1
|
Zheng X, Liu X, Guo Y, Lv Y, Lin C, Wang D, Wang S, Liu Y, Hu X. Physical exercise and epigenetic modifications in skeletal muscle, brain, and heart. Epigenetics Chromatin 2025; 18:12. [PMID: 40114219 PMCID: PMC11927307 DOI: 10.1186/s13072-025-00576-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 02/21/2025] [Indexed: 03/22/2025] Open
Abstract
The origins of many diseases can be traced to the dynamic interplay of genetic predispositions and environmental exposures post-birth. Epigenetic modifications have recently gained prominence as a significant mediator between genetic information and environmental factors, influencing the occurrence and progression of disease. There is a burgeoning body of evidence supports that physical exercise, acting as an external environmental stimulus, exerts a discernible impact on major epigenetic modifications, including histone modifications, DNA methylation, RNA methylation, and non-coding RNA. This effect assumes a pivotal role in the pathogenesis of various human diseases. Exploring the epigenetic molecular mechanisms through which physical exercise enhances human health holds the promise of deepening our understanding of how it improves physiological functions, mitigates disease risks, and establishes a theoretical foundation for employing physical exercise as a non-pharmacological intervention in disease prevention and treatment.
Collapse
Affiliation(s)
- Xi Zheng
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, PR China
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, PR China
| | - Xueli Liu
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, PR China
| | - Yuqian Guo
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, PR China
| | - Yi Lv
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, PR China
| | - Chensheng Lin
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, PR China
| | - Dan Wang
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, PR China
| | - Shaobing Wang
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, PR China
| | - Yiping Liu
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, PR China.
| | - Xuefeng Hu
- Fujian Key Laboratory of Developmental and Neural Biology & Southern Center for Biomedical Research, College of Life Sciences, Fujian Normal University, Fuzhou, PR China.
| |
Collapse
|
2
|
Chen CY, Wang YF, Lei L, Zhang Y. MicroRNA-specific targets for neuronal plasticity, neurotransmitters, neurotrophic factors, and gut microbes in the pathogenesis and therapeutics of depression. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111186. [PMID: 39521033 DOI: 10.1016/j.pnpbp.2024.111186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/11/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Depression is of great concern because of the huge burden, and it is impacted by various epigenetic modifications, e.g., histone modification, covalent modifications in DNA, and silencing mechanisms of non-coding protein genes, e.g., microRNAs (miRNAs). MiRNAs are a class of endogenous non-coding RNAs. Alternations in specific miRNAs have been observed both in depressive patients and experimental animals. Also, miRNAs are highly expressed in the central nervous system and can be delivered to different tissues via tissue-specific exosomes. However, the mechanism of miRNAs' involvement in the pathological process of depression is not well understood. Therefore, we summarized and discussed the role of miRNAs in depression. Conclusively, miRNAs are involved in the pathology of depression by causing structural and functional changes in synapses, mediating neuronal regeneration, differentiation, and apoptosis, regulating the gut microbes and the expression of various neurotransmitters and BDNF, and mediating inflammatory and immune responses. Moreover, miRNAs can predict the efficacy of antidepressant medications and explain the mechanism of action of antidepressant drugs and aerobic exercise to prevent and assist in treating depression.
Collapse
Affiliation(s)
- Cong-Ya Chen
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yu-Fei Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
3
|
Sun HX, Guo RB, Gu TT, Zong YB, Xu WW, Chen L, Tian Y, Li GQ, Lu LZ, Zeng T. Investigating the correlation between phenotypes, adrenal transcriptome, and serum metabolism in laying ducks exhibiting varying behaviours under the same stressor. Animal 2024; 18:101343. [PMID: 39442284 DOI: 10.1016/j.animal.2024.101343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024] Open
Abstract
Laying ducks in cage environments face various stressors, including the fear of novelty, which negatively affects their behaviour and performance. The reasons behind the variation in behaviour under identical stress conditions are not well understood. This study investigated how different behaviours affect production performance, immune response, antioxidant capabilities, adrenal gene expression, and serum metabolite profiles in caged laying ducks subjected to the same stressor. Overall, 42-week-old laying ducks (N = 300) were selected, fed for 60 days, and simultaneously underwent behavioural tests. Based on their behavioural responses, 24 ducks were chosen and categorised into two groups: high-active avoidance (HAA) and low-active avoidance (LAA). The study utilised phenotypic, genetic, and metabolomic analyses, coupled with bioinformatics, to identify crucial biological processes, genes, and metabolites. The results indicated that ΔW (BW gain) and average daily egg weight (ADEW) were significantly lower in the HAA group compared to the LAA group (P < 0.05). By contrast, the feed-to-egg ratio was higher in the HAA group than in the LAA group (P < 0.05). Levels of serum immunoglobulin A, total antioxidant capacity, and the activities of enzymes like superoxide dismutase and catalase (CAT) were significantly lower in the HAA than in the LAA group (P < 0.05), whereas serum ACTH levels were significantly higher in HAA than in the LAA group (P < 0.05). The adrenal transcriptome analysis revealed 148 differentially expressed genes in the HAA group, with 97 up-regulated and 51 down-regulated. Moreover, enrichment analysis highlighted significant differences in two metabolic pathways: neuroactive ligand-receptor interaction and oxidative phosphorylation (P < 0.05). Serum metabolomics identified 11 differentially accumulated metabolites between the groups, with variations in up and down-regulation. Integrative analysis of phenotype, transcriptome, and metabolome data showed a strong correlation between the exosome component 3 (EXOSC3) gene, phenotypic traits, and differential metabolites. Thus, we deduced that the differences in average daily egg weight among ducks could be linked to variations in gabapentin and EXOSC3 gene expressions, affecting serum CAT levels.
Collapse
Affiliation(s)
- H X Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 430064, PR China
| | - R B Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; College of Animal Science, Zhejiang A&F University, Hangzhou, 310021 PR China
| | - T T Gu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Y B Zong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - W W Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - L Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Y Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - G Q Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - L Z Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - T Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| |
Collapse
|
4
|
Liu Y, Ye Q, Dai Y, Hu J, Chen J, Dong J, Li H, Dou Z. Integrating analysis of mRNA expression profiles indicates Sgk1 as a key mediator in muscle-brain crosstalk during resistance exercise. Biochem Biophys Res Commun 2024; 719:150075. [PMID: 38749087 DOI: 10.1016/j.bbrc.2024.150075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/02/2024] [Accepted: 05/07/2024] [Indexed: 06/05/2024]
Abstract
Abundant evidence has shown the protective effect of aerobic exercise on central neuronal system, however, research about resistance exercise remains limited. To evaluate the effect and potential molecular mechanisms of resistance exercise in improving cognition and mental health, three-month-old male C57BL/6J mice underwent resistance training for five weeks. Body parameters, cognitive performance and synaptic plasticity were then assessed. In both groups, total RNA from the frontal cortex, hippocampus and gastrocnemius was isolated and sequenced, GO term and KEGG analysis were performed to identify molecular mechanisms. The results from RNA sequencing were then verified by RT-PCR. Our data found that mice in training group showed reduced anxiety-like behavior and better spatial memory. Accordingly, resistance exercise specifically increased the number of thin spines without affecting the number of other kind of spines. mRNA sequence analysis showed that resistance exercise induced differential expression of hundreds of genes in the above three tissues. KEGG analysis indicated the FoxO signaling pathway the most significant changed pathway throughout the brain and muscle. GO terms analysis showed that Sgk1 was enriched in the three key cognition related BP, including long-term memory, learning or memory and memory, and the expression level of Sgk1 was positive related with cognitive performance in the water maze. In conclusion, resistance exercise improved the mental health, cognition and synaptic plasticity of mice. Integrating analysis of mRNA expression profiles in frontal cortex, hippocampus and muscle reveals Sgk1 as the key mediator in brain-muscle crosstalk.
