1
|
Lu R, Lee BJ, Lee E. Three-Dimensional Lymphatics-on-a-Chip Reveals Distinct, Size-Dependent Nanoparticle Transport Mechanisms in Lymphatic Drug Delivery. ACS Biomater Sci Eng 2024; 10:5752-5763. [PMID: 39176471 DOI: 10.1021/acsbiomaterials.4c01005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Although nanoparticle-based lymphatic drug delivery systems promise better treatment of cancer, infectious disease, and immune disease, their clinical translations are limited by low delivery efficiencies and unclear transport mechanisms. Here, we employed a three-dimensional (3D) lymphatics-on-a-chip featuring an engineered lymphatic vessel (LV) capable of draining interstitial fluids including nanoparticles. We tested lymphatic drainage of different sizes (30, 50, and 70 nm) of PLGA-b-PEG nanoparticles (NPs) using the lymphatics-on-a-chip device. In this study, we discovered that smaller NPs (30 and 50 nm) transported faster than larger NPs (70 nm) through the interstitial space, as expected, but the smaller NPs were captured by lymphatic endothelial cells (LECs) and accumulated within their cytosol, delaying NP transport into the lymphatic lumen, which was not observed in larger NPs. To examine the mechanisms of size-dependent NP transports, we employed four inhibitors, dynasore, nystatin, amiloride, and adrenomedullin, to selectively block dynamin-, caveolin-, macropinocytosis-mediated endocytosis-, and cell junction-mediated paracellular transport. Inhibiting dynamin using dynasore enhanced the transport of smaller NPs (30 and 50 nm) into the lymphatic lumen, minimizing cytosolic accumulation, but showed no effect on larger NP transport. Interestingly, the inhibition of caveolin by nystatin decreased the lymphatic transport of larger NPs without affecting the smaller NP transport, indicating distinct endocytosis mechanisms used by different sizes of NPs. Macropinocytosis inhibition by amiloride did not change the drainage of all sizes of NPs; however, paracellular transport inhibition by adrenomedullin blocked the lymphatic transport of NPs of all sizes. We further revealed that smaller NPs were captured in the Rab7-positive late-stage lymphatic endosomes to delay their lymphatic drainage, which was reversed by dynamin inhibition, suggesting that Rab7 is a potential target to enhance the lymphatic delivery of smaller NPs. Together, our 3D lymphatics-on-a-chip model unveils size-dependent NP transport mechanisms in lymphatic drug delivery.
Collapse
Affiliation(s)
- Renhao Lu
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Benjamin J Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Esak Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
2
|
McCright J, Yarmovsky J, Maisel K. Para- and Transcellular Transport Kinetics of Nanoparticles across Lymphatic Endothelial Cells. Mol Pharm 2024; 21:1160-1169. [PMID: 37851841 PMCID: PMC10923144 DOI: 10.1021/acs.molpharmaceut.3c00720] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Lymphatic vessels have received significant attention as drug delivery targets, as they shuttle materials from peripheral tissues to the lymph nodes, where adaptive immunity is formed. Delivery of immune modulatory materials to the lymph nodes via lymphatic vessels has been shown to enhance their efficacy and also improve the bioavailability of drugs when delivered to intestinal lymphatic vessels. In this study, we generated a three-compartment model of a lymphatic vessel with a set of kinematic differential equations to describe the transport of nanoparticles from the surrounding tissues into lymphatic vessels. We used previously published data and collected additional experimental parameters, including the transport efficiency of nanoparticles over time, and also examined how nanoparticle formulation affected the cellular transport mechanisms using small molecule inhibitors. These experimental data were incorporated into a system of kinematic differential equations, and nonlinear, least-squares curve fitting algorithms were employed to extrapolate transport coefficients within our model. The subsequent computational framework produced some of the first parameters to describe transport kinetics across lymphatic endothelial cells and allowed for the quantitative analysis of the driving mechanisms of transport into lymphatic vessels. Our model indicates that transcellular mechanisms, such as micro- and macropinocytosis, drive transport into lymphatics. This information is crucial to further design strategies that will modulate lymphatic transport for drug delivery, particularly in diseases like lymphedema, where normal lymphatic functions are impaired.
