1
|
Yadav S, Aslam M, Prajapat A, Massey I, Nand B, Kumar D, Kumari K, Pandey G, Verma C, Singh P, AlFantazi A. Investigate the binding of pesticides with the TLR4 receptor protein found in mammals and zebrafish using molecular docking and molecular dynamics simulations. Sci Rep 2024; 14:24504. [PMID: 39424974 PMCID: PMC11489667 DOI: 10.1038/s41598-024-75527-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
The widespread use of pesticides poses significant threats to both environmental and human health, primarily due to their potential toxic effects. The study investigated the cardiovascular toxicity of selected pesticides, focusing on their interactions with Toll-like receptor 4 (TLR4), an important part of the innate immune system. Using computational tools such as molecular docking, molecular dynamics (MD) simulations, principal component analysis (PCA), density functional theory (DFT) calculations, and ADME analysis, this study identified C160 as having the lowest binding affinity (-8.2 kcal/mol), followed by C107 and C165 (-8.0 kcal/mol). RMSD, RMSF, Rg, and hydrogen bond metrics indicated the formation of stable complexes between specific pesticides and TLR4. PCA revealed significant structural changes upon ligand binding, affecting stability and flexibility, while DFT calculations provided information about the stability, reactivity, and polarity of the compounds. ADME studies highlighted the solubility, permeability, and metabolic stability of C107, C160, and C165, suggesting their potential for bioavailability and impact on cardiovascular toxicity. C107 and C165 exhibit higher bioactivity scores, indicating favourable absorption, metabolism, and distribution properties. C165 also violated rule where molecular weight is greater than 500 g/mol. Further, DFT and NCI analysis of post MD conformations confirmed the binding of ligands at the binding pocket. The analysis shed light on the molecular mechanisms of pesticide-induced cardiovascular toxicity, aiding in the development of strategies to mitigate their harmful effects on human health.
Collapse
Affiliation(s)
- Sandeep Yadav
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, India
| | - Mohd Aslam
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, India
| | - Ayushi Prajapat
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Iona Massey
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Bhaskara Nand
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
| | - Durgesh Kumar
- Department of Chemistry, Maitreyi College, University of Delhi, Delhi, India
| | - Kamlesh Kumari
- Department of Zoology, University of Delhi, Delhi-110007, India.
| | - Garima Pandey
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, India
| | - Chandrabhan Verma
- Department of Petroleum and Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India.
| | - Akram AlFantazi
- Department of Petroleum and Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
Savitri D, Wahyuni S, Bukhari A, Djawad K, Hatta M, Riyanto P, Bahar B, Wahab S, Hamid F, Rifai Y. Anti-inflammatory effects of banana ( Musa balbisiana) peel extract on acne vulgaris: In vivo and in silico study. J Taibah Univ Med Sci 2023; 18:1586-1598. [PMID: 37693819 PMCID: PMC10492217 DOI: 10.1016/j.jtumed.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/13/2023] [Accepted: 07/20/2023] [Indexed: 09/12/2023] Open
Abstract
OBJECTIVE Acne vulgaris (AV) is a common problem with a relatively high incidence rate among Asian people. The potential antimicrobial and anti-inflammatory properties of banana peels have been demonstrated in previous studies but have not been studied in cases of AV. Therefore, this study was aimed at investigating the protective effects of banana (Musa balbisiana) peel extract (MBPE) against AV. METHODS Thirty rats were divided into five groups (n = 6 rats per group): an AV group, AV group treated with 0.15% MBPE, AV group administered 0.30% MBPE, AV group administered 0.60% MBPE, and AV group administered clindamycin (the standard drug treatment). We assessed nodule size, bacterial count, histopathology, and cytokine levels (IL-1α, IFN-γ, tumor necrosis factor (TNF)-α, and IL-8). Enzyme linked immunoassays were used to measure the cytokine levels. In addition, we performed molecular docking studies to determine the interactions between phytochemicals (trigonelline, vanillin, ferulic acid, isovanillic acid, rutin, and salsolinol) via the Toll-like receptor 2 (TLR2) and nuclear factor-kappa B (NF-κB) pathways. RESULTS All MBPE treatment groups, compared with the AV group, showed suppression of both bacterial growth and proinflammatory cytokine production, as well as resolved tissue inflammation. The nodule size was significantly suppressed in the groups receiving the two highest doses of MBPE, compared with the AV group. However, the pharmacological action of MBPE remained inferior to that of clindamycin. Docking studies demonstrated that rutin was the phytocompound with the most negative interaction energy with TLR2 or NF-κB. CONCLUSIONS Our results indicated that MBPE has anti-inflammatory effects against AV, by suppressing nodule formation, inhibiting bacterial growth, and decreasing proinflammatory cytokine production.