Collapse
Affiliation(s)
- Yan Liu
- Department of Rehabilitation, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, China
| | - Qiuping Ye
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; South China Research Center for Acupuncture and Moxibustion, Guangzhou Higher Education Mega Center, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Dai
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; South China Research Center for Acupuncture and Moxibustion, Guangzhou Higher Education Mega Center, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiahui Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; South China Research Center for Acupuncture and Moxibustion, Guangzhou Higher Education Mega Center, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiemei Chen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Juntao Dong
- Department of Rehabilitation, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, China
| | - Hao Li
- Department of Rehabilitation, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen, China
| | - Zulin Dou
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China; South China Research Center for Acupuncture and Moxibustion, Guangzhou Higher Education Mega Center, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
5
|
Zhao R. Can exercise benefits be harnessed with drugs? A new way to combat neurodegenerative diseases by boosting neurogenesis. Transl Neurodegener 2024; 13:36. [PMID: 39049102 PMCID: PMC11271207 DOI: 10.1186/s40035-024-00428-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024] Open
Abstract
Adult hippocampal neurogenesis (AHN) is affected by multiple factors, such as enriched environment, exercise, ageing, and neurodegenerative disorders. Neurodegenerative disorders can impair AHN, leading to progressive neuronal loss and cognitive decline. Compelling evidence suggests that individuals engaged in regular exercise exhibit higher production of proteins that are essential for AHN and memory. Interestingly, specific molecules that mediate the effects of exercise have shown effectiveness in promoting AHN and cognition in different transgenic animal models. Despite these advancements, the precise mechanisms by which exercise mimetics induce AHN remain partially understood. Recently, some novel exercise molecules have been tested and the underlying mechanisms have been proposed, involving intercommunications between multiple organs such as muscle-brain crosstalk, liver-brain crosstalk, and gut-brain crosstalk. In this review, we will discuss the current evidence regarding the effects and potential mechanisms of exercise mimetics on AHN and cognition in various neurological disorders. Opportunities, challenges, and future directions in this research field are also discussed.
Collapse
Affiliation(s)
- Renqing Zhao
- College of Physical Education, Yangzhou University, 88 South Daxue Road, Yangzhou, 225009, China.
| |
Collapse
|
6
|
Qi L, Jiang W, He W, Li X, Wu J, Chen S, Liao Z, Yu S, Liu J, Sun Y, Wu Q, Dong C, Wang Q. Transcriptome profile analysis in spinal cord injury rats with transplantation of menstrual blood-derived stem cells. Front Mol Neurosci 2024; 17:1335404. [PMID: 38361743 PMCID: PMC10867146 DOI: 10.3389/fnmol.2024.1335404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024] Open
Abstract
Introduction Menstrual blood-derived stem cells (MenSCs) are vital in treating many degenerative and traumatic disorders. However, the underlying molecular mechanisms remain obscure in MenSCs-treating spinal cord injury (SCI) rats. Methods MenSCs were adopted into the injured sites of rat spinal cords at day 7 post surgery and the tissues were harvested for total RNA sequencing analysis at day 21 after surgery to investigate the expression patterns of RNAs. The differentially expressed genes (DEGs) were analyzed with volcano and heatmap plot. DEGs were sequentially analyzed by weighted gene co-expression network, functional enrichment, and competitive endogenous RNAs (ceRNA) network analysis. Next, expression of selected miRNAs, lncRNAs, circRNAs and mRNAs were validated by quantitative real-time polymerase chain reaction (qRT-PCR). Bioinformatics packages and extra databases were enrolled to scoop the genes functions and their interaction relationships. Results A total of 89 lncRNAs, 65 circRNAs, 120 miRNAs and 422 mRNAs were significantly upregulated and 65 lncRNAs, 72 circRNAs, 74 miRNAs, and 190 mRNAs were significantly downregulated in the MenSCs treated rats compared to SCI ones. Current investigation revealed that MenSCs treatment improve the recovery of the injured rats and the most significantly involved pathways in SCI regeneration were cell adhesion molecules, nature killer cell mediated cytotoxicity, primary immunodeficiency, chemokine signaling pathway, T cell receptor signaling pathway and B cell receptor signaling pathway. Moreover, the lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA ceRNA network of SCI was constructed. Finally, the protein-protein interaction (PPI) network was constructed using the top 100 DE mRNAs. The constructed PPI network included 47 nodes and 70 edges. Discussion In summary, the above results revealed the expression profile and potential functions of differentially expressed (DE) RNAs in the injured spinal cords of rats in the MenSCs-treated and SCI groups, and this study may provide new clues to understand the mechanisms of MenSCs in treating SCI.
