam Capri
- CIG Interdepartmental Centre "Galvani", University of Bologna, Bologna, Italy
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Cristina Morsiani
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Grazia Pizza
- DIMES-Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology & Metabolism, Department of Medicine, Imperial College London, London, UK
| | - Ana Maria Caetano Faria
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Nicola Neretti
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island
| |
Collapse
|
42
|
Pujos-Guillot E, Pétéra M, Jacquemin J, Centeno D, Lyan B, Montoliu I, Madej D, Pietruszka B, Fabbri C, Santoro A, Brzozowska A, Franceschi C, Comte B. Identification of Pre-frailty Sub-Phenotypes in Elderly Using Metabolomics. Front Physiol 2019; 9:1903. [PMID: 30733683 PMCID: PMC6353829 DOI: 10.3389/fphys.2018.01903] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 12/18/2018] [Indexed: 01/14/2023] Open
Abstract
Aging is a dynamic process depending on intrinsic and extrinsic factors and its evolution is a continuum of transitions, involving multifaceted processes at multiple levels. It is recognized that frailty and sarcopenia are shared by the major age-related diseases thus contributing to elderly morbidity and mortality. Pre-frailty is still not well understood but it has been associated with global imbalance in several physiological systems, including inflammation, and in nutrition. Due to the complex phenotypes and underlying pathophysiology, the need for robust and multidimensional biomarkers is essential to move toward more personalized care. The objective of the present study was to better characterize the complexity of pre-frailty phenotype using untargeted metabolomics, in order to identify specific biomarkers, and study their stability over time. The approach was based on the NU-AGE project (clinicaltrials.gov, NCT01754012) that regrouped 1,250 free-living elderly people (65–79 y.o., men and women), free of major diseases, recruited within five European centers. Half of the volunteers were randomly assigned to an intervention group (1-year Mediterranean type diet). Presence of frailty was assessed by the criteria proposed by Fried et al. (2001). In this study, a sub-cohort consisting in 212 subjects (pre-frail and non-frail) from the Italian and Polish centers were selected for untargeted serum metabolomics at T0 (baseline) and T1 (follow-up). Univariate statistical analyses were performed to identify discriminant metabolites regarding pre-frailty status. Predictive models were then built using linear logistic regression and ROC curve analyses were used to evaluate multivariate models. Metabolomics enabled to discriminate sub-phenotypes of pre-frailty both at the gender level and depending on the pre-frailty progression and reversibility. The best resulting models included four different metabolites for each gender. They showed very good prediction capacity with AUCs of 0.93 (95% CI = 0.87–1) and 0.94 (95% CI = 0.87–1) for men and women, respectively. Additionally, early and/or predictive markers of pre-frailty were identified for both genders and the gender specific models showed also good performance (three metabolites; AUC = 0.82; 95% CI = 0.72–0.93) for men and very good for women (three metabolites; AUC = 0.92; 95% CI = 0.86–0.99). These results open the door, through multivariate strategies, to a possibility of monitoring the disease progression over time at a very early stage.
Collapse
Affiliation(s)
- Estelle Pujos-Guillot
- Université Clermont Auvergne, Institut National de la Recherche Agronomique, Unité de Nutrition Humaine, Centre Auvergne Rhône Alpes, Clermont-Ferrand, France.,Université Clermont Auvergne, Institut National de la Recherche Agronomique, Unité de Nutrition Humaine, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Mélanie Pétéra
- Université Clermont Auvergne, Institut National de la Recherche Agronomique, Unité de Nutrition Humaine, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Jérémie Jacquemin
- Université Clermont Auvergne, Institut National de la Recherche Agronomique, Unité de Nutrition Humaine, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Delphine Centeno
- Université Clermont Auvergne, Institut National de la Recherche Agronomique, Unité de Nutrition Humaine, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Bernard Lyan
- Université Clermont Auvergne, Institut National de la Recherche Agronomique, Unité de Nutrition Humaine, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, Clermont-Ferrand, France
| | - Ivan Montoliu
- Nestlé Institute of Health Sciences, Lausanne, Switzerland
| | - Dawid Madej
- Department of Human Nutrition, Warsaw University of Life Sciences - Szkoła Główna Gospodarstwa Wiejskiego, Warsaw, Poland
| | - Barbara Pietruszka
- Department of Human Nutrition, Warsaw University of Life Sciences - Szkoła Główna Gospodarstwa Wiejskiego, Warsaw, Poland
| | - Cristina Fabbri
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.,Interdepartmental Center "L. Galvani", University of Bologna, Bologna, Italy
| | - Anna Brzozowska
- Department of Human Nutrition, Warsaw University of Life Sciences - Szkoła Główna Gospodarstwa Wiejskiego, Warsaw, Poland
| | | | - Blandine Comte
- Université Clermont Auvergne, Institut National de la Recherche Agronomique, Unité de Nutrition Humaine, Centre Auvergne Rhône Alpes, Clermont-Ferrand, France