Collapse
Affiliation(s)
- Dwiana Savitri
- Doctoral Program in Medical Science, Faculty of Medicine Hasanuddin University, Makassar, South Sulawesi, Indonesia
| | - Sitti Wahyuni
- Department of Parasitology, Faculty of Medicine, Hasanuddin University, Makassar, South Sulawesi, Indonesia
| | - Agussalim Bukhari
- Department of Nutrition, Faculty of Medicine, Hasanuddin University, Makassar, South Sulawesi, Indonesia
| | - Khairuddin Djawad
- Department of Dermatology and Venereology, Faculty of Medicine, Hasanuddin University, Makassar, South Sulawesi, Indonesia
| | - Mochammad Hatta
- Department of Molecular Biology and Immunology, Faculty of Medicine, Hasanuddin University, Makassar, South Sulawesi, Indonesia
| | - Puguh Riyanto
- Department of Dermatology and Venereology, Faculty of Medicine, Hasanuddin University, Makassar, South Sulawesi, Indonesia
| | - Burhanuddin Bahar
- Department of Health Administration and Policy Studies, Faculty of Public Health, Hasanuddin University, Makassar, South Sulawesi, Indonesia
| | - Siswanto Wahab
- Department of Dermatology and Venereology, Faculty of Medicine, Hasanuddin University, Makassar, South Sulawesi, Indonesia
| | - Firdaus Hamid
- Department of Molecular Biology and Immunology, Faculty of Medicine, Hasanuddin University, Makassar, South Sulawesi, Indonesia
| | - Yusnita Rifai
- Departement of Pharmacy, Hasanuddin University, Makassar, South Sulawesi, Indonesia
| |
Collapse
|
3
|
Kaur A, Kaushik D, Piplani S, Mehta SK, Petrovsky N, Salunke DB. TLR2 Agonistic Small Molecules: Detailed Structure-Activity Relationship, Applications, and Future Prospects. J Med Chem 2020; 64:233-278. [PMID: 33346636 DOI: 10.1021/acs.jmedchem.0c01627] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Toll-like receptors (TLRs) are the pattern recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) in microbial species. Among the various TLRs, TLR2 has a special place due to its ability to sense the widest repertoire of PAMPs owing to its heterodimerization with either TLR1 or TLR6, broadening its ligand diversity against pathogens. Various scaffolds are reported to activate TLR2, which include naturally occurring lipoproteins, synthetic lipopeptides, and small heterocyclic molecules. We described a detailed SAR in TLR2 agonistic scaffolds and also covered the design and chemistry for the conjugation of TLR2 agonists to antigens, carbohydrates, polymers, and fluorophores. The approaches involved in delivery of TLR2 agonists such as lipidation of antigen, conjugation to polymers, phosphonic acids, and other linkers to achieve surface adsorption, liposomal formulation, and encapsulating nanoparticles are elaborated. The crystal structure analysis and computational modeling are also included with the structural features that facilitate TLR2 activation.