Collapse
Affiliation(s)
- Longju Qi
- Laboratory Animal Center, School of Medicine, Nantong University, Nantong, Jiangsu, China
- Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Wenwei Jiang
- Laboratory Animal Center, School of Medicine, Nantong University, Nantong, Jiangsu, China
- Rehabilitation Medicine Center, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China
| | - Wenhua He
- Department of Basic Medicine, Luohe Medical College, Luohe, Henan, China
| | - Xiangzhe Li
- Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Jiahuan Wu
- Rehabilitation Medicine Center, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China
| | - Shiyuan Chen
- Laboratory Animal Center, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Zehua Liao
- Laboratory Animal Center, School of Medicine, Nantong University, Nantong, Jiangsu, China
- Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Shumin Yu
- Laboratory Animal Center, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Jinyi Liu
- Laboratory Animal Center, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Yuyu Sun
- Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Qinfeng Wu
- Rehabilitation Medicine Center, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China
| | - Chuanming Dong
- Laboratory Animal Center, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Qinghua Wang
- Laboratory Animal Center, School of Medicine, Nantong University, Nantong, Jiangsu, China
- Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
7
|
Khoury R, Nagy C. Running from stress: a perspective on the potential benefits of exercise-induced small extracellular vesicles for individuals with major depressive disorder. Front Mol Biosci 2023; 10:1154872. [PMID: 37398548 PMCID: PMC10309045 DOI: 10.3389/fmolb.2023.1154872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
Aerobic exercise promotes beneficial effects in the brain including increased synaptic plasticity and neurogenesis and regulates neuroinflammation and stress response via the hypothalamic-pituitary-adrenal axis. Exercise can have therapeutic effects for numerous brain-related pathologies, including major depressive disorder (MDD). Beneficial effects of aerobic exercise are thought to be mediated through the release of "exerkines" including metabolites, proteins, nucleic acids, and hormones that communicate between the brain and periphery. While the specific mechanisms underlying the positive effects of aerobic exercise on MDD have not been fully elucidated, the evidence suggests that exercise may exert a direct or indirect influence on the brain via small extracellular vesicles which have been shown to transport signaling molecules including "exerkines" between cells and across the blood-brain barrier (BBB). sEVs are released by most cell types, found in numerous biofluids, and capable of crossing the BBB. sEVs have been associated with numerous brain-related functions including neuronal stress response, cell-cell communication, as well as those affected by exercise like synaptic plasticity and neurogenesis. In addition to known exerkines, they are loaded with other modulatory cargo such as microRNA (miRNA), an epigenetic regulator that regulates gene expression levels. How exercise-induced sEVs mediate exercise dependent improvements in MDD is unknown. Here, we perform a thorough survey of the current literature to elucidate the potential role of sEVs in the context of neurobiological changes seen with exercise and depression by summarizing studies on exercise and MDD, exercise and sEVs, and finally, sEVs as they relate to MDD. Moreover, we describe the links between peripheral sEV levels and their potential for infiltration into the brain. While literature suggests that aerobic exercise is protective against the development of mood disorders, there remains a scarcity of data on the therapeutic effects of exercise. Recent studies have shown that aerobic exercise does not appear to influence sEV size, but rather influence their concentration and cargo. These molecules have been independently implicated in numerous neuropsychiatric disorders. Taken together, these studies suggest that concentration of sEVs are increased post exercise, and they may contain specifically packaged protective cargo representing a novel therapeutic for MDD.
Collapse
Affiliation(s)
- Reine Khoury
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada
| | - Corina Nagy
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
8
|
Changes in mRNA and miRNA expression in the prelimbic cortex related to depression-like syndrome induced by chronic social defeat stress in mice. Behav Brain Res 2023; 438:114211. [PMID: 36368442 DOI: 10.1016/j.bbr.2022.114211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/31/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022]
Abstract
Major depressive disorder is a complex psychiatric disorder with a high prevalence rate worldwide. Previous studies have demonstrated the involvement of the prelimbic cortex (PL) in mediating depressive-like behavior, however, the exact molecular mechanism taking place in the PL remains unclear. In the present study, we conducted high-throughput sequencing of mRNAs and miRNAs in PL tissue harvested from chronic social defeat stress (CSDS) susceptible male mice. We identified 59 differentially expressed mRNAs and 6 differentially expressed miRNAs, in which 40 mRNAs and 3 miRNAs were up-regulated, while 19 mRNAs and 3 miRNAs were down-regulated. Integrated analysis of miRNA-mRNA networks suggested that GPR35 signaling might be involved in CSDS-induced depressive-like behaviors. RT-PCR and western blot assays validated that Abra, Sell and GPR35 were up-regulated. Functionally, inhibition of GPR35 in the PL ameliorated CSDS-induced depressive-like behaviors. Thus, the present study provided a global view of mRNA and miRNA profiles in the PL of male stress susceptible mice, and suggested that GPR35 signaling was associated with CSDS-induced depressive-like behaviors. These results may be valuable for further investigations of the molecular regulatory mechanisms in stress-induced depression.
Collapse
|
9
|
Dos Santos JAC, Veras ASC, Batista VRG, Tavares MEA, Correia RR, Suggett CB, Teixeira GR. Physical exercise and the functions of microRNAs. Life Sci 2022; 304:120723. [PMID: 35718233 DOI: 10.1016/j.lfs.2022.120723] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 10/18/2022]
Abstract
MicroRNAs (miRNAs) control RNA translation and are a class of small, tissue-specific, non-protein-coding RNAs that maintain cellular homeostasis through negative gene regulation. Maintenance of the physiological environment depends on the proper control of miRNA expression, as these molecules influence almost all genetic pathways, from the cell cycle checkpoint to cell proliferation and apoptosis, with a wide range of target genes. Dysregulation of the expression of miRNAs is correlated with several types of diseases, acting as regulators of cardiovascular functions, myogenesis, adipogenesis, osteogenesis, hepatic lipogenesis, and important brain functions. miRNAs can be modulated by environmental factors or external stimuli, such as physical exercise, and can eventually induce specific and adjusted changes in the transcriptional response. Physical exercise is used as a preventive and non-pharmacological treatment for many diseases. It is well established that physical exercise promotes various benefits in the human body such as muscle hypertrophy, mental health improvement, cellular apoptosis, weight loss, and inhibition of cell proliferation. This review highlights the current knowledge on the main miRNAs altered by exercise in the skeletal muscle, cardiac muscle, bone, adipose tissue, liver, brain, and body fluids. In addition, knowing the modifications induced by miRNAs and relating them to the results of prescribed physical exercise with different protocols and intensities can serve as markers of physical adaptation to training and responses to the effects of physical exercise for some types of chronic diseases. This narrative review consists of randomized exercise training experiments with humans and/or animals, combined with analyses of miRNA modulation.
Collapse
Affiliation(s)
| | - Allice Santos Cruz Veras
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | | | - Maria Eduarda Almeida Tavares
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Rafael Ribeiro Correia
- Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil; Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Cara Beth Suggett
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Giovana Rampazzo Teixeira
- Department of Physical Education, São Paulo State University (UNESP), Presidente Prudente, SP, Brazil; Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil.
| |
Collapse
|
10
|
Rosa JM, Formolo DA, Yu J, Lee TH, Yau SY. The Role of MicroRNA and Microbiota in Depression and Anxiety. Front Behav Neurosci 2022; 16:828258. [PMID: 35299696 PMCID: PMC8921933 DOI: 10.3389/fnbeh.2022.828258] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
Depression and anxiety are devastating disorders. Understanding the mechanisms that underlie the development of depression and anxiety can provide new hints on novel treatments and preventive strategies. Here, we summarize the latest findings reporting the novel roles of gut microbiota and microRNAs (miRNAs) in the pathophysiology of depression and anxiety. The crosstalk between gut microbiota and the brain has been reported to contribute to these pathologies. It is currently known that some miRNAs can regulate bacterial growth and gene transcription while also modulate the gut microbiota composition, suggesting the importance of miRNAs in gut and brain health. Treatment and prevention strategies for neuropsychiatric diseases, such as physical exercise, diet, and probiotics, can modulate the gut microbiota composition and miRNAs expressions. Nonetheless, there are critical questions to be addressed to understand further the mechanisms involved in the interaction between the gut microbiota and miRNAs in the brain. This review summarizes the recent findings of the potential roles of microbiota and miRNA on the neuropathology of depression and anxiety, and its potential as treatment strategies.