Collapse
Affiliation(s)
- Jacob McCright
- Department of Bioengineering, University of Maryland College Park, College Park, Maryland 20742, United States
| | - Jenny Yarmovsky
- Department of Bioengineering, University of Maryland College Park, College Park, Maryland 20742, United States
| | - Katharina Maisel
- Department of Bioengineering, University of Maryland College Park, College Park, Maryland 20742, United States
| |
Collapse
|
3
|
Catalano F, Vlaar EC, Katsavelis D, Dammou Z, Huizer TF, van den Bosch JC, Hoogeveen-Westerveld M, van den Hout HJ, Oussoren E, Ruijter GJ, Schaaf G, Pike-Overzet K, Staal FJ, van der Ploeg AT, Pijnappel WP. Tagged IDS causes efficient and engraftment-independent prevention of brain pathology during lentiviral gene therapy for Mucopolysaccharidosis type II. Mol Ther Methods Clin Dev 2023; 31:101149. [PMID: 38033460 PMCID: PMC10684800 DOI: 10.1016/j.omtm.2023.101149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023]
Abstract
Mucopolysaccharidosis type II (OMIM 309900) is a lysosomal storage disorder caused by iduronate 2-sulfatase (IDS) deficiency and accumulation of glycosaminoglycans, leading to progressive neurodegeneration. As intravenously infused enzyme replacement therapy cannot cross the blood-brain barrier (BBB), it fails to treat brain pathology, highlighting the unmet medical need to develop alternative therapies. Here, we test modified versions of hematopoietic stem and progenitor cell (HSPC)-mediated lentiviral gene therapy (LVGT) using IDS tagging in combination with the ubiquitous MND promoter to optimize efficacy in brain and to investigate its mechanism of action. We find that IDS tagging with IGF2 or ApoE2, but not RAP12x2, improves correction of brain heparan sulfate and neuroinflammation at clinically relevant vector copy numbers. HSPC-derived cells engrafted in brain show efficiencies highest in perivascular areas, lower in choroid plexus and meninges, and lowest in parenchyma. Importantly, the efficacy of correction was independent of the number of brain-engrafted cells. These results indicate that tagged versions of IDS can outperform untagged IDS in HSPC-LVGT for the correction of brain pathology in MPS II, and they imply both cell-mediated and tag-mediated correction mechanisms, including passage across the BBB and increased uptake, highlighting their potential for clinical translation.
Collapse
Affiliation(s)
- Fabio Catalano
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Eva C. Vlaar
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Drosos Katsavelis
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Zina Dammou
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Tessa F. Huizer
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Jeroen C. van den Bosch
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Marianne Hoogeveen-Westerveld
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Hannerieke J.M.P. van den Hout
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Esmeralda Oussoren
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - George J.G. Ruijter
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Gerben Schaaf
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - Karin Pike-Overzet
- Department of Immunology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Frank J.T. Staal
- Department of Immunology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
- Department of Pediatrics, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Ans T. van der Ploeg
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| | - W.W.M. Pim Pijnappel
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Department of Pediatrics, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
- Center for Lysosomal and Metabolic Diseases, Erasmus MC University Medical Center, Rotterdam 3015GE, the Netherlands
| |
Collapse
|
4
|
Murdoch SÓ, Aiello EM, Doyle FJ. Pharmacokinetic Model-Based Control across the Blood-Brain Barrier for Circadian Entrainment. Int J Mol Sci 2023; 24:14830. [PMID: 37834278 PMCID: PMC10573769 DOI: 10.3390/ijms241914830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
The ability to shift circadian phase in vivo has the potential to offer substantial health benefits. However, the blood-brain barrier prevents the absorption of the majority of large and many small molecules, posing a challenge to neurological pharmaceutical development. Motivated by the presence of the circadian molecule KL001, which is capable of causing phase shifts in a circadian oscillator, we investigated the pharmacokinetics of different neurological pharmaceuticals on the dynamics of circadian phase. Specifically, we developed and validated five different transport models that describe drug concentration profiles of a circadian pharmaceutical at the brain level under oral administration and designed a nonlinear model predictive control (MPC)-based framework for phase resetting. Performance of the novel control algorithm based on the identified pharmacokinetic models was demonstrated through simulations of real-world misalignment scenarios due to jet lag. The time to achieve a complete phase reset for 11-h phase delay ranged between 48 and 72 h, while a 5-h phase advance was compensated in 30 to 60 h. This approach provides mechanistic insight into the underlying structure of the circadian oscillatory system and thus leads to a better understanding of the feasibility of therapeutic manipulations of the system.
Collapse
Affiliation(s)
- Síofra Ó. Murdoch
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA; (S.Ó.M.); (E.M.A.)
| | - Eleonora M. Aiello
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA; (S.Ó.M.); (E.M.A.)
- Sansum Diabetes Research Institute, Santa Barbara, CA 93105, USA
| | - Francis J. Doyle
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA; (S.Ó.M.); (E.M.A.)