Collapse
Affiliation(s)
- Arshpreet Kaur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Deepender Kaushik
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Sakshi Piplani
- Vaxine Pty Ltd, 11 Walkley Avenue, Warradale, Australia 5046.,College of Medicine and Public Health, Flinders University, Bedford Park, Australia, 5042
| | - Surinder K Mehta
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, 11 Walkley Avenue, Warradale, Australia 5046.,College of Medicine and Public Health, Flinders University, Bedford Park, Australia, 5042
| | - Deepak B Salunke
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India.,National Interdisciplinary Centre of Vaccine, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh 160014, India
| |
Collapse
|
4
|
Lee J, Kim HJ, Nguyen TTH, Kim SC, Ree J, Choi TG, Sohng JK, Park YI. Emodin 8-O-glucoside primes macrophages more strongly than emodin aglycone via activation of phagocytic activity and TLR-2/MAPK/NF-κB signalling pathway. Int Immunopharmacol 2020; 88:106936. [PMID: 32871479 DOI: 10.1016/j.intimp.2020.106936] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/03/2020] [Accepted: 08/23/2020] [Indexed: 01/09/2023]
Abstract
Emodin (Emo) is a natural plant anthraquinone derivative with a wide spectrum of pharmacological properties, including anticancer, antioxidant, and hepatoprotective activities. Glycosylation of natural anthraquinones with various sugar moieties can affect their physical, chemical, and biological functions. In this study, the potential immunomodulatory activities of Emo and its glycosylated derivative, emodin 8-O-glucoside (E8G), were evaluated and compared using murine macrophage RAW264.7 cells and human monocytic THP-1 cells. The results showed that E8G (20 μM) induced the secretion of TNF-α and IL-6 from RAW264.7 cells more effectively than unglycosylated Emo aglycone, by 4.9- and 1.6-fold, respectively, with no significant cytotoxicity in the concentration range tested (up to 20 μM). E8G (2.5-20 μM) significantly and dose-dependently induced inducible nitric oxide synthase (iNOS) expression by up to 3.2-fold compared to that of untreated control following a remarkable increase in nitric oxide (NO) production. E8G also significantly increased the expression of TLR-2 mRNA and the phosphorylation of MAPKs (JNK and p38). The activation and subsequent nuclear translocation of NF-κB was substantially enhanced upon treatment with E8G (2.5-20 μM). Moreover, E8G markedly induced macrophage-mediated phagocytosis of apoptotic Jurkat T cells. These results demonstrated that E8G far more strongly stimulates the secretion of proinflammatory cytokines, such as TNF-α and IL-6, and NO production from macrophages through upregulation of the TLR-2/MAPK/NF-κB signalling pathway than its nonglycosylated form, Emo aglycone. These results suggest for the first time that E8G may represent a novel immunomodulator, enhancing the early innate immunity.
Collapse
Affiliation(s)
- Jisun Lee
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Hyeon Jeong Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Trang Thi Huyen Nguyen
- Department of Life Science and Biochemical Engineering, Sun Moon University, Chungnam 31460, Republic of Korea
| | - Seong Cheol Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Jin Ree
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea
| | - Tae Gyu Choi
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University, Chungnam 31460, Republic of Korea
| | - Yong Il Park
- Department of Biotechnology, The Catholic University of Korea, Bucheon, Gyeonggi-do 14662, Republic of Korea.
| |
Collapse
|
5
|
Bermudez M, Grabowski M, Murgueitio MS, Tiemann M, Varga P, Rudolf T, Wolber G, Weindl G, Rademann J. Biological Characterization, Mechanistic Investigation and Structure-Activity Relationships of Chemically Stable TLR2 Antagonists. ChemMedChem 2020; 15:1364-1371. [PMID: 32333508 PMCID: PMC7496872 DOI: 10.1002/cmdc.202000060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/17/2020] [Indexed: 01/09/2023]
Abstract
Toll-like receptors (TLRs) build the first barrier in the innate immune response and therefore represent promising targets for the modulation of inflammatory processes. Recently, the pyrogallol-containing TLR2 antagonists CU-CPT22 and MMG-11 were reported; however, their 1,2,3-triphenol motif renders them highly susceptible to oxidation and excludes them from use in extended experiments under aerobic conditions. Therefore, we have developed a set of novel TLR2 antagonists (1-9) based on the systematic variation of substructures, linker elements, and the hydrogen-bonding pattern of the pyrogallol precursors by using chemically robust building blocks. The novel series of chemically stable and synthetically accessible TLR2 antagonists (1-9) was pharmacologically characterized, and the potential binding modes of the active compounds were evaluated structurally. Our results provide new insights into structure-activity relationships and allow rationalization of structural binding characteristics. Moreover, they support the hypothesis that this class of TLR ligands bind solely to TLR2 and do not directly interact with TLR1 or TLR6 of the functional heterodimer. The most active compound from this series (6), is chemically stable, nontoxic, TLR2-selective, and shows a similar activity with regard to the pyrogallol starting points, thus indicating the variability of the hydrogen bonding pattern.
