1
|
Pang S, Li Z, Liu A, Luo ZH, Yin H, Fan S, Shi J, Liu N, Pan S, Yang YJ, Zhang GJ, Chen J. A Novel Oxo-Palmatine Derivative 2q as Potent Reversal Agents Against Alzheimer's Disease. Drug Dev Res 2025; 86:e70073. [PMID: 40079275 DOI: 10.1002/ddr.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/14/2025] [Accepted: 03/02/2025] [Indexed: 03/15/2025]
Abstract
Palmatine (PAL), as an active ingredient in traditional Chinese medicine, had been demonstrated efficacy in ameliorating the manifestations of AD. Our research group has previously designed and synthesized the novel oxo-PAL derivative 2q and found that it has exhibited notable neuroprotective properties. However, compound 2q therapeutic impact on AD remains uncertain. In the current investigation, our findings demonstrated that compound 2q displayed significant anti-AβOs activity in vitro by using xCELLigence analysis, and showed a high likelihood of crossing the blood-brain barrier. Furthermore, administration of compound 2q yielded a notable amelioration in Aβ accumulation and hyperphosphorylation of Tau in 3×Tg mice. Additionally, it was observed that compound 2q potentially enhanced the pathological characteristics of AD by targeting Potassium/Sodium Hyperpolarization-Activated Cyclic Nucleotide-Gated Channel 2 (HCN2). In conclusion, compound 2q emerged as a promising candidate for AD treatment, as it effectively restored AD-associated pathological impairments. Furthermore, it has been identified as a potential target of HCN2, thereby offering novel avenues for the development of treatments for AD.
Collapse
Affiliation(s)
- Shuo Pang
- The Laboratory of Neurological Disorders and Brain Cognition, Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Zhuo Li
- Department of Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ao Liu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuo-Hui Luo
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Heqing Yin
- The Laboratory of Neurological Disorders and Brain Cognition, Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Songqiao Fan
- The Laboratory of Neurological Disorders and Brain Cognition, Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Junjie Shi
- The Laboratory of Neurological Disorders and Brain Cognition, Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| | - Ning Liu
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuo Pan
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ya-Jun Yang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guo-Jun Zhang
- The Laboratory of Neurological Disorders and Brain Cognition, Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Jun Chen
- The Laboratory of Neurological Disorders and Brain Cognition, Beijing Pediatric Research Institute, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Nam Y, Shin SJ, Kumar V, Won J, Kim S, Moon M. Dual modulation of amyloid beta and tau aggregation and dissociation in Alzheimer's disease: a comprehensive review of the characteristics and therapeutic strategies. Transl Neurodegener 2025; 14:15. [PMID: 40133924 PMCID: PMC11938702 DOI: 10.1186/s40035-025-00479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
Alzheimer's disease (AD) is not a single-cause disease; rather, it is a complex neurodegenerative disease involving multiple pathological pathways influenced by various risk factors. Aggregation and accumulation of amyloid beta (Aβ) and tau are the most prominent features in the brains of AD patients. Aggregated Aβ and tau exert neurotoxic effects in the central nervous system, contributing to the pathogenesis and progression of AD. They also act synergistically to cause neurodegeneration, resulting in memory loss. In this context, dual inhibition of Aβ and tau aggregation, or dissociation of these two aggregates, is considered promising for AD treatment. Recently, dual inhibitors capable of simultaneously targeting the aggregation and dissociation of both Aβ and tau have been investigated. Specific amino acid domains of Aβ and tau associated with their aggregation/dissociation have been identified. Subsequently, therapeutic agents that prevent aggregation or promote disaggregation by targeting these domains have been identified/developed. In this review, we summarize the major domains and properties involved in Aβ and tau aggregation, as well as the therapeutic effects and mechanisms of agents that simultaneously regulate their aggregation and dissociation. This comprehensive review may contribute to the design and discovery of next-generation dual-targeting drugs for Aβ and tau, potentially leading to the development of more effective therapeutic strategies for AD.
Collapse
Affiliation(s)
- Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Vijay Kumar
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Jihyeon Won
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea
| | - Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea.
- Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea.
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea.
- Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon, 35365, Republic of Korea.
| |
Collapse
|
3
|
Fagnen C, Giovannini J, Vignol T, Since M, Catto M, Voisin-Chiret AS, Sopkova-de Oliveira Santos J. Disruption of PHF6 Peptide Aggregation from Tau Protein: Mechanisms of Palmatine Chloride in Preventing Early PHF6 Aggregation. ACS Chem Neurosci 2024; 15:3981-3990. [PMID: 39404232 DOI: 10.1021/acschemneuro.4c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
The formation of neurofibrillary tangles (NFTs), composed of tau protein aggregates, is a hallmark of neurodegenerative diseases known as tauopathies, including Alzheimer's disease (AD). NFTs consist of paired helical filaments (PHFs) of tau protein with a dominant β-sheet secondary structure. Within these PHFs, the PHF6 hexapeptide (Val306-Gln-Ile-Val-Tyr-Lys311) has been commonly highlighted as a key site for tau protein nucleation. Palmatine chloride (PC) has been identified as an inhibitor of PHF6 aggregation, capable of reducing aggregation propensity at submicromolar concentrations. In pursuit of novel anti-AD drugs targeting early tau aggregation stages, we conducted an in silico study to elucidate PC's mechanism of action during PHF6 aggregation. Our observations suggest that while PHF6 can still initiate self-aggregation in the presence of PC, PC molecules subtly influence PHF6 aggregation dynamics, favoring smaller aggregates over larger complexes. The study underlined the key roles of aromatic rings in PC binding to different PHF6 aggregates by interacting through π-π stacking with the PHF6 Tyr310 side chain. The presence of aromatic rings in compounds to be able to inhibit the earlier complexation phase seems to be essential. These in silico findings lay a foundation for the design of compounds that could intervene in resolving the neurotoxicity of protein aggregates in AD.
Collapse
Affiliation(s)
- Charline Fagnen
- Université de Caen Normandie, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen F-14000, France
| | - Johanna Giovannini
- Université de Caen Normandie, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen F-14000, France
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, Bari I-70125, Italy
| | - Thomas Vignol
- Université de Caen Normandie, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen F-14000, France
| | - Marc Since
- Université de Caen Normandie, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen F-14000, France
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, Bari I-70125, Italy
| | - Anne Sophie Voisin-Chiret
- Université de Caen Normandie, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen F-14000, France
| | | |
Collapse
|
4
|
Ito CNA, dos Santos Procopio E, Balsalobre NDM, Machado LL, Silva-Filho SE, Pedroso TF, de Lourenço CC, Oliveira RJ, Arena AC, Salvador MJ, Kassuya CAL. Analgesic and Anti-Arthritic Potential of Methanolic Extract and Palmatine Obtained from Annona squamosa Leaves. Pharmaceuticals (Basel) 2024; 17:1331. [PMID: 39458972 PMCID: PMC11510468 DOI: 10.3390/ph17101331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Annona squamosa is used in folk medicine to treat pain and arthritis. Palmatine is an alkaloid isolated from several plants, including A. squamosa leaves. The aim of the present study was to investigate the analgesic, anti-arthritic, and anti-inflammatory potential of the methanolic extract of A. squamosa (EMAS) and palmatine. Methods: The chemical profile of EMAS was evaluated by ultra high-performance liquid chromatography with electrospray ionization coupled to mass spectrometry (UHPLC-ESI/MS). EMAS and palmatine were evaluated in carrageenan-induced pleurisy, zymosan-induced joint inflammation, formalin-induced nociception, and tumor necrosis factor (TNF)-induced mechanical hyperalgesia in experimental models in mice. A cytotoxicity test of EMAS and palmatine was performed using a methylthiazolidiphenyl-tetrazolium (MTT) bromide assay. Results: The analysis of the chemical profile of the extract showed the presence of palmatine, liriodenine, and anonaine. Oral administration of EMAS and palmatine significantly reduced leukocyte migration and oxide nitric production in the carrageenan-induced pleurisy model. EMAS and palmatine reduced mechanical hyperalgesia, leukocyte migration, and edema formation in the joint inflammation induced by zymosan. In the formalin test, palmatine was effective against the second-phase nociceptive response, mechanical hyperalgesia, and cold allodynia. In addition, palmatine reduced mechanical hyperalgesia induced by TNF. EMAS and palmatine did not demonstrate cytotoxicity. Conclusions: The present study showed that A. squamosa and palmatine are analgesic and anti-inflammatory agents, and that the anti-hyperalgesic properties of palmatine may involve the TNF pathway. Palmatine may be one of the compounds responsible for the anti-hyperalgesic and/or anti-arthritic properties of this medicinal plant.