Collapse
Affiliation(s)
- Julia M. Rosa
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Institute for Smart Aging (RISA), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Douglas A. Formolo
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Institute for Smart Aging (RISA), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Jiasui Yu
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Institute for Smart Aging (RISA), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Thomas H. Lee
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Neurocentre Magendie, INSERM U1215, University of Bordeaux, Bordeaux, France
| | - Suk-yu Yau
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
- Research Institute for Smart Aging (RISA), Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| |
Collapse
|
11
|
Plaza-Diaz J, Izquierdo D, Torres-Martos Á, Baig AT, Aguilera CM, Ruiz-Ojeda FJ. Impact of Physical Activity and Exercise on the Epigenome in Skeletal Muscle and Effects on Systemic Metabolism. Biomedicines 2022; 10:126. [PMID: 35052805 PMCID: PMC8773693 DOI: 10.3390/biomedicines10010126] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 02/05/2023] Open
Abstract
Exercise and physical activity induces physiological responses in organisms, and adaptations in skeletal muscle, which is beneficial for maintaining health and preventing and/or treating most chronic diseases. These adaptations are mainly instigated by transcriptional responses that ensue in reaction to each individual exercise, either resistance or endurance. Consequently, changes in key metabolic, regulatory, and myogenic genes in skeletal muscle occur as both an early and late response to exercise, and these epigenetic modifications, which are influenced by environmental and genetic factors, trigger those alterations in the transcriptional responses. DNA methylation and histone modifications are the most significant epigenetic changes described in gene transcription, linked to the skeletal muscle transcriptional response to exercise, and mediating the exercise adaptations. Nevertheless, other alterations in the epigenetics markers, such as epitranscriptomics, modifications mediated by miRNAs, and lactylation as a novel epigenetic modification, are emerging as key events for gene transcription. Here, we provide an overview and update of the impact of exercise on epigenetic modifications, including the well-described DNA methylations and histone modifications, and the emerging modifications in the skeletal muscle. In addition, we describe the effects of exercise on epigenetic markers in other metabolic tissues; also, we provide information about how systemic metabolism or its metabolites influence epigenetic modifications in the skeletal muscle.
Collapse
Affiliation(s)
- Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (D.I.); (C.M.A.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain;
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada;
| | - David Izquierdo
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (D.I.); (C.M.A.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain;
| | - Álvaro Torres-Martos
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain;
| | - Aiman Tariq Baig
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada;
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 85M, Canada
| | - Concepción M. Aguilera
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (D.I.); (C.M.A.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain;
- Center of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Avda. del Conocimiento s/n., 18016 Granada, Spain
- CIBEROBN (CIBER Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco Javier Ruiz-Ojeda
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain; (D.I.); (C.M.A.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain;
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz, Center Munich, Neuherberg, 85764 Munich, Germany
| |
Collapse
|
12
|
MiR-20b-5p contributes to the dysfunction of vascular smooth muscle cells by targeting MAGI3 in hypertension. J Mol Histol 2022; 53:187-197. [PMID: 34985721 DOI: 10.1007/s10735-021-10050-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 05/20/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION MicroRNAs (miRNAs), have been frequently reported to regulate various diseases including hypertension. However, the biological role and regulatory mechanism of miR-20b-5p are unclear in hypertension. The current study aimed to investigate the role of miR-20b-5p in hypertension. METHODS Bioinformatics analysis (starBase: http://starbase.sysu.edu.cn ) and a wide range of experiments including blood pressure detection, morphometric sampling by electron microscopy, real-time quantitative polymerase chain reaction (RT-qPCR), CCK-8, western blot, luciferase reporter, hematoxylin and eosin (H&E) staining and Masson trichrome staining assays were used to explore the function and mechanism of miR-20b-5p in hypertension. RESULTS MiR-20b-5p level was significantly upregulated in Spontaneously hypertensive rats' (SHRs') thoracic aortic vascular tissues. In function, miR-20b-5p silencing inhibited the proliferation and migration of aortic smooth muscle cells (ASMCs) of SHRs. In mechanism, we predicted 10 potential target mRNAs for miR-20b-5p. After prediction by bioinformatics, MAGI3 was validated to bind with miR-20b-5p. Rescue assays showed that MAGI3 silencing reversed the inhibitive influence of miR-20b-5p depletion on cell proliferation and migration. CONCLUSIONS MiR-20b-5p contributed to the dysfunction of ASMCs by targeting MAGI3 in hypertension. This new discovery provided a potential novel insight for hypertension treatment.
Collapse
|
13
|
Screening of Parkinson's Differential MicroRNA Based on GEO Database and Its Clinical Verification. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8171236. [PMID: 34812409 PMCID: PMC8605920 DOI: 10.1155/2021/8171236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/24/2022]
Abstract
Objective This study is set out to explore the potential difference of miR in PD through GEO data and provide diagnostic indicators for clinical practice. Methods In this study, differential miR was screened through the Gene Expression Omnibus (GEO) database, 68 PD patients treated in our hospital from May 2017 to March 2018 were collected as the research group (RG), and 50 normal subjects who underwent physical examination in our hospital during the same period were collected as the control group (CG). Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression and diagnostic value of miR-374a-5p in serum of patients. The potential target genes of miR-374a-5p were predicted, and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and Gene Ontology Consortium (GO) were carried out. Results GEO2R analysis revealed that 193 miRs are expressed differentially, of which 78 were highly expressed and 115 were poorly expressed. The miR-374a-5p expression in the serum of the RG was reduced markedly and had a diagnostic value. Targetscan and miRDB online websites were used to predict their target genes, with 415 common target genes. miR-374a-5p may participate in 27 functional pathways and 8 signal pathways. Conclusion miR-335-5p has low expression in PD and is expected to be a potential diagnostic indicator.
Collapse
|
14
|
Exercise mimetics: harnessing the therapeutic effects of physical activity. Nat Rev Drug Discov 2021; 20:862-879. [PMID: 34103713 DOI: 10.1038/s41573-021-00217-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 02/05/2023]
Abstract
Exercise mimetics are a proposed class of therapeutics that specifically mimic or enhance the therapeutic effects of exercise. Increased physical activity has demonstrated positive effects in preventing and ameliorating a wide range of diseases, including brain disorders such as Alzheimer disease and dementia, cancer, diabetes and cardiovascular disease. This article discusses the molecular mechanisms and signalling pathways associated with the beneficial effects of physical activity, focusing on effects on brain function and cognitive enhancement. Emerging therapeutic targets and strategies for the development of exercise mimetics, particularly in the field of central nervous system disorders, as well as the associated opportunities and challenges, are discussed.