| |
Collapse
|
43
|
Obermann J, Wagner F, Kociaj A, Zambusi A, Ninkovic J, Hauck SM, Chapouton P. The Surface Proteome of Adult Neural Stem Cells in Zebrafish Unveils Long-Range Cell-Cell Connections and Age-Related Changes in Responsiveness to IGF. Stem Cell Reports 2019; 12:258-273. [PMID: 30639211 PMCID: PMC6373494 DOI: 10.1016/j.stemcr.2018.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/12/2018] [Accepted: 12/11/2018] [Indexed: 12/22/2022] Open
Abstract
In adult stem cell populations, recruitment into division is parsimonious and most cells maintain a quiescent state. How individual cells decide to enter the cell cycle and how they coordinate their activity remains an essential problem to be resolved. It is thus important to develop methods to elucidate the mechanisms of cell communication and recruitment into the cell cycle. We made use of the advantageous architecture of the adult zebrafish telencephalon to isolate the surface proteins of an intact neural stem cell (NSC) population. We identified the proteome of NSCs in young and old brains. The data revealed a group of proteins involved in filopodia, which we validated by a morphological analysis of single cells, showing apically located cellular extensions. We further identified an age-related decrease in insulin-like growth factor (IGF) receptors. Expressing IGF2b induced divisions in young brains but resulted in incomplete divisions in old brains, stressing the role of cell-intrinsic processes in stem cell behavior. The cell-surface proteome of an intact adult neural stem cell population was identified Zebrafish adult neural stem cells harbor filopodia on their apical surface Aging neural stem cells display an altered mitotic response to IGF ligands
Collapse
Affiliation(s)
- Jara Obermann
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, Heidemannstrasse 1, 80939 Munich, Germany
| | - Felicia Wagner
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, Heidemannstrasse 1, 80939 Munich, Germany
| | - Anita Kociaj
- Institute of Stem Cell Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Physiological Genomics, Biomedical Center, Ludwig Maximilian University Munich, Grosshaderner Strasse 9, 82152 Planegg-Martinsried, Germany; Graduate School of Systemic Neurosciences, Ludwig Maximilian University Munich, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany
| | - Alessandro Zambusi
- Institute of Stem Cell Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Graduate School of Systemic Neurosciences, Ludwig Maximilian University Munich, Grosshaderner Strasse 2, 82152 Planegg-Martinsried, Germany; Department of Cell Biology and Anatomy, BMC, Ludwig Maximilian University, Munich, Germany
| | - Jovica Ninkovic
- Institute of Stem Cell Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Physiological Genomics, Biomedical Center, Ludwig Maximilian University Munich, Grosshaderner Strasse 9, 82152 Planegg-Martinsried, Germany; Department of Cell Biology and Anatomy, BMC, Ludwig Maximilian University, Munich, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, Heidemannstrasse 1, 80939 Munich, Germany
| | - Prisca Chapouton
- Research Unit Sensory Biology and Organogenesis, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany.
| |
Collapse
|
44
|
Metabolomic and glycomic findings in posttraumatic stress disorder. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:181-193. [PMID: 30025792 DOI: 10.1016/j.pnpbp.2018.07.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/21/2018] [Accepted: 07/14/2018] [Indexed: 01/10/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a stressor-related disorder that develops in a subset of individuals exposed to a traumatic experience. Factors associated with vulnerability to PTSD are still not fully understood. PTSD is frequently comorbid with various psychiatric and somatic disorders, moderate response to treatment and remission rates. The term "theranostics" combines diagnosis, prognosis, and therapy and offers targeted therapy based on specific analyses. Theranostics, combined with novel techniques and approaches called "omics", which integrate genomics, transcriptomic, proteomics and metabolomics, might improve knowledge about biological underpinning of PTSD, and offer novel therapeutic strategies. The focus of this review is on metabolomic and glycomic data in PTSD. Metabolomics evaluates changes in the metabolome of an organism by exploring the set of small molecules (metabolites), while glycomics studies the glycome, a complete repertoire of glycan structures with their functional roles in biological systems. Both metabolome and glycome reflect the physiological and pathological conditions in individuals. Only a few studies evaluated metabolic and glycomic changes in patients with PTSD. The metabolomics studies in PTSD patients uncovered different metabolites that might be associated with psychopathological alterations in PTSD. The glycomics study in PTSD patients determined nine N-glycan structures and found accelerated and premature aging in traumatized subjects and subjects with PTSD based on a GlycoAge index. Therefore, further larger studies and replications are needed. Better understanding of the biological basis of PTSD, including metabolomic and glycomic data, and their integration with other "omics" approaches, might identify new molecular targets and might provide improved therapeutic approaches.