Collapse
Affiliation(s)
- Caren Naomi Aguero Ito
- Health Sciences College, Federal University of Grande Dourados (UFGD), Dourados 79804-970, MS, Brazil; (C.N.A.I.); (E.d.S.P.); (N.d.M.B.)
| | - Elisangela dos Santos Procopio
- Health Sciences College, Federal University of Grande Dourados (UFGD), Dourados 79804-970, MS, Brazil; (C.N.A.I.); (E.d.S.P.); (N.d.M.B.)
| | - Natália de Matos Balsalobre
- Health Sciences College, Federal University of Grande Dourados (UFGD), Dourados 79804-970, MS, Brazil; (C.N.A.I.); (E.d.S.P.); (N.d.M.B.)
| | - Lucas Luiz Machado
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil;
| | - Saulo Euclides Silva-Filho
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil;
| | - Taíse Fonseca Pedroso
- Institute of Biology, Department of Plant Biology, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil; (T.F.P.); (C.C.d.L.); (M.J.S.)
| | - Caroline Caramano de Lourenço
- Institute of Biology, Department of Plant Biology, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil; (T.F.P.); (C.C.d.L.); (M.J.S.)
| | - Rodrigo Juliano Oliveira
- Stem Cell, Cell Therapy and Toxicological Genetics Research Centre (CeTroGen), Medical School, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil;
| | - Arielle Cristina Arena
- Institute of Biosciences of Botucatu, Department of Structural and Functional Biology, São Paulo State University (UNESP), Botucatu 18618-970, SP, Brazil;
| | - Marcos José Salvador
- Institute of Biology, Department of Plant Biology, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil; (T.F.P.); (C.C.d.L.); (M.J.S.)
| | - Cândida Aparecida Leite Kassuya
- Health Sciences College, Federal University of Grande Dourados (UFGD), Dourados 79804-970, MS, Brazil; (C.N.A.I.); (E.d.S.P.); (N.d.M.B.)
| |
Collapse
|
5
|
Pang S, Chen N, Li Z, Luo ZH, Dong W, Gao S, Liu N, Pan S, Zhang LF, Chen J, Yang YJ. Discovery of palmatine derivatives as potent neuroprotective agents. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:910-917. [PMID: 38619479 DOI: 10.1080/10286020.2024.2341927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Alzheimer's disease is a neurodegenerative disorder characterized by the presence of neurodegenerative lesions and cognitive impairment. In this study, a series of novel palmatine derivatives were designed and synthesized through the introduction of a heteroatom using carbodiimide-mediated condensation. The synthesized compounds were then screened for toxicity and potency, leading to the identification of compound 2q, which exhibited low toxicity and high potency. Our findings demonstrated that compound 2q displayed significant neuroprotective activity in vitro, emerging as a promising candidate for Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Shuo Pang
- The Laboratory of Neurological Disorders and Brain Cognition, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Na Chen
- Beijing Key Laboratory of Active Substance Discovery and Drug ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhuo Li
- Department of Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Zhuo-Hui Luo
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wei Dong
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shan Gao
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ning Liu
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuo Pan
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lian-Feng Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jun Chen
- The Laboratory of Neurological Disorders and Brain Cognition, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Ya-Jun Yang
- Beijing Key Laboratory of Active Substance Discovery and Drug ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
6
|
Nieoczym D, Marszalek-Grabska M, Szalak R, Kundap U, Kaczor AA, Wrobel TM, Kosheva N, Komar M, Abram M, Esguerra CV, Samarut E, Pieróg M, Jakubiec M, Kaminski K, Kukula-Koch W, Gawel K. A comprehensive assessment of palmatine as anticonvulsant agent - In vivo and in silico studies. Biomed Pharmacother 2024; 172:116234. [PMID: 38325264 DOI: 10.1016/j.biopha.2024.116234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
Previously, we demonstrated that palmatine (PALM) - an isoquinoline alkaloid from Berberis sibrica radix, exerted antiseizure activity in the pentylenetetrazole (PTZ)-induced seizure assay in larval zebrafish. The aim of the present study was to more precisely characterize PALM as a potential anticonvulsant drug candidate. A range of zebrafish and mouse seizure/epilepsy models were applied in the investigation. Immunostaining analysis was conducted to assess the changes in mouse brains, while in silico molecular modelling was performed to determine potential targets for PALM. Accordingly, PALM had anticonvulsant effect in ethyl 2-ketopent-4-enoate (EKP)-induced seizure assay in zebrafish larvae as well as in the 6 Hz-induced psychomotor seizure threshold and timed infusion PTZ tests in mice. The protective effect in the EKP-induced seizure assay was confirmed in the local field potential recordings. PALM did not affect seizures in the gabra1a knockout line of zebrafish larvae. In the scn1Lab-/- zebrafish line, pretreatment with PALM potentiated seizure-like behaviour of larvae. Repetitive treatment with PALM, however, did not reduce development of PTZ-induced seizure activity nor prevent the loss of parvalbumin-interneurons in the hippocampus of the PTZ kindled mice. In silico molecular modelling revealed that the noted anticonvulsant effect of PALM in EKP-induced seizure assay might result from its interactions with glutamic acid decarboxylase and/or via AMPA receptor non-competitive antagonism. Our study has demonstrated the anticonvulsant activity of PALM in some experimental models of seizures, including a model of pharmacoresistant seizures induced by EKP. These results indicate that PALM might be a suitable new drug candidate but the precise mechanism of its anticonvulsant activity has to be determined.
Collapse
Affiliation(s)
- Dorota Nieoczym
- Chair of Animal Physiology and Pharmacology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka Str. 19, 20-033 Lublin, Poland
| | - Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego Str. 8b, 20-090 Lublin, Poland
| | - Radoslaw Szalak
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, 12 Akademicka St., 20-950 Lublin, Poland
| | - Uday Kundap
- Research Center of the University of Montreal Hospital Center (CRCHUM), Department of Neurosciences, Université de Montréal, Montréal, QC H2X 0A9, Canada; Canada East Spine Centre, Saint John Regional Hospital, Department of Spine and Orthopaedics surgery, Horizon Health Network, Saint John, NB E2L 4L4, Canada
| | - Agnieszka A Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodżki St., PL-20093 Lublin, Poland; School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Tomasz M Wrobel
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances with Computer Modeling Laboratory, Faculty of Pharmacy, Medical University of Lublin, 4A Chodżki St., PL-20093 Lublin, Poland
| | - Nataliia Kosheva
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego Str. 8b, 20-090 Lublin, Poland
| | - Malgorzata Komar
- Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences, 12 Akademicka St., 20-950 Lublin, Poland
| | - Michal Abram
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| | - Camila V Esguerra
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalleen 21, Forskningsparken, 0349 Oslo, Norway
| | - Eric Samarut
- Research Center of the University of Montreal Hospital Center (CRCHUM), Department of Neurosciences, Université de Montréal, Montréal, QC H2X 0A9, Canada; Neurosciences Department, University of Montreal, Montreal, QC, Canada
| | - Mateusz Pieróg
- Chair of Animal Physiology and Pharmacology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka Str. 19, 20-033 Lublin, Poland
| | - Marcin Jakubiec
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| | - Krzysztof Kaminski
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Chodzki Str. 1, 20-093 Lublin, Poland
| | - Kinga Gawel
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego Str. 8b, 20-090 Lublin, Poland.