Collapse
|
15
|
Yoon KJ, Park S, Kwak SH, Moon HY. Effects of Voluntary Running Wheel Exercise-Induced Extracellular Vesicles on Anxiety. Front Mol Neurosci 2021; 14:665800. [PMID: 34276303 PMCID: PMC8280765 DOI: 10.3389/fnmol.2021.665800] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/20/2021] [Indexed: 11/13/2022] Open
Abstract
Anxiety disorders are the most frequently diagnosed psychological condition, associated with serious comorbidities including excessive fear and interference with daily life. Drugs for anxiety disorders are typically prescribed but the side effects include weight gain, nausea, and sleepiness. Exercise is an effective treatment for anxiety. Exercise induces the release of extracellular vesicles (EVs) into the circulation, which transmit signals between organs. However, the effects of exercise-induced EVs on anxiety remain poorly understood. Here, we isolated EVs from the sera of mice that were sedentary or that voluntarily exercised. We characterized the changes in the miRNA profile of serum EVs after 4 weeks of voluntary exercise. miRNA sequencing showed that 82 miRNAs (46 of which were positive and 36 negative regulators) changed after exercise. We selected genes affected by at least two miRNAs. Of these, 27.27% were associated with neurotrophin signaling (9.09% with each of central nervous system neuronal development, cerebral cortical cell migration, and peripheral neuronal development). We also analyzed behavioral changes in mice with 3 weeks of restraint stress-induced anxiety after injection of 20 μg amounts of EVs from exercised or sedentary mice into the left cerebral ventricle. We found that exercise-derived EVs reduced anxiety (compared to a control group) in a nest-building test but found no between-group differences in the rotarod or open field tests. Exercise-derived EVs enhanced the expression of neuroactive ligand-receptor interaction genes. Thus, exercise-derived EVs may exhibit anti-anxiety effects and may be of therapeutic utility.
Collapse
Affiliation(s)
- Kyeong Jin Yoon
- Department of Physical Education, Seoul National University, Seoul, South Korea
| | - Suhong Park
- Department of Physical Education, Seoul National University, Seoul, South Korea
| | - Seung Hee Kwak
- Department of Physical Education, Seoul National University, Seoul, South Korea
| | - Hyo Youl Moon
- Department of Physical Education, Seoul National University, Seoul, South Korea.,Institute of Sport Science, Seoul National University, Seoul, South Korea.,Institute on Aging, Seoul National University, Seoul, South Korea
| |
Collapse
|
16
|
Wang J, Yue B, Zhang X, Guo X, Sun Z, Niu R. Effect of exercise on microglial activation and transcriptome of hippocampus in fluorosis mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143376. [PMID: 33172640 DOI: 10.1016/j.scitotenv.2020.143376] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/02/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Fluorosis is a widespread endemic disease. Reports have shown that high fluoride causes the dysfunction of central nervous system (CNS) in animals. The neurotoxicity of fluoride may be related to the activation of microglia. Moreover, numerous studies have found that exercise facilitates the plasticity of structure and function in CNS, partly owing to the regulation of microglia activation. The present study was conducted to explore the effect of exercise on the microglial activation of hippocampus in fluorosis mice. One hundred adult female Institute of Cancer Research (ICR) mice were randomly divided into 4 groups: control group (group C, distilled water by gavage); exercise group (group E, distilled water by gavage and treadmill exercise); fluoride group [group F, 24 mg/kg sodium fluoride (NaF) by gavage]; fluoride plus exercise group (group F + E, 24 mg/kg NaF by gavage and treadmill exercise). After 8 weeks, hippocampal morphological structure, microglial activation and RNA transcriptome of mice in each group were evaluated by hematoxylin and eosin (HE) staining, Nissl staining, immunohistochemistry (IHC), quantitative real time PCR (QRT-PCR) and transcriptome sequencing. We discovered that the number of M1-type microglia in fluorosis-mice hippocampus was significantly increased when compared to group C; group F + E showed a decrease in the number of M1-type microglia with the comparison to group F. In addition, the hippocampal transcriptome analysis showed that 576 differential expression genes (DEG) were confirmed in group F, compared to group C, and 670 DEG were differently expressed in group F + E when compared to group F. Gene Ontology (GO) analysis showed that changed genes were implicated in regulation of transcription, DNA-templated, integral component of membrane and adenosine triphosphate (ATP) binding. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of 670 DEG was helpful to find neuroactive ligand-receptor interaction pathway. In conclusion, these results indicate that treadmill running inhibits the excessive activation of microglia in hippocampus of the fluoride-toxic mice, accompanied with the alteration of neuroactive ligand-receptor interaction pathway.
Collapse
Affiliation(s)
- Jixiang Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Baijuan Yue
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xuhua Zhang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xin Guo
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Zilong Sun
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Ruiyan Niu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| |
Collapse
|
17
|
Liang J, Wang H, Zeng Y, Qu Y, Liu Q, Zhao F, Duan J, Jiang Y, Li S, Ying J, Li J, Mu D. Physical exercise promotes brain remodeling by regulating epigenetics, neuroplasticity and neurotrophins. Rev Neurosci 2021; 32:615-629. [PMID: 33583156 DOI: 10.1515/revneuro-2020-0099] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/26/2020] [Indexed: 02/05/2023]
Abstract
Exercise has been shown to have beneficial effects on brain functions in humans and animals. Exercise can improve memory and learning in age-related neurodegenerative diseases. In animal models, physical exercise regulates epigenetics, promotes synaptic plasticity and hippocampal neurogenesis, regulates the expression levels of neurotrophic factors, and improves cognitive function. Therefore, exercise is very important for brain rehabilitation and remodeling. The purpose of this review is to explore the mechanisms by which exercise exerts positive effects on brain function. This knowledge implies that physical exercise can be used as a non-drug therapy for neurological diseases.
Collapse
Affiliation(s)
- Juan Liang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Huiqing Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Yan Zeng
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Qian Liu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Fengyan Zhao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Jianan Duan
- West China Hospital, Sichuan University, Chengdu610041, China
| | - Yin Jiang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Shiping Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Junjie Ying
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Jinhui Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu610041, China
| |
Collapse
|
18
|
Improta-Caria AC, Nonaka CKV, Cavalcante BRR, De Sousa RAL, Aras Júnior R, Souza BSDF. Modulation of MicroRNAs as a Potential Molecular Mechanism Involved in the Beneficial Actions of Physical Exercise in Alzheimer Disease. Int J Mol Sci 2020; 21:E4977. [PMID: 32674523 PMCID: PMC7403962 DOI: 10.3390/ijms21144977] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer disease (AD) is one of the most common neurodegenerative diseases, affecting middle-aged and elderly individuals worldwide. AD pathophysiology involves the accumulation of beta-amyloid plaques and neurofibrillary tangles in the brain, along with chronic neuroinflammation and neurodegeneration. Physical exercise (PE) is a beneficial non-pharmacological strategy and has been described as an ally to combat cognitive decline in individuals with AD. However, the molecular mechanisms that govern the beneficial adaptations induced by PE in AD are not fully elucidated. MicroRNAs are small non-coding RNAs involved in the post-transcriptional regulation of gene expression, inhibiting or degrading their target mRNAs. MicroRNAs are involved in physiological processes that govern normal brain function and deregulated microRNA profiles are associated with the development and progression of AD. It is also known that PE changes microRNA expression profile in the circulation and in target tissues and organs. Thus, this review aimed to identify the role of deregulated microRNAs in the pathophysiology of AD and explore the possible role of the modulation of microRNAs as a molecular mechanism involved in the beneficial actions of PE in AD.