Collapse
Affiliation(s)
- Marcel Bermudez
- Institute of Pharmacy (Pharmaceutical and Medicinal Chemistry)Freie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
| | - Maria Grabowski
- Institute of Pharmacy (Pharmacology and Toxicology)Freie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
| | - Manuela S. Murgueitio
- Institute of Pharmacy (Pharmaceutical and Medicinal Chemistry)Freie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
| | - Markus Tiemann
- Institute of Pharmacy (Pharmaceutical and Medicinal Chemistry)Freie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
| | - Péter Varga
- Institute of Pharmacy (Pharmaceutical and Medicinal Chemistry)Freie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
| | - Thomas Rudolf
- Institute of Pharmacy (Pharmaceutical and Medicinal Chemistry)Freie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
| | - Gerhard Wolber
- Institute of Pharmacy (Pharmaceutical and Medicinal Chemistry)Freie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
| | - Günther Weindl
- Institute of Pharmacy (Pharmacology and Toxicology)Freie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
- Section Pharmacology and ToxicologyPharmaceutical InstituteUniversität BonnGerhard-Domagk-Strasse 353121BonnGermany
| | - Jörg Rademann
- Institute of Pharmacy (Pharmaceutical and Medicinal Chemistry)Freie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
| |
Collapse
|
6
|
Santos-Sierra S. Developments in anticancer vaccination: budding new adjuvants. Biol Chem 2020; 401:435-446. [DOI: 10.1515/hsz-2019-0383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/21/2019] [Indexed: 12/17/2022]
Abstract
AbstractThe immune system has a limited capacity to recognize and fight cells that become cancerous and in cancer patients, the immune system has to seek the right balance between cancer rejection and host-immunosupression. The tumor milieu builds a protective shell and tumor cells rapidly accumulate mutations that promote antigen variability and immune-escape. Therapeutic vaccination of cancer is a promising strategy the success of which depends on a powerful activation of the cells of the adaptive immune system specific for tumor-cell detection and killing (e.g. CD4+and CD8+T-cells). In the last decades, the search for novel adjuvants that enhance dendritic cell (DC) function and their ability to prime T-cells has flourished and some Toll-like receptor (TLR) agonists have long been known to be valid immune adjuvants. The implementation of TLR-synthetic agonists in clinical studies of cancer vaccination is replacing the initial use of microbial-derived products with some encouraging results. The purpose of this review is to summarize the latest discoveries of TLR-synthetic agonists with adjuvant potential in anti-cancer vaccination.
Collapse
Affiliation(s)
- Sandra Santos-Sierra
- Section of Biochemical Pharmacology, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
7
|
Šribar D, Grabowski M, Murgueitio MS, Bermudez M, Weindl G, Wolber G. Identification and characterization of a novel chemotype for human TLR8 inhibitors. Eur J Med Chem 2019; 179:744-752. [DOI: 10.1016/j.ejmech.2019.06.084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 10/26/2022]
|
8
|
Su L, Wang Y, Wang J, Mifune Y, Morin MD, Jones BT, Moresco EMY, Boger DL, Beutler B, Zhang H. Structural Basis of TLR2/TLR1 Activation by the Synthetic Agonist Diprovocim. J Med Chem 2019; 62:2938-2949. [PMID: 30829478 PMCID: PMC6537610 DOI: 10.1021/acs.jmedchem.8b01583] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Diprovocim is a recently discovered exceptionally potent, synthetic small molecule agonist of TLR2/TLR1 and has shown significant adjuvant activity in anticancer vaccination against murine melanoma. Since Diprovocim bears no structural similarity to the canonical lipopeptide ligands of TLR2/TLR1, we investigated how Diprovocim interacts with TLR2/TLR1 through in vitro biophysical, structural, and computational approaches. We found that Diprovocim induced the formation of TLR2/TLR1 heterodimers as well as TLR2 homodimers in vitro. We determined the crystal structure of Diprovocim in a complex with a TLR2 ectodomain, which revealed, unexpectedly, two Diprovocim molecules bound to the ligand binding pocket formed between two TLR2 ectodomains. Extensive hydrophobic interactions and a hydrogen-bonding network between the protein and Diprovocim molecules are observed within the defined ligand binding pocket and likely underlie the high potency of Diprovocim. Our work shed first light into the activation mechanism of TLR2/TLR1 by a noncanonical agonist. The structural information obtained here may be exploited to manipulate TLR2/TLR1-dependent signaling.