| |
Collapse
|
7
|
Tang J, Sun R, Wan J, Zou Y, Zhang Q. Molecular mechanisms involved in the destabilization of two types of R3-R4 tau fibrils associated with chronic traumatic encephalopathy by Fisetin. Phys Chem Chem Phys 2024; 26:3322-3334. [PMID: 38197437 DOI: 10.1039/d3cp05427f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Chronic traumatic encephalopathy is a neurodegenerative tauopathy pathologically characterized by fibrillary tau aggregates in the depth of sulci. Clearing fibrous tau aggregates is considered a promising strategy in the treatment of CTE. Fisetin (FS), a natural polyphenolic small molecule, was confirmed to disassociate the tau filaments in vitro. However, the molecular mechanisms of FS in destabilizing the CTE-related R3-R4 tau fibrils remain largely unknown. In this study, we compared the atomic-level structural differences of the two types of CTE-related R3-R4 tau fibrils and explored the influence and molecular mechanisms of FS on the two types of fibrils by conducting multiple molecular dynamics (MD) simulations. The results reveal that the type 1 fibril displays higher structural stability than the type 2 fibril, with a lower root-mean-square-fluctuation value and higher β-sheet structure probability. FS can destabilize both types of fibrils by decreasing the β-sheet structure content, interrupting the mainchain H-bond network, and increasing the solvent accessible surface area and β7-β8 angle of the fibrils. H-bonding, π-π stacking and cation-π are the common interactions driving FS molecules binding on the two types of fibrils, while the hydrophobic interaction occurs only in the type 2 fibril. Due to the relatively short simulation time, our study captures the early molecular mechanisms. However, it does provide beneficial information for the design of drugs to prevent or treat CTE.
Collapse
Affiliation(s)
- Jiaxing Tang
- School of Physical Education, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, People's Republic of China.
| | - Ruiqing Sun
- School of Physical Education, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, People's Republic of China.
| | - Jiaqian Wan
- School of Physical Education, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, People's Republic of China.
| | - Yu Zou
- Department of Sport and Exercise Science, College of Education, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, People's Republic of China.
| | - Qingwen Zhang
- School of Physical Education, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, People's Republic of China.
| |
Collapse
|
8
|
Feng JH, Chen K, Shen SY, Luo YF, Liu XH, Chen X, Gao W, Tong YR. The composition, pharmacological effects, related mechanisms and drug delivery of alkaloids from Corydalis yanhusuo. Biomed Pharmacother 2023; 167:115511. [PMID: 37729733 DOI: 10.1016/j.biopha.2023.115511] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023] Open
Abstract
Corydalis yanhusuo W. T. Wang, also known as yanhusuo, yuanhu, yanhu and xuanhu, is one of the herb components of many Chinese Traditional Medicine prescriptions such as Jin Ling Zi San and Yuanhu-Zhitong priscription. C. yanhusuo was traditionally used to relieve pain and motivate blood and Qi circulation. Now there has been growing interest in pharmacological effects of alkaloids, the main bioactive components of C. yanhusuo. Eighty-four alkaloids isolated from C. yanhusuo are its important bioactive components and can be characterized into protoberberine alkaloids, aporphine alkaloids, opiate alkaloids and others and proper extraction or co-administration methods modulate their contents and efficacy. Alkaloids from C. yanhusuo have various pharmacological effects on the nervous system, cardiovascular system, cancer and others through multiple molecular mechanisms such as modulating neurotransmitters, ion channels, gut microbiota, HPA axis and signaling pathways and are potential treatments for many diseases. Plenty of novel drug delivery methods such as autologous red blood cells, self-microemulsifying drug delivery systems, nanoparticles and others have also been investigated to better exert the effects of alkaloids from C. yanhusuo. This review summarized the alkaloid components of C. yanhusuo, their pharmacological effects and mechanisms, and methods of drug delivery to lay a foundation for future investigations.
Collapse
Affiliation(s)
- Jia-Hua Feng
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Kang Chen
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Si-Yu Shen
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Yun-Feng Luo
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Xi-Hong Liu
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xin Chen
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Yu-Ru Tong
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
9
|
Wu X, Zhu L, Wang G, Zhang Q, Qian Z. Dose-dependent binding behavior of anthraquinone derivative purpurin interacting with tau-derived peptide protofibril. Phys Chem Chem Phys 2023; 25:26787-26796. [PMID: 37781899 DOI: 10.1039/d3cp03883a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Alzheimer's disease is hallmarked by microtubule-associated protein tau tangles and amyloid-β plaques. The β-structure propensity of tau inclusions is closely related to the hexapeptide motif VQIVYK (termed PHF6), and disruption of this motif prevents tau aggregation. Small-molecule inhibitors are considered a promising therapeutic strategy, but the molecular mechanisms underlying the correlation between dose and inhibitory effects are still unclear. In this work, we investigated the dose-induced influence of purpurin, an anthraquinone derivative, on the structural stability of the PHF6 fibrillar nucleus by performing microsecond all-atom molecular dynamics simulations in explicit water. The stability of PHF6 protofibrils of different sizes was first examined, and it was found that the structural stability of fibrillar oligomers increases with oligomer size, and that the octamer is the minimal stable nucleus for fibril formation. When purpurin molecules were added to the protofibril octamer at a low purpurin/peptide ratio, they bound to the octamer with different coupling states, and the different states may transition to each of the other states through an uncoupling state or directly through a short-time transition. With increasing purpurin/peptide ratio, purpurins tend to self-aggregate rather than bind to the protein surface. Interestingly, the contacts between individual purpurins and the octamer as a function of the purpurin number show a power-law behavior, which may serve as a useful indicator to reflect the binding efficiency of ligands to proteins in drug screening. The interaction analysis reveals that purpurin prefers to bind to the hydrophilic and aromatic Tyr and has the lowest probability with the hydrophobic Val located in the middle of PHF6. Aromatic stacking plays a key role in the octamer-purpurin interaction, in which the three aromatic rings of purpurin have different contributions. In addition, purpurin shows a remarkable disruptive effect on the protofibril octamer when the molar ratio of purpurin to peptide is 1 : 2; above this ratio, the binding mode and disruption effect of purpurin do not change significantly. Our work provides a detailed picture of the dynamics and interactions of purpurin binding to the PHF6 protofibril and expands the understanding of the dose-induced inhibitory mechanism.
Collapse
Affiliation(s)
- Xiaoxiao Wu
- Key Laboratory of Exercise and Health Sciences (Ministry of Education), Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, and School of Exercise and Health, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China.
| | - Lili Zhu
- Key Laboratory of Exercise and Health Sciences (Ministry of Education), Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, and School of Exercise and Health, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China.