Collapse
Affiliation(s)
- Alex Cleber Improta-Caria
- Post-Graduate Program in Medicine and Health, Faculty of Medicine, Federal University of Bahia, Bahia 40110-909, Brazil; (A.C.I.-C.); (R.A.J.)
- University Hospital Professor Edgard Santos, Bahia 40110-909, Brazil
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Bahia 40110-909, Brazil; (C.K.V.N.); (B.R.R.C.)
| | - Carolina Kymie Vasques Nonaka
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Bahia 40110-909, Brazil; (C.K.V.N.); (B.R.R.C.)
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro 20000-000, Brazil
| | - Bruno Raphael Ribeiro Cavalcante
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Bahia 40110-909, Brazil; (C.K.V.N.); (B.R.R.C.)
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro 20000-000, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Bahia 40110-909, Brazil
| | - Ricardo Augusto Leoni De Sousa
- Physiological Science Multicentric Program, Federal University of Valleys´ Jequitinhonha and Mucuri, Minas Gerais 30000-000, Brazil;
| | - Roque Aras Júnior
- Post-Graduate Program in Medicine and Health, Faculty of Medicine, Federal University of Bahia, Bahia 40110-909, Brazil; (A.C.I.-C.); (R.A.J.)
- University Hospital Professor Edgard Santos, Bahia 40110-909, Brazil
| | - Bruno Solano de Freitas Souza
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Bahia 40110-909, Brazil; (C.K.V.N.); (B.R.R.C.)
- D’Or Institute for Research and Education (IDOR), Rio de Janeiro 20000-000, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Bahia 40110-909, Brazil
| |
Collapse
|
19
|
Kang JM, Seo D, Lee SH, Lee DH, Kim YK, Choi BH, Lee SH. Genome-wide association study to identify canine hip dysplasia loci in dogs. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2020; 62:306-312. [PMID: 32568271 PMCID: PMC7288236 DOI: 10.5187/jast.2020.62.3.306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 11/20/2022]
Abstract
Korean army dogs are raised for special purposes and have contributed much to
society. However, several diseases occur in dogs. Canine hip dysplasia (CHD) is
a musculoskeletal disorder that occurs frequently in Korean army dogs and
interferes with their activities. If we could control CHD, this would have a
positive effect on their performance. This study performed a genome-wide
association study (GWAS) in 69 Korean army dogs to find significant loci for CHD
using 170K single nucleotide polymorphisms (SNPs). CHD was classified according
to the Norberg angle criterion. The control group comprised 62 dogs classified
as relatively normal, and 7 dogs with severe CHD formed the case group. From the
GWAS analysis, we concluded that SNPs present on chromosome 4 might have a
significant impact on the overall expression of canine hip dysplasia.
Collapse
Affiliation(s)
- Ji Min Kang
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Dongwon Seo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Soo Hyun Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Doo Ho Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Yeong Kuk Kim
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Bong Hwan Choi
- Animal Genomics & Bioinformatics Division, National Institute of Animal Science, RDA, Wanju 55365, Korea
| | - Seung Hwan Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
20
|
How the enriched get richer? Experience-dependent modulation of microRNAs and the therapeutic effects of environmental enrichment. Pharmacol Biochem Behav 2020; 195:172940. [PMID: 32413435 DOI: 10.1016/j.pbb.2020.172940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/23/2020] [Accepted: 05/01/2020] [Indexed: 11/20/2022]
Abstract
Environmental enrichment and physical exercise have many well-established health benefits. Although these environmental manipulations are known to delay symptom onset and progression in a variety of neurological and psychiatric conditions, the mechanisms underlying these effects remain poorly understood. A notable candidate molecular mechanism is that of microRNA, a family of small noncoding RNAs that are important regulators of gene expression. Research investigating the many diverse roles of microRNAs has greatly expanded over the past decade, with several promising preclinical and clinical studies highlighting the role of dysregulated microRNA expression (in the brain, blood and other peripheral systems) in understanding the aetiology of disease. Altered microRNA levels have also been described following environmental interventions such as exercise and environmental enrichment in non-clinical populations and wild-type animals, as well as in some brain disorders and associated preclinical models. Recent studies exploring the effects of stimulating environments on microRNA levels in the brain have revealed an array of changes that are likely to have important downstream effects on gene expression, and thus may regulate a variety of cellular processes. Here we review literature that explores the differential expression of microRNAs in rodents following environmental enrichment and exercise, in both healthy control animals and preclinical models of relevance to neurological and psychiatric disorders.
Collapse
|
21
|
Xu L, Zheng YL, Yin X, Xu SJ, Tian D, Zhang CY, Wang S, Ma JZ. Excessive Treadmill Training Enhances Brain-Specific MicroRNA-34a in the Mouse Hippocampus. Front Mol Neurosci 2020; 13:7. [PMID: 32082120 PMCID: PMC7002558 DOI: 10.3389/fnmol.2020.00007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/13/2020] [Indexed: 01/19/2023] Open
Abstract
Background: An imbalance between total training load and total recovery may cause overtraining (OT). The purpose of the present study was to verify the effects of OT on the expression of brain-derived neurotrophic factor (BDNF), its receptor tropomyosin receptor kinase B (TrkB) and p75 and the dynamic expression patterns of brain-specific miR-34a and miR-124 or inflammation-related miR-21 and miR-132 in the mouse hippocampus. Method: Eight weeks old C57BL/6J mice were randomly assigned to the control (CON), normal training (NT) and OT groups. An 8-week OT training protocol was applied to evaluate the phenotype of mice endurance (incremental load test, ILT) and cognitive capacity (Morris water maze test). We used qRT-PCR and immunoblotting to detect changes in the molecular level of hippocampal samples. Result: Compared with the CON, both NT and OT decreased bodyweight after 8-week training. After 8-week of training, NT increased the exhaustion velocity (EV) while the EV of OT was lower than NT. Mice in NT decreased the escape latency than CON. The percentage of time spent in the probe quadrant and the number of crossing platform times in NT were higher than CON and OT. The BDNF, p75 and TrkB mRNA levels were increased in NT than CON, only the p75 mRNA was increased in OT. The NT exhibited increased protein levels of BDNF and TrkB compared to CON. The protein expression of BDNF was decreased in OT than NT and CON. The protein level of p75 in the OT was higher than in NT and CON. In addition, the phosphorylation level of TrkB in OT was higher than CON and NT. Only the miR-34a level was increased in the OT. Moreover, the expression of miR-34a was found to be negatively correlated with the expression of BDNF, and the increase in miR-34a level was accompanied by a decrease in performance. Conclusion: In summary, the training-evoked increase in the BDNF level may help to improve performance, whereas this conditioning is lost after OT. Moreover, miR-34a potentially mediated changes in the expression of BDNF and may reflect the decrease in performance after OT.