- Sansum Diabetes Research Institute, Santa Barbara, CA 93105, USA
| |
Collapse
|
5
|
Gupta D, Wiklander OP, Wood MJ, El-Andaloussi S. Biodistribution of therapeutic extracellular vesicles. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:170-190. [PMID: 39697988 PMCID: PMC11648525 DOI: 10.20517/evcna.2023.12] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 12/20/2024]
Abstract
The field of extracellular vesicles (EVs) has seen a tremendous paradigm shift in the past two decades, from being regarded as cellular waste bags to being considered essential mediators in intercellular communication. Their unique ability to transfer macromolecules across cells and biological barriers has made them a rising star in drug delivery. Mounting evidence suggests that EVs can be explored as efficient drug delivery vehicles for a range of therapeutic macromolecules. In contrast to many synthetic delivery systems, these vesicles appear exceptionally well tolerated in vivo. This tremendous development in the therapeutic application of EVs has been made through technological advancement in labelling and understanding the in vivo biodistribution of EVs. Here in this review, we have summarised the recent findings in EV in vivo pharmacokinetics and discussed various biological barriers that need to be surpassed to achieve tissue-specific delivery.
Collapse
Affiliation(s)
- Dhanu Gupta
- Department of Paediatrics. University of Oxford, Oxford OX3 7TY, UK
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Huddinge 14151, Sweden
| | - Oscar P.B Wiklander
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Huddinge 14151, Sweden
| | - Matthew J.A Wood
- Department of Paediatrics. University of Oxford, Oxford OX3 7TY, UK
| | - Samir El-Andaloussi
- Biomolecular Medicine, Division of Biomolecular and Cellular Medicine, Department of Laboratory Medicine, Karolinska Institutet, Huddinge 14151, Sweden
| |
Collapse
|
6
|
Sepasi T, Ghadiri T, Ebrahimi-Kalan A, Bani F, Talebi M, Rahbarghazi R, Khodakarimi S, Beyrampour-Basmenj H, Seidi K, Abbaspour-Ravasjani S, Sadeghi MR, Zarebkohan A, Gao H. CDX-modified chitosan nanoparticles remarkably reduce therapeutic dose of fingolimod in the EAE model of mice. Int J Pharm 2023; 636:122815. [PMID: 36907279 DOI: 10.1016/j.ijpharm.2023.122815] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/20/2023] [Accepted: 03/05/2023] [Indexed: 03/13/2023]
Abstract
Fingolimod (Fin), an FDA-approved drug, is used to control relapsing-remitting multiple sclerosis (MS). This therapeutic agent faces crucial drawbacks like poor bioavailability rate, risk of cardiotoxicity, potent immunosuppressive effects, and high cost. Here, we aimed to assess the therapeutic efficacy of nano-formulated Fin in a mouse model of experimental autoimmune encephalomyelitis (EAE). Results showed the suitability of the present protocol in the synthesis of Fin-loaded CDX-modified chitosan (CS) nanoparticles (NPs) (Fin@CSCDX) with suitable physicochemical features. Confocal microscopy confirmed the appropriate accumulation of synthesized NPs within the brain parenchyma. Compared to the control EAE mice, INF-γ levels were significantly reduced in the group that received Fin@CSCDX (p < 0.05). Along with these data, Fin@CSCDX reduced the expression of TBX21, GATA3, FOXP3, and Rorc associated with the auto-reactivation of T cells (p < 0.05). Histological examination indicated a low-rate lymphocyte infiltration into the spinal cord parenchyma after the administration of Fin@CSCDX. Of note, HPLC data revealed that the concentration of nano-formulated Fin was about 15-fold less than Fin therapeutic doses (TD) with similar reparative effects. Neurological scores were similar in both groups that received nano-formulated fingolimod 1/15th of free Fin therapeutic amounts. Fluorescence imaging indicated that macrophages and especially microglia can efficiently uptake Fin@CSCDX NPs, leading to the regulation of pro-inflammatory responses. Taken together, current results indicated that CDX-modified CS NPs provide a suitable platform not only for the efficient reduction of Fin TD but also these NPs can target the brain immune cells during neurodegenerative disorders.