- Shang Xing School, 6 Shangli Road, Shenzhen 518100, Guangdong, China
| | - Gang Wang
- Key Laboratory of Exercise and Health Sciences (Ministry of Education), Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, and School of Exercise and Health, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China.
| | - Qingwen Zhang
- College of Physical Education and Training, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, People's Republic of China
| | - Zhenyu Qian
- Key Laboratory of Exercise and Health Sciences (Ministry of Education), Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, and School of Exercise and Health, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China.
| |
Collapse
|
10
|
Hedna R, DiMaio A, Robin M, Allegro D, Tatoni M, Peyrot V, Barbier P, Kovacic H, Breuzard G. 2-Aminothiazole-Flavonoid Hybrid Derivatives Binding to Tau Protein and Responsible for Antitumor Activity in Glioblastoma. Int J Mol Sci 2023; 24:15050. [PMID: 37894731 PMCID: PMC10606064 DOI: 10.3390/ijms242015050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Tau protein has been described for several decades as a promoter of tubulin assembly into microtubules. Dysregulation or alterations in Tau expression have been related to various brain cancers, including the highly aggressive and lethal brain tumor glioblastoma multiform (GBM). In this respect, Tau holds significant promise as a target for the development of novel therapies. Here, we examined the structure-activity relationship of a new series of seventeen 2-aminothiazole-fused to flavonoid hybrid compounds (TZF) on Tau binding, Tau fibrillation, and cellular effects on Tau-expressing cancer cells. By spectrofluorometric approach, we found that two compounds, 2 and 9, demonstrated high affinity for Tau and exhibited a strong propensity to inhibit Tau fibrillation. Then, the biological activity of these compounds was evaluated on several Tau-expressing cells derived from glioblastoma. The two lead compounds displayed a high anti-metabolic activity on cells related to an increased fission of the mitochondria network. Moreover, we showed that both compounds induced microtubule bundling within newly formed neurite-like protrusions, as well as with defection of cell migration. Taken together, our results provide a strong experimental basis to develop new potent molecules targeting Tau-expressing cancer cells, such as GBM.
Collapse
Affiliation(s)
- Rayane Hedna
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France; (R.H.); (D.A.); (M.T.); (V.P.); (P.B.); (H.K.)
| | - Attilio DiMaio
- Faculté de Pharmacie, Institut Méditerranéen de Biodiversité et Ecologie Marine et Continentale (IMBE), UMR 7263, CNRS, IRD 237, Aix-Marseille Université, 13005 Marseille, France; (A.D.); (M.R.)
| | - Maxime Robin
- Faculté de Pharmacie, Institut Méditerranéen de Biodiversité et Ecologie Marine et Continentale (IMBE), UMR 7263, CNRS, IRD 237, Aix-Marseille Université, 13005 Marseille, France; (A.D.); (M.R.)
| | - Diane Allegro
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France; (R.H.); (D.A.); (M.T.); (V.P.); (P.B.); (H.K.)
| | - Mario Tatoni
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France; (R.H.); (D.A.); (M.T.); (V.P.); (P.B.); (H.K.)
| | - Vincent Peyrot
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France; (R.H.); (D.A.); (M.T.); (V.P.); (P.B.); (H.K.)
| | - Pascale Barbier
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France; (R.H.); (D.A.); (M.T.); (V.P.); (P.B.); (H.K.)
| | - Hervé Kovacic
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France; (R.H.); (D.A.); (M.T.); (V.P.); (P.B.); (H.K.)
| | - Gilles Breuzard
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France; (R.H.); (D.A.); (M.T.); (V.P.); (P.B.); (H.K.)
| |
Collapse
|
11
|
Kiris I, Kukula-Koch W, Karayel-Basar M, Gurel B, Coskun J, Baykal AT. Proteomic alterations in the cerebellum and hippocampus in an Alzheimer's disease mouse model: Alleviating effect of palmatine. Biomed Pharmacother 2023; 158:114111. [PMID: 36502756 DOI: 10.1016/j.biopha.2022.114111] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most prevalent diseases that lead to memory deficiencies, severe behavioral abnormalities, and ultimately death. The need for more appropriate treatment of AD continues, and remains a sought-after goal. Previous studies showed palmatine (PAL), an isoquinoline alkaloid, might have the potential for combating AD because of its in vitro and in vivo activities. In this study, we aimed to assess PAL's therapeutic potential and gain insights into the working mechanism on protein level in the AD mouse model brain, for the first time. To this end, PAL was administered to 12-month-old 5xFAD mice at two doses after its successful isolation from the Siberian barberry shrub. PAL (10 mg/kg) showed statistically significant improvement in the memory and learning phase on the Morris water maze test. The PAL's ability to pass through the blood-brain barrier was verified via Multiple Reaction Monitoring (MRM). Label-free proteomics analysis revealed PAL administration led to changes most prominently in the cerebellum, followed by the hippocampus, but none in the cortex. Most of the differentially expressed proteins in PAL compared to the 5xFAD control group (ALZ) were the opposite of those in ALZ in comparison to healthy Alzheimer's littermates (ALM) group. HS105, HS12A, and RL12 were detected as hub proteins in the cerebellum. Collectively, here we present PAL as a potential therapeutic candidate owing to its alleviating effect in 5xFAD mice on not only cognitive impairment but also proteomes in the cerebellum and hippocampus.
Collapse
Affiliation(s)
- Irem Kiris
- Department of Biochemistry and Molecular Biology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, Lublin, Poland
| | - Merve Karayel-Basar
- Department of Biochemistry and Molecular Biology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Busra Gurel
- Sabanci University Nanotechnology Research and Application Center, SUNUM, Istanbul, Turkey
| | - Julide Coskun
- Acibadem Labmed Clinical Laboratories, Istanbul, Turkey
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.
| |
Collapse
|
12
|
Role of Natural Compounds and Target Enzymes in the Treatment of Alzheimer’s Disease. Molecules 2022; 27:molecules27134175. [PMID: 35807418 PMCID: PMC9268689 DOI: 10.3390/molecules27134175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurological condition. The rising prevalence of AD necessitates the rapid development of efficient therapy options. Despite substantial study, only a few medications are capable of delaying the disease. Several substances with pharmacological activity, derived from plants, have been shown to have positive benefits for the treatment of AD by targeting various enzymes, such as acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), β-secretase, γ-secretase, and monoamine oxidases (MAOs), which are discussed as potential targets. Medicinal plants have already contributed a number of lead molecules to medicine development, with many of them currently undergoing clinical trials. A variety of medicinal plants have been shown to diminish the degenerative symptoms associated with AD, either in their raw form or as isolated compounds. The aim of this review was to provide a brief summary of AD and its current therapies, followed by a discussion of the natural compounds examined as therapeutic agents and the processes underlying the positive effects, particularly the management of AD.
Collapse
|
13
|
Song Y, Xu C, Wu J, Shu J, Sheng H, Shen Y. Palmatine alleviates LPS-induced acute lung injury via interfering the interaction of TAK1 and TAB1. Biochem Pharmacol 2022; 202:115120. [PMID: 35760111 DOI: 10.1016/j.bcp.2022.115120] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
Abstract
Acute lung injury (ALI) is a severe clinical disease marked by uncontrolled inflammation response which lacks effective medicines. Accumulative evidence has indicated that macrophages are therapeutic targets for treating ALI because of its critical role in the inflammatory response.Palmatine (PAL), an isoquinoline alkaloid extracted from natural plants, exhibits effective anti-inflammatory, anti-tumor, and anti-oxidation activities. Here we reported that PAL alleviated LPS-induced acute lung injury and attenuated inflammatory cell infiltration especially neutrophils. Moreover, PAL also attenuated the production of TNF-α, CXCL-1, CXCL-2 and nitric oxide in bronchoalveolar lavage fluid. In addition, PAL remarkably reduced LPS-induced expression of TNF-α, CXCL-1 and CXCL-2 in bone marrow derived macrophages (BMDMs) and alveolar macrophages (AMs). Treatment with PAL inhibited the phosphorylation and interaction of TAK1/TAB1, which in turn attenuated the p38 MAPK and NF-κB signal pathways in BMDMs. Our results indicated that PAL ameliorated LPS-induced ALI by inhibiting macrophage activation through inhibiting NF-κB and p38 MAPK pathways, suggesting that PAL has anti-inflammation effect on ALI.