Collapse
|
45
|
Peng W, Zhao J, Dong X, Banazadeh A, Huang Y, Hussien A, Mechref Y. Clinical application of quantitative glycomics. Expert Rev Proteomics 2018; 15:1007-1031. [PMID: 30380947 PMCID: PMC6647030 DOI: 10.1080/14789450.2018.1543594] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Aberrant glycosylation has been associated with many diseases. Decades of research activities have reported many reliable glycan biomarkers of different diseases which enable effective disease diagnostics and prognostics. However, none of the glycan markers have been approved for clinical diagnosis. Thus, a review of these studies is needed to guide the successful clinical translation. Area covered: In this review, we describe and discuss advances in analytical methods enabling clinical glycan biomarker discovery, focusing only on studies of released glycans. This review also summarizes the different glycobiomarkers identified for cancers, Alzheimer's disease, diabetes, hepatitis B and C, and other diseases. Expert commentary: Along with the development of techniques in quantitative glycomics, more glycans or glycan patterns have been reported as better potential biomarkers of different diseases and proved to have greater diagnostic/diagnostic sensitivity and specificity than existing markers. However, to successfully apply glycan markers in clinical diagnosis, more studies and verifications on large biological cohorts need to be performed. In addition, faster and more efficient glycomic strategies need to be developed to shorten the turnaround time. Thus, glycan biomarkers have an immense chance to be used in clinical prognosis and diagnosis of many diseases in the near future.
Collapse
Affiliation(s)
- Wenjing Peng
- a Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , TX , USA
| | - Jingfu Zhao
- a Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , TX , USA
| | - Xue Dong
- a Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , TX , USA
| | - Alireza Banazadeh
- a Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , TX , USA
| | - Yifan Huang
- a Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , TX , USA
| | - Ahmed Hussien
- a Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , TX , USA.,b Department of Biotechnology , Institute of Graduate Studies and Research, University of Alexandria , Alexandria , Egypt
| | - Yehia Mechref
- a Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , TX , USA
| |
Collapse
|
46
|
Lu G, Crihfield CL, Gattu S, Veltri LM, Holland LA. Capillary Electrophoresis Separations of Glycans. Chem Rev 2018; 118:7867-7885. [PMID: 29528644 PMCID: PMC6135675 DOI: 10.1021/acs.chemrev.7b00669] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Indexed: 01/04/2023]
Abstract
Capillary electrophoresis has emerged as a powerful approach for carbohydrate analyses since 2014. The method provides high resolution capable of separating carbohydrates by charge-to-size ratio. Principle applications are heavily focused on N-glycans, which are highly relevant to biological therapeutics and biomarker research. Advances in techniques used for N-glycan structural identification include migration time indexing and exoglycosidase and lectin profiling, as well as mass spectrometry. Capillary electrophoresis methods have been developed that are capable of separating glycans with the same monosaccharide sequence but different positional isomers, as well as determining whether monosaccharides composing a glycan are alpha or beta linked. Significant applications of capillary electrophoresis to the analyses of N-glycans in biomarker discovery and biological therapeutics are emphasized with a brief discussion included on carbohydrate analyses of glycosaminoglycans and mono-, di-, and oligosaccharides relevant to food and plant products. Innovative, emerging techniques in the field are highlighted and the future direction of the technology is projected based on the significant contributions of capillary electrophoresis to glycoscience from 2014 to the present as discussed in this review.