Collapse
Affiliation(s)
- Tina Sepasi
- Department of Medical Nanotechnology, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahereh Ghadiri
- Department of Neuroscience and Cognitive, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi-Kalan
- Department of Neuroscience and Cognitive, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Bani
- Department of Medical Nanotechnology, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Talebi
- Stem Cells Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cells Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Khodakarimi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Neuroscience and Cognitive, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Beyrampour-Basmenj
- Department of Medical Biotechnology, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khaled Seidi
- Polymer Research Laboratory, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | | | - Mohammad-Reza Sadeghi
- Department of Medical Biotechnology, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Advanced Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
7
|
Alkahtani S, AL-Johani NS, Alarifi S. Mechanistic Insights, Treatment Paradigms, and Clinical Progress in Neurological Disorders: Current and Future Prospects. Int J Mol Sci 2023; 24:1340. [PMID: 36674852 PMCID: PMC9865061 DOI: 10.3390/ijms24021340] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Neurodegenerative diseases (NDs) are a major cause of disability and are related to brain development. The neurological signs of brain lesions can vary from mild clinical shortfalls to more delicate and severe neurological/behavioral symptoms and learning disabilities, which are progressive. In this paper, we have tried to summarize a collective view of various NDs and their possible therapeutic outcomes. These diseases often occur as a consequence of the misfolding of proteins post-translation, as well as the dysfunctional trafficking of proteins. In the treatment of neurological disorders, a challenging hurdle to cross regarding drug delivery is the blood-brain barrier (BBB). The BBB plays a unique role in maintaining the homeostasis of the central nervous system (CNS) by exchanging components between the circulations and shielding the brain from neurotoxic pathogens and detrimental compounds. Here, we outline the current knowledge about BBB deterioration in the evolving brain, its origin, and therapeutic interventions. Additionally, we summarize the physiological scenarios of the BBB and its role in various cerebrovascular diseases. Overall, this information provides a detailed account of BBB functioning and the development of relevant treatments for neurological disorders. This paper will definitely help readers working in the field of neurological scientific communities.
Collapse
Affiliation(s)
- Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | | |
Collapse
|
8
|
Van Dinh Q, Liu J, Dutta P. Effect of Slp4-a on Membrane Bending During Prefusion of Vesicles in Blood-Brain Barrier. J Biomech Eng 2023; 145:011006. [PMID: 35838328 PMCID: PMC9445323 DOI: 10.1115/1.4054985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/08/2022] [Indexed: 11/08/2022]
Abstract
Vesicle exocytosis is a promising pathway for brain drug delivery through the blood-brain barrier to treat neurodegenerative diseases. In vesicle exocytosis, the membrane fusion process is initiated by the calcium sensor protein named synaptotagmin-like protein4-a (Slp4-a). Understanding conformational changes of Slp4-a during the prefusion stage of exocytosis will help to develop vesicle-based drug delivery to the brain. In this work, we use molecular dynamics (MD) simulations with a hybrid force field coupling united-atom protein model with MARTINI coarse-grained (CG) solvent to capture the conformational changes of Slp4-a during the prefusion stage. These hybrid coarse-grained simulations are more efficient than all-atom MD simulations and can capture protein interactions and conformational changes. Our simulation results show that the calcium ions play critical roles during the prefusion stage. Only one calcium ion can remain in each calcium-binding pocket of Slp4-a C2 domains. The C2B domain of calcium-unbound Slp4-a remains parallel to the endothelial membrane, while the C2B domain of calcium-bound Slp4-a rotates perpendicular to the endothelial membrane to approach the vesicular membrane. For the calcium-bound case, three Slp4-a proteins can effectively bend lipid membranes at the prefusion stage, which could later trigger lipid stalk between membranes. This work provides a better understanding how C2 domains of Slp4-a operate during vesicle exocytosis from an endothelial cell.
Collapse
Affiliation(s)
- Quyen Van Dinh
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920
| | - Jin Liu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920
| | - Prashanta Dutta
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920
| |
Collapse
|
9
|
Lu B, Wang J, Scheepers PTJ, Hendriks AJ, Nolte TM. Generic prediction of exocytosis rate constants by size-based surface energies of nanoparticles and cells. Sci Rep 2022; 12:17813. [PMID: 36280701 PMCID: PMC9592603 DOI: 10.1038/s41598-022-20761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/19/2022] [Indexed: 01/19/2023] Open
Abstract
Nanotechnology brings benefits in fields such as biomedicine but nanoparticles (NPs) may also have adverse health effects. The effects of surface-modified NPs at the cellular level have major implications for both medicine and toxicology. Semi-empirical and mechanism-based models aid to understand the cellular transport of various NPs and its implications for quantitatively biological exposure while avoiding large-scale experiments. We hypothesized relationships between NPs-cellular elimination, surface functionality and elimination pathways by cells. Surface free energy components were used to characterize the transport of NPs onto membranes and with lipid vesicles, covering both influences by size and hydrophobicity of NPs. The model was built based on properties of neutral NPs and cells, defining Van de Waals forces, electrostatic forces and Lewis acid-base (polar) interactions between NPs and vesicles as well as between vesicles and cell membranes. We yielded a generic model for estimating exocytosis rate constants of various neutral NPs by cells based on the vesicle-transported exocytosis pathways. Our results indicate that most models are well fitted (R2 ranging from 0.61 to 0.98) and may provide good predictions of exocytosis rate constants for NPs with differing surface functionalities (prediction errors are within 2 times for macrophages). Exocytosis rates differ between cancerous cells with metastatic potential and non-cancerous cells. Our model provides a reference for cellular elimination of NPs, and intends for medical applications and risk assessment.