Collapse
Affiliation(s)
- Yunduan Song
- Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, PR. China; Department of Respiratory and Critical Care Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, PR. China
| | - Chunyan Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, PR. China
| | - Jiaoxiang Wu
- Department of Clinical Laboratory, Tongren Hospital, Shanghai Jiao tong University School of Medicine, 1111 Xianxia Road, Changning, Shanghai 200336, PR. China; Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Shu
- Department of Clinical Laboratory, Tongren Hospital, Shanghai Jiao tong University School of Medicine, 1111 Xianxia Road, Changning, Shanghai 200336, PR. China
| | - Huiming Sheng
- Department of Clinical Laboratory, Tongren Hospital, Shanghai Jiao tong University School of Medicine, 1111 Xianxia Road, Changning, Shanghai 200336, PR. China.
| | - Yao Shen
- Department of Respiratory and Critical Care Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, PR. China.
| |
Collapse
|
14
|
Giovannini J, Smeralda W, Jouanne M, Sopkova-de Oliveira Santos J, Catto M, Sophie Voisin-Chiret A. Tau protein aggregation: key features to improve drug discovery screening. Drug Discov Today 2022; 27:1284-1297. [DOI: 10.1016/j.drudis.2022.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/29/2021] [Accepted: 01/20/2022] [Indexed: 12/17/2022]
|
15
|
Tsuchida T, Susa K, Kibiki T, Tsuchiya T, Miyamoto K, In Y, Minoura K, Taniguchi T, Ishida T, Tomoo K. Structural study of the recognition mechanism of tau antibody Tau2r3 with the key sequence (VQIINK) in tau aggregation. Biochem Biophys Res Commun 2021; 585:36-41. [PMID: 34784549 DOI: 10.1016/j.bbrc.2021.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 11/18/2022]
Abstract
One of the histopathological features of Alzheimer's disease (AD) is higher order neurofibrillary tangles formed by abnormally aggregated tau protein. The sequence 275VQIINK280 in the microtubule-binding domain of tau plays a key role in tau aggregation. Therefore, an aggregation inhibitor targeting the VQIINK region in tau may be an effective therapeutic agent for AD. We have previously shown that the Fab domain (Fab2r3) of a tau antibody that recognizes the VQIINK sequence can inhibit tau aggregation, and we have determined the tertiary structure of the Fab2r3-VQIINK complex. In this report, we determined the tertiary structure of apo Fab2r3 and analyzed differences in the structures of apo Fab2r3 and Fab2r3-VQIINK to examine the ligand recognition mechanism of Fab2r3. In comparison with the Fab2r3-VQIINK structure, there were large differences in the arrangement of the constant and variable domains in apo Fab2r3. Remarkable structural changes were especially observed in the H3 and L3 loop regions of the complementarity determining regions (CDRs) in apo Fab2r3 and the Fab2r3-VQIINK complex. These structural differences in CDRs suggest that formation of hydrophobic pockets suitable for the antigen is important for antigen recognition by tau antibodies.
Collapse
Affiliation(s)
- Tomohiro Tsuchida
- Department of Physical Chemistry, Osaka Medical and Pharmaceutical University, 4-20-1, Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Kouki Susa
- Department of Physical Chemistry, Osaka Medical and Pharmaceutical University, 4-20-1, Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Tomohiro Kibiki
- Department of Physical Chemistry, Osaka Medical and Pharmaceutical University, 4-20-1, Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Takahiro Tsuchiya
- Department of Microbiology and Infection Control, Osaka Medical and Pharmaceutical University, 4-20-1, Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Katsushiro Miyamoto
- Department of Microbiology and Infection Control, Osaka Medical and Pharmaceutical University, 4-20-1, Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Yasuko In
- Department of Physical Chemistry, Osaka Medical and Pharmaceutical University, 4-20-1, Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Katsuhiko Minoura
- Department of Physical Chemistry, Osaka Medical and Pharmaceutical University, 4-20-1, Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Taizo Taniguchi
- Pharma Crea Kobe Co. Ltd., Showajutaku・Fukumoto Bldg. 8F, 4-2-18, Hachimandori, Chuo-ku, Kobe, Hyogo, 651-0085, Japan
| | - Toshimasa Ishida
- Department of Physical Chemistry, Osaka Medical and Pharmaceutical University, 4-20-1, Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Koji Tomoo
- Department of Physical Chemistry, Osaka Medical and Pharmaceutical University, 4-20-1, Nasahara, Takatsuki, Osaka, 569-1094, Japan.
| |
Collapse
|
16
|
Neuroprotective Effects of Palmatine via the Enhancement of Antioxidant Defense and Small Heat Shock Protein Expression in A β-Transgenic Caenorhabditis elegans. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9966223. [PMID: 34567416 PMCID: PMC8460366 DOI: 10.1155/2021/9966223] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/02/2021] [Accepted: 08/20/2021] [Indexed: 01/09/2023]
Abstract
Palmatine is a naturally occurring isoquinoline alkaloid that has been reported to display neuroprotective effects against amyloid-β- (Aβ-) induced neurotoxicity. However, the mechanisms underlying the neuroprotective activities of palmatine remain poorly characterized in vivo. We employed transgenic Caenorhabditis elegans models containing human Aβ1-42 to investigate the effects and possible mechanisms of palmatine-mediated neuroprotection. Treatment with palmatine significantly delayed the paralytic process and reduced the elevated reactive oxygen species levels in Aβ-transgenic C. elegans. In addition, it increased oxidative stress resistance without affecting the lifespan of wild-type C. elegans. Pathway analysis suggested that the differentially expressed genes were related mainly to aging, detoxification, and lipid metabolism. Real-time PCR indicated that resistance-related genes such as sod-3 and shsp were significantly upregulated, while the lipid metabolism-related gene fat-5 was downregulated. Further studies demonstrated that the inhibitory effects of palmatine on Aβ toxicity were attributable to the free radical-scavenging capacity and that the upregulated expression of resistance-related genes, especially shsp, whose expression was regulated by HSF-1, played crucial roles in protecting cells from Aβ-induced toxicity. The research showed that there were significantly fewer Aβ deposits in transgenic CL2006 nematodes treated with palmatine than in control nematodes. In addition, our study found that Aβ-induced toxicity was accompanied by dysregulation of lipid metabolism, leading to excessive fat accumulation in Aβ-transgenic CL4176 nematodes. The alleviation of lipid disorder by palmatine should be attributed not only to the reduction in fat synthesis but also to the inhibition of Aβ aggregation and toxicity, which jointly maintained metabolic homeostasis. This study provides new insights into the in vivo neuroprotective effects of palmatine against Aβ aggregation and toxicity and provides valuable targets for the prevention and treatment of AD.
Collapse
|
17
|
Zhu L, Gong Y, Lju H, Sun G, Zhang Q, Qian Z. Mechanisms of melatonin binding and destabilizing the protofilament and filament of tau R3-R4 domains revealed by molecular dynamics simulation. Phys Chem Chem Phys 2021; 23:20615-20626. [PMID: 34514491 DOI: 10.1039/d1cp03142b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The accumulation of β-amyloid (Aβ) and tau protein is considered to be an important pathological characteristic of Alzheimer's disease (AD). Failure of medicine targeting Aβ has drawn more attention to the influence of tau protein and its fibrillization on neurodegeneration. Increasing evidence shows that melatonin (Mel) can effectively inhibit the formation of tau fibrils and disassemble preformed tau fibrils. However, the underlying mechanism is poorly understood. In this work, we investigated the kinetics of melatonin binding and destabilizing the tetrameric protofilament and octameric filament of tau R3-R4 domains by performing microsecond all-atom molecular dynamics simulations. Our results show that Mel is able to disrupt the C-shaped structure of the tau protofilament and filament, and destabilizes the association between N- and C-termini. Mel predominantly binds to β1 and β6-β8 regions and favors contact with the elongation surface, which is dominantly driven by hydrogen bonding interactions and facilitated by other interactions. The strong π-π stacking interaction of Mel with Y310 impedes the intramolecular CH-π interaction between I308 and Y310, and the cation-π interaction of Mel with R379 interferes with the formation of the D348-R379 salt bridge. Moreover, Mel occupies the protofilament surface in the tetrameric protofilament and prevents the formation of intermolecular hydrogen bonds between residues K331 and Q336 in the octameric filament. Our work provides molecular insights into Mel hindering tau fibrillization or destabilizing the protofilament and filament, and the revealed inhibitory mechanisms provide useful clues for the design of efficient anti-amyloid agents.