Collapse
Affiliation(s)
- Lin Xu
- Department of Exercise and Health, Nanjing Sport Institute, Nanjing, China.,The Research Center of Military Exercise Science, The Army Engineering University of PLA, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Yi Li Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Xin Yin
- Department of Exercise and Health, Nanjing Sport Institute, Nanjing, China.,The Research Center of Military Exercise Science, The Army Engineering University of PLA, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Sheng Jia Xu
- The Research Center of Military Exercise Science, The Army Engineering University of PLA, Nanjing, China
| | - Dong Tian
- The Research Center of Military Exercise Science, The Army Engineering University of PLA, Nanjing, China
| | - Chen Yu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Sen Wang
- Department of Geriatric Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ji Zheng Ma
- The Research Center of Military Exercise Science, The Army Engineering University of PLA, Nanjing, China
| |
Collapse
|
22
|
Haack F, Trakooljul N, Gley K, Murani E, Hadlich F, Wimmers K, Ponsuksili S. Deep sequencing of small non-coding RNA highlights brain-specific expression patterns and RNA cleavage. RNA Biol 2019; 16:1764-1774. [PMID: 31432767 DOI: 10.1080/15476286.2019.1657743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
With the advance of high-throughput sequencing technology numerous new regulatory small RNAs have been identified, that broaden the variety of processing mechanisms and functions of non-coding RNA. Here we explore small non-coding RNA (sncRNA) expression in central parts of the physiological stress and anxiety response system. Therefore, we characterize the sncRNA profile of tissue samples from Amygdala, Hippocampus, Hypothalamus and Adrenal Gland, obtained from 20 pigs. Our analysis reveals that all tissues but Amygdala and Hippocampus possess distinct, tissue-specific expression pattern of miRNA that are associated with Hypoxia, stress responses as well as memory and fear conditioning. In particular, we observe marked differences in the expression profile of limbic tissues compared to those associated to the HPA/stress axis, with a surprisingly high aggregation of 3´-tRNA halves in Amygdala and Hippocampus. Since regulation of sncRNA and RNA cleavage plays a pivotal role in the central nervous system, our work provides seminal insights in the role/involvement of sncRNA in the transcriptional and post-transcriptional regulation of negative emotion, stress and coping behaviour in pigs, and mammals in general.
Collapse
Affiliation(s)
- Fiete Haack
- Institute for Genome Biology, Functional Genome Analysis Research Unit, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Nares Trakooljul
- Institute for Genome Biology, Genomics Research Unit, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Kevin Gley
- Institute for Genome Biology, Functional Genome Analysis Research Unit, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Eduard Murani
- Institute for Genome Biology, Genomics Research Unit, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Frieder Hadlich
- Institute for Genome Biology, Functional Genome Analysis Research Unit, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Klaus Wimmers
- Institute for Genome Biology, Genomics Research Unit, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.,Faculty of Agricultural and Environmental Sciences, University Rostock, Rostock, Germany
| | - Siriluck Ponsuksili
- Institute for Genome Biology, Functional Genome Analysis Research Unit, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
23
|
Maurus I, Hasan A, Röh A, Takahashi S, Rauchmann B, Keeser D, Malchow B, Schmitt A, Falkai P. Neurobiological effects of aerobic exercise, with a focus on patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 2019; 269:499-515. [PMID: 31115660 DOI: 10.1007/s00406-019-01025-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/15/2019] [Indexed: 02/08/2023]
Abstract
Schizophrenia is a severe neuropsychiatric disease that is associated with neurobiological alterations in multiple brain regions and peripheral organs. Negative symptoms and cognitive deficits are present in about half of patients and are difficult to treat, leading to an unfavorable functional outcome. To investigate the impact of aerobic exercise on various neurobiological parameters, we conducted a narrative review. Add-on aerobic exercise was shown to be effective in improving negative and general symptoms, cognition, global functioning, and quality of life in schizophrenia patients. Based on findings in healthy individuals and animal models, this qualitative review gives an overview of different lines of evidence on how aerobic exercise impacts brain structure and function and molecular mechanisms in patients with schizophrenia and how its effects could be related to clinical and functional outcomes. Structural magnetic resonance imaging studies showed a volume increase in the hippocampus and cortical regions in schizophrenia patients and healthy controls after endurance training. However, results are inconsistent and individual risk factors may influence neuroplastic processes. Animal studies indicate that alterations in epigenetic mechanisms and synaptic plasticity are possible underlying mechanisms, but that differentiation of glial cells, angiogenesis, and possibly neurogenesis may also be involved. Clinical and animal studies also revealed effects of aerobic exercise on the hypothalamus-pituitary-adrenal axis, growth factors, and immune-related mechanisms. Some findings indicate effects on neurotransmitters and the endocannabinoid system. Further research is required to clarify how individual risk factors in schizophrenia patients mediate or moderate the neurobiological effects of exercise on brain and cognition. Altogether, aerobic exercise is a promising candidate in the search for pathophysiology-based add-on interventions in schizophrenia.
Collapse
Affiliation(s)
- Isabel Maurus
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany.
| | - Alkomiet Hasan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - Astrid Röh
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - Shun Takahashi
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany.,Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Boris Rauchmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany.,Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Berend Malchow
- Department of Psychiatry and Psychotherapy, University Hospital Jena, Jena, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany.,Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of Sao Paulo, São Paulo, Brazil
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| |
Collapse
|
24
|
Wang M, Su P, Liu Y, Zhang X, Yan J, An X, Wang X, Gu S. Abnormal expression of circRNA_089763 in the plasma exosomes of patients with post‑operative cognitive dysfunction after coronary artery bypass grafting. Mol Med Rep 2019; 20:2549-2562. [PMID: 31524256 PMCID: PMC6691254 DOI: 10.3892/mmr.2019.10521] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/09/2019] [Indexed: 12/24/2022] Open
Abstract
Post-operative cognitive dysfunction (POCD) is a complication of the central nervous system characterized by mental disorders, anxiety, personality changes and impaired memory. POCD occurs frequently after coronary artery bypass grafting (CABG) and can severely affect quality of life for patients. To date, the development of POCD biomarkers remains a challenge. Alterations in the expression of non-coding RNAs from brain tissue and peripheral blood have been linked to POCD. The present study aimed to detect the differential circular RNAs (circRNAs) in plasma exosomes of patients with POCD after CABG. The relative expression levels of circRNAs were analyzed using circRNA microarray analysis in the plasma exosomes of patients with POCD. Differentially altered circRNAs (P<0.05, fold change >1.5) were validated by reverse transcription-quantitative PCR in the plasma exosomes of patients with POCD. The target genes of the microRNAs were predicted using bioinformatics analysis. The functions and signaling pathways of these target genes were investigated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analyses. The microarray results indicated that the levels of nine circRNAs in patients with POCD were higher than those in the control subjects; and six circRNAs were at a lower level than those in control subjects. The RT-qPCR results from patients with POCD showed that only circRNA_089763 of the 15 circRNAs identified was significantly increased compared with control subjects. circRNA target gene prediction and functional annotation analysis showed significant enrichment in several GO terms and pathways associated with POCD. The present study provides evidence for the abnormal expression of POCD-induced circRNA_089763 in human plasma exosomes, as well as the involvement of POCD.