Collapse
Affiliation(s)
- Lijing Su
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Ying Wang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Junmei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Yuto Mifune
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Matthew D. Morin
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Brian T. Jones
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Eva Marie Y. Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Dale L. Boger
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Hong Zhang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
9
|
Drexel M, Kirchmair J, Santos‐Sierra S. INH14, a Small-Molecule Urea Derivative, Inhibits the IKKα/β-Dependent TLR Inflammatory Response. Chembiochem 2019; 20:710-717. [PMID: 30447158 PMCID: PMC6680106 DOI: 10.1002/cbic.201800647] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Indexed: 11/30/2022]
Abstract
N-(4-Ethylphenyl)-N'-phenylurea (INH14) is a fragment-like compound that inhibits the toll-like receptor 2 (TLR2)-mediated inflammatory activity and other inflammatory pathways (i.e., TLR4, TNF-R and IL-1R). In this study, we determined the molecular target of INH14. Overexpression of proteins that are part of the TLR2 pathway in cells treated with INH14 indicated that the target lay downstream of the complex TAK1/TAB1. Immunoblot assays showed that INH14 decreased IkBα degradation in cells activated by lipopeptide (TLR2 ligand). These data indicated the kinases IKKα and/or IKKβ as the targets of INH14, which was confirmed with kinase assays (IC50 IKKα=8.97 μm; IC50 IKKβ=3.59 μm). Furthermore, in vivo experiments showed that INH14 decreased TNFα formed after lipopeptide-induced inflammation, and treatment of ovarian cancer cells with INH14 led to a reduction of NF-kB constitutive activity and a reduction in the wound-closing ability of these cells. These results demonstrate that INH14 decreases NF-kB activation through the inhibition of IKKs. Optimization of INH14 could lead to potent inhibitors of IKKs that might be used as antiinflammatory drugs.
Collapse
Affiliation(s)
- Meinrad Drexel
- Department of PharmacologyMedical University of Innsbruck6020InnsbruckAustria
| | - Johannes Kirchmair
- Department of ChemistryUniversity of Bergen5020BergenNorway
- Computational Biology Unit (CBU)University of Bergen5020BergenNorway
- Zentrum für BioinformatikBundesstrasse 4320146HamburgGermany
| | - Sandra Santos‐Sierra
- Section of Biochemical PharmacologyMedical University InnsbruckPeter Mayr Strasse 16020InnsbruckAustria
| |
Collapse
|
10
|
Moradi-Marjaneh R, Hassanian SM, Hasanzadeh M, Rezayi M, Maftouh M, Mehramiz M, Ferns GA, Khazaei M, Avan A. Therapeutic potential of toll-like receptors in treatment of gynecological cancers. IUBMB Life 2019; 71:549-564. [PMID: 30729633 DOI: 10.1002/iub.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/22/2018] [Accepted: 11/26/2018] [Indexed: 12/28/2022]
Abstract
Toll-like receptors (TLRs) play an important role in the innate and adaptive immune system. They are expressed in various regions of the female reproductive tract, and their regulation may be involved in the pathogenesis of gynecological lesions. There is growing evidence that ligands for several TLRs are potentially anticancer agents, some of which have already been approved by the FDA, and these compounds are now undergoing clinical evaluation. There is a rationale for using these ligands as adjuvants in the treatment or prevention of gynecological cancer. Some TLR agonists that are of potential interest in the treatment of gynecological lesions include imiquimod, motolimod, cervarix, and CpG-oligodeoxynucleotides (ODNs). In this review, we outline the different functions of TLRs in gynecological cancer with particular emphasis on the value of TLR agonists as a potential therapeutic target in the treatment of gynecological cancer. © 2019 IUBMB Life, 71(5):549-564, 2019.