Collapse
Affiliation(s)
- Bingqing Lu
- grid.5590.90000000122931605Department of Environmental Science, Institute for Biological and Environmental Sciences, Radboud University Nijmegen, 6500 GL Nijmegen, The Netherlands
| | - Jiaqi Wang
- grid.5590.90000000122931605Department of Environmental Science, Institute for Biological and Environmental Sciences, Radboud University Nijmegen, 6500 GL Nijmegen, The Netherlands
| | - Paul T. J. Scheepers
- grid.5590.90000000122931605Department of Toxicology, Radboud University Nijmegen, 6500 GL Nijmegen, The Netherlands
| | - A. Jan Hendriks
- grid.5590.90000000122931605Department of Environmental Science, Institute for Biological and Environmental Sciences, Radboud University Nijmegen, 6500 GL Nijmegen, The Netherlands
| | - Tom M. Nolte
- grid.5590.90000000122931605Department of Environmental Science, Institute for Biological and Environmental Sciences, Radboud University Nijmegen, 6500 GL Nijmegen, The Netherlands
| |
Collapse
|
10
|
Pardridge WM. Kinetics of Blood-Brain Barrier Transport of Monoclonal Antibodies Targeting the Insulin Receptor and the Transferrin Receptor. Pharmaceuticals (Basel) 2021; 15:3. [PMID: 35056060 PMCID: PMC8778919 DOI: 10.3390/ph15010003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/10/2021] [Accepted: 12/18/2021] [Indexed: 12/21/2022] Open
Abstract
Biologic drugs are large molecule pharmaceuticals that do not cross the blood-brain barrier (BBB), which is formed by the brain capillary endothelium. Biologics can be re-engineered for BBB transport as IgG fusion proteins, where the IgG domain is a monoclonal antibody (MAb) that targets an endogenous BBB transporter, such as the insulin receptor (IR) or transferrin receptor (TfR). The IR and TfR at the BBB transport the receptor-specific MAb in parallel with the transport of the endogenous ligand, insulin or transferrin. The kinetics of BBB transport of insulin or transferrin, or an IRMAb or TfRMAb, can be quantified with separate mathematical models. Mathematical models to estimate the half-time of receptor endocytosis, MAb or ligand exocytosis into brain extracellular space, or receptor recycling back to the endothelial luminal membrane were fit to the brain uptake of a TfRMAb or a IRMAb fusion protein in the Rhesus monkey. Model fits to the data also allow for estimates of the rates of association of the MAb in plasma with the IR or TfR that is embedded within the endothelial luminal membrane in vivo. The parameters generated from the model fits can be used to estimate the brain concentration profile of the MAb over time, and this brain exposure is shown to be a function of the rate of clearance of the antibody fusion protein from the plasma compartment.
Collapse
|
11
|
Zhang W, Mehta A, Tong Z, Esser L, Voelcker NH. Development of Polymeric Nanoparticles for Blood-Brain Barrier Transfer-Strategies and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003937. [PMID: 34026447 PMCID: PMC8132167 DOI: 10.1002/advs.202003937] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/20/2020] [Indexed: 05/04/2023]
Abstract
Neurological disorders such as Alzheimer's disease, stroke, and brain cancers are difficult to treat with current drugs as their delivery efficacy to the brain is severely hampered by the presence of the blood-brain barrier (BBB). Drug delivery systems have been extensively explored in recent decades aiming to circumvent this barrier. In particular, polymeric nanoparticles have shown enormous potentials owing to their unique properties, such as high tunability, ease of synthesis, and control over drug release profile. However, careful analysis of their performance in effective drug transport across the BBB should be performed using clinically relevant testing models. In this review, polymeric nanoparticle systems for drug delivery to the central nervous system are discussed with an emphasis on the effects of particle size, shape, and surface modifications on BBB penetration. Moreover, the authors critically analyze the current in vitro and in vivo models used to evaluate BBB penetration efficacy, including the latest developments in the BBB-on-a-chip models. Finally, the challenges and future perspectives for the development of polymeric nanoparticles to combat neurological disorders are discussed.