Collapse
Affiliation(s)
- Maozhou Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Pixiong Su
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Yan Liu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Xitao Zhang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Jun Yan
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Xiangguang An
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Xiaobin Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Song Gu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| |
Collapse
|
25
|
Sun Q, Zeng Q, Chen Y, Zhang M, Wei L, Chen P. Long intergenic noncoding RNA p21 suppresses the apoptosis of hippocampus neurons in streptozotocin‐diabetic mice by sponging microRNA‐221 through upregulation of FOS. J Cell Physiol 2019; 234:21113-21125. [PMID: 31081202 DOI: 10.1002/jcp.28714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 01/03/2023]
Affiliation(s)
- Qin Sun
- Department of Geriatrics Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital Chengdu China
| | - Qing‐Cui Zeng
- Department of Geriatrics Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital Chengdu China
| | - Yan‐Qiu Chen
- Department of Neurology People's Hospital of Chongqing Yubei District Chongqing China
| | - Min Zhang
- Department of Geriatrics Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital Chengdu China
| | - Ling‐Ling Wei
- Center of Diabetes Mellitus Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital Chengdu China
- School of Medicine, University of Electronic Science and Technology of China Chengdu China
| | - Ping Chen
- Department of Geriatrics Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital Chengdu China
| |
Collapse
|
26
|
Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, Ghaffari SH. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J Cell Physiol 2019; 234:5451-5465. [PMID: 30471116 DOI: 10.1002/jcp.27486] [Citation(s) in RCA: 1261] [Impact Index Per Article: 210.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNAs, which function in posttranscriptional regulation of gene expression. They are powerful regulators of various cellular activities including cell growth, differentiation, development, and apoptosis. They have been linked to many diseases, and currently miRNA-mediated clinical trial has shown promising results for treatment of cancer and viral infection. This review provides an overview and update on miRNAs biogenesis, regulation of miRNAs expression, their biological functions, and role of miRNAs in epigenetics and cell-cell communication. In addition, alteration of miRNAs following exercise, their association with diseases, and therapeutic potential will be explained. Finally, miRNA bioinformatics tools and conventional methods for miRNA detection and quantification will be discussed.
Collapse
Affiliation(s)
- Kioomars Saliminejad
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Shahrzad Soleymani Fard
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hamidollah Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Li J, Zhao J, Wang H, Li X, Liu A, Qin Q, Li B. MicroRNA-140-3p enhances the sensitivity of hepatocellular carcinoma cells to sorafenib by targeting pregnenolone X receptor. Onco Targets Ther 2018; 11:5885-5894. [PMID: 30271172 PMCID: PMC6149869 DOI: 10.2147/ott.s179509] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Pregnane X receptor (PXR), which is a member of the nuclear receptor protein family (nuclear receptor subfamily 1 group I member 2 [NR 1I2]), mediates the drug-resistance in the hepatocellular carcinoma (HCC) via enhancing the expression of drug-resistance-related genes which accelerate the clearance of antitumor drugs, eg, sorafenib. However, there are few reports on miRNA targeting PXR participating in the epigenetic regulation of PXR in HCC cells. Materials and methods TargetScan 7.2, an online method, was used to predict the miRNAs potentially targeting PXR. The expression of PXR and PXR downstream genes was detected by quantitative real-time PCR (qPCR) and Western blot. The clearance of sorafenib in HCC cells was monitored by liquid chromatograph-mass spectrometer/mass spectrometer (LC-MS/MS). The effects of miRNA on sorafenib’s efficacy were examined by in vitro methods, eg, MTT, and in vivo methods, eg, subcutaneous or intrahepatic tumor model. Results By virtual screening, we identified that miR-140-3p possibly targets PXR and then confirmed that the overexpression of miR-140-3p via lentiviral particles inhibited the expression of PXR in HCC cells. The downregulation of PXR’s expression by miR-140-3p led to the reduction of PXR downstream genes’ expression, which finally resulted in the decelerating clearance of sorafenib in HCC cells and enhanced the sensitivity of HCC cells to sorafenib. The effect of miR-140-3p could not modulate the expression of mutated PXR and the effect of miR-140-3p could also be inhibited by miR-140-3p’s inhibitor. Moreover, miR-140-3p enhanced the anti-tumor effect of sorafenib in both the subcutaneous and intrahepatic HCC tumor models. Conclusion Our study suggests that targeting PXR by miR-140-3p is a promising strategy for enhancing sorafenib’s efficacy during HCC treatment.
Collapse
Affiliation(s)
- Jiaqi Li
- Basic Medicine College, Navy Military Medical University of Chinese PLA, Shanghai 200433, People's Republic of China, .,Center for Clinical Laboratory, The 302nd Hospital of Chinese PLA, Beijing 100039, People's Republic of China,
| | - Jing Zhao
- Center for Clinical Laboratory, The 302nd Hospital of Chinese PLA, Beijing 100039, People's Republic of China,
| | - Huan Wang
- Center for Clinical Laboratory, The 302nd Hospital of Chinese PLA, Beijing 100039, People's Republic of China,
| | - Xiaohan Li
- Center for Clinical Laboratory, The 302nd Hospital of Chinese PLA, Beijing 100039, People's Republic of China,
| | - Aixia Liu
- Center for Clinical Laboratory, The 302nd Hospital of Chinese PLA, Beijing 100039, People's Republic of China,
| | - Qin Qin
- Basic Medicine College, Navy Military Medical University of Chinese PLA, Shanghai 200433, People's Republic of China, .,Department of Laboratory Medicine, Changhai Hospital, Navy Military Medical University of Chinese PLA, Shanghai 200433, People's Republic of China
| | - Boan Li
- Basic Medicine College, Navy Military Medical University of Chinese PLA, Shanghai 200433, People's Republic of China, .,Center for Clinical Laboratory, The 302nd Hospital of Chinese PLA, Beijing 100039, People's Republic of China,
| |
Collapse
|