Collapse
Affiliation(s)
- Lili Zhu
- Key Laboratory of Exercise and Health Sciences (Ministry of Education) and School of Kinesiology, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China.
| | - Yehong Gong
- College of Physical Education and Training, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China
| | - Hao Lju
- Key Laboratory of Exercise and Health Sciences (Ministry of Education) and School of Kinesiology, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China.
| | - Gongwu Sun
- Key Laboratory of Exercise and Health Sciences (Ministry of Education) and School of Kinesiology, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China.
| | - Qingwen Zhang
- College of Physical Education and Training, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China
| | - Zhenyu Qian
- Key Laboratory of Exercise and Health Sciences (Ministry of Education) and School of Kinesiology, Shanghai University of Sport, 399 Changhai Road, Shanghai 200438, China.
| |
Collapse
|
18
|
Yang J, Agnihotri MV, Huseby CJ, Kuret J, Singer SJ. A theoretical study of polymorphism in VQIVYK fibrils. Biophys J 2021; 120:1396-1416. [PMID: 33571490 DOI: 10.1016/j.bpj.2021.01.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
The VQIVYK fragment from the Tau protein, also known as PHF6, is essential for aggregation of Tau into neurofibrillary lesions associated with neurodegenerative diseases. VQIVYK itself forms amyloid fibrils composed of paired β-sheets. Therefore, the full Tau protein and VQIVYK fibrils have been intensively investigated. A central issue in these studies is polymorphism, the ability of a protein to fold into more than one structure. Using all-atom molecular simulations, we generate five stable polymorphs of VQIVYK fibrils, establish their relative free energy with umbrella sampling methods, and identify the side chain interactions that provide stability. The two most stable polymorphs, which have nearly equal free energy, are formed by interdigitation of the mostly hydrophobic VIY "face" sides of the β-sheets. Another stable polymorph is formed by interdigitation of the QVK "back" sides. When we turn to examine structures from cryo-electron microscopy experiments on Tau filaments taken from diseased patients or generated in vitro, we find that the pattern of side chain interactions found in the two most stable face-to-face as well as the back-to-back polymorphs are recapitulated in amyloid structures of the full protein. Thus, our studies suggest that the interactions stabilizing PHF6 fibrils explain the amyloidogenicity of the VQIVYK motif within the full Tau protein and provide justification for the use of VQIVYK fibrils as a test bed for the design of molecules that identify or inhibit amyloid structures.
Collapse
Affiliation(s)
- Jaehoon Yang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio
| | - Mithila V Agnihotri
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio
| | - Carol J Huseby
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio
| | - Jeff Kuret
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio; Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, Ohio.
| | - Sherwin J Singer
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio; Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
19
|
Recent studies of atomic-resolution structures of tau protein and structure-based inhibitors. QUANTITATIVE BIOLOGY 2021. [DOI: 10.15302/j-qb-021-0271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Ahmad SS, Khalid M, Kamal MA, Younis K. Study of Nutraceuticals and Phytochemicals for the Management of Alzheimer's Disease: A Review. Curr Neuropharmacol 2021; 19:1884-1895. [PMID: 33588732 PMCID: PMC9185787 DOI: 10.2174/1570159x19666210215122333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/06/2021] [Accepted: 02/12/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) affects several people worldwide and has devastating impacts on society with a limited number of approaches for its pharmacological treatment. The main causes of AD are not clear yet. However, the formation of senile plaques, neurofibrillary tangles, hyper-phosphorylation of tau protein, and disruption of redox homeostasis may cause AD. These causes have a positive correlation with oxidative stress, producing reactive ions, which are responsible for altering the physiological condition of the body. CONCLUSION Ongoing research recommended the use of phytochemicals as acetylcholinesterase inhibitors to hinder the onset and progression of AD. The natural compound structures, including lignans, flavonoids, tannins, polyphenols, triterpenes, sterols, and alkaloids have anti-inflammatory, antioxidant, and anti-amyloidogenic properties. The purpose of this article is to provide a brief introduction to AD along with the use of natural compounds as new therapeutic approaches for its management.
Collapse
Affiliation(s)
| | | | - Mohammad A. Kamal
- Address correspondence to these authors at the Department of Bioengineering, Integral University Lucknow, UP-226026, India; E-mail: and King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; E-mail:
| | - Kaiser Younis
- Address correspondence to these authors at the Department of Bioengineering, Integral University Lucknow, UP-226026, India; E-mail: and King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; E-mail:
| |
Collapse
|
21
|
Xanthohumol and Gossypol Are Promising Inhibitors against Babesia microti by In Vitro Culture via High-Throughput Screening of 133 Natural Products. Vaccines (Basel) 2020; 8:vaccines8040613. [PMID: 33081295 PMCID: PMC7711813 DOI: 10.3390/vaccines8040613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/06/2020] [Accepted: 10/13/2020] [Indexed: 01/09/2023] Open
Abstract
Human babesiosis caused by Babesia microti is an emerging threat for severe illness and even death, with an increasing impact worldwide. Currently, the regimen of atovaquone and azithromycin is considered as the standard therapy for treating human babesiosis, which, however, may result in drug resistance and relapse, suggesting the necessity of developing new drugs to control B. microti. In this regard, natural products are promising candidates for drug design against B. microti due to their active therapeutic efficacy, lower toxicity, and fewer adverse reactions to host. Here, the potential inhibitors against B. microti were preliminarily screened from 133 natural products, and 47 of them were selected for further screening. Gossypol (Gp) and xanthohumol (Xn) were finally shown to effectively inhibit the growth of B. microti with IC50 values of 8.47 μm and 21.40 μm, respectively. The cytotoxicity results showed that Gp and Xn were non-toxic to erythrocytes at a concentration below 100 μm. Furthermore, both of them were confirmed to be non-toxic to different types of cells in previous studies. Our findings suggest the potential of Gp and Xn as effective drugs against B. microti infection.
Collapse
|
22
|
Viswanathan GK, Shwartz D, Losev Y, Arad E, Shemesh C, Pichinuk E, Engel H, Raveh A, Jelinek R, Cooper I, Gosselet F, Gazit E, Segal D. Purpurin modulates Tau-derived VQIVYK fibrillization and ameliorates Alzheimer's disease-like symptoms in animal model. Cell Mol Life Sci 2020; 77:2795-2813. [PMID: 31562564 PMCID: PMC11104911 DOI: 10.1007/s00018-019-03312-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 08/11/2019] [Accepted: 09/19/2019] [Indexed: 01/20/2023]
Abstract
Neurofibrillary tangles of the Tau protein and plaques of the amyloid β peptide are hallmarks of Alzheimer's disease (AD), which is characterized by the conversion of monomeric proteins/peptides into misfolded β-sheet rich fibrils. Halting the fibrillation process and disrupting the existing aggregates are key challenges for AD drug development. Previously, we performed in vitro high-throughput screening for the identification of potent inhibitors of Tau aggregation using a proxy model, a highly aggregation-prone hexapeptide fragment 306VQIVYK311 (termed PHF6) derived from Tau. Here we have characterized a hit molecule from that screen as a modulator of Tau aggregation using in vitro, in silico, and in vivo techniques. This molecule, an anthraquinone derivative named Purpurin, inhibited ~ 50% of PHF6 fibrillization in vitro at equimolar concentration and disassembled pre-formed PHF6 fibrils. In silico studies showed that Purpurin interacted with key residues of PHF6, which are responsible for maintaining its β-sheets conformation. Isothermal titration calorimetry and surface plasmon resonance experiments with PHF6 and full-length Tau (FL-Tau), respectively, indicated that Purpurin interacted with PHF6 predominantly via hydrophobic contacts and displayed a dose-dependent complexation with FL-Tau. Purpurin was non-toxic when fed to Drosophila and it significantly ameliorated the AD-related neurotoxic symptoms of transgenic flies expressing WT-FL human Tau (hTau) plausibly by inhibiting Tau accumulation and reducing Tau phosphorylation. Purpurin also reduced hTau accumulation in cell culture overexpressing hTau. Importantly, Purpurin efficiently crossed an in vitro human blood-brain barrier model. Our findings suggest that Purpurin could be a potential lead molecule for AD therapeutics.