Collapse
Affiliation(s)
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Hasanzadeh
- Department of Gynecology Oncology, Woman Health Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezayi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Maftouh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrane Mehramiz
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Brighton, UK
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Wietzorrek G, Drexel M, Trieb M, Santos-Sierra S. Anti-inflammatory activity of small-molecule antagonists of Toll-like receptor 2 (TLR2) in mice. Immunobiology 2019; 224:1-9. [PMID: 30509503 DOI: 10.1016/j.imbio.2018.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/07/2018] [Accepted: 11/12/2018] [Indexed: 12/17/2022]
Abstract
Toll-like receptor 2 (TLR2) is currently investigated as a potential therapeutic target in diseases with underlying inflammation like sepsis and arthritis. We reported the discovery, by virtual screening and biological testing, of eight TLR2 antagonists (AT1-AT8) which showed TLR2-inhibitory activity in human cells (Murgueitio et al., 2014). In this study, we have deepened in the mechanism of action and selectivity (TLR2/1 or TLR2/6) of those compounds in mouse primary cells and in vivo. The antagonists reduced, in a dose-dependent way the TNFα production (e.g. AT5 IC50 7.4 μM) and also reduced the nitric oxide (NO) formation in mouse bone marrow-derived macrophages (BMDM). Treatment of BMDM with the antagonists showed that downstream of TLR2, MAPKs phosphorylation and IkBα degradation was reduced. Notably, in a mouse model of tri-acylated lipopeptide (Pam3CSK4)-induced inflammation, AT5 attenuated the TNFα and IL-6 inflammatory response. Further, the effect of AT5 in the stimulation of BMDM by the endogenous alarmin HMGB1 was investigated. Our results indicate that AT4-AT7 and, particularly AT5 appear as good starting points for the development of inhibitors targeting TLR2 in inflammatory disorders.
Collapse
Affiliation(s)
- G Wietzorrek
- Section of Molecular and Cellular Pharmacology, Medical University of Innsbruck, A-6020, Innsbruck, Austria
| | - M Drexel
- Department of Pharmacology, Medical University of Innsbruck, A-6020, Innsbruck, Austria
| | - M Trieb
- Section of Biochemical Pharmacology, Medical University of Innsbruck, A-6020, Innsbruck, Austria
| | - S Santos-Sierra
- Section of Biochemical Pharmacology, Medical University of Innsbruck, A-6020, Innsbruck, Austria.
| |
Collapse
|
12
|
Carmona-Martínez V, Ruiz-Alcaraz AJ, Vera M, Guirado A, Martínez-Esparza M, García-Peñarrubia P. Therapeutic potential of pteridine derivatives: A comprehensive review. Med Res Rev 2018; 39:461-516. [PMID: 30341778 DOI: 10.1002/med.21529] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 07/07/2018] [Accepted: 07/10/2018] [Indexed: 12/19/2022]
Abstract
Pteridines are aromatic compounds formed by fused pyrazine and pyrimidine rings. Many living organisms synthesize pteridines, where they act as pigments, enzymatic cofactors, or immune system activation molecules. This variety of biological functions has motivated the synthesis of a huge number of pteridine derivatives with the aim of studying their therapeutic potential. This review gathers the state-of-the-art of pteridine derivatives, describing their biological activities and molecular targets. The antitumor activity of pteridine-based compounds is one of the most studied and advanced therapeutic potentials, for which several molecular targets have been identified. Nevertheless, pteridines are also considered as very promising therapeutics for the treatment of chronic inflammation-related diseases. On the other hand, many pteridine derivatives have been tested for antimicrobial activities but, although some of them resulted to be active in preliminary assays, a deeper research is needed in this area. Moreover, pteridines may be of use in the treatment of many other diseases, such as diabetes, osteoporosis, ischemia, or neurodegeneration, among others. Thus, the diversity of the biological activities shown by these compounds highlights the promising therapeutic use of pteridine derivatives. Indeed, methotrexate, pralatrexate, and triamterene are Food and Drug Administration approved pteridines, while many others are currently under study in clinical trials.