Collapse
Affiliation(s)
- Weisen Zhang
- Drug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
| | - Ami Mehta
- Drug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
- IITB Monash Research AcademyBombayMumbai400076India
| | - Ziqiu Tong
- Drug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
| | - Lars Esser
- Drug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVIC3168Australia
| | - Nicolas H. Voelcker
- Drug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash University381 Royal ParadeParkvilleVIC3052Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)ClaytonVIC3168Australia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication FacilityClaytonVIC3168Australia
- Department of Materials Science and EngineeringMonash UniversityClaytonVIC3800Australia
| |
Collapse
|
12
|
Wu Z, Xian Z, Ma W, Liu Q, Huang X, Xiong B, He S, Zhang W. Artificial neural network approach for predicting blood brain barrier permeability based on a group contribution method. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 200:105943. [PMID: 33515846 DOI: 10.1016/j.cmpb.2021.105943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVE The purpose of this study was to develop a quantitative structure-activity relationship (QSAR) model for the prediction of blood brain barrier (BBB) permeability by using artificial neural networks (ANN) in combination with molecular structure and property descriptors. METHODS Using a database composed of 300 compounds, 52 structure descriptors obtained based on the universal quasichemical functional group activity coefficients (UNIFAC) group contribution method and the selected 8 molecular property descriptors were used as the network inputs, whereas logBB values of compounds constituted its output. RESULTS The correlation coefficient R of the constructed prediction model, the relative error (RE) and the root mean square error (RMSE) was 0.956, 0.857, and 0.171, respectively. These indicators reflected the feasibility, robustness and accuracy of the prediction model. Compared with the previously published results, a significant improvement in the predictions of the proposed ANN model was observed. CONCLUSIONS ANN model based on the group contribution method could achieve a satisfactory performance for logBB prediction.
Collapse
Affiliation(s)
- Zeyu Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230601, China.
| | - Zhaojun Xian
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Wanru Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Qingsong Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Xusheng Huang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Baoyi Xiong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Shudong He
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Wencheng Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
13
|
Van Dinh Q, Liu J, Dutta P. Effect of Calcium ion on synaptotagmin-like protein during pre-fusion of vesicle for exocytosis in blood-brain barrier. Biochem Biophys Rep 2020; 24:100845. [PMID: 33235924 PMCID: PMC7670242 DOI: 10.1016/j.bbrep.2020.100845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/13/2020] [Accepted: 10/27/2020] [Indexed: 11/18/2022] Open
Abstract
Background Calcium signaling and membrane fusion play key roles in exocytosis of drug-containing vesicles through the blood-brain barrier (BBB). Identifying the role of synaptotagmin-like protein4-a (Slp4-a) in the presence of Ca2+ ions, at the pre-fusion stage of a vesicle with the basolateral membrane of endothelial cell, can reveal brain drug transportation across BBB. Methods We utilized molecular dynamics (MD) simulations with a coarse-grained PACE force field to investigate the behaviors of Slp4-a with vesicular and endothelial membranes at the pre-fusion stage of exocytosis since all-atom MD simulation or experiments are more time-consuming and expensive to capture these behaviors. Results The Slp4-a pulls lipid membranes (vesicular and endothelial) into close proximity and disorganizes lipid arrangement at contact points, which are predictors for initiation of fusion. Our MD results also indicate that Slp4-a needs Ca2+ to bind with weakly-charged POPE lipids (phosphatidylethanolamine). Conclusions Slp4-a is an important trigger for membrane fusion in BBB exocytosis. It binds to lipid membranes at multiple binding sites and triggers membrane disruption for fusion in calcium-dependent case. General significance Understanding the prefusion process of the vesicle will help to design better drug delivery mechanisms to the brain through formidable BBB. Role of Ca2+ on Slp4-a is studied for vesicle pre-fusion in EC to initiate exocytosis. Coarse-grained MD is used to study large scale conformation change of Slp-4a. Interaction between C2A domain and lipids is much stronger than that of C2B. Slp4-a can bind to bilayer membrane in Ca2+-bound case to close membrane gap.