Collapse
Affiliation(s)
- Guru Krishnakumar Viswanathan
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, Tel-Aviv University, 69978, Tel Aviv, Israel
| | - Dana Shwartz
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, Tel-Aviv University, 69978, Tel Aviv, Israel
| | - Yelena Losev
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, Tel-Aviv University, 69978, Tel Aviv, Israel
| | - Elad Arad
- Ilse Katz Institute (IKI) for Nanoscale Science and Technology, Ben Gurion University of the Negev, 8410501, Beer Sheva, Israel
- Department of Chemistry, Ben Gurion University of the Negev, 8410501, Beer Sheva, Israel
| | - Chen Shemesh
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, 52621, Ramat Gan, Israel
| | - Edward Pichinuk
- Blavatnik Center for Drug Discovery, Tel-Aviv University, 69978, Tel Aviv, Israel
| | - Hamutal Engel
- Blavatnik Center for Drug Discovery, Tel-Aviv University, 69978, Tel Aviv, Israel
| | - Avi Raveh
- Blavatnik Center for Drug Discovery, Tel-Aviv University, 69978, Tel Aviv, Israel
| | - Raz Jelinek
- Ilse Katz Institute (IKI) for Nanoscale Science and Technology, Ben Gurion University of the Negev, 8410501, Beer Sheva, Israel
- Department of Chemistry, Ben Gurion University of the Negev, 8410501, Beer Sheva, Israel
| | - Itzik Cooper
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, 52621, Ramat Gan, Israel
- Interdisciplinary Center Herzliya, Herzliya, Israel
| | - Fabien Gosselet
- Blood-Brain Barrier Laboratory (LBHE), Université d'Artois, Lens, France
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, Tel-Aviv University, 69978, Tel Aviv, Israel
- Blavatnik Center for Drug Discovery, Tel-Aviv University, 69978, Tel Aviv, Israel
| | - Daniel Segal
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, Tel-Aviv University, 69978, Tel Aviv, Israel.
- The Interdisciplinary Sagol School of Neurosciences, Tel-Aviv University, 69978, Tel Aviv, Israel.
| |
Collapse
|
23
|
Tsuchida T, Susa K, Kibiki T, Tsuchiya T, Miyamoto K, In Y, Minoura K, Taniguchi T, Ishida T, Tomoo K. Crystal structure of the human tau PHF core domain VQIINK complexed with the Fab domain of monoclonal antibody Tau2r3. FEBS Lett 2020; 594:2140-2149. [PMID: 32282060 DOI: 10.1002/1873-3468.13791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/01/2020] [Accepted: 04/05/2020] [Indexed: 11/05/2022]
Abstract
Neurofibrillary tangles formed by abnormally aggregated tau protein are a histopathological feature of tauopathies. A tau aggregation inhibitor is a potential therapeutic agent for tauopathies. In this study, we prepared a monoclonal antibody for tau, monoclonal antibody to tau protein (Tau2r3), using as epitope the 272 GGKVQIINKKLD283 peptide in the microtubule-binding domain of tau, the key region mediating tau aggregation. We show that Tau2r3 clearly inhibits tau aggregation. To analyze the inhibition mechanism of Tau2r3, we solved the crystal structure of the Fab domain of Tau2r3 (Fab2r3) in complex with the VQIINK peptide. In the Fab2r3-VQIINK structure, the second and sixth polar residues and the fourth hydrophobic residue of VQIINK are crucial for binding to Fab2r3. The structural data for the Fab2r3-VQIINK complex could contribute to the design of new tau aggregation inhibitors.
Collapse
Affiliation(s)
- Tomohiro Tsuchida
- Department of Physical Chemistry, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan
| | - Kouki Susa
- Department of Physical Chemistry, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan
| | - Tomohiro Kibiki
- Department of Physical Chemistry, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan
| | - Takahiro Tsuchiya
- Department of Infection Control, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan
| | - Katsushiro Miyamoto
- Department of Infection Control, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan
| | - Yasuko In
- Department of Physical Chemistry, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan
| | - Katsuhiko Minoura
- Department of Physical Chemistry, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan
| | | | - Toshimasa Ishida
- Department of Physical Chemistry, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan
| | - Koji Tomoo
- Department of Physical Chemistry, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan
| |
Collapse
|
24
|
Modulation of tau protein aggregation using 'Trojan' sequences. Biochim Biophys Acta Gen Subj 2020; 1864:129569. [PMID: 32114026 DOI: 10.1016/j.bbagen.2020.129569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND The abnormal assembly of tau into neurofibrillary tangles has been associated with over 30 debilitating disorders known as tauopathies. Tauopathies affect millions of people worldwide, yet no clinically approved solution for tau aggregation is currently available. METHODS We employed a structure-based design approach to make a series of short peptide-based perturbants (Trojans), that can interact with the core hydrophobic fragment of tau protein. Through a combination of various biophysical methods, serum stability, toxicity, and blood-brain barrier translocation assays, we have assessed the efficacy of these designed peptides to intervene the aggregation of tau protein fragment. RESULTS Our observations suggest that Trojan peptides could modulate the aggregation of the Ac-VQIVYK-NH2 peptide by either accelerating or arresting its self-assembly and reduce the neurotoxicity of the fibrils formed. The designed perturbant peptides showed three essential pre-requisites such as negligible cytotoxicity, high proteolytic stability in serum, and an ability to cross human blood-brain barrier (BBB). Furthermore, the Trojans could disassemble the pre-formed fibrillar assemblies. CONCLUSIONS These designed Trojan peptides can serve as a potential therapeutic option for tauopathies, modulating post as well as pre-aggregation leading to the diseases condition. GENERAL SIGNIFICANCE Tauopathies are a group of over 20 progressive neurodegenerative disorders that affect millions of people worldwide. The available therapies of tau-linked neurodegenerative syndromes are limited and mostly symptomatic and therefore there is an urgent need for a cost-effective treatment option. We are presenting a series of structure-based, de novo designed, short peptides that can potentially modulate tau protein aggregation.
Collapse
|
25
|
Viswanathan GK, Paul A, Gazit E, Segal D. Naphthoquinone Tryptophan Hybrids: A Promising Small Molecule Scaffold for Mitigating Aggregation of Amyloidogenic Proteins and Peptides. Front Cell Dev Biol 2019; 7:242. [PMID: 31750300 PMCID: PMC6843079 DOI: 10.3389/fcell.2019.00242] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 10/02/2019] [Indexed: 12/22/2022] Open
Abstract
A current challenge faced by researchers is the lack of disease-modifying therapeutics for amyloid formation that is associated with several human diseases. Although the monomeric proteins or peptides involved in various amyloidogenic diseases do not have amino acid sequence homology, there appears to be a structural correlation among the amyloid assemblies, which are responsible for distinct pathological conditions. Here, we review our work on Naphthoquinone Tryptophan (NQTrp) hybrids, a small molecule scaffold that can generically modulate neuronal and non-neuronal amyloid aggregation both in vitro and in vivo. NQTrp reduces the net amyloid load by inhibiting the process of amyloid formation and disassembling the pre-formed fibrils, both in a dose-dependent manner. As a plausible mechanism of action, NQTrp effectively forms hydrogen bonding and hydrophobic interactions, such as π-π stacking, with the vital residues responsible for the initial nucleation of protein/peptide aggregation. This review highlights the effectiveness of the NQTrp hybrid scaffold for developing novel small molecule modulators of amyloid aggregation.