Collapse
Affiliation(s)
- Violeta Carmona-Martínez
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, IMIB and Regional Campus of International Excellence "Campus Mare Nostrum," Universidad de Murcia, Murcia, Spain
| | - Antonio J Ruiz-Alcaraz
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, IMIB and Regional Campus of International Excellence "Campus Mare Nostrum," Universidad de Murcia, Murcia, Spain
| | - María Vera
- Departamento de Química Orgánica, Universidad de Murcia, Campus de Espinardo, Murcia, Spain
| | - Antonio Guirado
- Departamento de Química Orgánica, Universidad de Murcia, Campus de Espinardo, Murcia, Spain
| | - María Martínez-Esparza
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, IMIB and Regional Campus of International Excellence "Campus Mare Nostrum," Universidad de Murcia, Murcia, Spain
| | - Pilar García-Peñarrubia
- Departamento de Bioquímica, Biología Molecular (B) e Inmunología, Facultad de Medicina, IMIB and Regional Campus of International Excellence "Campus Mare Nostrum," Universidad de Murcia, Murcia, Spain
| |
Collapse
|
13
|
Morin MD, Wang Y, Jones BT, Mifune Y, Su L, Shi H, Moresco EMY, Zhang H, Beutler B, Boger DL. Diprovocims: A New and Exceptionally Potent Class of Toll-like Receptor Agonists. J Am Chem Soc 2018; 140:14440-14454. [PMID: 30272974 DOI: 10.1021/jacs.8b09223] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A screen conducted with nearly 100000 compounds and a surrogate functional assay for stimulation of an immune response that measured the release of TNF-α from treated human THP-1 myeloid cells differentiated along the macrophage line led to the discovery of the diprovocims. Unique to these efforts and of special interest, the screening leads for this new class of activators of an immune response came from a compound library designed to promote cell-surface receptor dimerization. Subsequent comprehensive structure-activity relationship studies improved the potency 800-fold over that of the screening leads, providing diprovocim-1 and diprovocim-2. The diprovocims act by inducing cell-surface toll-like receptor (TLR)-2 dimerization and activation with TLR1 (TLR1/TLR2 agonist), bear no structural similarity to any known natural or synthetic TLR agonist, and are easy to prepare and synthetically modify, and selected members are active in both human and murine systems. The most potent diprovocim (3, diprovocim-1) elicits full agonist activity at extraordinarily low concentrations (EC50 = 110 pM) in human THP-1 cells, being more potent than the naturally derived TLR1/TLR2 agonist Pam3CSK4 or any other known small molecule TLR agonist.
Collapse
Affiliation(s)
- Matthew D Morin
- Department of Chemistry and the Skaggs Institute of Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 United States
| | - Ying Wang
- Center for the Genetics of Host Defense , University of Texas Southwestern Medical Center , Dallas , Texas 75390 , United States
| | - Brian T Jones
- Department of Chemistry and the Skaggs Institute of Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 United States
| | - Yuto Mifune
- Department of Chemistry and the Skaggs Institute of Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 United States
| | - Lijing Su
- Center for the Genetics of Host Defense , University of Texas Southwestern Medical Center , Dallas , Texas 75390 , United States
| | - Hexin Shi
- Center for the Genetics of Host Defense , University of Texas Southwestern Medical Center , Dallas , Texas 75390 , United States
| | - Eva Marie Y Moresco
- Center for the Genetics of Host Defense , University of Texas Southwestern Medical Center , Dallas , Texas 75390 , United States
| | - Hong Zhang
- Center for the Genetics of Host Defense , University of Texas Southwestern Medical Center , Dallas , Texas 75390 , United States
| | - Bruce Beutler
- Center for the Genetics of Host Defense , University of Texas Southwestern Medical Center , Dallas , Texas 75390 , United States
| | - Dale L Boger
- Department of Chemistry and the Skaggs Institute of Chemical Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 United States
| |
Collapse
|
14
|
Adjuvant effect of the novel TLR1/TLR2 agonist Diprovocim synergizes with anti-PD-L1 to eliminate melanoma in mice. Proc Natl Acad Sci U S A 2018; 115:E8698-E8706. [PMID: 30150374 DOI: 10.1073/pnas.1809232115] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Successful cancer immunotherapy entails activation of innate immune receptors to promote dendritic cell (DC) maturation, antigen presentation, up-regulation of costimulatory molecules, and cytokine secretion, leading to activation of tumor antigen-specific cytotoxic T lymphocytes (CTLs). Here we screened a synthetic library of 100,000 compounds for innate immune activators using TNF production by THP-1 cells as a readout. We identified and optimized a potent human and mouse Toll-like receptor (TLR)1/TLR2 agonist, Diprovocim, which exhibited an EC50 of 110 pM in human THP-1 cells and 1.3 nM in primary mouse peritoneal macrophages. In mice, Diprovocim-adjuvanted ovalbumin immunization promoted antigen-specific humoral and CTL responses and synergized with anti-PD-L1 treatment to inhibit tumor growth, generating long-term antitumor memory, curing or prolonging survival of mice engrafted with the murine melanoma B16-OVA. Diprovocim induced greater frequencies of tumor-infiltrating leukocytes than alum, of which CD8 T cells were necessary for the antitumor effect of immunization plus anti-PD-L1 treatment.