Collapse
Affiliation(s)
| | | | - Prashanta Dutta
- Corresponding author. School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
14
|
Transport of PEGylated-PLA nanoparticles across a blood brain barrier model, entry into neuronal cells and in vivo brain bioavailability. J Control Release 2020; 328:679-695. [PMID: 32979453 DOI: 10.1016/j.jconrel.2020.09.042] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/09/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
Treatments of neurodegenerative diseases (NDDs) are severely hampered by the presence of the blood-brain barrier (BBB) precluding efficient brain drug delivery. The development of drug nanocarriers aims at increasing the brain therapeutic index would represent a real progress in brain disease management. PEGylated polyester nanoparticles (NPs) are intensively tested in clinical trials for improved drug delivery. Our working hypothesis was that some surface parameters and size of NPs could favor their penetration across the BBB and their neuronal uptake. Polymeric material PEG-b-PLA diblocks were synthesized by ring opening polymerisation (ROP) with PEG2000 or PEG5000. A library of polymeric PEG-b-PLA diblocks NPs with different physicochemical properties was produced. The toxicity, endocytosis and transcytosis through the brain microvascular endothelial cells were monitored as well as the neuronal cells uptake. In vitro results lead to the identification of favourable surface parameters for the NPs endocytosis into vascular endothelial cells. NPs endocytosis took place mainly by macropinocytosis while transcytosis was partially controlled by their surface chemistry and size. In vivo assays on a zebrafish model showed that the kinetic of NPs in circulation is dependent on PEG coating properties. In vivo findings also showed a low but similar translocation of PEG-b-PLA diblocks NPs to the CNS, regardless of their properties. In conclusion, modulation of surface PEG chain length and NPs size impact the endocytosis rate of NPs but have little influence on cell barriers translocation; while in vivo biodistribution is influenced by surface PEG chain density.
Collapse
|
15
|
Ding S, Khan AI, Cai X, Song Y, Lyu Z, Du D, Dutta P, Lin Y. Overcoming blood-brain barrier transport: Advances in nanoparticle-based drug delivery strategies. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2020; 37:112-125. [PMID: 33093794 PMCID: PMC7575138 DOI: 10.1016/j.mattod.2020.02.001] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The Blood-Brain Barrier (BBB), a unique structure in the central nervous system (CNS), protects the brain from bloodborne pathogens by its excellent barrier properties. Nevertheless, this barrier limits therapeutic efficacy and becomes one of the biggest challenges in new drug development for neurodegenerative disease and brain cancer. Recent breakthroughs in nanotechnology have resulted in various nanoparticles (NPs) as drug carriers to cross the BBB by different methods. This review presents the current understanding of advanced NP-mediated non-invasive drug delivery for the treatment of neurological disorders. Herein, the complex compositions and special characteristics of BBB are elucidated exhaustively. Moreover, versatile drug nanocarriers with their recent applications and their pathways on different drug delivery strategies to overcome the formidable BBB obstacle are briefly discussed. In terms of significance, this paper provides a general understanding of how various properties of nanoparticles aid in drug delivery through BBB and usher the development of novel nanotechnology-based nanomaterials for cerebral disease therapies.
Collapse
Affiliation(s)
| | | | - Xiaoli Cai
- School of Mechanical and Materials Engineering, Washington State University, PO Box 642920 Pullman, Washington 99164, United States
| | - Yang Song
- School of Mechanical and Materials Engineering, Washington State University, PO Box 642920 Pullman, Washington 99164, United States
| | - Zhaoyuan Lyu
- School of Mechanical and Materials Engineering, Washington State University, PO Box 642920 Pullman, Washington 99164, United States
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, PO Box 642920 Pullman, Washington 99164, United States
| | - Prashanta Dutta
- School of Mechanical and Materials Engineering, Washington State University, PO Box 642920 Pullman, Washington 99164, United States
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, PO Box 642920 Pullman, Washington 99164, United States
| |
Collapse
|
16
|
Helal-Neto E, de Barros AODS, Saldanha-Gama R, Brandão-Costa R, Alencar LMR, dos Santos CC, Martínez-Máñez R, Ricci-Junior E, Alexis F, Morandi V, Barja-Fidalgo C, Santos-Oliveira R. Molecular and Cellular Risk Assessment of Healthy Human Cells and Cancer Human Cells Exposed to Nanoparticles. Int J Mol Sci 2019; 21:ijms21010230. [PMID: 31905708 PMCID: PMC6981945 DOI: 10.3390/ijms21010230] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/14/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022] Open
Abstract
Nanodrugs have in recent years been a subject of great debate. In 2017 alone, almost 50 nanodrugs were approved for clinical use worldwide. Despite the advantages related to nanodrugs/nanomedicine, there is still a lack of information regarding the biological safety, as the real behavior of these nanodrugs in the body. In order to better understand these aspects, in this study, we evaluated the effect of polylactic acid (PLA) nanoparticles (NPs) and magnetic core mesoporous silica nanoparticles (MMSN), of 1000 nm and 50 nm, respectively, on human cells. In this direction we evaluated the cell cycle, cytochemistry, proliferation and tubulogenesis on tumor cells lines: from melanoma (MV3), breast cancer (MCF-7, MDA-MB-213), glioma (U373MG), prostate (PC3), gastric (AGS) and colon adenocarcinoma (HT-29) and non-tumor cell lines: from human melanocyte (NGM), fibroblast (FGH) and endothelial (HUVEC), respectively. The data showed that an acute exposure to both, polymeric nanoparticles or MMSN, did not show any relevant toxic effects on neither tumor cells nor non-tumor cells, suggesting that although nanodrugs may present unrevealed aspects, under acute exposition to human cells they are harmless.