Collapse
Affiliation(s)
- Grace Lu
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Cassandra L. Crihfield
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Srikanth Gattu
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Lindsay M. Veltri
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Lisa A. Holland
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
47
|
Fan M, Wang F, Wang C. Reflux Precipitation Polymerization: A New Platform for the Preparation of Uniform Polymeric Nanogels for Biomedical Applications. Macromol Biosci 2018; 18:e1800077. [DOI: 10.1002/mabi.201800077] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/19/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Mingliang Fan
- State Key Laboratory of Molecular Engineering of Polymers; Department of Macromolecular Science; Fudan University; 220 Han Dan Road Shanghai 200433 China
| | - Fang Wang
- State Key Laboratory of Molecular Engineering of Polymers; Department of Macromolecular Science; Fudan University; 220 Han Dan Road Shanghai 200433 China
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers; Department of Macromolecular Science; Fudan University; 220 Han Dan Road Shanghai 200433 China
| |
Collapse
|
48
|
Canales A, Boos I, Karst L, Perkams L, Luber T, Karagiannis T, Cañada J, Domínguez G, Perez‐Castells J, Unverzagt C, Jiménez‐Barbero J. Breaking the limits in analyzing carbohydrate recognition by NMR: Resolving Branch‐ Selective Interaction of a Tetraantennary N‐Glycan with lectins. FASEB J 2018. [DOI: 10.1096/fasebj.2018.32.1_supplement.544.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Irene Boos
- Bioorganische ChemieBayreuth UnivesityBayreuthGermany
| | - Lukas Karst
- Bioorganische ChemieBayreuth UnivesityBayreuthGermany
| | - Lukas Perkams
- Bioorganische ChemieBayreuth UnivesityBayreuthGermany
| | - Thomas Luber
- Bioorganische ChemieBayreuth UnivesityBayreuthGermany
| | | | | | | | | | | | | |
Collapse
|
49
|
Miura Y, Hashii N, Ohta Y, Itakura Y, Tsumoto H, Suzuki J, Takakura D, Abe Y, Arai Y, Toyoda M, Kawasaki N, Hirose N, Endo T. Characteristic glycopeptides associated with extreme human longevity identified through plasma glycoproteomics. Biochim Biophys Acta Gen Subj 2018; 1862:1462-1471. [PMID: 29580922 DOI: 10.1016/j.bbagen.2018.03.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/07/2018] [Accepted: 03/21/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Glycosylation is highly susceptible to changes of the physiological conditions, and accordingly, is a potential biomarker associated with several diseases and/or longevity. Semi-supercentenarians (SSCs; older than 105 years) are thought to be a model of human longevity. Thus, we performed glycoproteomics using plasma samples of SSCs, and identified proteins and conjugated N-glycans that are characteristic of extreme human longevity. METHODS Plasma proteins from Japanese semi-supercentenarians (SSCs, 106-109 years), aged controls (70-88 years), and young controls (20-38 years) were analysed by using lectin microarrays and liquid chromatography/mass spectrometry (LC/MS). Peak area ratios of glycopeptides to corresponding normalising peptides were subjected to orthogonal projections to latent structures discriminant analysis (OPLS-DA). Furthermore, plasma levels of clinical biomarkers were measured. RESULTS We found two lectins such as Phaseolus vulgaris, and Erythrina cristagalli (ECA), of which protein binding were characteristically increased in SSCs. Peak area ratios of ECA-enriched glycopeptides were successfully discriminated between SSCs and controls using OPLS-DA, and indicated that tri-antennary and sialylated N-glycans of haptoglobin at Asn207 and Asn211 sites were characterized in SSCs. Sialylated glycans of haptoglobin are a potential biomarker of several diseases, such as hepatocellular carcinoma, liver cirrhosis, and IgA-nephritis. However, the SSCs analysed here did not suffer from these diseases. CONCLUSIONS Tri-antennary and sialylated N-glycans on haptoglobin at the Asn207 and Asn211 sites were abundant in SSCs and characteristic of extreme human longevity. GENERAL SIGNIFICANCE We found abundant glycans in SSCs, which may be associated with human longevity.
Collapse
Affiliation(s)
- Yuri Miura
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Noritaka Hashii
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, 3-25-26 Tono-machi, Kawasaki-ku, Kawasaki-shi 210-9501, Kanagawa, Japan
| | - Yuki Ohta
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, 3-25-26 Tono-machi, Kawasaki-ku, Kawasaki-shi 210-9501, Kanagawa, Japan
| | - Yoko Itakura
- Research Team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Hiroki Tsumoto
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Junya Suzuki
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, 3-25-26 Tono-machi, Kawasaki-ku, Kawasaki-shi 210-9501, Kanagawa, Japan
| | - Daisuke Takakura
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, 3-25-26 Tono-machi, Kawasaki-ku, Kawasaki-shi 210-9501, Kanagawa, Japan
| | - Yukiko Abe
- Center for Supercentenarian Medical Research, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yasumichi Arai
- Center for Supercentenarian Medical Research, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Masashi Toyoda
- Research Team for Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Nana Kawasaki
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, 3-25-26 Tono-machi, Kawasaki-ku, Kawasaki-shi 210-9501, Kanagawa, Japan
| | - Nobuyoshi Hirose
- Center for Supercentenarian Medical Research, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tamao Endo
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan.
| |
Collapse
|
50
|
|