Collapse
|
15
|
Zhao Z, Tao L, Liu A, Ma M, Li H, Zhao H, Yang J, Wang S, Jin Y, Shao X, Bao F. NF‑κB is a key modulator in the signaling pathway of Borrelia burgdorferi BmpA‑induced inflammatory chemokines in murine microglia BV2 cells. Mol Med Rep 2018; 17:4953-4958. [PMID: 29393443 PMCID: PMC5865954 DOI: 10.3892/mmr.2018.8526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 11/15/2017] [Indexed: 12/29/2022] Open
Abstract
Lyme disease, caused by the bacterial spirochete Borrelia burgdorferi, is a tick‑borne zoonosis. Lyme neuroborreliosis is a principal manifestation of Lyme disease and its pathogenesis remains incompletely understood. Recent studies have demonstrated that Borrelia burgdorferi lipoproteins caused similar inflammatory effects as exhibited in Lyme neuroborreliosis. Basic membrane protein A (BmpA) is one of the dominant lipoproteins in the Borrelia burgdorferi membrane. In addition, nuclear factor κ‑B (NF‑κB) modulates the regulation of gene transcription associated with immunity and inflammation; however, in unstimulated cells, NF‑κB is combined with the inhibitor of NF‑κB (IκB‑β). Therefore, it was hypothesized that NF‑κB may be associated with BmpA‑induced inflammation and the occurrence of Lyme neuroborreliosis. Therefore, the aim of the present study was to investigate the role that NF‑κB serves in the signaling pathway of rBmpA‑induced inflammatory chemokines. The present study measured the expression levels of NF‑κB, IκB‑β and inflammatory chemokines following recombinant BmpA (rBmpA) stimulation of murine microglia BV2 cells. Following stimulation with rBmpA, concentrations of pro‑inflammatory cytokines including C‑X‑C motif chemokine 2, C‑C motif chemokine (CCL) 5 and CCL22 were determined by ELISA analysis. Reverse transcription‑quantitative polymerase chain reaction and western blotting were used to detect the expression levels of NF‑κB p65 and IκB‑β. The data demonstrated that concentrations of these chemokines in cell supernatants increased significantly following rBmpA stimulation. NF‑κB was overexpressed, but IκB‑β expression was significantly decreased. In conclusion, these results suggested that NF‑κB serves an important stimulatory role in the signaling pathway of rBmpA‑induced inflammatory chemokines in BV2 cells.
Collapse
Affiliation(s)
- Zhenyu Zhao
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Lvyan Tao
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Aihua Liu
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming, Yunnan 650500, P.R. China
- The Institute for Tropical Medicine, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Yunnan Province Integrative Innovation Center for Public Health, Diseases Prevention and Control, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Yunnan Demonstration Base of International Science and Technology Cooperation for Tropical Diseases, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Correspondence to: Professor Aihua Liu or Professor Fukai Bao, Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, 1168 Chunrongxi Road, Chenggong, Kunming, Yunnan 650500, P.R. China, E-mail: , E-mail:
| | - Mingbiao Ma
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Haiyi Li
- Faculty of Public Health, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Hua Zhao
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Jiaru Yang
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Shiming Wang
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yirong Jin
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Xian Shao
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Fukai Bao
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming, Yunnan 650500, P.R. China
- The Institute for Tropical Medicine, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Yunnan Province Integrative Innovation Center for Public Health, Diseases Prevention and Control, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Yunnan Demonstration Base of International Science and Technology Cooperation for Tropical Diseases, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Correspondence to: Professor Aihua Liu or Professor Fukai Bao, Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, 1168 Chunrongxi Road, Chenggong, Kunming, Yunnan 650500, P.R. China, E-mail: , E-mail:
| |
Collapse
|