Collapse
Affiliation(s)
- Edward Helal-Neto
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941906, Brazil; (E.H.-N.); (A.O.d.S.d.B.)
| | | | - Roberta Saldanha-Gama
- Laboratory of Cellular and Molecular Pharmacology, Department of Cell Biology, IBRAG, Universidade do Estado do Rio de Janeiro, Rio de Janeiro-RJ 21040900, Brazil; (R.S.-G.); (R.B.-C.); (C.B.-F.)
| | - Renata Brandão-Costa
- Laboratory of Cellular and Molecular Pharmacology, Department of Cell Biology, IBRAG, Universidade do Estado do Rio de Janeiro, Rio de Janeiro-RJ 21040900, Brazil; (R.S.-G.); (R.B.-C.); (C.B.-F.)
| | | | - Clenilton Costa dos Santos
- Department of Physics, Federal University of Maranhão, São Luis do Maranhão 65080-805, Brazil; (L.M.R.A.); (C.C.d.S.)
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València. Camino de Vera s/n, 46022 Valencia, Spain;
- Departamento de Química, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, ES 08034 Barcelona, Spain
| | - Eduardo Ricci-Junior
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro-RJ 21941-901, Brazil;
| | - Frank Alexis
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA;
| | - Verônica Morandi
- Laboratory of Biology of Endothelial Cells and Angiogenesis (LabAngio), Department of Cell Biology, IBRAG, Universidade do Estado do Rio de Janeiro, Rio de Janeiro-RJ 20550-900, Brazil;
| | - Christina Barja-Fidalgo
- Laboratory of Cellular and Molecular Pharmacology, Department of Cell Biology, IBRAG, Universidade do Estado do Rio de Janeiro, Rio de Janeiro-RJ 21040900, Brazil; (R.S.-G.); (R.B.-C.); (C.B.-F.)
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941906, Brazil; (E.H.-N.); (A.O.d.S.d.B.)
- Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Zona Oeste State University, Rio de Janeiro-RJ 23070-200, Brazil
- Correspondence: or
| |
Collapse
|
17
|
Khan AI, Liu J, Dutta P. Bayesian inference for parameter estimation in lactoferrin-mediated iron transport across blood-brain barrier. Biochim Biophys Acta Gen Subj 2019; 1864:129459. [PMID: 31682896 DOI: 10.1016/j.bbagen.2019.129459] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/11/2019] [Accepted: 10/22/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND In neurodegenerative diseases such as Alzheimer's and Parkinson's, excessive irons as well as lactoferrin (Lf), but not transferrin (Tf), have been found in and around the affected regions of the brain. These evidences suggest that lactoferrin plays a critical role during neurodegenerative diseases, although Lf-mediated iron transport across blood-brain barrier (BBB) is negligible compared to that of transferrin in normal condition. However, the kinetics of lactoferrins and lactoferrin-mediated iron transport are still unknown. METHOD To determine the kinetic rate constants of lactoferrin-mediated iron transport through BBB, a mass-action based ordinary differential equation model has been presented. A Bayesian framework is developed to estimate the kinetic rate parameters from posterior probability density functions. The iron transport across BBB is studied by considering both Lf- and Tf-mediated pathways for both normal and pathologic conditions. RESULTS Using the point estimates of kinetic parameters, our model can effectively reproduce the experimental data of iron transport through BBB endothelial cells. The robustness of the model and parameter estimation process are further verified by perturbation of kinetic parameters. Our results show that surge in high-affinity receptor density increases lactoferrin as well as iron in the brain. CONCLUSIONS Due to the lack of a feedback loop such as iron regulatory proteins (IRPs) for lactoferrin, iron can transport to the brain continuously, which might increase brain iron to pathological levels and can contribute to neurodegeneration. GENERAL SIGNIFICANCE This study provides an improved understanding of presence of lactoferrin and iron in the brain during neurodegenerative diseases.
Collapse
Affiliation(s)
- Aminul Islam Khan
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920, United States of America
| | - Jin Liu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920, United States of America
| | - Prashanta Dutta
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920, United States of America.
| |
Collapse
|
18
|
Exocytosis - a putative road-block in nanoparticle and nanocomplex mediated gene delivery. J Control Release 2019; 303:67-76. [DOI: 10.1016/j.jconrel.2019.04.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/14/2022]
|