Collapse
Affiliation(s)
- Guru KrishnaKumar Viswanathan
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Ashim Paul
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Segal
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel.,Interdisciplinary Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
26
|
Tarabasz D, Kukula-Koch W. Palmatine: A review of pharmacological properties and pharmacokinetics. Phytother Res 2019; 34:33-50. [PMID: 31496018 DOI: 10.1002/ptr.6504] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/18/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022]
Abstract
The aim of this review is to collect together the results of the numerous studies over the last two decades on the pharmacological properties of palmatine published in scientific databases like Scopus and PubMed, which are scattered across different publications. Palmatine, an isoquinoline alkaloid from the class of protoberberines, is a yellow compound present in the extracts from different representatives of Berberidaceae, Papaveraceae, Ranunculaceae, and Menispermaceae. It has been extensively used in traditional medicine of Asia in the treatment of jaundice, liver-related diseases, hypertension, inflammation, and dysentery. New findings describe its possible applications in the treatment of civilization diseases like central nervous system-related problems. This review intends to let this alkaloid come out from the shade of a more frequently described alkaloid: berberine. The toxicity, pharmacokinetics, and biological activities of this protoberberine alkaloid will be developed in this work.
Collapse
Affiliation(s)
| | - Wirginia Kukula-Koch
- Chair and Department of Pharmacognosy with Medicinal Plants Unit, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
27
|
Paul A, Viswanathan GK, Mahapatra S, Balboni G, Pacifico S, Gazit E, Segal D. Antagonistic Activity of Naphthoquinone-Based Hybrids toward Amyloids Associated with Alzheimer's Disease and Type-2 Diabetes. ACS Chem Neurosci 2019; 10:3510-3520. [PMID: 31282646 DOI: 10.1021/acschemneuro.9b00123] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Protein misfolding and amyloid formation are associated with various human diseases including Alzheimer's disease (AD), Parkinson's disease (PD), and Type-2 Diabetes mellitus (T2DM). No disease-modifying therapeutics are available for them. Despite the lack of sequence homology between the corresponding proteins, aromatic residues are recognized as common key motifs in the formation and stabilization of amyloid structures via π-π stacking. Thus, targeting aromatic recognition interfaces could be a useful approach for inhibiting amyloid formation as well as disrupting the preformed amyloid fibrils. Combining experimental and computational approaches, we demonstrated the anti-amyloidogenic effect of naphthoquinone-tryptophan-based hybrid molecules toward PHF6 (τ-derived aggregative peptide), Amyloid β (Aβ42), and human islet amyloid polypeptide (hIAPP) implicated in AD and T2DM, respectively. These hybrid molecules significantly inhibited the aggregation and disrupted their preformed fibrillar aggregates in vitro, in a dose-dependent manner as evident from Thioflavin T/S binding assay, CD spectroscopy, and electron microscopy. Dye leakage assay from LUVs and cell-based experiments indicated that the hybrid molecules inhibit membrane disruption and cytotoxicity induced by these amyloids. Furthermore, in silico studies provided probable mechanistic insights into the interaction of these molecules with the amyloidogenic proteins in their monomeric or aggregated forms, including the role of hydrophobic interaction, hydrogen bond formation, and packing during inhibition of aggregation and fibril disassembly. Our findings may help in designing novel therapeutics toward AD, T2DM, and other proteinopathies based on the naphthoquinone derived hybrid molecules.
Collapse
Affiliation(s)
| | | | | | - Gianfranco Balboni
- Department of Life and Environmental Sciences - Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, via Ospedale 72, I-09124 Cagliari, Italy
| | - Salvatore Pacifico
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, via Fossato di Mortara 17-19, I-44121 Ferrara, Italy
| | | | | |
Collapse
|
28
|
Palmatine: A review of its pharmacology, toxicity and pharmacokinetics. Biochimie 2019; 162:176-184. [DOI: 10.1016/j.biochi.2019.04.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/07/2019] [Indexed: 12/22/2022]
|
29
|
Inhibitory Effect of Naphthoquinone-Tryptophan Hybrid towards Aggregation of PAP f39 Semen Amyloid. Molecules 2018; 23:molecules23123279. [PMID: 30544943 PMCID: PMC6320874 DOI: 10.3390/molecules23123279] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 01/02/2023] Open
Abstract
PAP248–286, a 39 amino acid peptide fragment, derived from the prostatic acid phosphatase secreted in human semen, forms amyloid fibrils and facilitates the attachment of retroviruses to host cells that results in the enhancement of viral infection. Therefore, the inhibition of amyloid formation by PAP248–286 (termed PAP f39) may likely reduce HIV transmission in AIDS. In this study, we show that the naphthoquinone tryptophan (NQTrp) hybrid molecule significantly inhibited PAP f39 aggregation in vitro in a dose-dependent manner as observed from the ThT assay, ANS assay, and transmission electron microscopy imaging. We found that even at a sub-molar concentration of 20:1 [PAP f39:NQTrp], NQTrp could reduce >50% amyloid formation. NQTrp inhibition of PAP f39 aggregation resulted in non-toxic intermediate species as determined by the vesicle leakage assay. Isothermal titration calorimetry and molecular docking revealed that the binding of NQTrp and PAP f39 is spontaneous, and NQTrp predominantly interacts with the polar and charged residues of the peptide by forming hydrogen bonds and hydrophobic contacts with a strong binding energy. Collectively, these findings indicate that NQTrp holds significant potential as a small molecule inhibitor of semen amyloids.
Collapse
|
30
|
Carbamylation promotes amyloidogenesis and induces structural changes in Tau-core hexapeptide fibrils. Biochim Biophys Acta Gen Subj 2018; 1862:2590-2604. [PMID: 30071272 DOI: 10.1016/j.bbagen.2018.07.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/10/2018] [Accepted: 07/26/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Carbamylation is a non-enzymatic post-translational modification (PTM), which involves the covalent modification of N-terminus of protein or ε-amino group of Lys. The role of carbamylation in several age-related disorders is well documented, however, the relationship between carbamylation and neurodegenerative disorders including Alzheimer's disease remains uncharted. METHODS In the present study, using aggregation-prone tau-core hexapeptide fragments 306VQIVYK311 (PHF6) and 275VQIINK280 (PHF6*) as models, we have elucidated the effect of carbamylation on aggregation kinetics and the changes occurring in the 3-dimensional architecture of fibrils using biophysical assays and molecular dynamics simulations. RESULTS We found that carbamylation aids in amyloid formation and can convert the unstructured off-pathway aggregates into robust amyloids, which were toxic to cells. Electron microscopy images and molecular dynamics simulations of PHF6 fibrils showed that carbamylated peptides can form excess hydrogen bonds and modulate the pitch length and twist of peptides fibrils. We have also compared N-terminal carbamylation to acetylation and further extended our finding to full length tau that exhibits aggregation upon carbamylation even in the absence of any external inducer. CONCLUSION Our in vitro and in silico results together suggest that carbamylation can modulate the aggregation pathway of the amyloidegenic sequences and cause structural changes in fibril assemblies. GENERAL SIGNIFICANCE Carbamylation acts as a switch, which triggers the aggregation in short amyloidogenic peptide fragments and modulate the structural changes in resulting amyloid fibrils.
Collapse
|